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Abstract

Recent advancement of large language models001
(LLMs) has led to significant breakthroughs002
across various tasks, laying the foundation003
for the development of LLM-based speech004
translation systems. Existing methods005
primarily focus on aligning inputs and006
outputs across modalities while overlooking007
deeper semantic alignment within model008
representations. To address this limitation,009
we propose an Adaptive Inner Speech-Text010
Alignment (AI-STA) method to bridge the011
modality gap by explicitly aligning speech and012
text representations at selected layers within013
LLMs. To achieve this, we leverage the optimal014
transport (OT) theory to quantify fine-grained015
representation discrepancies between speech016
and text. Furthermore, we utilize the017
cross-modal retrieval technique to identify018
the layers that are best suited for alignment019
and perform joint training on these layers.020
Experimental results on speech translation (ST)021
tasks demonstrate that AI-STA significantly022
improves the translation performance of large023
speech-text models (LSMs), outperforming024
previous state-of-the-art approaches. Our025
findings highlight the importance of inner-layer026
speech-text alignment in LLMs and provide027
new insights into enhancing cross-modal028
learning.1.029

1 Introduction030

The emergence of large language models (LLMs)031

(Brown et al., 2020; Touvron et al., 2023;032

Anil et al., 2023; Chiang et al., 2023) has033

achieved remarkable success across numerous034

natural language processing (NLP) tasks (OpenAI,035

2024) and various studies extend its generative036

capabilities to multimodal domains (Chen et al.,037

2023; Zhang et al., 2023b; Li et al., 2023;038

Rubenstein et al., 2023; Li et al., 2024). The039

unprecedented capabilities of LLMs have laid the040

1Our dataset and code will be available upon acceptance.
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Figure 1: Different training paradigm: Modality
Conversion implicitly learns speech-text relationships
from paired data, focusing on end-to-end mapping.
While Modality Alignment explicitly enforces semantic
consistency by aligning representations through
supervised objectives.

foundation for leveraging these models as the 041

foundation for building powerful speech translation 042

(ST) systems (Sethiya and Maurya, 2024). 043

To equip text-based LLMs with speech capa- 044

bilities, recent research has investigated multiple 045

approaches for developing large speech-text 046

models (LSMs). These methods include expand- 047

ing text-based LLMs vocabulary and adopting 048

large-scale speech-text pre-training (Rubenstein 049

et al., 2023; Zhang et al., 2023a), multi-task 050

learning (Chu et al., 2023), curriculum learning 051

(Hu et al., 2024), constructing speech instruction 052

fine-tuning datasets (Tang et al., 2023; Wang et al., 053

2023). However, as illustrated in Figure 1, these 054

approaches primarily concentrate on Modality 055

Conversion paradigm, which addresses the 056

superficial relationship between the inputs and 057
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outputs of different modalities. It often leads to the058

