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Abstract

Recent agentic Multi-Modal Large Language Models (MLLMs) such as GPT-o3
have achieved near-ceiling scores on various existing benchmarks, motivating
a demand for more challenging test tasks. These MLLMs have been reported to
excel in a few expert-level tasks for humans, e.g., GeoGuesser, reflecting their
potential as a detective who can notice minuscule cues in an image and weave
them into coherent, situational explanations, leading to a reliable answer. But
can they match the performance of excellent human detectives? To answer this
question, we investigate some hard scenarios where GPT-o3 can still handle, and
find a common scenario where o3’s performance drops to nearly zero, which
we name CaughtCheating. It is inspired by the social media requests that ask
others to detect suspicious clues from photos shared by the poster’s partner. We
conduct extensive experiments and analysis to understand why existing MLLMs
lack sufficient capability to solve this kind of task. CaughtCheatingprovides a class
of challenging visual perception and reasoning tasks with great value and practical
usage. Success in these tasks paves the way for MLLMs to acquire human-level
detective perception and reasoning capabilities.

1 Introduction

Recently advanced Multi-Modal Large Language Models (MLLMs) or corresponding Agents, such
as GPT-o3 [46] and Gemini-2.5 Pro [13], have demonstrated extraordinary visual perception and
reasoning capabilities [76, 78, 61, 3, 4].

Recent studies have demonstrated that MLLMs are even capable of addressing far more demanding
challenges, e.g., GeoGuesser, estimating an image’s geographic location [43, 24]. These kinds of
tasks represent scenarios that even humans cannot accomplish easily, which require detective-level
capabilities. These findings raise an important question: Do recent MLLMs truly acquire detective-
level perception and reasoning capabilities? If so, what is the boundary of their competence?

Motivated by Human’s Last Exam [52], which contains dozens of extremely challenging tasks, we
aim to explore and evaluate the boundary of the detective-level ability [21, 74, 11] of MLLMs on
visual perception and reasoning tasks. We investigate a number of hard scenarios where GPT-o3
can solve the queries even though they are challenging for humans. Then we discover a common
scenario where o3’s performance drops dramatically to almost the random guess level. This scenario
is inspired by the social media requests that ask others to detect potential suspicious clues from
photos shared by the poster’s partner, which go against the partner’s claims. Figure 1 shows an
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example, in which the user query is: “My boyfriend said he’s dining alone at the restaurant and
sent me this photo. Do you notice anything suspicious in this image that contradicts his claim?” This
image itself seems an ordinary food-sharing image, while in the reflection of the spoon, there are
other people, including a girl with long hair, who can be visible, which is suspicious and violates
the claim of being alone. For this kind of task, we find that most humans, and the strong MLLMs
like o3, are not able to identify the clues, indicating the superior detective-level capabilities required.

Figure 1: An example from CaughtCheating.
Query: “My boyfriend said he’s dining alone
at the restaurant and sent me this photo. Do
you notice anything suspicious in this image
that contradicts his claim?” Suspicious
Clue: “There are other people, including
a girl with long hair, visible in the spoon’s
reflection.” In this example, most human
participants, and the strong o3 are not capable
of identifying this clue when not given any
hints, indicating the demandforf superior
detective-level capabilities.

Thus, to explore the boundary of the visual percep-
tion and reasoning capabilities of current MLLMs
[31, 77, 3, 4], we collect these images and construct
the CaughtCheatingbenchmark. This benchmark
consists of a Real Subset and a Synthetic Subset. The
real subset consists of 100 mannully screened im-
ages1 sourced from publicly posted photographs on
social media. The dataset is nearly evenly split into a
Clued category and a Unclued category. Annotations
for each image include a primary question about
potential violation of the original claims, correspond-
ing deterministic and non-deterministic clues, and a
series of decomposed questions to analyze the visual
reasoning process of MLLMs. The synthetic subset
consists of 3700 verified synthetic images generated
by GPT-Image-1 with diverse scenes. The two sub-
sets are designed to be complementary to each other,
as the real subset represents the extremely rare and
challenging real-world cases, while the synthetic sub-
set represents less challenging but more diverse cases.
Most of the analysis is conducted on the real subset.

CaughtCheatingis more challenging than all the
previous tasks because the targets to be identified
are not directly defined in the query, and thus can
not be solved by an exhaustive grid search. For
example, when o3 tries to solve the query in Figure
1, it conducts the exhaustive grid search by focusing
on one part of the figure at a time. However, even
if it has tried focusing its attention on the area
with the spoons, it still can not find this clue2. To
theoretically analyze the difficulty dependencies
between CaughtCheatingand existing challenging
tasks and understand the reasons behind the failures of o3, we introduce the Guided Search theory
from cognitive science [64, 26, 27, 17] and the factors that guide attention in visual search. According
to the theory, CaughtCheatinghas low bottom-up salience, lacks top-down feature guidance, and
contains blurry scene structure and meaning.

Extensive evaluation results demonstrate that current MLLMs perform poorly on our detection-level
benchmark of CaughtCheating. Notably, on the Real Subset, even the best-performing model (o3)
achieved only 26.0% accuracy in detecting the deterministic clues hidden in the images and 17.2%
IoU (the intersection over union). Moreover, the accuracy of justifying the absence of suspicious
clues (Unclued Acc) is only 8.0%, resulting in the overall F1 score being only 23.9%. Through
investigation, we find that the current advanced MLLMs, e.g., o3 and Gemini-2.5-pro, not only
fail to identify the deterministic clues, but also tend to hallucinate and accuse everything by
generating lots of so-called suspicious clues, even for innocent images, which is not preferred.
Taken together, these results show the significance of CaughtCheating, which reveals that recent
MLLMs still lack detective-level capabilities, and further exposes the current boundary of their visual
perception and reasoning capabilities. Our contributions can be summarized as:

1This kind of data is intrinsically scarce. We have manually screened and verified almost all the existing
related posts on public social media to construct this benchmark.

2o3’s visual reasoning traces are presented in Appendix E.
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Figure 2: Demonstration of GPT-o3’s multimodal visual-reasoning breadth. (a) Visual search:
locating Waldo in a densely populated illustration. (b) Visual search for camouflage: spotting a nearly
invisible copperhead snake hidden among dry leaves. (c) GeoGuessr: identifying the upper terminal
of Chair 1 at New Mexico, and estimating its latitude/longitude from a single image. (d) TimeGuesser:
dating the photograph by matching architectural signage and period vehicles to museum and heritage
records. These examples highlight o3’s strong visual perception and reasoning capacity across various
visual tasks that most humans can not accomplish.

• We systematically evaluate the limits of current MLLMs in visual perception and reasoning,
analyzing how they solve various complex tasks via sophisticated reasoning strategies, and identify
a common scenario where even advanced models like o3’s performance drops to nearly zero.

• We present CaughtCheating, the first benchmark specifically designed to assess the ability to
actively search and detect subtle, context-dependent suspicious clues in real-world images. Most
human annotators and state-of-the-art agentic MLLMs struggle to succeed on CaughtCheatingtasks,
highlighting the lack of detective-level exploration skills.

• We analyze why even the most advanced agentic MLLMs fail on CaughtCheating. Inspired by the
Guided Search theory, we find that these models often lack awareness of what to search for and
how to relate observed details to the query. Our findings offer insights into both the construction
of more challenging benchmarks and the limitations of existing MLLMs.

2 Exploring the Boundary of Visual Perception and Reasoning
2.1 Reasoning Trace Analysis of o3
As shown in the Figure 2, 4 representative task scenarios are selected for our qualitative analysis
towards the boundary of MLLM visual perception and reasoning capabilities. These tasks have been
shown to be solved by the powerful agentic MLLM, GPT-o3, even if most of them can not be solved
by individual humans3.

