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Abstract001

Position bias—where Large Language Models002
(LLMs) overrepresent content from the begin-003
nings and endings of documents while neglect-004
ing middle sections—has been considered a005
core limitation in automatic summarization. To006
measure position bias, prior studies rely heav-007
ily on n-gram matching techniques, which fail008
to capture semantic relationships in abstrac-009
tive summaries where content is extensively010
rephrased. To address this limitation, we intro-011
duce a cross-encoder-based alignment method012
that jointly processes summary–source sen-013
tence pairs, enabling more accurate identifica-014
tion of semantic correspondences—even when015
summaries substantially rewrite the source. Ex-016
periments with five LLMs across six summa-017
rization datasets reveal markedly different posi-018
tion bias patterns than those reported by tradi-019
tional metrics. Our findings suggest that these020
biases primarily reflect rational adaptations to021
document structure and content rather than022
true model limitations. Through controlled ex-023
periments and analyses across varying docu-024
ment lengths and multi-document settings, we025
show that LLMs utilize content from all posi-026
tions more effectively than previously assumed,027
challenging common claims about “lost-in-the-028
middle” behaviour.029

1 Introduction030

Large language models (LLMs) have significantly031

advanced summarization, often producing sum-032

maries that approach human-level quality (Goyal033

et al., 2022a; Zhang et al., 2023). Despite this034

performance, position bias, where models prefer-035

entially select summary content from certain doc-036

ument locations, typically the beginning and end037

raises concerns about their effectiveness.038

Initially documented as “lead bias” in news sum-039

marization, this phenomenon once seemed appro-040

priate given the standard “inverted pyramid” struc-041

ture of news articles, which emphasizes early con-042

tent (Grenander et al., 2019; Norambuena et al.,043

2020). However, similar biases have since been 044

reported across various neural models (Nallapati 045

et al., 2017; Zhong et al., 2019) and in other do- 046

mains (Jung et al., 2019a), suggesting broader im- 047

plications. Recent studies identified a “U-shaped” 048

attention pattern, where models disproportionately 049

neglect middle sections of documents (Ravaut et al., 050

2024; Liu et al., 2023a), potentially highlighting 051

limitations in summarizing long documents. 052

The characterization of patterns as biases de- 053

pends heavily on accurately identifying each source 054

sentence’s contribution to the generated summaries. 055

Most existing evaluations rely on n-gram match- 056

ing, which counts shared word sequences between 057

summaries and sources (Zhong et al., 2019; Ravaut 058

et al., 2024). This method is insufficient for ab- 059

stractive summaries, which often involve exten- 060

sive rephrasing; notably, over 80% of bigrams in 061

XSum and over 50% in CNN/DailyMail summaries 062

are novel (Suhara and Alikaniotis, 2024a). Con- 063

sequently, current evaluations may significantly 064

underestimate how much source content models 065

actually use. 066

Moreover, labeling position patterns as biases 067

presupposes these patterns indicate model flaws 068

rather than appropriate responses to content dis- 069

tribution. Many documents naturally emphasize 070

important information in specific positions, mean- 071

ing models’ apparent biases may reflect rational 072

content selection rather than weaknesses. 073

To address these concerns, we introduce a cross- 074

encoder approach—a transformer-based model 075

that jointly processes summary-source sentence 076

pairs to explicitly measure semantic alignment. Un- 077

like n-gram methods, cross-encoders directly cap- 078

ture meaning, enabling more accurate source attri- 079

bution. Specifically, we investigate: 080

1. How improved semantic alignment alters inter- 081

pretations of position bias. 082

2. Which position patterns emerge under precise 083

semantic alignment in standard-length docu- 084
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ments.085