neglect of the deeper semantic alignment, which059

is essential for ensuring that both speech and text060

embeddings convey equivalent meanings.061

Motivated by these findings, we argue that062

Modality Alignment paradigm which aligns speech063

and text representation is crucial for further064

improving the performance on ST tasks. To achieve065

this, we introduce optimal transport (OT) theory066

(Peyré et al., 2019) to capture the fine-grained067

representation differences between speech and text.068

Additionally, we propose a novel Adaptive Inner069

Speech-Text Alignment (AI-STA) method that070

dynamically selects specific layers within LLM to071

align speech and text representations. Experiments072

conducted on speech translation (ST) demonstrate073

that our method effectively improves the translation074

ability of LSM. Our main contributions are075

summarized as follows:076

• We first explore the impact of the inner layer077

alignment between speech and text modalities078

in LLMs.079

• We propose an innovative adaptive speech-text080

alignment method to bridge the modality gap081

in specific selected layers and improve the082

performance of ST.083

• Extensive experiments demonstrate that AI-084

STA outperforms the previous state-of-the-art085

(SOTA) methods (Chu et al., 2024) on the086

CoVoST2 (Wang et al., 2021) dataset in two087

translation directions.088

2 Related Work089

2.1 LLM-based Speech Translation090

LLM demonstrate in-context learning (ICL)091

capabilities through large-scale data training,092

making them effective tools for solving ST tasks093

(Sethiya and Maurya, 2024). Inspired by the094

aforementioned advantages, recent studies have095

leveraged the capabilities of LLMs to address a096

variety of downstream speech tasks. The prevailing097

method involves feeding discretized speech units098

into the LLM and expanding its vocabulary to099

enable understanding and generation of speech100

(Rubenstein et al., 2023; Zhang et al., 2023a; Wang101

et al., 2024b). Another common approach is to102

connect a speech encoder to a backbone LLM,103

enabling effective processing of speech inputs Chu104

et al., 2023; Du et al., 2023; Chu et al., 2024;105

Hu et al., 2024; Fang et al., 2024. These models 106

support a wide range of multi-modal speech tasks 107

while achieving comparable performance with 108

task-specific ST models. 109

LST (Zhang et al., 2023c) employs Wav2vec 110

2.0 (Baevski et al., 2020) as the fronted speech 111

encoder and Llama 2 (Touvron et al., 2023) as 112

LLM, achieving high performance on the MuST-C 113

dataset (Di Gangi et al., 2019). (Huang et al., 2023) 114

further incorporates the Chain-of-Thought (CoT) 115

(Wei et al., 2022), enabling a step-by-step approach 116

using LLMs. LLaST (Chen et al., 2024) proposed 117

a dual-LoRA optimization strategy rendering it 118

a strong baseline for the CoVoST2 (Wang et al., 119

2021) in X->En translation direction. 120

However, these studies primarily focus on 121

modality conversion, while the intrinsic semantic 122

correlation between input speech and its transcript 123

text has not been fully exploited. In this work, 124

we emphasize the role of modality alignment 125

between input speech and text and propose explicit 126

supervision signals to guide the model in learning 127

their underlying semantic relationships. 128

2.2 Speech-Text Cross-Modality Alignment 129

Cross-modal alignment aims to establish seman- 130

tically consistent mappings between different 131

modalities (Liang et al., 2022). Early cross-modal 132

alignment methods for speech and text modalities 133

were mostly implicit, relying on parameter-sharing 134

encoding mechanisms and performing multi-task 135

learning on paired speech-text data to align the 136

speech and text spaces (Ao et al., 2021; Bapna et al., 137

2021; Tang et al., 2022). Additionally, various 138

approaches have been proposed to address modality 139

differences by designing different loss functions 140

and training objectives, such as connectionist 141

temporal classification (Liu et al., 2020; Wang 142

et al., 2020; Xu et al., 2021), contrastive learning 143

(Ye et al., 2022; Ouyang et al., 2022; Fang et al., 144

2022), adversarial learning (Alinejad and Sarkar, 145

2020), and optimal transport (Zhou et al., 2023; 146

Le et al., 2023; Tsiamas et al., 2024). These 147

methods have primarily been explored within the 148

encoder-decoder architecture and applied to the 149

embedding or encoder layers. 150

Recent works have explored the alignment 151

between speech and LLMs’ text embeddings. For 152

example, (Wang et al., 2024a) employ CFormer 153

to address the speech-text length mismatch and 154

introduce a KL-divergence loss to enhance the 155

alignment of output distributions. (Nguyen et al., 156
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Figure 2: Model Architecture of Our LSM.