When solving (a), o3 systematically sweeps the image from broad overviews to focused zooms,
homing in on red-and-white horizontal stripes of the character “Waldo”. After eliminating false
matches quadrant by quadrant, it confirms Waldo’s outfit and hat, then translates his pixel coordinates
into an easy landmark description. When solving (b), the o3 methodically zooms into different areas
of the leaf-litter image, from the center, lower left, and lower right, to searching for irregular shapes
or patterns. Spotting rounded tan-brown coils with dark hourglass bands just left of center, then it
recognizes the tell-tale camouflage of a venomous pit viper (likely a copperhead). When solving (c),
o3 compares visual clues in the photo, red chairs on blue lift towers, the wide west, facing vista over
Albuquerque’s grid, and the tree-line/elevation typical of Sandia Crest, with known features of Sandia
Peak Ski Area. Cross-checking those details against published coordinates confirms the match. When
solving (d), o3 cross-checks catalog records for Henry King’s glass-plate negatives with heritage

3All the screenshots of o3 reasoning traces for solving these examples are provided in the Appendix E.
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reports that caption this very view “c. 1890s.” Then it matches visual clues, horse buses and a Sydney
Municipal, dense telegraph wires but no electric-tram overhead, and the original Anthony Hordern’s
“Palace Emporium” sign that vanished after the 1901 fire, to pin the scene to the year.

According to the above analysis, we find that the o3 model approaches these tasks with a methodical,
exhaustive grid search, inspecting each region or object one by one until all plausible candidates
are ruled in or out. However, the effectiveness of this exhaustive approach will be largely negatively
affected if the target object is easily overlooked. Figure 1 presents an example: When trying to solve
the given query, o3 zooms in on the areas including pizza to confirm if slices were missing, the
spoon and glass reflections to spot another diner, and the wing plate and surrounding dishes to gauge
portion sizes and leftover clues. However, it fails to notice that there are multiple people visible in
the spoon’s reflection. Compared with other objects, the spoon is so negligible that o3 does not
pay much attention to it, thus leading to the failure. Moreover, even occasionally, o3 coincidentally
pays more attention to the spoon, it can not successfully perceive the content in the reflection. To
conclude, we find that even though o3 is able to accomplish some complex tasks, it mainly relies on
an exhaustive grid search, which indicates a lack of detective-level visual perception and reasoning
capabilities.

2.2 Guided Search Theory
To theoretically analyze the differences between the existing visual tasks and CaughtCheating, we
introduce the Guided Search theory [64] and the corresponding factors [65] that guide attention in
visual search in the area of cognitive science. In its theory, searching involves directing attention to
objects that might be the target. This process is guided to the most promising items and locations
by five factors discussed in the theory: bottom-up salience, top-down feature guidance, scene
structure and meaning, the previous history of search, and the relative value of the targets and
distractors. Through investigation on the reasoning traces of o3, we find this theory, though initially
proposed in the area of cognitive science, is still applicable to the current MLLMs. We argue that
CaughtCheatingis significantly more challenging than many existing visual reasoning tasks, including
those depicted in Figure 2, due to the interplay of these factors.

Bottom-Up Salience refers to the extent to which an item “pops out” from its surroundings due to
its intrinsic visual properties (e.g., color, orientation, contrast). This aspect represents the easiest
strategy to make visual search hard. In examples like Figure 2 (a) and (b), both the targeting objects
have low bottom-up salience, making them hard to find and requiring exhaustive searches. Similarly,
suspicious cues in CaughtCheatingalso have extremely low bottom-up salience, like a reflection in a
spoon, a partially obscured object, or a subtle item in the background, and are easily overlooked.

Top-Down Feature Guidance involves using knowledge about the target’s properties to guide
search. Previous tasks benefit significantly from top-down guidance. For Waldo, the model searches
for specific red-and-white stripes as a distinct character. For the snake, the query about “danger”
might guide the model to look for threatening patterns. GeoGuesser and TimeGuesser rely on
identifying specific architectural styles, vegetation, or period-specific artifacts. However, this is
where CaughtCheatingposes a major hurdle. The “target”, i.e., the suspicious clue, is often not a
predefined object but an anomaly whose significance is context-dependent. Lacking the top-down
feature guidance, the model does not know what to look for because the clue could be almost anything
(an extra glass, a reflection, an out-of-place item). As observed, even if o3 occasionally focuses on the
correct object (like the spoon), it may still fail to perceive the detail within it or infer its implication.

For Scene Structure and Meaning, the understanding of typical scene layouts and the relationships
between objects helps guide attention to likely target locations. For previous tasks, o3 leverages scene
context effectively. In GeoGuesser, it compares visual clues with known features of geographical
locations. In TimeGuesser, it matches visual clues like vehicles and signage to historical records.
However, for CaughtCheating, the image itself might seem like an ordinary food picture or a hotel
picture. Allocating the critical visual clues for the task does not merely require object recognition; it
also needs to interpret subtle social cues and deviations from a presumed norm (e.g., “dining alone”).
Current MLLMs struggle with this divergent reasoning over subtle, context-dependent cues, often
focusing on non-deterministic details rather than decisive evidence.

In summary, CaughtCheatingis more complex due to the extremely low bottom-up salience of crucial
cues, the profound lack of specific top-down feature guidance, and the need to interpret subtle social
context rather than just recognizing objects or well-defined patterns. While current agentic MLLMs
can methodically search and identify objects through a process of elimination and feature matching,
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Figure 3: An example of the annotation for the “Clued” category. Each image is annotated with a
general question assessing overall suspicion and decomposed questions focused on a deterministic
clue (here, the feminine bow hair accessory). Decomposed questions include perception-based
inquiries (clue identification) and reasoning-based inquiries (social implications and contradictions),
all annotated with the expected answer "yes".

CaughtCheatingdemands a more nuanced “detective-level” ability to identify initially inconspicuous
details and infer their significance within a specific social claim.

3 Benchmark Construction

3.1 Image Collection for Real Subset

We collect images from publicly posted photographs on social media, focusing on those posts that
request others to detect potential suspicious clues that violate their partners’ claims from the photos.
We only collect images that either clearly contain or lack subtle clues related to potential violation of
the claim. Each image is manually reviewed to ensure sufficient resolution quality for identifying
such clues. Due to the limited availability of images with naturally occurring subtle clues, we
apply minimal cropping to some images that originally show multiple people, transforming them
into single-person photos while preserving subtle indicators of another person’s presence. This
approach allows us to create challenging cases where the clues are interpretable for humans but not
immediately obvious. To ensure practical relevance, we exclude any synthetic images generated
by image generation models. After careful selection and verification, we construct a dataset of 100
images, split into Clued and Unclued categories, with all personal information removed. A detailed
version of Benchmark Construction, including the image examples, is provided in the Appendix B.

3.2 Annotation for Real Subset

After constructing the image set, we annotate each image with a set of questions and corresponding
ground-truth answers. A detailed annotated example is shown in Figure 3. For images in Clued cate-
gory, we annotate each one using a question instantiated from the template: “My [girlfriend/boyfriend]
said [she/he] is [in a certain scenario] and sent me this photo. Do you notice anything suspicious in
the image that contradicts [her/his] claim?” Among the potential clues, the one that deterministically
shows the violation of the providing claim (a clearly identifiable, contextually inappropriate element)
will be selected as the Deterministic Clue, e.g., a pair of slippers is being worn by someone in Figure
3. The remaining clues are labeled as Non-deterministic Clues (weaker or more ambiguous signals),
e.g., the rose bouquet, the TV shows, and the far-reached drinks. These non-deterministic clues
might be suspicious, but apparently not enough to infer the potential claim violation. The reason
we provide these clues is to avoid punishing models when they mention these clues.