3. How these patterns shift in controlled multi-086

document scenarios with manipulated positions.087

4. Whether biases persist in summarizing longer088

documents with extended context.089

Through experiments involving five SotA LLMs090

and six different datasets, we show substantial de-091

viations from previously reported position patterns.092

Our results suggest that observed biases typically093

reflect rational alignment with document structures094

and important content rather than inherent model095

limitations.096

Contributions We make four main contributions:097

(1) Methodological: We introduce and validate a098

cross-encoder approach for source attribution in ab-099

stractive summarization that achieves substantially100

higher precision than traditional n-gram matching101

methods. (2) Empirical: We provide the first102

comprehensive analysis of position patterns using103

semantically-aware attribution, revealing signifi-104

cant deviations from previously reported bias pat-105

terns. (3) Theoretical: We demonstrate, through106

controlled experiments, that observed position pref-107

erences largely reflect underlying content impor-108

tance distributions rather than systematic model109

limitations. (4) Practical: We show that models110

can effectively utilize content from any document111

position when information value justifies it, includ-112

ing middle sections in long documents previously113

thought to be “lost.”114

2 Related Work115

Position bias in summarization describes model116

tendency to favour content from specific document117

locations, particularly document beginnings. This118

“lead bias” was first documented in news summa-119

rization, where models strongly prefer early sen-120

tences (Nallapati et al., 2016; Grenander et al.,121

2019; Xing et al., 2021). While initially consid-122

ered appropriate for news articles that front-load123

key information (Norambuena et al., 2020), posi-124

tion bias has since been observed across different125

neural architectures (Nallapati et al., 2017; Zhong126

et al., 2019; See et al., 2017) and domains (Jung127

et al., 2019b; Kedzie et al., 2018). Recent research128

extended these findings to LLMs, documenting129

the “lost-in-the-middle” phenomenon where per-130

formance degrades for information in context mid-131

dle positions (Liu et al., 2024; Koren and Gold-132

berg, 2024). Studies have reported U-shaped pat-133

terns where models favour document beginnings134

and ends while neglecting middle sections (Ravaut 135

et al., 2024; Chhabra et al., 2024), casting doubt 136

on transformer architectures to process information 137

distributed throughout long documents. 138

The fundamental challenge in studying position 139

bias lies in accurately mapping summary content to 140

source locations—a non-trivial task in abstractive 141

summarization where content undergoes substan- 142

tial semantic transformation (Zhang et al., 2020; 143

Goyal et al., 2022b). Traditional approaches rely 144

on lexical overlap techniques, measuring n-gram 145

matches or word-level similarity between sum- 146

maries and source segments (Lin, 2004a; Zhong 147

et al., 2020). However, these methods struggle 148

with paraphrasing and abstraction, potentially mis- 149

characterizing how models utilize source content 150

(Suhara and Alikaniotis, 2024a). Alternative ap- 151

proaches include embedding-based similarity mea- 152

sures (Zhang et al., 2019), content unit extraction 153

methods (Liu et al., 2023b), and cross-encoder ar- 154

chitectures that jointly process text pairs (Reimers 155

and Gurevych, 2019), though their systematic ap- 156

plication to position bias analysis remains limited. 157

Current evaluation methodologies for position 158

bias range from simple lead overlap counts (Grusky 159

et al., 2018) to sophisticated distribution mapping 160

approaches that compare statistical divergence be- 161

tween model and reference source utilization pat- 162

terns (Chhabra et al., 2024; Jung et al., 2019b). 163

Input perturbation methods test position effects by 164

manipulating document order (Kedzie et al., 2018; 165

Grenander et al., 2019), though these approaches 166

risk destroying document coherence (Chen and 167

Bansal, 2018). Attention analysis provides another 168

perspective by examining model internals (Jain and 169

Wallace, 2019), yet no studies validate their attri- 170

bution methods against human-annotated ground 171

truth. We address these methodological limitations 172

by introducing and validating cross-encoder attri- 173

bution techniques that enable more precise analysis 174

of position patterns in abstractive summarization. 175

3 Methodology 176

3.1 The Attribution Challenge 177

Accurately identifying which source sentences con- 178

tribute to summary content is crucial for evaluating 179

abstractive models. Traditional n-gram matching 180

(Lin, 2004b) fails with paraphrased content, while 181

embedding-based methods like BERTScore (Zhang 182

et al., 2019) often misalign topically similar but 183

factually distinct sentences, limiting attribution pre- 184
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cision.185