2025) conducts continuous training using mixed157

speech and text sequences, enabling the model to158

effectively learn cross-modal tasks.159

In this study, we extend the cross-modal160

alignment to the decoder-only architecture and161

introduce a cross-modal retrieval task to investigate162

whether different hidden layers can effectively163

contribute to representation alignment.164

3 Preliminary165

3.1 Model Architecture166

As illustrated in Figure 2, the model architecture167

in this study is identical to SALMONN (Tang168

et al., 2023). We use the Whisper-Large encoder169

(Radford et al., 2023) as the speech encoder,170

BEATs (Chen et al., 2022) as the audio encoder,171

and employ Vicuna-13B-v1.1 (Chiang et al.,172

2023) or Qwne2-7B (Yang et al., 2024a) as173

the backbone LLM. Q-Former (Li et al., 2023)174

serves as the connection module followed by a175

linear layer to project speech representation to the176

text representation space. The output sequence177

integrated with the text instructions will be fed into178

the LLM with LoRA adapters (Hu et al., 2021)179

to generate the text response. LoRA as a widely180

used parameter-efficient fine-tuning method for181

LLM adaptation, introduces additional trainable182

parameters. The trainable parameters of our LSM183

include those from LoRA adapters, Q-Former, and184

the linear layer, while the backbone LLM and two185

encoders remain frozen during training.186

3.2 Optimal Transportation187

OT has recently been applied in ST, primarily188

for finding alignments between speech and text189

(Zhou et al., 2023), enhancing the effectiveness of 190

speech pre-training (Le et al., 2023), or integrating 191

the speech encoder to the text space of the 192

machine translation (MT) model (Tsiamas et al., 193

2024). While previous work has concentrated on 194

encoder architectures, we extend this approach to a 195

decoder-only architecture. To this end, we utilize 196

OT to integrate the speech representation space into 197

the text representation space within LLMs. 198

To align a speech representation hs ∈ Rn×d with 199

the text representation ht ∈ Rm×d, we minimize 200

their Wasserstein loss (Frogner et al., 2015) using 201

OT theory (Le et al., 2023; Zhou et al., 2023; 202

Tsiamas et al., 2024). We assume the mass of 203

each position in the speech and text representations 204

are two uniform probability distributions. The 205

optimized objective is defined as: 206

Wδ = min
Z

n∑
i=1

m∑
j=1

ZijCij ,

s.t.

m∑
j=1

Z:,j =
1

n
,

n∑
i=1

Zi,: =
1

m
.

(1) 207

The Wasserstein distance Wδ is defined as 208

the minimum transportation cost of all possible 209

transportation plans Z. C represents a squared 210

euclidean cost between two vectors, where Cij = 211

||hsi − htj ||
2. 212

4 Methodology 213

4.1 Speech Pre-training Stage 214

To enable LLM to initially comprehend speech 215

inputs and mitigate the discrepancy between 216

pre-trained parameters and randomly initialized 217

parameters, we utilize extensive datasets focusing 218

on recognition and annotation tasks. This phase 219

aims to establish a foundational ability to handle 220

spoken language rather than deeply understanding 221

the textual content within these speeches. 222

Let S represent the speech input and T as 223

its corresponding target text sentence. The 224

speech encoder and audio encoder transform the 225

speech input S into representations R
′

and R
′′

, 226

respectively. Since both encoders have the same 227

output frame rate of 50Hz, we finally get R by a 228

frame-by-frame concatenation operation along the 229

feature dimension. Then we use the window-level 230

Q-Former (Tang et al., 2023) to segment R into 231

L-sized window representations and outputs textual 232

tokens ES . The main training objective for the 233

speech-text pair (S, T) is: 234
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Figure 3: Overview of second and third stages of the proposed AI-STA. The left part first chose specific layers
within the LLM according to its cross-modal retrieval ability. Then the right part obtains hidden states by separately
forwarding speech or transcribed text concatenated with the same prompts and optimizes the LSM by combining
alignment loss (computed via Wasserstein distance between hidden states) with cross-entropy loss.

