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Abstract

Recent advancement of large language models
(LLMs) has led to significant breakthroughs
across various tasks, laying the foundation
for the development of LLM-based speech
translation systems. Existing methods
primarily focus on aligning inputs and
outputs across modalities while overlooking
deeper semantic alignment within model
representations. To address this limitation,
we propose an Adaptive Inner Speech-Text
Alignment (AI-STA) method to bridge the
modality gap by explicitly aligning speech and
text representations at selected layers within
LLMs. To achieve this, we leverage the optimal
transport (OT) theory to quantify fine-grained
representation discrepancies between speech
and text. Furthermore, we utilize the
cross-modal retrieval technique to identify
the layers that are best suited for alignment
and perform joint training on these layers.
Experimental results on speech translation (ST)
tasks demonstrate that AI-STA significantly
improves the translation performance of large
speech-text models (LSMs), outperforming
previous state-of-the-art approaches. Our
findings highlight the importance of inner-layer
speech-text alignment in LLMs and provide
new insights into enhancing cross-modal
learning.!.

1 Introduction

The emergence of large language models (LLMs)
(Brown et al., 2020; Touvron et al., 2023;
Anil et al., 2023; Chiang et al., 2023) has
achieved remarkable success across numerous
natural language processing (NLP) tasks (OpenAl,
2024) and various studies extend its generative
capabilities to multimodal domains (Chen et al.,
2023; Zhang et al., 2023b; Li et al.,, 2023;
Rubenstein et al., 2023; Li et al., 2024). The
unprecedented capabilities of LLMs have laid the
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Figure 1: Different training paradigm: Modality
Conversion implicitly learns speech-text relationships
from paired data, focusing on end-to-end mapping.
While Modality Alignment explicitly enforces semantic
consistency by aligning representations through
supervised objectives.

foundation for leveraging these models as the
foundation for building powerful speech translation
(ST) systems (Sethiya and Maurya, 2024).

To equip text-based LLMs with speech capa-
bilities, recent research has investigated multiple
approaches for developing large speech-text
models (LSMs). These methods include expand-
ing text-based LLMs vocabulary and adopting
large-scale speech-text pre-training (Rubenstein
et al., 2023; Zhang et al., 2023a), multi-task
learning (Chu et al., 2023), curriculum learning
(Hu et al., 2024), constructing speech instruction
fine-tuning datasets (Tang et al., 2023; Wang et al.,
2023). However, as illustrated in Figure 1, these
approaches primarily concentrate on Modality
Conversion paradigm, which addresses the
superficial relationship between the inputs and



outputs of different modalities. It often leads to the
neglect of the deeper semantic alignment, which
is essential for ensuring that both speech and text
embeddings convey equivalent meanings.

Motivated by these findings, we argue that
Modality Alignment paradigm which aligns speech
and text representation is crucial for further
improving the performance on ST tasks. To achieve
this, we introduce optimal transport (OT) theory
(Peyré et al., 2019) to capture the fine-grained
representation differences between speech and text.
Additionally, we propose a novel Adaptive Inner
Speech-Text Alignment (AI-STA) method that
dynamically selects specific layers within LLM to
align speech and text representations. Experiments
conducted on speech translation (ST) demonstrate
that our method effectively improves the translation
ability of LSM. Our main contributions are
summarized as follows:

* We first explore the impact of the inner layer
alignment between speech and text modalities
in LLMs.

* We propose an innovative adaptive speech-text
alignment method to bridge the modality gap
in specific selected layers and improve the
performance of ST.

* Extensive experiments demonstrate that Al-
STA outperforms the previous state-of-the-art
(SOTA) methods (Chu et al., 2024) on the
CoVoST2 (Wang et al., 2021) dataset in two
translation directions.

2 Related Work

2.1 LLM-based Speech Translation

LLM demonstrate in-context learning (ICL)
capabilities through large-scale data training,
making them effective tools for solving ST tasks
(Sethiya and Maurya, 2024). Inspired by the
aforementioned advantages, recent studies have
leveraged the capabilities of LLMs to address a
variety of downstream speech tasks. The prevailing
method involves feeding discretized speech units
into the LLM and expanding its vocabulary to
enable understanding and generation of speech
(Rubenstein et al., 2023; Zhang et al., 2023a; Wang
et al., 2024b). Another common approach is to
connect a speech encoder to a backbone LLM,
enabling effective processing of speech inputs Chu
et al., 2023; Du et al., 2023; Chu et al., 2024;

Hu et al., 2024; Fang et al., 2024. These models
support a wide range of multi-modal speech tasks
while achieving comparable performance with
task-specific ST models.

