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Abstract—In conventional analog-to-digital (ADC) conversion,
the sampling and quantization steps take place on the time
and amplitude axes, respectively. In the case of time encoding
machines (TEMs), which convert analog signals into a sequence of
time events, sampling and quantization interfere with one another
since they both operate on the time axis. Here we introduce a
new quantization method for TEMs called QTEM that, due to
its model-driven nature, limits the interference of sampling and
quantization. We show that existing recovery guarantees don’t
apply to QTEM. We provide new guarantees for recovering the
input of the QTEM and demonstrate numerically its advantage
over conventional TEM quantization.

I. INTRODUCTION

Analog-to-digital conversion (ADC) is generally character-
ized as a two-step process: 1) discretization of the time axis
– sampling, and 2) discretization of the amplitude axis –
quantization [1]. Besides allowing the storage and processing
on a computer, the resulted digital signal also has increased
transmission robustness. Unlike traditional ADCs that encode
information on the amplitude axis, the time encoding machines
(TEMs) transmit pulses in an asynchronous fashion, thus
encoding the information solely on the time axis. The TEMs
are particularly attractive for their low-power transmission
properties, inspired from the biological nervous system [2].
The input recovery approach, known as a Time Decoding
Machine (TDM) has been realised for the case of bandlimited
inputs [2]–[4], inputs belonging to shift-invariant spaces [4],
[5], and also inputs with jump discontinuities [6]–[8]. The
study of TEMs in the presence of noise was considered in
[2], [9]–[12].

Motivation. Despite functioning only in the time domain, the
digitization process of time encoded signals [2] remains a two-
step process: sampling (generating the TEM signal), and quan-
tization (modelled as uniform jitter noise). Unlike conventional
ADCs, here each step acts sequentially in the time domain
partially diminishing the other step’s contribution. The trade-
off between quantization and sampling is well understood for
conventional ADCs. Given that quantization can be modelled
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as uniform bounded noise, the distortion introduced can be
partly reduced via a higher sampling rate. For time encoding,
however, a higher sampling rate brings samples closer in time,
which makes them more sensitive to quantization jitter. Even
though quantization was studied before for time encoding [2],
[13]–[18], there are still remaining unknowns. For example, it
is unclear how one can compensate for quantization noise via a
higher sampling rate. Moreover, given that both sampling and
quantization happen in the time domain, it would be desirable
to be implemented both in one operation where the practical
setup allows it.

Contributions. Here we introduce a new model-driven quan-
tization method for TEMs, called quantized TEM (QTEM),
for an asynchronous sigma-delta modulator (ASDM) TEM.
We show that the output of the QTEM cannot be modeled via
conventional quantization, therefore existing recovery methods
are not applicable. Theoretically, we show that QTEM amounts
to projecting the input onto a discrete sequence depending on
the QTEM parameters and a bounded noise sequence. Using
frame theory, we prove that the input can be recovered from
its projections if a density criterion is satisfied. We show
that the proposed QTEM leads to better input reconstructions
than the conventional quantization using extensive numerical
simulations.

II. THE TIME ENCODING MACHINE

A TEM with continuous-time input gc(t) is an operator T
defined as T gc = {tk}k∈Z, where {tk}k∈Z is a strictly increas-
ing sequence. Here we consider the case of an Asynchronous
Sigma-Delta Modulator (ASDM) TEM, characterised by low
power consumption [19] and modular design [20]. The ASDM
was used as an alternative to conventional ADCs in [21] and
also included in applications such as brain-machine interfaces
[22]. The ASDM consists of a loop with an adder, integrator,
and a noninverting Schmitt trigger (Fig. 2). For initial condi-
tion z(0) = −b, {tn}n⩾1 satisfy the t-transform equations

∫ tk+1

tk

gc(s)ds = (−1)k [2δ − b(tk+1 − tk)] , (1)



Figure 1: Comparative reconstruction performance for the (a) conventional
and (b) proposed quantization of an ASDM output.