θ̂ = argmin
θ

(
− log P

(
T
∣∣∣ES , I, θ

))
,

= argmin
θ

(
−

M∑
m=1

logP (Tm|T<m, ES , I, θ)

)
,

(2)235

236

where M is the length of the target token, Tm is237

the m-th target token, and I is the embedding of238

task instruction. We employed the standard causal239

language modeling loss as our training loss, which240

is designed to predict the subsequent token based241

on the previous token. We using the same prompt242

template as described by SALMONN (Tang et al.,243

2023) for Vicuna and Qwen2-Audio (Chu et al.,244

2024) for Qwen.245

4.2 Optimization Layer Selection Stage246

Figure 3 left part depicts the process of this247

stage. To determine the most suitable LLM248

layers for representation alignment, we conduct249

experiments after the speech pre-training stage.250

We randomly sample 1,000 parallel speech-text251

pairs from Librispeech test-clean set (Panayotov252

et al., 2015). Each data pair, concatenated with253

the same instruction, is fed into the LLM to extract254

hidden states from all layers. Let hsi,l denote the l-th255

layer and i-th sample speech representation and hti,l256

denote the corresponding text representation. We257

then compute the Wasserstein Distance (Frogner258

et al., 2015) for each speech-text pair, constructing259

a distance matrix that facilitated speech-to-text260

retrieval, as described by the following equation:261

D
(l)
i,j = Wasserstein(hs

i,l, h
t
j,l). (3) 262

Specifically, we rank the text samples according 263

to their Wasserstein Distance from the speech 264

samples and calculate the mean reciprocal rank 265

(MRR) of the golden match across all 1,000 266

samples. The metrics are expressed as follows: 267

MRR =
1

Q

Q∑
i=1

1

ri
, (4) 268

269

where Q is the number of speech-text pairs. For 270

each speech utterance, define ri as the actual rank 271

of the ground-truth paired text among all text 272

samples. Subsequently, we compute the average 273

MRR for each layer: 274

I = {l|MRR(l) > threshold, l ∈ [0, num_layer]}, (5) 275

276

where num_layer is determined by the LLM we 277

used. The 0-th layer corresponds to the embedding 278

layer. As shown in Figure 4, we observe that in 279

the Vicuna-13B version, the MRR scores remain 280

relatively high (above 0.5) from layer 0 (the 281

embedding layer) to layer 5. However, starting 282

from layer 6, the scores drop sharply, falling below 283

0.01. Similarly, in the Qwen2-7B version, layers 284

0 and 1 demonstrate higher scores but exhibit a 285

steep decline in subsequent layers. This pattern 286

indicates that the shallow layers of LLM play a 287
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Figure 4: Layer-wise trends of average mean reciprocal
rank (MRR) in two distinct backbone LLMs for speech-
to-text retrieval evaluation.

crucial role in capturing the semantic properties288

of speech inputs. Based on empirical practice, a289

threshold value of 0.05 was set to select our optimal290

layers for optimization.291

4.3 Speech-Text Alignment Joint Training292

Stage293

As illustrated in Figure 3 right part, we fine-tune294

the model for downstream speech tasks while295

simultaneously training for speech-text alignment.296

Specifically, the transcribed text and instruction are297

concatenated and passed through the LLM, with298

their representation positions recorded to extract299

the corresponding text and speech representations.300

For the selected optimization layers, pairwise301

Wasserstein loss between these representations was302

minimized. The gradients from text representations303

do not contribute to the optimization process.304

Therefore, the final loss is defined as:305

LCE = − log P
(
T
∣∣∣ES , I, θ

)
,

L = αLCE +
∑
l∈I

1− α

|I| L(l)
Wass,

(6)306

307

where L(l)
Wass is equivalent to the Wasserstein308

distance between speech and text representations in309

the l-th layer, and α is a hyperparameter to balance310

the relative importance between two loss.311

5 Experiment312

5.1 Training Data313

In the speech pre-training stage, we use314

LibriSpeech training set (Panayotov et al., 2015)315

and GigaSpeech M-set (Chen et al., 2021) for316

automatic speech recognition (ASR), as well as317

WavCaps (Mei et al., 2024) (with audio clips longer318

than 180 seconds removed), AudioCaps (Kim et al.,319

2019) and Clotho (Drossos et al., 2020) dataset for320

automatic audio captioning (AAC).321

In the joint training stage, we chose the ST322

task for further training. CoVoST2 (Wang et al.,323

Task Data Source #Hours #Samples

ASR
LibriSpeech 960 280K

GigaSpeech M-set 1000 680K

AAC
WavCaps 2800 370K

AudioCaps - 45K
Clotho - 4K

ST
CoVoST2 En2Zh 364 289K
CoVoST2 En2Ja 364 289K

Table 1: Training data used in all stages.