LST (Zhang et al., 2023c) employs Wav2vec
2.0 (Baevski et al., 2020) as the fronted speech
encoder and Llama 2 (Touvron et al., 2023) as
LLM, achieving high performance on the MuST-C
dataset (Di Gangi et al., 2019). (Huang et al., 2023)
further incorporates the Chain-of-Thought (CoT)
(Wei et al., 2022), enabling a step-by-step approach
using LLMs. LLaST (Chen et al., 2024) proposed
a dual-LoRA optimization strategy rendering it
a strong baseline for the CoVoST2 (Wang et al.,
2021) in X->En translation direction.

However, these studies primarily focus on
modality conversion, while the intrinsic semantic
correlation between input speech and its transcript
text has not been fully exploited. In this work,
we emphasize the role of modality alignment
between input speech and text and propose explicit
supervision signals to guide the model in learning
their underlying semantic relationships.

2.2 Speech-Text Cross-Modality Alignment

Cross-modal alignment aims to establish seman-
tically consistent mappings between different
modalities (Liang et al., 2022). Early cross-modal
alignment methods for speech and text modalities
were mostly implicit, relying on parameter-sharing
encoding mechanisms and performing multi-task
learning on paired speech-text data to align the
speech and text spaces (Ao et al., 2021; Bapna et al.,
2021; Tang et al., 2022). Additionally, various
approaches have been proposed to address modality
differences by designing different loss functions
and training objectives, such as connectionist
temporal classification (Liu et al., 2020; Wang
et al., 2020; Xu et al., 2021), contrastive learning
(Ye et al., 2022; Ouyang et al., 2022; Fang et al.,
2022), adversarial learning (Alinejad and Sarkar,
2020), and optimal transport (Zhou et al., 2023;
Le et al., 2023; Tsiamas et al., 2024). These
methods have primarily been explored within the
encoder-decoder architecture and applied to the
embedding or encoder layers.

Recent works have explored the alignment
between speech and LLMs’ text embeddings. For
example, (Wang et al., 2024a) employ CFormer
to address the speech-text length mismatch and
introduce a KL-divergence loss to enhance the
alignment of output distributions. (Nguyen et al.,
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Figure 2: Model Architecture of Our LSM.

2025) conducts continuous training using mixed
speech and text sequences, enabling the model to
effectively learn cross-modal tasks.

In this study, we extend the cross-modal
alignment to the decoder-only architecture and
introduce a cross-modal retrieval task to investigate
whether different hidden layers can effectively
contribute to representation alignment.

3 Preliminary

3.1 Model Architecture

As illustrated in Figure 2, the model architecture
in this study is identical to SALMONN (Tang
et al., 2023). We use the Whisper-Large encoder
(Radford et al., 2023) as the speech encoder,
BEATSs (Chen et al., 2022) as the audio encoder,
and employ Vicuna-13B-vl.1 (Chiang et al.,
2023) or Qwne2-7B (Yang et al., 2024a) as
the backbone LLM. Q-Former (Li et al., 2023)
serves as the connection module followed by a
linear layer to project speech representation to the
text representation space. The output sequence
integrated with the text instructions will be fed into
the LLM with LoRA adapters (Hu et al., 2021)
to generate the text response. LoRA as a widely
used parameter-efficient fine-tuning method for
LLM adaptation, introduces additional trainable
parameters. The trainable parameters of our LSM
include those from LoRA adapters, Q-Former, and
the linear layer, while the backbone LLM and two
encoders remain frozen during training.

3.2 Optimal Transportation

OT has recently been applied in ST, primarily
for finding alignments between speech and text

(Zhou et al., 2023), enhancing the effectiveness of
speech pre-training (Le et al., 2023), or integrating
the speech encoder to the text space of the
machine translation (MT) model (Tsiamas et al.,
2024). While previous work has concentrated on
encoder architectures, we extend this approach to a
decoder-only architecture. To this end, we utilize
OT to integrate the speech representation space into
the text representation space within LLMs.