Furthermore, we construct a series of decomposed questions designed to analyze the visual reasoning
process of MLLMs, shown in the right part of Figure 3. This series includes: (1) Decomposed
Perception Question, which assesses whether the MLLMs can identify the deterministic clue when
we explicitly mention the clue and position. (2) Decomposed Reasoning Question, which assesses
whether MLLMs can understand the social implications of the clue, or whether MLLMs can imply the
relation between the clue and the potential cheating. The correct answer to each of these decomposed
questions is annotated as “yes”. We annotate each image in the Unclued category using the same
initial question template, with “There is no clear evidence.” as the ground-truth answer.
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3.3 Construction for Synthetic Subset

As a complement to the real subset, we further construct the synthetic subset through a cascading
pipeline that balances quality and diversity. First, we define a set of scenes (e.g., bar, office, hotel
room, car) and introduce deterministic clues in complete sentences (e.g., There are two glasses on the
table) anchored in scene context and gender stereotypes, while ensuring gender balance. Then, for
clued samples, the LLM is given both the scene and its associated clue to generate first-person photo
prompts that contain elements in contradiction to the claim. For unclued samples, only the scene is
provided, and the LLM is instructed to generate first-person photo prompts of a single individual
without such contradiction. Candidate prompts are then reviewed by annotators for semantic accuracy
and compliance, with the best five prompts per clue retained.

Subsequently, we employ a state-of-the-art image generation model (GPT-Image-1 [? ]) to synthesize
multiple candidates per prompt, from which human evaluators select the best five. Question templates
are adapted from the real subset, and answers are directly derived from clue sentences, ensuring
consistency with annotation protocols. This procedure yields 3700 images, evenly divided into clued
and unclued categories across 10 scenes. Detailed method, including mappings between scenes and
clues, prompt design, generation workflow, and distributional statistics, is provided in Appendix B.

3.4 Evaluation Metrics

We employ several evaluation metrics to comprehensively assess MLLMs’ performance in detecting
potential claim violations from images. Clued Accuracy (Clued Acc) measures whether MLLMs can
successfully identify the key deterministic clues in images from the Clued category. Intersection
over Union (Clued IoU) evaluates how well MLLMs identify all relevant non-deterministic clues
while avoiding unrelated elements in the Clued category. Unclued Accuracy (Unclued Acc) assesses
whether MLLMs can correctly determine the absence of suspicious clues in images from the Unclued
category. In addition to the above three metrics, we also report the accuracy of MLLMs on the
decomposed questions in the analysis, including Decomposed Perception Accuracy (Dec. P Acc),
Decomposed Reasoning Accuracy (Dec. R Acc), and Decomposed Overall Accuracy (Dec. Acc)
for in-depth analysis. These metrics together provide a comprehensive evaluation framework that
captures both the accuracy of clue detection and the quality of reasoning in different scenarios.

To compute these metrics, we need to parse the key points from MLLMs’ open-ended responses and
compare them with the ground-truth answers. Given the complexity of this task and the diversity of
the responses, we recommend using human evaluators as the primary judges for the most accurate
assessment. However, to enable fair and automated comparison across different models, we also
develop an automatic evaluation approach using GPT-4.1 to parse and compare the model response.
To validate the reliability of our automatic evaluation method, we calculate the inter-rater agreement
between human evaluators and GPT-4.1 using Cohen’s Kappa coefficient. The resulting kappa scores
of 0.82 for Clued Acc and 0.943 for Unclued Acc demonstrate strong alignment between human and
automatic evaluation, indicating the reliability of our automated assessment approach. A detailed
version of Evaluation Metrics, including the calculation and transformation between metrics, is
provided in the Appendix C.

4 Experimental Results

4.1 Main Results

The main results are shown in Table 1. Clued Acc and Clued IoU represent the capability of MLLMs
to identify the suspicious clues, which directly reflect the MLLMs’ visual perception and reasoning
abilities. For previous open-source models, the performance is almost negligible, as no models can
reach an accuracy above 5%, indicating their inferior capabilities on visual perception, reasoning,
or even instruction following. As for proprietary models before the reasoning era, GPT-4o achieves
4.0% accuracy and 1.0% IoU, and Gemini-2-flash achieves 10.0% accuracy and 0.0% IoU. The
performances are slightly better, indicating their better capabilities in instruction understanding
and following, but still they can not reach accuracies above 10%. Only for the recent strong large
reasoning models, like Gemini-2.5-pro and GPT-o3, the performances can reach above 20% accuracy
and 10% IoU, indicating their strong capabilities on visual perception and reasoning. But still, even
the best performing model, GPT-o3, only achieves 26.0% accuracy and 17.2% IoU, indicating the
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Synthetic Subset Real Subset
Overall Clued Unclued Overall

Precision ↑ Recall ↑ F1 ↑ Acc ↑ IoU ↑ Acc ↑ Precision ↑ Recall ↑ F1 ↑
InternVL2-1B [8] 15.6 2.3 4.0 0.0 0.0 82.0 0.0 0.0 0.0
LLaVA-OV-1B [34] 33.7 3.2 5.8 0.0 0.0 86.0 0.0 0.0 0.0
InternVL2.5-1B [8] 23.2 3.5 6.1 0.0 0.0 94.0 0.0 0.0 0.0
InternVL2-2B [8] 27.1 5.6 9.3 0.0 0.0 76.0 0.0 0.0 0.0
InternVL2.5-2B [8] 26.3 4.5 7.7 0.0 0.0 68.0 0.0 0.0 0.0
Qwen2.5-VL-3B [1] 52.2 37.6 43.7 2.0 0.0 50.0 3.8 2.0 2.6

LLaVA-v1.6-Mistral-7B [34] 69.7 7.6 13.7 0.0 0.0 82.0 0.0 0.0 0.0
LLaVA-OV-7B [34] 88.7 10.2 18.3 2.0 0.0 52.0 4.0 2.0 2.7
Qwen2.5-VL-7B [1] 62.6 45.6 52.8 2.0 3.9 66.0 5.6 2.0 2.9
InternVL2-8B [8] 44.2 7.6 13.0 0.0 0.0 76.0 0.0 0.0 0.0
InternVL2.5-8B [8] 65.4 34.2 44.9 0.0 0.0 72.0 0.0 0.0 0.0
LLaVA-1.6-Vicuna-13B [34] 20.5 3.3 5.7 0.0 0.0 72.0 0.0 0.0 0.0

InternVL2-26B [8] 61.0 33.7 43.4 2.0 1.8 10.0 2.2 2.0 2.1
InternVL2.5-26B [8] 73.8 38.9 50.9 0.0 0.0 80.0 0.0 0.0 0.0
InternVL2.5-38B [8] 65.5 39.5 49.3 2.0 0.0 76.0 7.7 2.0 3.2
InternVL2-40B [8] 71.8 37.6 49.3 4.0 0.7 12.0 4.4 4.0 4.2
InternVL2-72B [8] 88.4 46.3 60.8 4.0 0.8 16.0 4.5 4.0 4.3
InternVL2.5-72B [8] 75.5 44.7 56.2 2.0 0.8 80.0 9.1 2.0 3.3
LLaVA-OV-72B [34] 77.6 42.3 54.8 0.0 1.3 72.0 0.0 0.0 0.0

GPT-4o [47] 81.1 53.2 64.2 4.0 1.0 54.0 8.0 4.0 5.3
Gemini-2-flash [12] 71.4 50.0 58.8 10.0 0.0 6.0 9.6 10.0 9.8
Gemini-2.5-flash [13] 71.1 84.5 77.2 18.0 5.1 22.0 18.8 18.0 18.4
Gemini-2.5-pro [13] 72.6 87.2 79.2 20.0 15.1 22.0 20.4 20.0 20.2
GPT-o3 [46] 68.6 94.7 79.6 26.0 17.2 8.0 22.0 26.0 23.9
Human 97.0 95.8 96.4 56.0 / 68.0 63.6 56.0 59.6

Table 1: The overall precision, recall, and F1 score for the Synthetic Subset, and the accuracies, IoU
on the Clued category, and the accuracy on the Unclued category for the Real Subset, and the overall
precision, recall, and F1 score for the Real Subset. Models are grouped by parameter size and type
(open-source vs. proprietary). Clued Acc and IoU represent the capability of MLLMs to identify
the suspicious clues, which directly reflects the MLLMs’ visual perception and reasoning abilities.
Unclued Acc represents the capability of MLLMs to not generate any suspicious clues if the image is
unclued. On the Real Subset, even the best performing model, GPT-o3, only achieves 26.0% accuracy
and 17.2% IoU, indicating the current boundary of MLLMs’ capabilities. F1 score shows the overall
capability of MLLMs on CaughtCheating, where GPT-o3, achieves only 23.9%. The highest F1
score is 23.9%, which is much lower than the human performance, indicating the current boundary of
MLLMs’ capabilities.

current boundary of MLLMs’ capabilities. We believe this benchmark is challenging enough and
shows the current boundary of their visual perception and reasoning capabilities.