2021) is a large-scale multilingual dataset that 324

supports translations between English and 15 other 325

languages, as well as from 21 languages into 326

English. To align with the previous method, 327

we select two translation directions including 328

English-Chinese and English-Japanese. All the 329

datasets we used are listed in the Table 1. 330

5.2 Training Setup 331

Our model employs the encoder part of Whisper- 332

Large-v2 (Radford et al., 2023) model as the 333

speech encoder, the fine-tuned BEATs (Chen 334

et al., 2022) encoder as the audio encoder, and 335

a Vicuna-13B-v1.1 (Chiang et al., 2023) or a 336

Qwen2-7B (Yang et al., 2024a) as the backbone 337

LLM. In the Q-Former block, we set N = 1 for 338

a single trainable query and use L = 17 which 339

is approximately 0.33 seconds per window. The 340

OT loss weight is empirically set to 0.01 based on 341

practical experience. We freeze speech encoder, 342

audio encoder, and LLM when training, leading 343

28 million (M) or 64M trainable parameters, 344

depending on the scale of the backbone LLM 345

parameters. Detailed training hyperparameters are 346

available in Appendix A.1. 347

5.3 Evaluation 348

We evaluated the model using the CoVoST2 test 349

set for English-Chinese and English-Japanese 350

translations, employing SacreBLEU (Post, 2018) 351

score as the evaluation metric. Audio samples are 352

all resampled to 16kHz in the experiments. 353

5.4 Baselines 354

We compare our LSM and method with the 355

following four baselines. 356

SALMONN (Tang et al., 2023) integrates a 357

pre-trained text-based LLM with a speech encoder 358

and audio encoder to process audio inputs. It 359

excels in tasks like speech recognition, translation, 360
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Method CoVoST2
En-Zh En-Ja

Baseline Models
SALMONN 33.1 22.7
BLSP-KD 41.3 21.3
Qwen-Audio 41.5 23.5
Qwen2-Audio 45.2 28.6

Our LSM with Vicuna-13B-v1.1
base 36.5 29.8
w/ AI-STA 37.6 30.2

Our LSM with Qwen2-7B
base 45.3 31.0
w/ AI-STA 46.0 31.4

Table 2: Speech translation BLEU scores on CoVoST2.
We conducted experiments in English (En)-to-Chinese
(Zh), En-to-Japanese (Ja). For each result, We use
underline to highlight the previous SOTA baseline, and
use bold to highlight surpassing the SOTA performance.

and music captioning while showcasing emergent361

abilities.362

BLSP-KD (Wang et al., 2024a) leverages363

CFormer architecture to tackle the speech-text364

length discrepancy, while incorporating a KL-365

divergence loss mechanism to optimize output366

distribution alignment. It also introduces a367

partial LoRA strategy to facilitate efficient LLM368

fine-tuning with speech inputs.369

Qwen-Audio (Chu et al., 2023) is Alibaba’s370

multi-modal LLM, accepting diverse audio and371

text inputs to output text. It proposes a multi-task372

learning framework and incorporates a word-level373

time-stamp prediction training task while yielding374

strong performance across various tasks.375

Qwen2-Audio (Chu et al., 2024) is the latest376

progress of Qwen-Audio. It further boosts377

instruction-following capability and adopts direct378

preference optimization to align with human379

preferences achieving SOTA in AIR-Bench (Yang380

et al., 2024b).381

6 Results382

6.1 Main Result383

Table 2 presents a comparison of our base LSM,384

our LSM with AI-STA method, and previous385

methods, reporting SacreBLEU scores evaluated386

on two language pairs: En-Zh, and En-Ja. Notably,387

our base LSM with Qwen2-7B achieves SOTA388

with the BLEU of 45.3 on En-Zh and 31.0 on389

En-Ja translation direction. Further with our390

AI-STA method, our LSM outperforms previous391

Aligning Position BLEU

base 45.3
Layer 0 45.7
Layer 0-5 45.5
Layer 1 X
Layer 0-1(Selected) 46.0

Table 3: The impact of different layer optimization
selection strategies on the performance of CoVoST2
En-Zh using Qwen2-7B as backbone LLM.