To align a speech representation h® € R™*? with
the text representation h' € R™*9, we minimize
their Wasserstein loss (Frogner et al., 2015) using
OT theory (Le et al., 2023; Zhou et al., 2023;
Tsiamas et al., 2024). We assume the mass of
each position in the speech and text representations
are two uniform probability distributions. The
optimized objective is defined as:

n m

W5 = mzin Z Z Zij Cij,

i=1 j=1
s.t. ZZ:’j = %,ZZZ;: = %
j=1 i=1

The Wasserstein distance Wy is defined as
the minimum transportation cost of all possible
transportation plans Z. C represents a squared
euclidean cost between two vectors, where C;; =

s t12
[1hi = h3lI".

6]

4 Methodology

4.1 Speech Pre-training Stage

To enable LLM to initially comprehend speech
inputs and mitigate the discrepancy between
pre-trained parameters and randomly initialized
parameters, we utilize extensive datasets focusing
on recognition and annotation tasks. This phase
aims to establish a foundational ability to handle
spoken language rather than deeply understanding
the textual content within these speeches.

Let S represent the speech input and T as
its corresponding target text sentence. The
speech encoder and audio encoder transform the
speech input S into representations R and R”,
respectively. Since both encoders have the same
output frame rate of 50Hz, we finally get R by a
frame-by-frame concatenation operation along the
feature dimension. Then we use the window-level
Q-Former (Tang et al., 2023) to segment R into
L-sized window representations and outputs textual
tokens ES. The main training objective for the
speech-text pair (S, T) is:
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Figure 3: Overview of second and third stages of the proposed AI-STA. The left part first chose specific layers
within the LLM according to its cross-modal retrieval ability. Then the right part obtains hidden states by separately
forwarding speech or transcribed text concatenated with the same prompts and optimizes the LSM by combining

alignment loss (computed via Wasserstein distance between hidden states) with cross-entropy loss.

é:arggmin (—logP (T‘ES,L@)) )

M . (@3]
= arg min ( mzzl log P(To|T<m, E°, 1, 9)) ,
where M is the length of the target token, 7, is
the m-th target token, and / is the embedding of
task instruction. We employed the standard causal
language modeling loss as our training loss, which
is designed to predict the subsequent token based
on the previous token. We using the same prompt
template as described by SALMONN (Tang et al.,
2023) for Vicuna and Qwen2-Audio (Chu et al.,
2024) for Qwen.

4.2 Optimization Layer Selection Stage

Figure 3 left part depicts the process of this
stage. To determine the most suitable LLM
layers for representation alignment, we conduct
experiments after the speech pre-training stage.
We randomly sample 1,000 parallel speech-text
pairs from Librispeech test-clean set (Panayotov
et al., 2015). Each data pair, concatenated with
the same instruction, is fed into the LLM to extract
hidden states from all layers. Let i}, denote the /-th
layer and i-th sample speech representation and A,
denote the corresponding text representation. We
then compute the Wasserstein Distance (Frogner
et al., 2015) for each speech-text pair, constructing
a distance matrix that facilitated speech-to-text
retrieval, as described by the following equation:

Dz(l; = Wasserstein(h; , h;yz). ©))

Specifically, we rank the text samples according
to their Wasserstein Distance from the speech
samples and calculate the mean reciprocal rank
(MRR) of the golden match across all 1,000
samples. The metrics are expressed as follows:

1&g
MRR= =51, )

where () is the number of speech-text pairs. For
each speech utterance, define r; as the actual rank
of the ground-truth paired text among all text
samples. Subsequently, we compute the average
MRR for each layer:

T = {I|MRR"Y > threshold, | € [0, num_layer]}, (5)

where num_layer is determined by the LLM we
used. The O-th layer corresponds to the embedding
layer. As shown in Figure 4, we observe that in
the Vicuna-13B version, the MRR scores remain
relatively high (above 0.5) from layer O (the
embedding layer) to layer 5. However, starting
from layer 6, the scores drop sharply, falling below
0.01. Similarly, in the Qwen2-7B version, layers
0 and 1 demonstrate higher scores but exhibit a
steep decline in subsequent layers. This pattern
indicates that the shallow layers of LLM play a
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Figure 4: Layer-wise trends of average mean reciprocal
rank (MRR) in two distinct backbone LLMs for speech-
to-text retrieval evaluation.

crucial role in capturing the semantic properties
of speech inputs. Based on empirical practice, a
threshold value of 0.05 was set to select our optimal
layers for optimization.