Figure 2: The asynchronous sigma-delta modulator (ASDM).

where δ, b > 0 are the ASDM parameters. We assume gc ∈
PWπ , where PWπ is the Paley-Winer space of bandwidth Ω

PWπ =
{
gc ∈ L2 (R) |Fgc ⊆ [−π, π]

}
,

where L2 (R) is the space of square integrable functions.
Furthermore, we assume |gc(t)| ⩽ c < b, c > 0. Then [2]

2δ

b+ c
⩽ ∆tn ⩽

2δ

b− c
. (2)

If the TEM output satisfies the Nyquist rate condition
|tk+1 − tk| < 1, sufficiently guaranteed by 2δ < b−c (2), then
gc(t) is uniquely identified by {tk}k∈Z [2]. We next review
the conventional quantization for TEM outputs.

III. CONVENTIONAL QUANTIZATION FOR TIME
ENCODING MACHINES

Here, the samples {tk}k∈Z are quantized with resolution
T , leading to {tqk}k∈Z such that |tqk − tk| < T/2. This can be
done by quantizing the absolute sample as tqk = T ·round

(
tk
T

)
,

Figure 3: The proposed quantized TEM circuit.

where round is the function rounding to the nearest integer.
The quantized samples are then transmitted through a channel.
We model the effect of the channel as jitter noise sequence ηk
such that the channel output is given by t̃qk = tqk + ηk. If
|ηk| < T , then the effect of the jitter can be fully eliminated
by exploiting the quantized structure of the samples, thus
acquiring tqk. At the receiver end, the input recovery is

g̃c(t) =
∑

m∈Z
c̃m · sinc (t−m) ,

where sinc (t) ≜ sin(π·t)
π·t and coefficients c̃k are the solution

in the least square sense of the following system.∑
n∈Z

cn

∫ tqk+1

tqk

sinc (t− n) dt ≃ 2(−1)kδ − (−1)kb∆tqk. (3)

IV. PROPOSED QUANTIZATION METHOD

The key idea is to exploit the knowledge of T during
TEM encoding. We assume T = 1/N , where N ∈ Z∗

+.
Let g[l] = gc

(
l
N

)
and assume |g[l]| ⩽ c < b. The

proposed TEM quantization (QTEM) model is an operator
T qgc = {tq2k }

k∈Z = {nkT}k∈Z, depicted in Fig. 3, such that

y[k] =
∑k

l=1
T (g[l]− x[l − 1]) + Tg[0], k ∈ Z. (4)

Assuming x[0] = −b, y[0] = 0 we have y[1] = Tg[0] and,
as long as y [k − 1] ⩽ δ, k ⩾ 2, we have x [k − 1] = −b
and thus y[k] is strictly increasing, given that |g[l]| < b. This
means that eventually y[k] > δ for k = n1+1, which flips the
output to x [n1 + 1] = b. Next, sequence y[k] becomes strictly
decreasing, and the output flips again to −b when y[k] crosses
−δ for k = n2 + 1. We note that, due to the discrete nature
of the QTEM, the thresholds ±δ are generally never reached
exactly, but directly exceeded, as opposed to the ASDM in
Section II. We define the output of the QTEM as the time
samples tq2k = nkT located right before ±δ is crossed, defined
by the discrete-time t-transform equations

T
∑nk

l=0
g[l] = y [nk] + T

∑nk−1

l=0
x[l] ≃ (−1)k+1δ. (5)

We note that the principle underlying the proposed QTEM
could be used as an approximation of a TEM on a digital
computer. However, in this latter case, the purpose is to make
T negligible to achieve the best possible approximation, which
is a different problem than considered in this manuscript. The
next lemma enables bounding the QTEM output density.

Lemma 1. Let {nkT}k∈Z be the set of switching times
generated by a QTEM with bounded input |g[k]| < c for a
quantization step T and parameters δ, b. Then

2δ

b+ c
< Tnk+1 − Tnk ⩽

2δ

b− c
. (6)



Figure 4: Proposed QTEM vs conventionally quantized TEM.