3.2 Cross-Encoder Approach.186

We propose using cross-encoder models (Reimers187

and Gurevych, 2019) to capture semantic relation-188

ships between summary and source sentences. Un-189

like bi-encoders that separately encode sentences190

before comparing embeddings, cross-encoders191

jointly process concatenated summary-source pairs192

[s; di] through transformer layers. This archi-193

tecture enables attention mechanisms to model194

fine-grained semantic connections across the en-195

tire input, providing more accurate attribution for196

paraphrased content than separate encoding ap-197

proaches.198

Dynamic Selection Strategy. For each sum-199

mary sentence s and document sentences D =200

{d1, d2, ..., dn}, we select contributing sources in201

two stages adapting to varying score distributions.202

Attribution scores vary greatly across instances:203

highly abstractive summaries may have uniformly204

low scores, while extractive summaries show clear205

high-low separation. Fixed thresholds fail to ac-206

count for this variation, leading to over-selection in207

some cases and under-selection in others.208

Our method first identifies where relevant con-209

tent transitions to noise by finding the "elbow210

point"—the position in ranked attribution scores211

where the score difference is maximized. This212

boundary detection captures where marginal infor-213

mation gain drops most sharply (Thorndike, 1953).214

Among sentences scoring above this elbow point,215

we select those exceeding an adaptive threshold216

µ+0.5σ, where µ and σ are the mean and standard217

deviation of all scores. This statistical threshold218

normalizes for instance-specific score characteris-219

tics: the same raw score might indicate high rel-220

evance in one case but mediocrity in another. If221

no sentences meet this criterion, we select the top-222

scoring sentence as a fallback to ensure attribution223

coverage.224

We use the pre-trained ‘cross-encoder/stsb-225

roberta-base‘ model without task-specific fine-226

tuning to demonstrate generalizability across do-227

mains. Appendix A provides illustrative exam-228

ples showing how this approach correctly identifies229

semantic alignments that Bigram or BERTScore230

methods miss.231

3.3 Empirical Validation of Attribution 232

We validate our cross-encoder approach using 233

expert annotations from Suhara and Alikanio- 234

tis (2024b), who hired professional annotators 235

to identify contributing source sentences across 236

2000 document-summary pairs from XSum and 237

CNN/DailyMail (Krippendorff’s α = 0.8). We 238

evaluate using Precision, NDCG@k (ranking qual- 239

ity), and EMD (distributional similarity). 240

Table 1 demonstrates substantial improvements 241

over existing methods. Most notably, our cross- 242

encoder achieves 78% precision versus 50% for 243

bigram matching on XSum—a 56% relative im- 244

provement despite 83.82% of summary bigrams 245

being novel combinations. This highlights tradi- 246

tional methods’ inadequacy for abstractive content. 247

Dataset Method Precision NDCG EMD↓

XSum
Bigram 0.50 0.67 0.14
BERTScore 0.69 0.77 0.06
Cross-Encoder 0.78 0.86 0.05

CNN/DM
Bigram 0.59 0.85 0.10
BERTScore 0.72 0.85 0.09
Cross-Encoder 0.78 0.91 0.07

Table 1: Source attribution performance. All improvements
statistically significant (p < 0.001).

Crucially, Figure 1 reveals that bigram 248

matching systematically distorts position pat- 249

terns—underestimating contributions from docu- 250

ment beginnings while overestimating from end- 251

ings. Our cross-encoder produces distributions 252

closely aligned with human annotations, suggesting 253

previously reported U-shaped biases may partially 254

reflect measurement artifacts rather than genuine 255

model behaviours. 256

0.00 0.25 0.50 0.75 1.00
Relative Position

0.00

0.05

0.10

0.15

0.20

Co
nt

en
t D

ist
rib

ut
io

n 
(%

)

XSum

0.00 0.25 0.50 0.75 1.00
Relative Position

CNN/DM

Reference Cross-Encoder Bigram BERTScore

Figure 1: Position distributions by attribution method.
Cross-encoder closely matches human annotations
while bigram matching shows systematic distortions.

3.4 Experimental Design 257

Using our cross-encoder, we investigate position 258

bias through three complementary experiments: 1) 259
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Figure 2: Position distributions comparing model-generated summaries (solid lines) with human references (dashed
lines) across CNN/DailyMail, XSum, and SAMSum. Models consistently exhibit rightward shifts, selecting content
from later document positions compared to human summarizers.

Standard Documents: We analyze position distri-260

butions across CNN/DailyMail, XSum, and SAM-261

Sum, comparing human references with outputs262

from five LLMs (Phi-3, GPT-3.5-Turbo, Llama-263

3.2-1B, Mistral-7B, Qwen-2.5-7B) to distinguish264

domain-specific patterns from general patterns. 2)265

Controlled Order Manipulation: To isolate po-266

sition effects from content importance, we create267

document pairs in alternate orders (Doc1+Doc2268

vs. Doc2+Doc1) using 500 examples per dataset269

(CNN/DailyMail, XSum, and SAMSum), measur-270

ing how position influences selection. 3) Long271

Documents: We extend analysis to ArXiv, Multi-272

News, and GovReport to determine whether posi-273

tion patterns scale with length or represent architec-274

tural limitations. In all experiments, we normalize275

positions to [0,1], analyze both continuous distri-276

butions and sectional breakdowns, and apply multi-277

ple statistical tests (KS (Massey Jr, 1951), Mann-278

Whitney U (Mann and Whitney, 1947), t-test (Stu-279

dent, 1908)).Appendix B and Appendix C provide280

concrete examples of the dataset characteristics and281

model configurations used in our experiments. Ex-282

ample prompts and generation parameters can be283

found in Appendix E.284

4 Results285

4.1 Position Bias in Standard Documents286

Accurate attribution reveals rightward shifts,287

not U-shaped bias. To our second research ques-288

tion, we analyze position patterns using cross-289

encoder attribution across three standard-length290

datasets. Our findings fundamentally challenge291

previous characterizations of position bias in LLM292

summarization. Figure 2 reveals that, while all293

summaries appropriately select more content from294

Model CNN/DM XSum SAMSum

Reference 0.32 0.31 0.40

GPT-3.5 0.40 0.37 0.43
Llama-3 0.38 0.35 0.43
Mistral 0.42 0.39 0.44
Phi-3 0.40 0.40 0.45
Qwen 0.36 0.37 0.44

Table 2: Mean position values across models and
datasets. Bold indicates statistically significant right-
ward shifts compared to references (p < 0.05).