4.3 Speech-Text Alignment Joint Training
Stage

As illustrated in Figure 3 right part, we fine-tune
the model for downstream speech tasks while
simultaneously training for speech-text alignment.
Specifically, the transcribed text and instruction are
concatenated and passed through the LLM, with
their representation positions recorded to extract
the corresponding text and speech representations.
For the selected optimization layers, pairwise
Wasserstein loss between these representations was
minimized. The gradients from text representations
do not contribute to the optimization process.
Therefore, the final loss is defined as:

Leg = —log P (T )ES,I,e),

1—a .y (6)
I| cWass7

£=CMCCE+Z

lez ‘
where Eg,f,)ass is equivalent to the Wasserstein
distance between speech and text representations in
the [-th layer, and « is a hyperparameter to balance
the relative importance between two loss.

5 Experiment

5.1 Training Data

In the speech pre-training stage, we use
LibriSpeech training set (Panayotov et al., 2015)
and GigaSpeech M-set (Chen et al., 2021) for
automatic speech recognition (ASR), as well as
WavCaps (Mei et al., 2024) (with audio clips longer
than 180 seconds removed), AudioCaps (Kim et al.,
2019) and Clotho (Drossos et al., 2020) dataset for
automatic audio captioning (AAC).

In the joint training stage, we chose the ST
task for further training. CoVoST2 (Wang et al.,

Task Data Source #Hours #Samples
ASR LibriSpeech 960 280K
GigaSpeech M-set 1000 680K
WavCaps 2800 370K
AAC AudioCaps - 45K

Clotho - 4K

ST CoVoST2 En2Zh 364 289K
CoVoST2 En2Ja 364 289K

Table 1: Training data used in all stages.

2021) is a large-scale multilingual dataset that
supports translations between English and 15 other
languages, as well as from 21 languages into
English. To align with the previous method,
we select two translation directions including
English-Chinese and English-Japanese. All the
datasets we used are listed in the Table 1.

5.2 Training Setup

Our model employs the encoder part of Whisper-
Large-v2 (Radford et al., 2023) model as the
speech encoder, the fine-tuned BEATs (Chen
et al., 2022) encoder as the audio encoder, and
a Vicuna-13B-v1.1 (Chiang et al.,, 2023) or a
Qwen2-7B (Yang et al., 2024a) as the backbone
LLM. In the Q-Former block, we set N = I for
a single trainable query and use L = /7 which
is approximately 0.33 seconds per window. The
OT loss weight is empirically set to 0.01 based on
practical experience. We freeze speech encoder,
audio encoder, and LLM when training, leading
28 million (M) or 64M trainable parameters,
depending on the scale of the backbone LLM
parameters. Detailed training hyperparameters are
available in Appendix A.1.

5.3 Evaluation

We evaluated the model using the CoVoST2 test
set for English-Chinese and English-Japanese
translations, employing SacreBLEU (Post, 2018)
score as the evaluation metric. Audio samples are
all resampled to 16kHz in the experiments.

5.4 Baselines

We compare our LSM and method with the
following four baselines.

SALMONN (Tang et al., 2023) integrates a
pre-trained text-based LLM with a speech encoder
and audio encoder to process audio inputs. It
excels in tasks like speech recognition, translation,



CoVoST2

Method En-Zh En-Ja
Baseline Models

SALMONN 33.1 22.7

BLSP-KD 41.3 21.3

Qwen-Audio 41.5 23.5

Qwen2-Audio 45.2 28.6

Our LSM with Vicuna-13B-vl1.1

base 36.5 29.8

w/ AI-STA 37.6 30.2
Our LSM with Qwen2-7B

base 45.3 31.0

w/ AI-STA 46.0 314

Table 2: Speech translation BLEU scores on CoVoST?2.
We conducted experiments in English (En)-to-Chinese
(Zh), En-to-Japanese (Ja). For each result, We use
underline to highlight the previous SOTA baseline, and
use bold to highlight surpassing the SOTA performance.

and music captioning while showcasing emergent
abilities.