In the meantime, we also report the Unclued Acc to evaluate the capability of MLLMs to not generate
any suspicious clues if the image is unclued. This is also important for the real-world application,
as we do not prefer MLLMs to suspect and accuse anything if the image providers are innocent.
As shown in the table, most of the models reach high accuracies on this category; however, this
performance is due to their inability to generate any suspicious clues. On the contrary, the advanced
agentic models, Gemini-2.5-pro and GPT-o3, achieve low accuracies on this category, indicating
their hallucination of nonexistent suspicious clues even on unclued images. These low accuracies
reveal their lack of strong reasoning abilities to identify if something is suspicious or not.

Finally, the F1 scores represent the overall performance of the model, which is the harmonic mean
of the Precision and Recall. The highest F1 score is 23.9%, which is much lower than the human
performance, indicating the current boundary of MLLMs’ capabilities.

Alternatively, on the Synthetic Subset with 3, 700 images, though previous models still perform
poorly, existing state-of-the-art MLLMs like GPT-o3 and Gemini-2.5-pro can reach F1 scores of
almost to 80%. The main reason is that the current image synthesis model, GPT-Image-1, is not able
to generate scenes with subtle and non-obvious suspicious clues, e.g., the vague reflections in the
mirror. On the contrary, current SOTA MLLMs can already have the ability to identify the clues
generated by image synthesis models. Further discussion on the quality of synthetic data is provided
in Appendix B.
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Figure 4: Case studies of the models’ performance on the CaughtCheating examples. 3 repre-
sentative models are selected, including GPT-o3, GPT-4o and InternVL2.5-1B, and 3 images are
selected: (a) A difficult Clued image, (b) An easy Clued image, and (c) An Unclued image. The
models’ responses are truncated for better visualization.

Dec. P Dec. R Dec. Clued ↑
GPT-4o 52.0 12.8 2.0 4.0
Gemini-2-flash 74.0 69.6 38.0 10.0
Gemini-2.5-flash 72.0 39.2 20.0 18.0
Gemini-2.5-pro 80.0 52.9 34.0 20.0
GPT-o3 62.0 24.5 2.0 26.0
Human 82.0 97.8 80.0 56.0

Table 2: Performance on decomposed questions. Dec. P and Dec. R is the Decomposed Perception
Accuracy and Decomposed Reasoning Accuracy of the model on the decomposed questions. Dec. is
the Decomposed Accuracy which represents the proportion of the model correctly answering all the
decomposed questions.

4.2 Decomposition Analysis
To better understand why the current advanced MLLMs can not perform well in this task, we design
a set of decomposed questions for each image in the Clued category. These questions are divided
into two types: perception questions, which test whether the model can accurately identify the key
deterministic clue when it is explicitly mentioned, and reasoning questions, which assess whether the
model can correctly infer the implications or contradictions associated. This fine-grained analysis
helps reveal whether a model’s failure is due to not seeing the clue at all, or seeing it but not
understanding its significance, thus providing deeper insight into the limitations.

As shown in Table 2, the Dec. P is far higher than the Clued Acc, indicating that the models can
identify the key deterministic clue when it is explicitly mentioned. When the human participants are
given the image, it’s hard for them to identify the suspicious clues at the first place, e.g. the refelction
in Figure 1 and the femine bow hair in Figure 3, but once they are explicitly mentioned or pointed out,
they will admit the presense of the items. This human behavior leads to the relatively high Dec. P for
humans. For the Dec. R, the performances are all relatively lower, especially for GPT-4o and o3.

These results together indicate that current advanced MLLMs can identify the key subtle items in the
image if they are explicitly mentioned. However, in CaughtCheating, when being asked to identify
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the suspicious clues without being given any hints, they tend to do an exhaustive search and generate
lots of clues without really judging if the clues are suspicious or not, and at the same time, ignore the
key but subtle deterministic clues. These behaviors are similar to humans and verify the hypothesis
based on Guided Search theory.

5 Case Studies
In this section, we provide some examples to show how exactly different models perform on
CaughtCheating, shown in Figure 4. In the figure, 3 representative models are selected, includ-
ing GPT-o3, GPT-4o, and InternVL2.5-1B, and 3 images are selected: (a) A difficult Clued image,
(b) An easy Clued image, and (c) An Unclued image.

In (a), there is an elbow, and fingers are visible at the left edge of the photo, clearly indicating the
presence of another person. However, all the models fail to identify this subtle but deterministic clue
and focus on the reflection of the television, even though there are no visible clues in the reflection,
as another person is sitting by the table. What’s worse, o3 and 4o keep mentioning the two bottles or
cups, which are obviously provided by the hotel and can not be the suspicious clues. On the contrary,
InternVL2.5-1B can not provide any clues by saying this is a normal hotel image. In (b), the reflection
in the TV clearly shows there are two people on the bed, thus all the selected models can identify this
clue. These 2 examples, (a) and (b), show that: (1) models are able to see through reflections, and (2)
Reflection does not always contain suspicious clues, which further verifies that CaughtCheating is
challenging since there are no fixed rules for the suspicious clues.

(c) shows an Uncled image, which is merely an ordinary food-sharing image. However, o3 still tries
to generate a lot of so-called suspicious clues, including the amount of food, the place settings, etc.
This behaviour is not expected since we only want models to generate clues that are really suspi-
cious, rather than accusing everything, which further indicates the values of CaughtCheating.
Similarly to the above examples, InternVL2.5-1B can not provide any clues by saying this is a normal
food-sharing image, that’s why it reaches the highest on the Unclued Acc.

6 Conclusion
In this work, we introduce CaughtCheating, a benchmark that stress-tests detective-level visual
perception and social reasoning by asking models to find subtle, context-dependent clues that
contradict a subject’s claim. Grounded in Guided Search theory, our analysis reveals why these cases
are uniquely challenging—targets exhibit extremely low bottom-up salience, lack top-down feature
guidance, and hinge on scene meaning, making exhaustive scan strategies ineffective. The benchmark
combines a carefully curated real subset and a complementary synthetic subset with a validated
automatic evaluator, enabling reproducible, fine-grained assessments. Results on the real subset
reveal stark limitations: even strong agentic MLLMs significantly underperform—GPT-o3 attains
only 26.0% clued accuracy, 17.2% IoU, 8.0% unclued accuracy, and an overall F1 of 23.9%. As
society continuously expects more sophisticated capabilities from LLMs, we anticipate that real-world
complex tasks requiring detective-level abilities will become increasingly important for MLLMs to
master. In summary, CaughtCheatingnot only provides a challenging new benchmark for evaluating
multimodal reasoning, but also exposes critical weaknesses in current MLLMs, highlighting the
urgent need for further research into the detective-level capabilities of MLLMs.