Lemma 1 proves the discrete version of ASDM bounds
(2). Moreover, we note that the lower bound in (6) is strict
and thus Tnk+1 > Tnk,∀k ∈ Z, meaning that the switching
times never overlap. This is not a guarantee for conventional
quantization (see Fig. 4). Using (4) and (5) we get that∣∣ynk

− (−1)k+1δ
∣∣ ⩽ |∆ynk

| = T |gnk
− xnk−1|

⩽ T (b+ c), ∀k ∈ Z.
(7)

We note that the RHS of (5) is known with precision
T (b+c) (7) which can be made arbitrarily small by increasing
the quantization resolution. In fact, it can be shown that
limT→0 t

q2
k = tk, ∀k ∈ Z. Despite this, when T ≫ 0, the

output of the QTEM can be considerably different to the output
of the TEM. Moreover, unlike conventional TEM quantization,
the relationships |tq2k − tk| < T or |∆tq2k −∆tk| < T do
not necessarily hold true, which is also the case in Fig. 4.
Therefore, the existing recovery guarantees for TEMs with and
without quantization are not directly applicable for the QTEM
[2]. In the following we derive the input recovery conditions.

V. QTEM INPUT RECOVERY

We note that (5) can be re-written as

T
∑nk+1

l=nk+1
g[l] = 2(−1)kδ + T

∑nk+1−1

l=nk+1
x[l] + εk, (8)

where εk ≜ y [nk+1]−y [nk]−2(−1)kδ. Note that in the RHS
of (8) the only unknown is εk, which is treated as a sequence
of bounded noise satisfying |εk| ⩽ 2T (b + c) (7). Therefore,
we first consider that we know T

∑nk+1

l=nk+1 g[l], and later on
analyse the effect of εk. From (8)

T · ⟨g, 1[nk+1,nk+1]⟩ℓ2 = dk, (9)

where 1S(k), k ∈ Z is the indicator function of set S, ⟨·, ·⟩ℓ2
is the standard inner product in ℓ2 and dk = 2(−1)kδ +
T
∑nk+1−1

l=nk+1 x[l] + εk is considered a known sequence. The
problem proposed is to recover the input from {dk}k∈Z.
The next theorem proves that sequence dk uniquely identifies
samples g[l] and consequently continuous-time function gc(t).

Theorem 1 (Unique Representation). Let g[l] be samples
acquired at rate N = 1

T ∈ Z∗
+ from gc ∈ PWπ , |gc(t)| < c,

such that g[l] = gc
(

l
N

)
. Let tq2k = nkT be the output

switching times of a QTEM with parameters δ, b, in response
to input g[l]. If b > c and δ < b−c

4 , then g[l] and gc(t) are
uniquely represented by dk = T · ⟨g, 1[nk+1,nk+1]⟩ℓ2 , k ∈ Z.

Proof. Since gc ∈ PWπ , then {gc (l)}l∈Z ⊆ ℓ2, where
ℓ2 =

{
a ∈ R∞

∣∣ ∑
l∈Z a

2
l <∞

}
. When oversampling by

N ∈ Z∗
+, g[l] = gc

(
l
N

)
no longer span all ℓ2, but rather

a subspace ℓ2N defined by

ℓ2N = span {hl, l ∈ Z} , hl[k] ≜ N− 1
2 · sinc (k/N − l) , (10)

for k ∈ Z. It can be directly proven that ℓ2N is a Hilbert space
with inner product ⟨·, ·⟩ℓ2 and orthonormal basis functions hl
such that ⟨hl, hm⟩ℓ2 = 1{m}(l). Moreover, for two sequences
g[l] = gc

(
l
N

)
, ḡ[l] = ḡc

(
l
N

)
due to Parseval we get that

⟨g, ḡ⟩ℓ2 = N · ⟨gc, ḡc⟩L2 , ∥g∥ℓ2 = N · ∥gc∥L2 . (11)

Generally 1[nk+1,nk+1] /∈ ℓ2N . Via the inner product linearity,

⟨g, 1[nk+1,nk+1]⟩ℓ2 = ⟨g, ψk⟩ℓ2 + ⟨g,Pℓ2\ℓ2N1[nk+1,nk+1]⟩ℓ2
= ⟨g, ψk⟩ℓ2 ,

where ψk = Pℓ2N
1[nk+1,nk+1] and PS represents the projection

operator onto space S. We use that g ∈ ℓ2N and thus its
projection outside this space is 0. We compute ψk as

ψk[n] =
∑
l∈Z

⟨1[nk+1,nk+1], hl[m]⟩ℓ2 · hl[n] (12)