SOTA for 0.8 BLEU in En-Zh and 2.8 BLEU in 392

En-Ja. Additionally, the AI-STA method provides 393

a noticeable boost in performance for all models, 394

with BLEU score gains of approximately 0.8 for 395

LSM with Vicuna-13B-v1.1 and 0.6 for LSM with 396

Qwen2-7B. We also observe that the performance 397

gain with AI-STA is greater for En-Zh (0.9 BLEU) 398

than for En-Ja (0.4 BLEU), suggesting that our 399

alignment method may benefit more from target 400

languages with richer training resources. These 401

results convincingly demonstrate the superiority of 402

AI-STA and highlight the promising potential of 403

exploring LLMs for speech translation tasks. 404

6.2 Effect of Optimization Layer Selection 405

Tabel 3 shows that different aligning layer 406

selections have a great impact on CoVoST2 En-Zh 407

performance. Only aligning speech and text 408

representation in layer 0 (embedding layer) gains 409

0.4 BLEU improvement. Once we further align at 410

the inner layers, the performance begins to decline 411

(45.7 -> 45.5). Especially when not aligning layer 412

0, the training loss fails to converge leading to 413

catastrophic failure. The performance is further 414

enhanced by aligning with selected alignment 415

layers obtained through our optimization layer 416

selection strategy (45.7 -> 46.0), highlighting the 417

necessity of our layer selection strategy. 418

6.3 Comparison of Aligning Methods 419

For connectionist temporal classification (CTC) 420

(Graves et al., 2006), we apply it at the token 421

level using backbone LLM’s tokenizer to encode 422

the transcript of source speech as the golden 423

token and train an independent classification layer 424

for matching with LLM’s vocabulary size. For 425

contrastive learning (CL), we treat golden paired 426

speech-text samples as positive pairs, and the others 427

as negative pairs and apply a multi-class N-pair 428

contrastive loss (Sohn, 2016). Both alignment 429

methods only operate at the embedding layer. As 430

6
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Figure 5: t-SNE visualization of speech and text
representation from LSMs trained with or without
AI-STA methods.

Aligning method BLEU

base 45.3
↪→ w/ CTC 44.6
↪→ w/ CL 45.1
↪→ w/ AI-STA 46.0

Table 4: The impact of different aligning methods on
CoVoST2 En-Zh performance.

shown in Table 4, employing either CTC or CL431

results in performance degradation. By contrast,432

our method yields a 0.7 BLEU improvement.433

We argue that CTC is not suitable for434

adapters like Q-Former that incorporate attention435

mechanisms. CTC is a forced alignment method436

where each output position must align precisely437

with a specific token, which can lead to conflicts438

when applied after the Q-Former. When applying439

contrastive learning (CL) such an alignment440

method at the overall semantic level, yields limited441

effectiveness and fails to further capture the442

fine-grained relationships between words. Both443

methods cause conflicting training objectives and444

hinder the training process.445

6.4 Can AI-STA Close the Modality Gap?446

We randomly sample 1,000 speech-text tran-447

scription pairs from the test set of CoVoST2448

En-Zh to explore representation alignment between449

speech and text in the embedding layer of our450

LSM with the Qwen2-7B version. The speech451

representation is obtained as semantic tokens after452

processing through the Q-Former, while the text453

representation is derived from the tokenization and454

embedding layer of the LLM. All representations455

are averaged along the length dimension. We456

apply bivariate kernel density estimation (Parzen,457

1962) and utilize the T-SNE technique reducing458

data dimensions to a two-dimensional space for459

Figure 6: The correlation between alignment degree
and performance in the CoVoST2 En-Zh direction
across different training methods. Lower logarithmic
Wasserstein distance indicates a higher degree of
alignment, while a higher BLEU score corresponds to
better performance in the ST task.