document beginnings (where important informa- 295

tion typically concentrates), models systematically 296

select content from later document positions than 297

human references across all datasets. This reflects 298

rational information seeking rather than bias, with 299

models demonstrating more balanced content use 300

than human summarizers. These findings directly 301

contradict the widely-reported U-shaped attention 302

hypothesis, where models allegedly favour begin- 303

nings and ends while neglecting middle sections. 304

Table 2 quantifies these rightward shifts, with 305

models achieving mean positions 0.041-0.098 306

points higher than references in CNN/DM. This 307

systematic pattern holds across all five LLMs and 308

three diverse datasets, indicating more balanced 309

content selection than human summarizers rather 310

than systematic bias toward document boundaries. 311

The sectional analysis in Figure 3 reveals the 312

mechanism underlying these shifts: models extract 313

7-12% less content from beginning sections while 314

incorporating 5-9% more from middle and later 315

sections. This redistributive pattern appears across 316

structurally diverse content—from news articles to 317

dialogue—suggesting that accurate semantic attri- 318

bution reveals sophisticated content selection strate- 319
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Figure 3: Content extraction by document sections. Models consistently reduce reliance on beginning sections
while increasing utilization of middle and later sections compared to human references.

gies rather than positional limitations.320

4.2 Interaction Effects: Pattern Variations321

While the rightward shift appears universally, its ex-322

pression varies across contexts. This variation fol-323

lows a three-factor interaction pattern that explains324

the diversity in reported position bias findings: 1)325

Universal tendency toward balanced selection.326

All models show rightward shifts compared to hu-327

mans, suggesting neural architectures naturally dis-328

tribute attention more evenly across documents. 2)329

Content-dependent modulation. This tendency330

manifests differently across domains: strongly in331

news (CNN/DM: +0.041 to +0.098), variably in ab-332

stractive tasks (XSum: +0.043 to +0.095), and con-333

sistently in dialogue (SAMSum: +0.030 to +0.048).334

3) Architecture-specific differences. Model vari-335

ations become pronounced in highly abstractive336

contexts, where Phi-3 shows the strongest rebalanc-337

ing (+0.095) while Llama-3’s shift is insignificant.338

Rather than viewing position patterns as fixed339

biases, these findings suggest they emerge from340

rational content assessment that vary based on doc-341

ument structure, task demands, and architecture.342

While these correlational findings reveal consis-343

tent position patterns, they leave a key question344

unanswered: do models select content based on345

position or because important information happens346

to appear in certain locations? In Phase 2, we ad-347

dress this confound through controlled experiments348

where we rearrange identical content into different349

positions. This design tests whether identical infor-350

mation receives different treatment based solely on351

its position.352

4.3 Document Order Manipulation 353

Previous studies test position bias by shuffling 354

sentences (Kedzie et al., 2018), which destroys 355

document structure. Instead, we concatenate two 356

documents in different orders: Doc1+Doc2 ver- 357

sus Doc2+Doc1. This preserves coherence while 358

testing whether models treat identical content dif- 359

ferently based on its sequential position. 360

We examine two critical aspects: (1) Does docu- 361

ment position affect how many sentences models 362

select from each document? (2) Do models select 363

sentences from the same positions within docu- 364

ments regardless of global order? Our findings 365

reveal a nuanced pattern where sentence counts 366

show statistical significance but position distribu- 367

tions demonstrate remarkable stability. 368

Data Model D1+D2 D2+D1 Diff p-value

C
N

N
/D

M

GPT-3.5 4.03 4.77 +0.74 2.7e-09**
Llama-3.2 5.99 5.64 -0.35 0.002*
Mistral 4.58 5.42 +0.84 1.7e-12**
Phi-3 4.13 4.60 +0.47 9.7e-05**
Qwen 4.71 5.09 +0.38 0.0006**

X
Su

m

GPT-3.5 3.33 3.92 +0.60 1.5e-08**
Llama-3.2 4.26 4.46 +0.20 0.047*
Mistral 4.01 4.77 +0.76 1.3e-13**
Phi-3 4.03 4.15 +0.12 0.257
Qwen 4.54 4.77 +0.23 0.028*

SA
M

Su
m

GPT-3.5 2.01 2.00 -0.01 0.895
Llama-3.2 3.41 2.58 -0.84 6.7e-10**
Mistral 2.43 3.02 +0.59 8.4e-09**
Phi-3 2.65 3.04 +0.39 0.0002**
Qwen 2.60 2.93 +0.33 0.0015**

*p < 0.05, **p < 0.001

Table 3: Sentence count differences across configs.

Our findings demonstrate a key insight: while 369

document order can produce statistically detectable 370

effects on sentence counts, models maintain re- 371

markable consistency in the positions from which 372
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Figure 4: Llama3.2 position distributions across document configurations. The overlapping histograms demonstrate
that models maintain consistent selection patterns within documents regardless of global order. Even when sentence
counts differ statistically, the positions of selected content remain stable.