7 Ethics Concerns and Limitations
Because our benchmark relies exclusively on publicly available for the Real Subset, annotatable
social-media photographs, the source pool overwhelmingly features cisgender, heterosexual couples.
The scarcity of labeled images depicting LGBTQ+ or non-monogamous relationships, therefore
compelled us to centre this demographic. The same constraint restricted the dataset to a handful
of commonplace settings, such as hotels, restaurants, cafés, and vacation scenes, leaving contexts
such as nightlife, workplaces, or culturally specific environments underrepresented. The benchmark
addresses a single, socially charged form of visual reasoning, detecting suspected infidelity, rather
than the broader universe of complex social-reasoning inferences people may draw from images.
These limitations stem from the paucity of suitable public data. To alleviate these concerns, we
further construct the synthetic subset through a cascading pipeline that balances quality and diversity.
Although the synthetic subset is not as challenging as the real-world scenarios, it alleviates the
potential ethical concerns and expands the dataset to a more diverse set of scenes.
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A Relate Work

A.1 LLM reasoning

The chain-of-thought technique [62, 32] represents the early efforts in exploring the reasoning ca-
pabilities of large language models (LLMs) [2, 9]. By explicitly generating intermediate reasoning
steps, this method notably enhances performance across various reasoning tasks [49, 10]. Moreover,
advances in decoding strategies have introduced additional test-time computation to further boost per-
formance. For instance, Self-Consistency sampling [60], which employs voting mechanisms to select
from multiple reasoning paths, has notably increased reliability. Expanding beyond linear reasoning
processes, structured frameworks such as Tree-of-thought [71] or Graph-of-thought [29]facilitate
the exploration of multiple candidate reasoning paths within branched subspaces before reaching
a final conclusion. Other research investigates manipulating the reasoning process to generate
longer chains of thought than those typically observed, either by explicitly prompting extended
reasoning chains [45] or by integrating human-like cognitive theory foundations into the inference
process [81, 20, 33, 5]. Furthermore, supervised fine-tuning (SFT) not only improves general
instruction-following performance [48, 68] but has also been demonstrated to significantly enhance
multi-step reasoning capabilities when trained on structured chain-of-thought (CoT) traces, where
models learn to explicitly generate intermediate reasoning steps [53, 63, 45, 72, 35]. Additionally,
prior research has employed reward models during training to evaluate each intermediate reasoning
step individually, rather than solely assessing final outcomes, further improving reasoning perfor-
mance [54, 38]. This approach integrates effectively with Monte Carlo Tree Search techniques [69],
providing valuable insights into performance gains achieved through fine-grained value estimations.
Beyond training, many studies augment the reasoning process with the ability to invoke external tools
and knowledge sources, a paradigm known as “agentic reasoning” [66]. In this paradigm, LLMs call
tools such as calculators, code interpreters, web search, and other utilities to provide context from the
tools’ results into the reasoning process to solve complex tasks. For instance, Jin et al. [30] introduce
the Search-R1, which lets an LLM query a search engine and condition subsequent reasoning on
the retrieved evidence. Recent developments in large-scale reinforcement learning, relying solely
on outcome-based rewards, have demonstrated potential for inducing emergent multi-step reasoning
capabilities [22, 28]. While the advancements in reasoning also potentially lead to the emergence
of overthinking issues [6, 18]. Such advancements underscore the importance of tasks that can be
automatically verified (e.g., RL can be effectively scaled up with minimal noise in its reward signals).

A.2 MLLM reasoning

Recent developments in MLLMs [55, 40, 47, 39, 8, 7, 1] have led to the exploration of multimodal
chain-of-thought techniques aimed at enhancing performance on visual reasoning tasks [73, 41, 23]
with both textual reasoning process [42, 80] and multimodal reasoning path [67, 19]. Methods
such as rationale distillation and self-reflection have also been employed to strengthen reasoning
capabilities [79, 82, 56, 59, 16]. Besides, LLaVA-o1 [70] proposes a fine-tuning strategy that leverages
a dataset enriched with structured reasoning annotations (e.g., summarization, visual analysis, logical
deduction, conclusion), achieving substantial performance improvement. Inspired by successes in
reinforcement learning of LLMs, recent efforts have similarly applied this method to visual math
problems and other visual question-answering tasks [15, 25, 58, 51, 44]. For example, Curr-ReFT [14]
introduces a three-stage progression paradigm that blends RL with curriculum design to mimic the
student learning process, significantly improving generalization and step-by-step reasoning capability.
Although these approaches have improved performance on visual math and STEM-related questions,
substantial progress in fine-grained visual perception remains limited. For instance, MMMU [75]
shows that current MLLMs, though strong on everyday tasks, stumble on domain-specific reasoning
and complex, specialized imagery; many items can be solved from textual cues or memorized facts
without genuine visual grounding. Its successor, MMMU-Pro [76], reinforces these findings and
demonstrates that prompts encouraging explicit multi-step linguistic reasoning boost performance,
provided the model truly incorporates visual evidence at each step. Similarly, MultiMath [50] reveals
that many MLLMs are underperforming with purely visual inputs with minimal text, indicating
that the understanding of complex spatial reasoning in mathematical or scientific diagrams remains
challenging. TRIG [36], proposing the first visual text grounding task, shows the inability of MLLMs
to perform visual reasoning and grounding. ColorBench [37] introduces the first comprehensive
benchmark for color perception, reasoning, and robustness, showcasing the low capability of MLLMs
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on color-related perception and reasoning. ViCrit [57], on the other hand, introduces the verifiable
reinforcement learning proxy task for visual perception in VLMs.
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B Detailed Benchmark Construction

B.1 Image Collection for Real Subset

For CaughtCheatingimages, we use publicly posted photographs from social media. We manually
search and review all the comments for each image to assess their suitability. Selected images must
either contain or lack subtle, suspicious clues related to potential claim violation. The judgment of
image candidates is based not only on the comments but also on human evaluation. Additionally,
each image must have sufficient resolution quality to allow us to directly identify such clues, rather
than rely on implications from blurred or indistinct objects.

Due to the limited availability of images with clear, subtle clues from public sources, we also include
minimally modified versions of images containing direct clues (e.g., a clearly visible person or
untypical belongings suggesting the presence of another individual). We apply simple cropping
to these images to obscure the direct clues. As shown in Figure 5, the original photo shows a
person sitting on the couch. After cropping, only their back remains visible, making the clue still
interpretable for humans, yet challenging for MLLMs.

Figure 5: Example of cropping an image for with-clue category. The original photo shows part of
the person sitting on the sofa (Before). By cropping (After), we can still infer there is a person, but
identifying the clue is more subtle and challenging for MLLM.

After collecting a sufficient number of candidate images, we meticulously selected 100 images, split
into Clued and Unclued categories, to construct the image set for CaughtCheatingbenchmark. These
images are collected from the Real Subset. All the images are verified manually to make sure the
clues are solid and no personal information exists on the image.

B.2 Annotation for Real Subset

After constructing the image set, we annotate each image with a set of questions and corresponding
ground-truth answers. A detailed annotated example is shown in Figure 3. For images in Clued cate-
gory, we annotate each one using a question instantiated from the template: “My [girlfriend/boyfriend]
said [she/he] is [in a certain scenario] and sent me this photo. Do you notice anything suspicious in
the image that contradicts [her/his] claim?” Among the potential clues, the one that deterministically
shows the violation of the providing claim (a clearly identifiable, contextually inappropriate element)
will be selected as the Deterministic Clue, e.g., a pair of slippers is being worn by someone in Figure
3. The remaining clues are labeled as Non-deterministic Clues (weaker or more ambiguous signals),
e.g., the rose bouquet, the TV shows, and the far-reached drinks. These non-deterministic clues might
be suspicious, but apparently not enough to infer the potential claim violation. The reason we provide
these clues is to avoid punishing models when they mention these clues.
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Furthermore, we construct a series of decomposed questions designed to analyze the visual reasoning
process of MLLMs, shown in the right part of Figure 3. This series includes: (1) Decomposed
Perception Question, which assesses whether the MLLMs can identify the deterministic clue when
we explicitly mention the clue and position. (2) Decomposed Reasoning Question, which assesses
whether MLLMs can understand the social implications of the clue, or whether MLLMs can imply
the relation between the clue and the potential lie. The correct answer to each of these decomposed
questions is annotated as “yes”. These decomposed questions can be utilized for in-depth analysis on
why MLLMs can not solve the question.