visualization (Van der Maaten and Hinton, 2008). 460

As depicted in Figure 5, AI-STA significantly 461

reduces the distance discrepancy between the 462

speech and text representation spaces compared 463

to the baseline without our method, demonstrating 464

a strong relationship between these two modalities. 465

6.5 Correlation between Alignment Degree 466

and ST Performance 467

To investigate the relationship between representa- 468

tion alignment and speech translation performance, 469

we calculate alignment scores for LSMs trained 470

with various alignment methods. Taking the 471

LSM with Qwen2-7B as an example, our optimal 472

layer selection strategy identifies the zero and first 473

layers as particularly suitable for representation 474

alignment. We quantify the degree of alignment 475

by calculating the logarithmic Wasserstein distance 476

between these two layers. Figure 6 illustrates a 477

strong correlation between the alignment score 478

and speech translation performance. From left to 479

right, the alignment methods are the same with 480

section 6.2 except for the optimization applied to 481

layer 1. As the alignment scores decrease, we 482

consistently observe a steady increase in the BLEU 483

score, indicating a strong correlation between 484

improved alignment and enhanced translation 485

performance. 486

6.6 Can AI-STA Help Knowledge Transfer? 487

To investigate whether our method can bridge the 488

modality gap and enable the model to understand 489

speech modality inputs as text modality. We 490

directly perform zero-shot text translation inference 491

on a model that has been trained on the speech 492

translation task. The inference prompt is identical 493

to the training prompt. We intended to verify 494
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Method ST MT

Training on ST
base(Vicuna-13B) 36.5 34.0
↪→ w/ AI-STA 37.6 39.4
base(Qwen2-7B) 45.3 51.2
↪→ w/ AI-STA 46.0 51.5

Table 5: The impact of Speech-Text Alignment on zero-
shot machine translation task. Demonstrates that our
method facilitates knowledge transferring from speech
to text modality.

whether the model has effectively utilized the495

correspondence between speech and text during496

the training process.497

As shown in Table 5, we observe that in the498

Vicuna-13B version, the zero-shot performance499

gap between using and not using our method500

reaches up to 5.4 BLEU. This indicates that our501

method significantly enhances the LLM’s ability to502

leverage ST knowledge for text-based MT tasks. In503

the Qwen2-7B version, the zero-shot performance504

gap shrinks to 0.3 BLEU. Irrespective of whether505

our method is applied, the translation performance506

in text scenarios is significantly stronger than that507

in speech scenarios. We attribute this phenomenon508

to the Qwen2-7B model’s strong English and509

Chinese language capabilities, as well as its more510

precise capture of the relationship between speech511

and text modalities. We use the transcript and512

translation text pair of the CoVoST2 En-Zh test513

set as our MT evaluation data.514

6.7 Case Study515

In this section, we present several cases generated516

by our LSM with Vicuna-13B to compare its517

performance with the previous end-to-end model,518

SALMONN (Tang et al., 2023). The results519

are summarized in Figure 7. In the first case,520

SALMONN incorrectly translates “in no way521

unique” as the meaning of “nothing unique”,522

leading to a deviation from the intended meaning.523

Our LSM inaccurately translates it as meaning524

“completely normal” which is out of context.525

While training with our AI-STA method, our LSM526

accurately translates it to the correct answer.527

In the second case, SALMONN and our528

LSM exhibit different translation errors in this529

case. SALMONN fails to translate the word530

“portraying” as “representation”. Our LSM, in531

turn, misinterprets the word “mascot”, resulting532

in a significant misunderstanding. In contrast, our533

LSM with AI-STA correctly translates these words,534

src:  All of this activity in Milwaukee was in no way unique.

tgt:  所有这些活动在密尔沃基都不是独一无二的。
Ref

tgt:  密尔沃基的所有活动都没有独特之处。SALMONN

tgt:  这些活动在密尔沃伊克是完全正常的。Our LSM

tgt:  密尔沃基的所有活动都不是独一无二的。w/ AI-STA

src:  Many mascots there also seem to believe they are  the animals they're portraying.