Data Model Doc1 Doc2
p-val Sig? p-val Sig?

C
N

N
/D

M

GPT-3.5 0.038 Yes* 0.405 No
Llama-3.2 0.511 No 1.000 No
Mistral 0.079 No 0.918 No
Phi-3 0.180 No 0.230 No
Qwen 0.739 No 0.988 No

X
Su

m

GPT-3.5 0.480 No 0.018 Yes*
Llama-3.2 0.017 Yes* 0.327 No
Mistral 0.581 No 0.411 No
Phi-3 0.366 No 0.802 No
Qwen 0.949 No 0.803 No

SA
M

Su
m

GPT-3.5 0.233 No 0.960 No
Llama-3.2 0.454 No 0.990 No
Mistral 0.908 No 0.513 No
Phi-3 0.406 No 0.699 No
Qwen 0.126 No 0.244 No

*p < 0.05

Table 4: Position distribution stability in documents.

they extract content. The 90% consistency rate373

in position distributions suggests that models ef-374

fectively identify and extract informative content375

regardless of global document ordering.376

These results establish that, in controlled two-377

document settings, position effects are modest and378

do not fundamentally alter content assessment.379

However, this raises important questions about380

longer contexts where "lost-in-the-middle" effects381

are widely reported. Phase 3 examines whether382

this position-independent evaluation extends to sub-383

stantially longer documents and multi-document384

scenarios. Figure 4 visualizes this stability. The385

overlapping distributions confirm that models eval-386

uate content based on intrinsic information rather387

than global position, even when they adjust selec-388

tion volume in response to document ordering.389

4.4 Position Bias in Extended Contexts 390

To investigate whether position patterns scale 391

to longer inputs, we analyze three challenging 392

datasets: ArXiv (scientific papers), GovReport 393

(government documents), and Multi-News (multi- 394

document collections). This addresses our fourth 395

research question: do position patterns persist in ex- 396

tended contexts where "lost-in-the-middle" effects 397

are commonly reported? 398

4.4.1 Context-Dependent Position Effects 399

Figure 5 reveals a striking pattern: position bias 400

varies dramatically by document type, not just 401

length. Scientific papers show substantial model- 402

reference divergence, while government documents 403

exhibit remarkable alignment for some models. 404

Table 5 quantifies these differences, revealing 405

three key insights: 1) Document structure mat- 406

ters more than length. The same model shows 407

vastly different behaviours across document types. 408

GPT-3.5 exhibits high divergence in scientific pa- 409

pers (KS = 0.123, p < 0.001) but near-perfect 410

alignment in government documents (KS = 0.017, 411

p = 0.230). 2) Size doesn’t predict performance. 412

Smaller models often outperform larger ones. Phi- 413

3 (3B parameters) shows the best ArXiv alignment 414

(KS = 0.019, p = 0.794), while GPT-3.5 shows 415

the worst, challenging assumptions about scale and 416

bias. 3) Models adapt to document conventions. 417

Rather than exhibiting fixed biases, models demon- 418

strate sophisticated adaptation to different infor- 419

mation structures, suggesting content-driven rather 420

than position-driven selection. 421

Figure 6 provides section-level analysis. In sci- 422

entific papers, models over-extract from document 423

boundaries—Mistral selects 38% from the first 20% 424

versus 27% for humans. Government documents 425

show more uniform extraction, with Llama-3 nearly 426
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Figure 5: Position distributions in long documents. Scientific papers (ArXiv) show more pronounced model-
reference differences than government documents (GovReport), indicating that position patterns depend on document
structure rather than length alone.

Model ArXiv (Scientific Papers) GovReport (Government Docs)
KL JS WD KS (p-val) KL JS WD KS (p-val)

GPT-3.5 0.078 0.018 0.050 0.123 (<0.001) 0.002 <0.001 0.006 0.017 (0.230)
Llama-3 0.012 0.003 0.016 0.046 (0.002) <0.001 <0.001 0.003 0.005 (0.986)
Mistral 0.045 0.011 0.078 0.119 (<0.001) 0.024 0.006 0.053 0.077 (<0.001)
Phi-3 0.004 0.001 0.007 0.019 (0.794) 0.002 <0.001 0.016 0.027 (0.001)
Qwen 0.006 0.001 0.014 0.026 (0.289) 0.004 <0.001 0.022 0.033 (0.001)
KL = Kullback-Leibler; JS = Jensen-Shannon; WD = Wasserstein; KS = Kolmogorov-Smirnov

Table 5: Position distribution divergence in long documents. Lower values indicate closer alignment with humans.
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Figure 6: Content extraction by document sections. Sci-
entific papers show boundary bias (high beginning/end
extraction), than government documents.