These decomposed questions can be utilized for in-depth analysis on why MLLMs can not solve the
question. (1) If the MLLMs have low accuracy on perception-related decomposed questions, it means
the low performance is caused by their poor visual perception ability. (2) If the MLLMs have low
accuracy on reasoning-related decomposed questions, it means the low performance is caused by
their poor visual reasoning ability. (3) If the MLLMs have relatively high accuracy on both types of
decomposed questions, it means they have the necessary capabilities to solve the task, but they do not
know where to start. For images in the Unclued category, we annotate each using the same initial
question template, with the ground-truth answer labeled as "There is no clear evidence."

B.3 Construction for Synthetic Subset

We construct the synthetic subset through a cascading pipeline that balances image quality and
diversity, starting from predefined scenes and deterministic clues.

First, we define a set of scenes potentially involving suspicious behaviors (e.g., bar, office, hotel room,
car). For each scene, deterministic clues are provided solely for the clued category, and their design
is anchored to the scene’s context. These clues are drafted as complete sentences (e.g., there are two
glasses with wine on the table) rather than keywords in practice, and they are designed according
to gender stereotypes while ensuring a balanced distribution across genders. For instance, wine
glasses may appear as a clue in the bar scene but not in other contexts, such as the scene inside the
car. While clues are restricted to the clued category, scene definitions apply to both the clued and
unclued categories. Notably, while detailed mappings between scenes, clues, and their statistics of
our experiment are given in the Table 4 and Table 5, they can still be further scaled as needed.

Subsequently, we employ a LLM to generate multiple candidate prompts for both categories. For
the clued category, the LLM is provided with both the scene and its associated clue; for the unclued
category, only the scene is provided, with an explicit instruction to depict a single individual.
To mitigate potential conflicts arising from gender-sensitive stereotypes, information about the
photographer’s gender is also incorporated where relevant. Moreover, to ensure a balanced number
of generated images in both categories, the number of prompts corresponding to each gender within
the same scene is kept identical. After candidate prompts are generated, annotators review them
for semantic accuracy and compliance with the predefined constraints, and then select the five best
prompts per clue within each scene. Moreover, to ensure a balanced number of generated images in
both categories, the number of prompts corresponding to each gender within the same scene is kept
identical. The prompts we used to produce the image generation prompt are illustrated in Figure 7
and Figure 8

Finally, we use a state-of-the-art image generation model (e.g., GPT-image-1 [? ] )to synthesize
images from these prompts. To scale up the dataset and improve diversity, multiple candidates
are generated for each prompt, and human evaluators select the top five. Meanwhile, we adapt
the question templates from the real subset and directly adopt the answers from the clue-defining
sentences, so that the constructed question–answer pairs are fully consistent with the annotation
protocol and data organization of the real subset.

As a result, the procedure produces 3700 images in total, evenly split between 1850 clued and 1850
unclued samples spanning 10 distinct scenes. Comprehensive statistics and distributions are reported
in the Table 6.

B.4 Discussion for Synthetic Subset

To enable efficient large-scale data construction, we generate prompts only from the photographer’s
gender, the scene, and a deterministic clue, rather than drafting case-specific, highly detailed de-

20



scriptions by human experts. This design ensures scalability and consistency, but it also introduces
trade-offs: clues are generally more prominent, non-deterministic clues are ignored, and incidental
distractions such as irrelevant personal belongings are largely absent. Consequently, compared with
the image in the real subset, synthetic images are “cleaner,” with less background variation and fewer
competing elements, making them easier for MLLMs to perceive, as demonstrated in Figure 6.

However, although the perceptual difficulty is lower, the deterministic clues still embed non-trivial
social semantics and contextual implications. These clues, while visually more salient, continue to
convey cultural, gender, and situational meanings that require careful interpretation. For example, the
lipstick and handbag on the table in Figure 6 are easy to recognize, yet they still imply the presence
of a woman in the room. Furthermore, as shown in Table 1, many MLLMs continue to struggle
in detecting the contradiction to the claim under these conditions, reinforcing that the social and
semantic challenge remains essential even if perceptual noise has been reduced for scalability. Thus,
although the synthetic subset cannot fully replicate the subtlety and complexity of real subset, it
represents a trade-off that lowers perceptual difficulty but preserves the benchmark’s practical value
for systematic evaluation.

Figure 6: Example image from the synthetic subset. Distinct clues, such as a scattered lipstick, are
clearly visible. While the image may still contain some irrelevant objects, the overall noise level is
low. Compared to the real subset, the perception process is relatively easier, even though the complex
social implications remain present.

B.5 Data Distribution for Real Subset

Category Scene Male Female # Dec. P # Dec. R # Total

Clued
Dining 6 5 11 21

50Hotel 25 12 37 67
Karaoke bar 2 0 2 3

Unclue Dining 7 11 0 0 50Hotel 13 19 0 0
Table 3: Distribution of scenes, interlocutor gender, and question types across the two clue categories.
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Our dataset comprises 100 samples collected from publicly posted photos, each manually annotated
with a series of questions accompanied by ground-truth answers. These samples serve as test cases to
evaluate the capability of MLLMs in detecting potential claim violations.

The dataset is evenly divided into two categories: the Clued category (50 samples), which includes
clear indicators of potential claim violation, and the Unclued category (50 samples), which lacks
explicit indicators. This balanced distribution aims to minimize class bias and ensure fair evaluation.
Furthermore, the dataset encompasses three distinct scene types based on photo backgrounds: hotels,
dining venues, and karaoke bars. The gender attributes assigned to each sample reflect the photogra-
pher’s gender as inferred from the provided descriptions of the photos. These attributes do not pertain
to any individuals depicted within the images. The gender categorization currently includes male and
female solely based on limited available descriptive information.

Detailed statistics regarding scenario distribution and gender breakdown are summarized in Table 3.
Hotel scenes comprise the majority of the dataset (69% ), aligning with their prominence as typical
settings for potentially suspicious scenarios. Dining venues account for 29% of the dataset, and
karaoke bars represent the remaining 2%. Gender distribution is 55% male photographers and 45%
female photographers.

Additionally, the dataset includes annotations for perception and reasoning questions derived from
decomposition queries. Specifically, it contains 50 perception questions and 91 reasoning questions,
thoroughly evaluating why MLLMs may fail to resolve specific queries. Detailed counts correspond-
ing to scene types are provided in Table 3. Each sample averages approximately two reasoning
questions, enabling comprehensive analysis of MLLM performance concerning both explicit clues
and the broader social or environmental context.

B.6 Data Distribution for Synthetic Subset

As illustrated in Section 3, to ensure consistency between clue definitions and dataset distribution,
we first curated five human-selected prompts for each scene clue mapping. Each prompt was used
to generate multiple candidate images, from which five were carefully chosen. Therefore, data
distribution in the synthetic subset is highly correlated to the number of predefined rules under each
scene.

The synthetic subset comprises 3700 images, evenly split between the clued subset (1850 images)
and the unclued subset (1850 images). The gender of the photographer is balanced across the dataset:
1900 images (51%) are attributed to male and 1,800 images (49%) to female photographers. This
balance is deliberately maintained to minimize bias when evaluating model performance.

Scene distribution covers ten distinct environments. The largest categories are Gym, Hospital, and
Hotel, each contributing 500 images (14%), collectively representing 42% of the dataset. The Bar
scene accounts for 400 images (11%), while Office and Restaurant each contribute 350 images (9%).
Mid-scale categories include Beach, Cafe, and Library, with 300 images each (8%). The Car scene
contributes the fewest images, with 200 (5%). Importantly, this allocation is consistently mirrored
across both Clued and Unclued subsets, ensuring proportional representation of all environments.