BLSP-KD (Wang et al.,, 2024a) leverages
CFormer architecture to tackle the speech-text
length discrepancy, while incorporating a KL-
divergence loss mechanism to optimize output
distribution alignment. It also introduces a
partial LoRA strategy to facilitate efficient LLM
fine-tuning with speech inputs.

Qwen-Audio (Chu et al., 2023) is Alibaba’s
multi-modal LLM, accepting diverse audio and
text inputs to output text. It proposes a multi-task
learning framework and incorporates a word-level
time-stamp prediction training task while yielding
strong performance across various tasks.

Qwen2-Audio (Chu et al., 2024) is the latest
progress of Qwen-Audio. It further boosts
instruction-following capability and adopts direct
preference optimization to align with human
preferences achieving SOTA in AIR-Bench (Yang
et al., 2024b).

6 Results
6.1 Main Result

Table 2 presents a comparison of our base LSM,
our LSM with AI-STA method, and previous
methods, reporting SacreBLEU scores evaluated
on two language pairs: En-Zh, and En-Ja. Notably,
our base LSM with Qwen2-7B achieves SOTA
with the BLEU of 45.3 on En-Zh and 31.0 on
En-Ja translation direction. Further with our
AI-STA method, our LSM outperforms previous

Aligning Position BLEU
base 45.3
Layer O 45.7
Layer 0-5 45.5
Layer 1 X
Layer 0-1(Selected) 46.0

Table 3: The impact of different layer optimization
selection strategies on the performance of CoVoST2
En-Zh using Qwen2-7B as backbone LLM.

SOTA for 0.8 BLEU in En-Zh and 2.8 BLEU in
En-Ja. Additionally, the AI-STA method provides
a noticeable boost in performance for all models,
with BLEU score gains of approximately 0.8 for
LSM with Vicuna-13B-v1.1 and 0.6 for LSM with
Qwen2-7B. We also observe that the performance
gain with AI-STA is greater for En-Zh (0.9 BLEU)
than for En-Ja (0.4 BLEU), suggesting that our
alignment method may benefit more from target
languages with richer training resources. These
results convincingly demonstrate the superiority of
AI-STA and highlight the promising potential of
exploring LLMs for speech translation tasks.

6.2 Effect of Optimization Layer Selection

Tabel 3 shows that different aligning layer
selections have a great impact on CoVoST2 En-Zh
performance. Only aligning speech and text
representation in layer O (embedding layer) gains
0.4 BLEU improvement. Once we further align at
the inner layers, the performance begins to decline
(45.7 -> 45.5). Especially when not aligning layer
0, the training loss fails to converge leading to
catastrophic failure. The performance is further
enhanced by aligning with selected alignment
layers obtained through our optimization layer
selection strategy (45.7 -> 46.0), highlighting the
necessity of our layer selection strategy.

6.3 Comparison of Aligning Methods

For connectionist temporal classification (CTC)
(Graves et al., 2006), we apply it at the token
level using backbone LLM’s tokenizer to encode
the transcript of source speech as the golden
token and train an independent classification layer
for matching with LLM’s vocabulary size. For
contrastive learning (CL), we treat golden paired
speech-text samples as positive pairs, and the others
as negative pairs and apply a multi-class N-pair
contrastive loss (Sohn, 2016). Both alignment
methods only operate at the embedding layer. As
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Figure 5: t-SNE visualization of speech and text
representation from LSMs trained with or without
AI-STA methods.

Aligning method BLEU
base 453
— w/ CTC 44.6
— w/CL 45.1
— w/ AI-STA 46.0

Table 4: The impact of different aligning methods on
CoVoST2 En-Zh performance.

shown in Table 4, employing either CTC or CL
results in performance degradation. By contrast,
our method yields a 0.7 BLEU improvement.