matching human patterns across all sections.427

4.4.2 Refuting "Lost-in-the-Middle"428

Multi-News provides a naturalistic test of "lost-in-429

the-middle" claims. Unlike artificial manipulations,430

this dataset requires models to integrate across mul-431

tiple sources where important content naturally ap-432

pears throughout the sequence.433

Table 6 shows successful middle position use.434

Key findings: 1) Middle position extraction: All435

models show median global positions near 0.5, in-436

dicating substantial middle content use. GPT-3.5437

(median = 0.453) and Phi-3 (median = 0.455) cen-438

ter precisely on middle positions. 2) Distributed439

source attention: High entropy values (3.27-3.85) 440

show models attend broadly across sources rather 441

than focusing on a few. Most models match hu- 442

man entropy patterns (3.83-3.84). 3) Quality 443

maintained: Despite distributed attention, mod- 444

els achieve high content overlap with references. 445

Qwen (0.915 Jaccard) and Llama-3 (0.904) show 446

that middle focus doesn’t compromise quality. 447

Figure 7 visualizes this success. Both Qwen and 448

Phi show balanced local and global position distri- 449

butions, contradicting claims that models cannot ef- 450

fectively process middle content in long sequences. 451

4.4.3 Implications: Rethinking Position Bias 452

Our extended context analysis reveals that posi- 453

tion bias is neither universal nor primarily length- 454

dependent. Instead, it reflects: 1) Document- 455

specific adaptation: Models adjust to different 456

information structures (scientific vs. government 457

writing), showing sophisticated content assessment 458

rather than rigid positional preferences. 2) Qual- 459

ity over position: In multi-document settings 460

where middle positions contain crucial informa- 461

tion, models successfully extract and utilize this 462

content while maintaining high summary quality. 463

3) Architecture-content interactions: Different 464

models excel with different document types, sug- 465

7



Figure 7: Multi-document position analysis for Qwen and Phi models, which successfully extract content from
global middle positions, with balanced local and global position distributions.

Model Global Position Global Reference Source Entropy KS Statistic Jaccard
Mean (Median) Mean (Median) (Reference) (p-value) Similarity

GPT-3.5 0.458 (0.453) 0.458 (0.459) 3.85 (3.84) 0.022 (0.147) 0.871 ± 0.187
Phi-3 0.452 (0.455) 0.460 (0.466) 3.80 (3.83) 0.028 (0.055) 0.817 ± 0.222
Llama-3 0.473 (0.471) 0.459 (0.465) 3.71 (3.83) 0.027 (0.001) 0.904 ± 0.146
Qwen 0.447 (0.436) 0.456 (0.464) 3.77 (3.83) 0.028 (0.007) 0.915 ± 0.141
Mistral 0.440 (0.381) 0.509 (0.537) 3.27 (3.66) 0.216 (0.006) 0.768 ± 0.234

Table 6: Multi-document position statistics. All models successfully utilize middle positions.