Overall, the dataset reflects a carefully controlled design, balancing clue type, gender, and scene. The
systematic design ensures that generated samples are faithful to the intended definitions of “clued”
and “unclued,” while the proportional scene distribution provides diverse yet structured coverage of
everyday contexts. This deliberate construction supports rigorous and fair evaluation of multimodal
large language models across a wide spectrum of scenarios.
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Scene # Clues Clues
Bar 4 two glasses lady handbag another hand mirror & lipstick -

Beach 3 another foot two cups two bicycle - -
Cafe 3 lady clothes lipstick makeup mirror - -
Car 2 another foot another leg - - -
Gym 5 two bottles another arm mirror figure lady hair clip lady bracelet

Hospital 5 another back rose & love card lady handbag extra slippers card piles
Hotel 5 lady handbag lady clothes lady hairclip doll & rose lipstick

Library 3 two open book lady hair clip two test paper - -
Office 4 roses lunchbox lady clothes another foot -

Restaurant 4 two tableware lady handbag two steaks another arm -
Table 4: Deterministic clues for the synthetic subset construction categorized by scene in male.

Scene # Clues Clues
Bar 4 two phones men wallet table another arm two straws -

Beach 3 two sunglasses another arm two single kayak - -
Cafe 3 two cakes two coffees two laptops - -
Car 2 another arm two drinks - - -
Gym 5 two towels another foot two earphone cases men tank top men watch

Hospital 5 another arm TV reflection lunchbox wet umbrella another head
Hotel 5 TV reflection another arm man shoes five suitcases men suit

Library 3 two cups another arm two chargers - -
Office 3 date note two ID badges monitor reflection - -

Restaurant 3 two phones man clothes two glasses - -
Table 5: Deterministic clues for the synthetic subset construction categorized by scene in female.

Scene Clued Unclued # ImagesMale Female Total Male Female Total
Bar 100 100 200 100 100 200 400
Beach 75 75 150 75 75 150 300
Cafe 75 75 150 75 75 150 300
Car 50 50 100 50 50 100 200
Gym 125 125 250 125 125 250 500
Hospital 125 125 250 125 125 250 500
Hotel 125 125 250 125 125 250 500
Library 75 75 150 75 75 150 300
Office 100 75 175 100 75 175 350
Restaurant 100 75 175 100 75 175 350

Total 950 900 1850 950 900 1850 3700
Table 6: Distribution of images in the synthetic subset across scenes, genders, and categories.
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B.7 Prompt for Synthetic Subset Construction

These two prompts provide a unified framework for constructing both the clued and unclued categories
of the synthetic subset. By simply specifying the scene and, when needed, the clue, the dataset can be
expanded systematically without extensive manual effort. This design makes large-scale generation
both efficient and consistent.

Prompt for generating image-synthesis prompts for the clued category

System Prompt
You are a helpful assistant.

User Prompt
Your task is to generate a hyper-realistic first-person perspective smartphone photograph. The image
should appear exactly like a candid snapshot taken by a [Gender] photographer, showing only what is
naturally visible ahead—no hands or legs. The setting is [Scene], rendered with authentic lighting,
textures, reflections, and natural depth of field, making the result indistinguishable from a real photo.
Within the scene, [Clue], casually present or partially obscured, that indirectly suggests the presence
of another person near the photographer. This element must be discreet, blending naturally into the
environment rather than staged.
The final image must emphasize realism, immersion, and authenticity, capturing the spontaneity of a
genuine phone camera shot.

Figure 7: The prompt used to instruct GPT-4.1 to generate image-synthesis prompts for the clued
category.

Prompt for generating image-synthesis prompts for the unclued category

System Prompt
You are a helpful assistant.

User Prompt
Your task is to generate a hyper-realistic first-person perspective smartphone photograph. The image
should look exactly like a candid snapshot taken by a [Gender] photographer, showing only what is
naturally visible ahead—no hands or legs—just the authentic field of view from the photographer’s
perspective.
The setting is [Scene], captured with natural lighting, textures, reflections, and realistic depth of field.
The atmosphere must clearly emphasize that the photographer is alone in this environment, evoking
the feeling of solitary presence within the scene.
The final image must be indistinguishable from a genuine phone camera shot, emphasizing realism,
immersion, and authenticity.

Figure 8: The prompt used to instruct GPT-4.1 to generate image-synthesis prompts for the unclued
category.
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C Evaluation Metrics

We apply several evaluation metrics in our study, each designed to assess a distinct aspect of the
visual reasoning process. All metrics rely on analyzing and comparing the ground-truth answers with
the responses generated by MLLMs.

Clued Accuracy (Clued Acc) Deterministic Accuracy is designed to evaluate whether an MLLM
successfully identifies the deterministic clue hidden in the images from Clued category. Let ki ∈
{0, 1} denote the binary judgment for the i-th example in the Clued category, where ki = 1 if the
Deterministic Clue is correctly identified, and ki = 0 otherwise. The Clued Acc is then defined as:

Clued Acc =
1

Nclued

Nclued∑
i=1

ki

where Nclued is the total number of examples in the Clued subset.

Intersection over Union (Clued IoU) In this context, IoU is designed to evaluate whether an
MLLM correctly identifies all relevant Non-deterministic Clues hidden in the images from Clued
category, while avoiding unrelated or incorrect elements. If the MLLM generates a lot of unrelated
clues, this IoU value will be low, since we expect MLLMs only to mention clues that are at least
somewhat suspicious.

Let Gi be the set of all the clues annotated in the ground-truth for the i-th example in the Clued
category, and Ri be the set of clues identified by the MLLM. The Clued IoU is then defined as:

IoU =
1

Nclued

Nclued∑
i=1

|Gi ∩Ri|
|Gi ∪Ri|

Decomposed Accuracies This evaluation comprises three specific accuracy metrics: Decomposed
Perception Accuracy (Dec. P Acc) provides detailed insights into the model’s performance in
accurately perceiving claims from images when the clues are explicitly mentioned; Decomposed
Reasoning Accuracy (Dec. R Acc) evaluates the model’s proficiency in reasoning towards the
deterministic clue; and Decomposed Overall Accuracy (Dec. Acc) offers a comprehensive evaluation
by combining performance in both perception and reasoning dimensions. This metric is specifically
tailored for images within the Clued category.

Let Pi be the set of perception-related questions for the i-th example in the Clued category, and
P̂i ⊆ Pi be the subset that the MLLM correctly answered perception-related questions. The
Decomposed Perception Accuracy (Dec. P Acc) is then defined as:

Dec. P Acc =
1

Nclued

Nclued∑
i=1

|P̂i|
|Pi|

Likewise, let Ri and R̂i denote the sets of reasoning-related questions and the correctly answered
subset, respectively. The Decomposed Reasoning Accuracy (Dec. R Acc) is defined as:

Dec. R Acc =
1

Nclued

Nclued∑
i=1

|R̂i|
|Ri|

Finally, let 1(·) denotes the indicator function. The Decomposed Overall Accuracy (Dec. Acc) is
defined as:

Dec. Acc =
1

Nclued

Nclued∑
i=1

1
(
|P̂i| = |Pi| ∧ |R̂i| = |Ri|

)
Unclued Accuracy (Unclued Acc): Unclued Accuracy (Unclued Acc) is designed to evaluate
whether the MLLM can correctly determine the absence of clear clues from the Unclued category.
Let oi ∈ {0, 1} denote the binary judgment for the i-th example. Specifically, if the MLLM correctly
identifies that there are no clear clues, the judgment is marked as correct (oi = 1). Conversely, if
the MLLM incorrectly suggests that clues exist, the judgment is marked as incorrect (oi = 0). The
overall accuracy is computed as follows:
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Unclued Acc =
1

Nunclued

Nunclued∑
i=1

oi

where Nunclued is the total number of examples in the Unclued subset.

Precision, Recall, and F1 Score: The transformation between the accuracies and P/R/F1 scores is
as follows:

TP = Clued Acc ×Nclued,

FN = (1− Clued Acc)×Nclued,

TN = Unclued Acc ×Nunclued,

FP = (1− Unclued Acc)×Nunclued.

where Nclued and Nunclued denote the numbers of images in the Clued and Unclued categories,
respectively. Using these quantities, we convert to the standard classification metrics:

Precision =
TP

TP + FP
=

Clued Acc ×Nclued

Clued Acc ×Nclued + (1− Clued Acc)×Nunclued
,

Recall =
TP

TP + FN
= Clued Acc,

F1 =
2Precision Recall
Precision + Recall

.