We argue that CTC is not suitable for
adapters like Q-Former that incorporate attention
mechanisms. CTC is a forced alignment method
where each output position must align precisely
with a specific token, which can lead to conflicts
when applied after the Q-Former. When applying
contrastive learning (CL) such an alignment
method at the overall semantic level, yields limited
effectiveness and fails to further capture the
fine-grained relationships between words. Both
methods cause conflicting training objectives and
hinder the training process.

6.4 Can AI-STA Close the Modality Gap?

We randomly sample 1,000 speech-text tran-
scription pairs from the test set of CoVoST2
En-Zh to explore representation alignment between
speech and text in the embedding layer of our
LSM with the Qwen2-7B version. The speech
representation is obtained as semantic tokens after
processing through the Q-Former, while the text
representation is derived from the tokenization and
embedding layer of the LLM. All representations
are averaged along the length dimension. We
apply bivariate kernel density estimation (Parzen,
1962) and utilize the T-SNE technique reducing
data dimensions to a two-dimensional space for

9 - 146.0

45.4

base w/ layer 0-5 w/ layer 0w/ layer 0-1 f‘é)uzrs)
Methods

Figure 6: The correlation between alignment degree
and performance in the CoVoST2 En-Zh direction
across different training methods. Lower logarithmic
Wasserstein distance indicates a higher degree of
alignment, while a higher BLEU score corresponds to
better performance in the ST task.

visualization (Van der Maaten and Hinton, 2008).
As depicted in Figure 5, AI-STA significantly
reduces the distance discrepancy between the
speech and text representation spaces compared
to the baseline without our method, demonstrating
a strong relationship between these two modalities.

6.5 Correlation between Alignment Degree
and ST Performance

To investigate the relationship between representa-
tion alignment and speech translation performance,
we calculate alignment scores for LSMs trained
with various alignment methods. Taking the
LSM with Qwen2-7B as an example, our optimal
layer selection strategy identifies the zero and first
layers as particularly suitable for representation
alignment. We quantify the degree of alignment
by calculating the logarithmic Wasserstein distance
between these two layers. Figure 6 illustrates a
strong correlation between the alignment score
and speech translation performance. From left to
right, the alignment methods are the same with
section 6.2 except for the optimization applied to
layer 1. As the alignment scores decrease, we
consistently observe a steady increase in the BLEU
score, indicating a strong correlation between
improved alignment and enhanced translation
performance.

6.6 Can AI-STA Help Knowledge Transfer?

To investigate whether our method can bridge the
modality gap and enable the model to understand
speech modality inputs as text modality. We
directly perform zero-shot text translation inference
on a model that has been trained on the speech
translation task. The inference prompt is identical
to the training prompt. We intended to verify



Method | ST MT

Training on ST

base(Vicuna-13B) 36.5 34.0
— w/ AI-STA 37.6 394
base(Qwen2-7B) 45.3 51.2
— w/ AI-STA 46.0 51.5

Table 5: The impact of Speech-Text Alignment on zero-
shot machine translation task. Demonstrates that our
method facilitates knowledge transferring from speech
to text modality.

whether the model has effectively utilized the
correspondence between speech and text during
the training process.

As shown in Table 5, we observe that in the
Vicuna-13B version, the zero-shot performance
gap between using and not using our method
reaches up to 5.4 BLEU. This indicates that our
method significantly enhances the LLM’s ability to
leverage ST knowledge for text-based MT tasks. In
the Qwen2-7B version, the zero-shot performance
gap shrinks to 0.3 BLEU. Irrespective of whether
our method is applied, the translation performance
in text scenarios is significantly stronger than that
in speech scenarios. We attribute this phenomenon
to the Qwen2-7B model’s strong English and
Chinese language capabilities, as well as its more
precise capture of the relationship between speech
and text modalities. We use the transcript and
translation text pair of the CoVoST2 En-Zh test
set as our MT evaluation data.

6.7 Case Study

In this section, we present several cases generated
by our LSM with Vicuna-13B to compare its
performance with the previous end-to-end model,
SALMONN (Tang et al., 2023). The results
are summarized in Figure 7. In the first case,
SALMONN incorrectly translates “in no way
unique” as the meaning of “nothing unique”,
leading to a deviation from the intended meaning.
Our LSM inaccurately translates it as meaning
“completely normal” which is out of context.
While training with our AI-STA method, our LSM
accurately translates it to the correct answer.