=
∑
l∈Z

nk+1∑
m=nk+1

hl[m] · hl[n] =
1

N

nk+1∑
m=nk+1

Im[n], (13)

where Im[n] =
∑

l∈Z sinc
(
l − m

N

)
· sinc

(
l − n

N

)
. Using (11)

and using that sinc is sampled at Nyquist rate in l we get

Im[n] =
〈
sinc

(
· − m

N

)
, sinc

(
· − n

N

)〉
ℓ2

=
〈
sinc

(
· − m

N

)
, sinc

(
· − n

N

)〉
L2 = sinc

(
n−m
N

)
.

Therefore we get the final expression

ψk[n] =
1
N

∑nk+1

m=nk+1
sinc

(
n−m
N

)
. (14)

Sequence g is uniquely represented in ℓ2N by coefficients
dk/T = ⟨g, 1[nk+1,nk+1]⟩ℓ2 = ⟨g, ψk⟩ℓ2 , if ψk form a frame
for ℓ2N . This is true if ∃AN , BN > 0 such that [23]

AN∥g∥2ℓ2 ⩽
∑

k∈Z
|⟨g, ψk⟩ℓ2 |2 ⩽ BN∥g∥2ℓ2 , ∀g ∈ ℓ2N .

(15)
We note that

⟨g, ψk⟩ℓ2 =
∑nk+1

l=nk+1
gc

(
l
N

)
= ∆nk · gc(τk),

where τk ∈ [(nk + 1)T, nk+1T ]. The above is true because
1

∆nk

∑nk+1

l=nk+1 g
c
(

l
N

)
is an average of samples of gc which

is in between its minimum and maximum over interval
[(nk + 1)T, nk+1T ]. Due to continuity, this value is always
attained in some intermediate point τk. According to [24]
(Th. 5), gc(t) is uniquely represented by samples gc (τk), and
thus {sinc (t− τk)}k∈Z is a frame for PWπ , provided that
sup(τk+1 − τk) < 1. From the property of τk, we have that

|τk+1 − τk| ⩽ 2
N ·max |nk+1 − nk| ⩽ 4δ

b−c , (16)

where the last inequality is due to Lemma 1. Then, if 4δ
b−c < 1,

we get the following frame conditions for {sinc (t− τk)}k∈Z

A∥gc∥2L2 ⩽
∑

k∈Z
|gc(τk)|2 ⩽ B∥gc∥2L2 . (17)



Equivalently, using (11) and the definition of τk, we get

A

N
∥g∥2ℓ2 ⩽

∑
k∈Z

|⟨g, ψk⟩ℓ2 |2

|∆nk|2
⩽
B

N
∥g∥2ℓ2 . (18)

Finally using, Lemma 1, we get

A(b− c)

δN
∥g∥2ℓ2 ⩽

∑
k∈Z

|⟨g, ψk⟩ℓ2 |2 ⩽
B(b+ c)

δN
∥g∥2ℓ2 .

Then ψk is a frame with bounds AN = A(b−c)
δN and BN =

A(b+c)
δN , and thus g is uniquely identified by its samples dk =

⟨g, ψk⟩ℓ2 , k ∈ Z. Given that g[l] are acquired at more than the
Nyquist rate then they uniquely identify gc(t).

Using that g[l] can be expressed using the basis in ℓ2N as
g[l] =

∑
n∈Z cnhn[l] (10), the following holds

∑
n∈Z

cnT

nk+1∑
l=nk+1

hn[l] = 2(−1)kδ + T

nk+1−1∑
l=nk+1

x[l] + εk, (19)

where εk ≜ y [nk+1] − y [nk] − 2(−1)kδ, |εk| ⩽ 2T (b + c),
is an unknown noise sequence. We note that the noise on the
RHS can be made smaller by writing an equivalent system via
cummulative sumation of the equations above (also see (5))∑

n∈Z
cnT

∑nk

l=0
hn[l] = (−1)k+1δ + T

∑nk−1

l=0
x[l] + εk,

(20)
where εk = y[nk]− (−1)k+1δ, |εk| < T (b+ c). We note that
εk = δ+

∑k
l=0 εl. Recovering the input amounts to computing

{ck}. We note that the RHS in (20) is known up to precision
εk and, in reality, one assumes εk ≃ 0 by solving

c̃ = H+d, (21)

where H+ is the Moore-Penrose pseudoinverse of H, [H]kn =∑nk+1

l=nk+1 hn[l], and [d]k = (−1)k+1δ + T
∑nk−1

l=0 x[l].