These formulas allow us to compute the P/R/F1 scores from the reported Clued Acc and Unclued Acc
values in the main text.
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D Evaluation Prompt

Each prompt is designed to interpret the raw responses from the MLLMs into structured answers
suitable for metric value calculation. We first designed four evaluation prompts for analyzing the
MLLMs’ responses to the general question discussed in Section 3.2.

The prompt illustrated in Figure 9 evaluates whether a deterministic cue is mentioned in the MLLMs’
response, permitting minor wording variations but emphasizing clear alignment with the original
meaning. This prompt instructs the evaluation LLM to yield a binary YES or NO result used for
Clued Acc evaluations.

The prompts illustrated in Figure 11 and Figure 12 both provide essential statistics for Clued IoU
calculations. The prompt in Figure 11 instructs a model to explicitly extract detailed observations into
a structured list from raw MLLMs’ responses, ensuring clarity by excluding ambiguous or uncertain
statements. This structured list is subsequently compared with a structured list of non-deterministic
cues extracted using the prompt illustrated in Figure 12. The prompt illustrated in Figure 12 assesses
whether each deterministic cue, serving as a ground truth reference, is explicitly mentioned or
supported in the structured list derived from the MLLMs’ raw response. It instructs the evaluation
LLM to provide a binary YES or NO decision. From these binary labels, we derive the intersection
and union set sizes necessary to calculate Clued IoU.

Similar to the prompt in Figure 9, the prompt illustrated in Figure 10 evaluates whether the model
correctly identifies the absence of cues. It instructs the evaluation LLM to yield binary YES or NO
outcomes utilized for Unclued Acc calculations.

Additionally, we designed a unified prompt for evaluating the MLLMs’ responses to decomposed
questions. The prompt illustrated in Figure 13 assesses if responses align with the expected answers
to decomposed questions, providing binary YES or NO outcomes. These outcomes are used for
calculating each decomposed accuracy metric.

Prompt to measure whether MLLMs successfully identify the key deterministic clues

System Prompt
You are a helpful assistant.

User Prompt
Your task is to determine whether the deterministic clue (the ground truth statement provided in the
reference section) is explicitly mentioned or clearly supported by the MLLM’s answer provided,
even if minor wording differences or slight variations in detail exist.
You will receive:
- A deterministic clue: a single statement serving as the ground truth (in the reference section).
- An MLLM’s answer: the response provided by the model.
Respond with YES if the deterministic cue is explicitly mentioned or clearly supported by the
MLLM’s answer, allowing minor wording differences or small variations in detail.
Otherwise, respond with NO.
Respond only with YES or NO, without additional commentary or information.

Deterministic clue:
[Deterministic Clue]
MLLM’s answer:
[MLLM’s Answer]

Figure 9: The prompt used to request GPT4.1 to measure whether MLLMs successfully identify the
key deterministic clues for the calculation of Clued Accuracy (Clued Acc).
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Prompt to assess whether MLLMs correctly determine the absence of suspicious clues

System Prompt
You are a helpful assistant.

User Prompt
Your task is to determine whether the provided MLLM’s answer strictly supports the statement:
“The photo shows no clear evidence of infidelity.”
Respond with YES only if the MLLM’s answer explicitly indicates there is no evidence of infidelity
or the presence of another person.
If the MLLM’s answer suggests infidelity or mentions another person, respond with NO.
MLLM’s answer:
[MLLM’s Answer]

Figure 10: The prompt used to request GPT4.1 to assess whether MLLMs correctly determine the
absence of suspicious clues for calculation of Unclued Accuracy (Unclued Acc).

Prompt to convert MLLMs’ answer into a key points list

System Prompt
You are a helpful assistant.

User Prompt
Your task is to extract explicitly stated observations or details from the provided paragraph exactly as
they appear, clearly numbering each observation to match the original points or grouping precisely as
presented.
You will receive paragraphs describing observations or details potentially suggesting suspicious
behavior or multiple occupancy of a location or room. Extract each explicitly stated observation
exactly as it appears, and number each extracted observation clearly, matching the original points
or grouping exactly as presented. Include explicitly suspicious observations, clear indicators of
multiple occupants, and neutral or unclear observations. Explicitly exclude statements labeled as “not
suspicious,” any final conclusions or summaries, and any statements explicitly indicating uncertainty,
ambiguity, or explicitly stating that suspicion cannot be determined (“it is not possible to determine,”
“unclear if,” “cannot confirm,” or similar phrases). Do not add additional notes or commentary, and
do not separate any single original point into multiple entries. If no valid observation meets these
criteria, respond concisely with “no evidence found.” The paragraph provided is as follows:

[MLLM’s Answer]

Figure 11: The prompt used to request GPT4.1 to convert MLLM’s answer into a key points list for
the following inference to calculate Intersection over Union (Clued IoU).
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Prompt to evaluate whether MLLMs identify each relevant non-deterministic clue

System Prompt
You are a helpful assistant.

User Prompt
Your task is to determine if the provided non-deterministic clue is explicitly mentioned or clearly
supported by any of the reference observations listed below.
Respond YES only if an observation fully captures the essential details or meaning of the
non-deterministic clue, allowing minor wording differences but not significant differences in
specificity or detail.
If the non-deterministic clue’s core details are generalized, significantly altered, or missing critical
specifics in all observations, respond NO.

Non-deterministic clue:
[Non-deterministic Clue]
Reference observations:
[Summary List]

Figure 12: The prompt used to request GPT4.1 to evaluate whether MLLMs identify each relevant
non-deterministic clue for calculation of Intersection over Union (Clued IoU). Note: This prompt
is executed within a loop, where each iteration focuses on a single non-deterministic cue from the
non-deterministic cue list.

Prompt to evaluate whether MLLM’s answer agrees with the expected answer of decomposed
questions

System Prompt
You are a helpful assistant.

User Prompt
You will be given a question, an answer, and a reference answer.
"Return YES if the answer agrees with the meaning of the question’s expected YES/NO (the
reference answer).
Otherwise return NO.
Respond with **ONLY** YES or NO. Do not add comments or make further inferences.
Here is the question and answer:

Question: [Decomposed Questions]
Answer: [MLLM’s Answer]
Reference: [Expected Answer]

Figure 13: The prompt used to request GPT4.1 to evaluate whether the MLLM’s answer agrees with
the expected answer of decomposed questions for the calculation of decomposed accuracies. Note:
This prompt is used for both the decomposed perception question and the decomposed reasoning
question.
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E o3 Reasoning Traces for Qualitative Examples

In this section, we provide a comprehensive overview of the reasoning processes underlying the tasks
illustrated in Figure 1, 2, 3, and 4, as shown in Figure 14, 15, 16, 17, 18, 19, 20, 21, and 22. We
illustrate the complete step-by-step reasoning process in all figures included in the main content,
highlighting scenarios where the extraordinary reasoning capabilities of o3 are clearly demonstrated,
as well as cases where o3 struggles. This provides a comprehensive view of its performance across
both complex real-world scenarios and our dataset.

Figure 14: OpenAI o3 full reasoning process for Figure 1
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Figure 15: OpenAI o3 full reasoning process for Figure 2 (a)
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Figure 16: OpenAI o3 full reasoning process for Figure 2 (b)
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Figure 17: OpenAI o3 full reasoning process for Figure 2 (c)
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Figure 18: OpenAI o3 full reasoning process for Figure 2 (d)
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Figure 19: OpenAI o3 full reasoning process for Figure 3
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Figure 20: OpenAI o3 full reasoning process for Figure 4 (a)
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Figure 21: OpenAI o3 full reasoning process for Figure 4 (b)
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Figure 22: OpenAI o3 full reasoning process for Figure 4 (c)
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