In the second case, SALMONN and our
LSM exhibit different translation errors in this
case. SALMONN fails to translate the word
“portraying” as “representation”. Our LSM, in
turn, misinterprets the word “mascot”, resulting
in a significant misunderstanding. In contrast, our
LSM with AI-STA correctly translates these words,

CASE 1

@ - src: All of this activity in Milwaukee was in no way unique.
tgt: Fif KRN ERRAEHFER—E=M,

SALMONN tgt: B/RAEM A ENEE HIRIE 24

OurLSM  tgt: RUER ERRARRRESEL N,

W/ AISTA tgt: BIRARMFFAEDBREIR—F 0.
CASE 2

Ref src: Many mascots there also seem to believe they are the animals they're portraying.
@ € tgt: MEMF S EFWOF HARECNRRAMNATHMLHORBLDY .

SALMONN tgt: R L EFMBUF NI B SRENARENY.
OurLSM  tgt: FREMEZFRMINTFINN B ERFTHLHNHY) .
W/ AISTA tgt: B SERMBATAD EMNEHLHOEY.

Figure 7: CoVoST?2 En-Zh test cases that generated from
the SALMONN, our LSM with Vicuna-13B and our
LSM with AI-STA. The red underlined text indicates
an incorrect answer.

yielding a more accurate overall translation than
SALMONN and our base LSM. These observations
highlight the ST capabilities of our LSM with
AI-STA, demonstrating that AI-STA enhances the
LSM’s ability to capture fine-grained semantics.

Although our method improves the performance
of LLM-based ST, we still discovered content
omission during the translation generation process
in the two cases mentioned above. Some source
words remain untranslated, such as "all of this" in
the first case, which is not fully translated by any of
the methods. As a result, the translated sentences
tend to be shorter than the reference sentences. This
highlights a persistent issue in current LLM-based
Speech Translation systems, suggesting that there
is still room for improvement.

7 Conclusions

In this study, we enhance the ST capabilities
of LSMs by explicitly aligning speech and text
representations. To achieve this, we introduce
OT theory to quantify the discrepancy between
speech and text representations and investigate the
representation characteristics of different layers
within LLMs. By leveraging the cross-modal
retrieval technique, we identify specific model
layers that are well-suited for representation
alignment and perform joint training using these
selected layers. Our experiments demonstrate
that this method effectively reduces the distance
between the speech and text representation
spaces, enabling the model to better capture the
relationships between the two modalities and
significantly improves the performance of large
speech models on speech translation tasks.



Limitation

We acknowledge that our proposed approach
has several limitations: (1) We observed several
intriguing phenomena, such as performance
degradation when applying CTC or CL alignment
methods at the embedding layer, as well as a
sharp drop in retrieval performance at certain layers

within LLLM and remained low in subsequent layers.

However, we did not thoroughly investigate the
underlying principles and instead relied on intuition
and empirical observations without theoretical
justification or formal proof. (2) Although our
method enhances the LLM-based ST performance
and reaches SOTA, a performance gap remains

compared to the text scenarios’ machine translation.

However, we believe our method provides valuable
insights and encourages the development of
cross-modal learning in LLMs.
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A Appendix
A.1 Hyperparameters

The training configurations for the two stages are
summarized as follows:

Speech Pre-training Stage: Training employs the
AdamW optimizer with hyperparameters 51=0.9,
$2=0.999, eps = 1le~8. The learning rate follows
a cosine decay schedule, starting with a warm-up
rate of 1e~%, peaking at 3¢, and decaying to a
minimum of 1e~?. Weight decay is set to 0.05, and
the global batch size is 32. The model undergoes
80k training steps with 9k warm-up steps, using
BFLOAT16 numerical precision. LORA parameters
include a rank of 8, alpha of 32, and dropout of 0.1.
Joint Training Stage: The training configuration


https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671

for this stage is largely the same as the mentioned
above, with two differences: the warm-up steps in
this stage are set to 3k, and we do not fix the total
number of training steps. Instead, we determine
whether to stop training based on the metrics from
the validation phase conducted every 3k training
steps. Training is stopped when the validation
accuracy does not exceed the previous highest
value for four consecutive validation phases.
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