gesting that "bias" patterns reflect architectural466

strengths rather than fundamental limitations.467

These findings challenge the characterization of468

position bias as a universal model limitation. In-469

stead, they suggest that LLMs implement adap-470

tive summarization strategies that prioritize content471

over position, even in extended contexts where such472

limitations might be expected.473

5 Conclusion474

This paper fundamentally reframes position bias in475

LLM summarization through improved semantic at-476

tribution. Using cross-encoder methods, we demon-477

strate that reported position biases largely reflect ra-478

tional content assessment rather than architectural479

limitations. We challenge these core assumptions480

across five models and multiple datasets. First,481

the widely-cited U-shaped attention pattern does482

not hold—models show rightward shifts toward483

more balanced content use compared to humans.484

Second, controlled position manipulation reveals485

minimal systematic effects: 90% of comparisons486

show no significant differences in where models 487

select content, even when sentence counts vary. 488

Third, extended context analysis refutes “lost-in- 489

the-middle” claims—models successfully extract 490

from global middle positions (median ∼ 0.5) in 491

multi-document settings while maintaining quality. 492

Most importantly, position patterns prove context- 493

dependent rather than universal. Models that strug- 494

gle with scientific papers excel with government 495

documents, demonstrating adaptive strategies that 496

prioritize content structure over positional heuris- 497

tics. This suggests that "bias" reflects sophisticated 498

document-type recognition rather than processing 499

limitations. These results shift the research fo- 500

cus from bias mitigation to content assessment 501

enhancement. Future work should develop se- 502

mantic evaluation frameworks that reveal model 503

capabilities obscured by traditional metrics. Our 504

cross-encoder approach provides such a foundation, 505

showing that concerns about positional limitations 506

may be overstated when models possess robust con- 507

tent evaluation mechanisms. 508

8



6 Limitations509

While our work offers important insights into po-510

sition bias through improved semantic attribution,511

several limitations present opportunities for future512

research in this area.513

First, though our cross-encoder approach demon-514

strates substantial improvement over traditional515

methods (achieving 78% precision compared to516

50% for bigram matching on XSum), attribution517

remains challenging for highly abstractive sum-518

maries. The complexity of mapping semantic re-519

lationships in extensively rewritten content means520

that even our enhanced methodology cannot per-521

fectly capture all summary-source connections, par-522

ticularly in cases of extreme abstraction or implicit523

inferencing.524

Second, our findings establish strong correla-525

tional patterns between content selection and docu-526

ment position, though fully isolating causal mech-527

anisms presents inherent challenges. Though our528

document-order manipulation experiments demon-529

strate consistent position preferences despite re-530

ordering, establishing definitive causal relation-531

ships between position and content selection re-532

mains difficult within the constraints of natural533

language, where content importance and position534

are often intrinsically linked in well-formed docu-535

ments.536

Third, our study examines five diverse models537

and six datasets spanning multiple domains, provid-538

ing a robust foundation for our conclusions. Nev-539

ertheless, the LLM landscape continues to evolve540

rapidly, and extending this analysis to additional ar-541

chitectural families and specialized domains would542

further validate the generalizability of our findings.543

The significant variation we observed across doc-544

ument types—particularly between scientific pa-545

pers and government documents—suggests rich546

territory for exploring how position patterns inter-547

act with different document structures and conven-548

tions.549
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A Cross-Encoder Implementation Details777

A.1 Model Architecture and Processing778

Our cross-encoder approach utilizes the pre-trained779

cross-encoder/stsb-roberta-base model for780

several methodological reasons. This model 781

processes concatenated summary-source sentence 782

pairs [s; di] through shared transformer layers, en- 783

abling joint attention across both texts. We selected 784

this specific architecture based on three consider- 785

ations: (1) its training on semantic textual simi- 786

larity tasks aligns with our attribution objectives, 787

(2) the RoBERTa-base size provides computational 788

tractability for large-scale experiments while main- 789

taining representational capacity, and (3) using a 790

general-purpose model without domain-specific 791

fine-tuning demonstrates the robustness of our ap- 792

proach across diverse datasets. Unlike bi-encoders 793

that separately encode sentences before similar- 794

ity computation, this joint processing architecture 795

enables attention mechanisms to model semantic 796

relationships across the entire input sequence. 797

A.2 Dynamic Selection Strategy 798

For each summary sentence s and document 799

sentences D = {d1, d2, ..., dn}, our attribution 800

method operates in two stages: 801

1. Elbow Point Detection: We identify the 802

position in ranked attribution scores where 803

the score difference is maximized, capturing 804

where marginal information gain drops most 805

sharply. 806

2. Adaptive Thresholding: Among sentences 807

scoring above the elbow point, we select those 808

exceeding µ + 0.5σ, where µ and σ are the 809

mean and standard deviation of all scores. 810

If no sentences meet this criterion, we select 811

the top-scoring sentence as a fallback to ensure 812

attribution coverage. 813

A.3 Illustrative Example: Semantic Nuance 814

Detection 815

To demonstrate the superior capability of our cross- 816

encoder approach, consider this real example from 817

XSum: 818

Source Document: “Chief Secretary to the Trea- 819

sury Danny Alexander, former Lib Dem leader 820

Charles Kennedy and John Thurso were beaten 821

by the SNP... Mr Kennedy, who lost Ross, Skye 822

and Lochaber to Ian Blackford, said the 2015 elec- 823

tion’s defeat of Lib Dems and Labour in Scotland 824

would become known as the ‘night of the long 825

sgian dubhs’...” 826

Generated Summary: “High profile Liberal 827

Democrats have lost three strongholds in the High- 828

lands and Islands.” 829
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Ground Truth Attribution: Sentences 0 and 3830