A. Comparison with Conventional Quantization

The recovery for conventional quantization is achieved via
(3) which, in practice is done by discretising the integral,
which leads to a system similar to (19), only for a much
smaller T ≪ T . That is why, in practice, the algorithm for
recovering the input of the QTEM is the same as for a TEM
with a quantized output. However, the QTEM can achieve
much smaller recovery errors, as will be explained next. We
note that (3) holds true with an error evaluated below∑
n∈Z

cn

∫ tqk+1

tqk

sinc (t− n) dt = (−1)k [2δ − b∆tqk]+ε
q
k, (22)

with εqk ≜ (−1)kb (∆tk −∆tqk)−
∫ tqk
tk
gc(s)ds−

∫ tk+1

tqk+1
gc(s)ds.

The error is bounded by |εqk| < bT + cT = T (b + c). If
we attempt to design an equivalent system as in (20) via∑k

l=0 ε
q
k, we note that this leads to an unbounded error, since

(−1)kb (∆tk −∆tqk) is a random variable whose summation
leads to an unbounded random walk. This was also tested
numerically, and an equivalent system as in (20) always
led to significantly worse errors in the case of conventional

Figure 5: Comparative reconstruction performance for two levels of quanti-
zation and 6 different sample densities. The error bars show the mean and
standard deviation computed for 100 inputs.

quantization. However, this approach works very well for
the recovery from QTEM data. In fact, the absolute error
|εk| < T (b + c) satisfies the same bound as εqk. However,
as will be shown in the next section, this leads to a much
smaller relative error, given that the RHS vector in (20) has
a significantly higher norm than the RHS in (22) due to the
cummulation process.

VI. NUMERICAL STUDY

The input was generated using random coefficients {cn}
drawn from the uniform distribution U ([−0.6, 0.6]) as

gc(t) =

10∑
n=−10

cnsinc (t− n) , t ∈ [−20, 20]. (23)

An ASDM TEM with parameters δ = 0.04, b = 1 generated
output samples {tk}466k=1 in response to input gc(t). In the
conventional quantization setting, these samples were quan-
tized via tqk = T · round

(
tk
T

)
for quantization resolution

T = 5 · 10−2 s. The recovery g̃1[k] via (3) is illustrated in
Fig. 1, and resulted in error Err1 = 100 · ∥g−g̃∥ℓ2

∥g∥ℓ2
= 20.2%.

The same input was used to test the proposed QTEM method.
Given that generally the number of output samples is different
from the TEM, for comparison purposes, for b = 1, the
value of δ was automatically tuned until the QTEM generated
roughly the same number of samples, namely {tq2k }467

k=1
, for

δ = 0.019. The input reconstructed via (20) is depicted in
Fig. 1(b), and resulted in error Err2 = 6.9%. To further
evaluate the proposed method, 100 inputs were randomly
generated via (23) and encoded with both methods using
T = 50 ms and b = 1 for 6 different target numbers of samples
uniformly distributed within [100, 600]. Parameters δ, δ were
subsequently automatically adjusted for TEM and QTEM, to
achieve the target number of samples with a 1% accuracy. The
experiment was repeated for T = 1 ms. The results, depicted



in Fig. 5, show that the proposed method is around an order
of magnitude more accurate, and the difference increases for
larger number of samples and higher T .

VII. CONCLUSIONS

In this work we introduced a new model-driven quantization
method for time encoding machines (TEMs) called QTEM. We
formulate the recovery problem in frame theory and introduce
recovery guarantees. Using extensive numerical simulations,
we showed that the proposed method leads to around one
order of magnitude smaller errors than conventional TEM
quantization. The simulations show that QTEM enables to a
better degree the quantization/sampling trade-off from conven-
tional ADCs, where a higher sampling rate can tackle more
quantization noise.
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