tgt:  那里的许多吉祥物似乎也相信它们就是人们所描绘的那些动物。
Ref

tgt:  那里的许多吉祥物也似乎认为自己是它们所代表的动物。SALMONN

tgt:  那里的许多形象也似乎认为自己是所描绘的动物。Our LSM

tgt:  那里的许多吉祥物也似乎认为它们是描绘的动物。w/ AI-STA

CASE 1

CASE 2

Figure 7: CoVoST2 En-Zh test cases that generated from
the SALMONN, our LSM with Vicuna-13B and our
LSM with AI-STA. The red underlined text indicates
an incorrect answer.

yielding a more accurate overall translation than 535

SALMONN and our base LSM. These observations 536

highlight the ST capabilities of our LSM with 537

AI-STA, demonstrating that AI-STA enhances the 538

LSM’s ability to capture fine-grained semantics. 539

Although our method improves the performance 540

of LLM-based ST, we still discovered content 541

omission during the translation generation process 542

in the two cases mentioned above. Some source 543

words remain untranslated, such as "all of this" in 544

the first case, which is not fully translated by any of 545

the methods. As a result, the translated sentences 546

tend to be shorter than the reference sentences. This 547

highlights a persistent issue in current LLM-based 548

Speech Translation systems, suggesting that there 549

is still room for improvement. 550

7 Conclusions 551

In this study, we enhance the ST capabilities 552

of LSMs by explicitly aligning speech and text 553

representations. To achieve this, we introduce 554

OT theory to quantify the discrepancy between 555

speech and text representations and investigate the 556

representation characteristics of different layers 557

within LLMs. By leveraging the cross-modal 558

retrieval technique, we identify specific model 559

layers that are well-suited for representation 560

alignment and perform joint training using these 561

selected layers. Our experiments demonstrate 562

that this method effectively reduces the distance 563

between the speech and text representation 564

spaces, enabling the model to better capture the 565

relationships between the two modalities and 566

significantly improves the performance of large 567

speech models on speech translation tasks. 568
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Limitation569

We acknowledge that our proposed approach570

has several limitations: (1) We observed several571

intriguing phenomena, such as performance572

degradation when applying CTC or CL alignment573

methods at the embedding layer, as well as a574

sharp drop in retrieval performance at certain layers575

within LLM and remained low in subsequent layers.576

However, we did not thoroughly investigate the577

underlying principles and instead relied on intuition578

and empirical observations without theoretical579

justification or formal proof. (2) Although our580

method enhances the LLM-based ST performance581

and reaches SOTA, a performance gap remains582

compared to the text scenarios’ machine translation.583

However, we believe our method provides valuable584

insights and encourages the development of585

cross-modal learning in LLMs.586
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A Appendix 875

A.1 Hyperparameters 876

The training configurations for the two stages are 877

summarized as follows: 878

Speech Pre-training Stage: Training employs the 879

AdamW optimizer with hyperparameters β1=0.9, 880

β2=0.999, eps = 1e−8. The learning rate follows 881

a cosine decay schedule, starting with a warm-up 882

rate of 1e−6, peaking at 3e−5, and decaying to a 883

minimum of 1e−5. Weight decay is set to 0.05, and 884

the global batch size is 32. The model undergoes 885

80k training steps with 9k warm-up steps, using 886

BFLOAT16 numerical precision. LoRA parameters 887

include a rank of 8, alpha of 32, and dropout of 0.1. 888

Joint Training Stage: The training configuration 889
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for this stage is largely the same as the mentioned890

above, with two differences: the warm-up steps in891

this stage are set to 3k, and we do not fix the total892

number of training steps. Instead, we determine893

whether to stop training based on the metrics from894

the validation phase conducted every 3k training895

steps. Training is stopped when the validation896

accuracy does not exceed the previous highest897

value for four consecutive validation phases.898
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