(human annotated)831

Method Comparison:832

• Bigram Matching: Selected sentence 8 (“He833

said the Liberal Democrats should hold their834

heads high...”) with only 8.3% overlap.835

Achieved 0% precision and recall.836

• BERTScore: Selected sentences 1, 3, 10, 11837

based on embedding similarity. Achieved 25%838

precision due to topical similarity without se-839

mantic correspondence.840

• Cross-Encoder: Correctly identified sentence841

3 with a score of 0.999, achieving 100% pre-842

cision. The model captured that “defeat of843

Lib Dems” semantically corresponds to “lost844

three strongholds,” despite completely differ-845

ent surface forms.846

This example illustrates how traditional methods847

fail with abstractive content: bigram matching finds848

no meaningful connections, while BERTScore con-849

flates topical similarity with semantic correspon-850

dence. Our cross-encoder successfully identifies851

the semantic relationship between “defeat” and852

“lost strongholds,” demonstrating its superiority for853

abstractive summarization evaluation.854

B Dataset Statistics855

Our evaluation spans six diverse datasets with vary-856

ing structural and domain characteristics. Three857

key aspects distinguish our experimental design:858

(1) Document Length Diversity: We analyze both859

standard-length documents (142-656 tokens) and860

extended contexts (2,103-8,912 tokens) to test scal-861

ability of position patterns. (2) Domain Cover-862

age: Our datasets span news (CNN/DM, XSum),863

dialogue (SAMSum), scientific writing (ArXiv),864

government documents (GovReport), and multi-865

document scenarios (Multi-News) to ensure gen-866

eralizability across text types. (3) Abstractive-867

ness Levels: XSum represents highly abstractive868

summarization (21 tokens, single sentence), while869

CNN/DM and others allow more extractive ap-870

proaches, enabling us to test how summarization871

style affects position bias patterns. Complete statis-872

tics are provided in Table 7.873

C Model Specifications874

We evaluate five state-of-the-art language models875

representing different scales and architectural ap-876

proaches. Our selection ensures comprehensive877

coverage across model sizes (1B to 175B param- 878

eters), organizations (OpenAI, Meta, Microsoft, 879

Mistral AI, Alibaba), and context capabilities (16K 880

to 131K tokens). All models use instruct-tuned 881

versions to ensure optimal summarization perfor- 882

mance. Detailed specifications are shown in Ta- 883

ble 8. 884

D Multi-News Source Distribution 885

Multi-News contains instances with varying num- 886

bers of source articles (1-9 news articles per in- 887

stance). To ensure robust analysis across different 888

complexities, we systematically sampled at least 20 889

instances for each source count when possible, re- 890

sulting in balanced representation across document 891

configurations. This distribution allows us to test 892

position bias across varying document complex- 893

ities, from single-source instances (equivalent to 894

standard summarization) to complex multi-source 895

scenarios where content importance is distributed 896

throughout the sequence. 897

E Experimental Configuration 898

E.1 Prompting Strategies 899

We employ dataset-specific prompts designed to 900

optimize summarization quality while maintaining 901

consistency across models. All prompts position 902

the model as a "professional summarizer" to en- 903

courage high-quality output. 904

Phase 1 - Standard Documents For 905

CNN/DailyMail, XSum, and SAMSum: 906

You are a professional summarizer. 907
Summarize the following text in {n} 908
sentences. 909

where {n} represents the average summary length 910

(CNN/DM: 3, XSum: 1, SAMSum: 1). 911

Phase 2 - Document Order Manipulation For 912

two-document concatenation experiments: 913

You are a professional summarizer. The 914
following are two unrelated articles. 915
Summarize the key point of each article 916
in a coherent manner. 917

Article 1: {article1} 918

Article 2: {article2} 919

Phase 3 - Extended Contexts 920

• ArXiv: You are a professional summarizer. 921
Summarize the scientific paper. Paper: 922
{article} 923
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Table 7: Key dataset characteristics for position bias analysis

Dataset Domain Samples Document Length (tokens)

CNN/DailyMail (Hermann et al., 2015) News 1,000 994.56
XSum (Narayan et al., 2018) News 1,000 566.79
SAMSum (Gliwa et al., 2019) Dialogue 819 175.54
ArXiv (Cohan et al., 2018) Scientific 200 8,940.00
GovReport (Huang et al., 2021) Government 200 11,025.02
Multi-News (Fabbri et al., 2019) Multi-Document 157 2,998.52

Table 8: Large Language Model specifications and configurations

Model Parameters Context Window Organization Release Date

GPT-3.5-turbo 175B 16,385 tokens OpenAI March 2023
Llama-3.2-1B-Instruct 1B 131,072 tokens Meta September 2024
Mistral-7B-Instruct-v0.2 7B 32,768 tokens Mistral AI December 2023
Phi-3-mini-128k-Instruct 3.8B 128,000 tokens Microsoft April 2024
Qwen-2.5-7B-Instruct 7B 32,768 tokens Alibaba September 2024

• GovReport: You are a professional summarizer.924
Summarize the government report. Report:925
{article}926

• Multi-News: You are a professional summarizer.927
Summarize each article news in a coherent928
manner. Paper: {article}929

These prompts balance specificity with general-930

ity, providing clear task framing without biasing931

content selection toward particular document posi-932

tions.933

E.2 Generation Parameters934

Following Ravaut et al. (2024), we employ consis-935

tent generation parameters across all models:936

• Temperature: 0.3937

• Top-k: 50938

• Max tokens: Adaptive based on dataset (50-939

250 tokens)940

• Stop sequences: Model-specific defaults941

E.3 Computational Infrastructure942

All experiments were conducted on NVIDIA A40943

GPUs with 48GB memory. API-based models944

(GPT-3.5) utilized rate limiting of 60 requests per945

minute to ensure reproducibility.946

E.4 Statistical Testing947

Position distribution comparisons employ multiple948

statistical tests for robustness:949

• Kolmogorov-Smirnov test for distribution950

equality951

• Mann-Whitney U test for median differences 952

• Two-sample t-test for mean differences 953

• Jensen-Shannon divergence for distributional 954

similarity 955

Significance levels are set at α = 0.05 with Bon- 956

ferroni correction for multiple comparisons where 957

applicable. 958
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