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Abstract—In real-world physiological and psychological
scenarios, there often exists a robust complementary correlation
between audio and visual signals. Audio-Visual Event Localization
(AVEL) aims to identify segments with Audio-Visual Events
(AVEs) that contain both audio and visual tracks in unconstrained
videos. Prior studies have predominantly focused on audio-visual
cross-modal fusion methods, overlooking the fine-grained
exploration of the cross-modal information fusion mechanism.
Moreover, due to the inherent heterogeneity of multi-modal
data, inevitable new noise is introduced during the audio-visual
fusion process. To address these challenges, we propose a novel
Cross-modal Contrastive Learning Network (CCLN) for AVEL,
comprising a backbone network and a branch network. In
the backbone network, drawing inspiration from physiological
theories of sensory integration, we elucidate the process of
audio-visual information fusion, interaction, and integration from
an information-flow perspective. Notably, the Self-constrained
Bi-modal Interaction (SBI) module is a bi-modal attention
structure integrated with audio-visual fusion information, and
through gated processing of the audio-visual correlation matrix,
it effectively captures inter-modal correlation. The Foreground
Event Enhancement (FEE) module emphasizes the significance of
event-level boundaries by elongating the distance between scene
events during training through adaptive weights. Furthermore,
we introduce weak video-level labels to constrain the cross-modal
semantic alignment of audio-visual events and design a weakly
supervised cross-modal contrastive learning loss (WCCL Loss)
function, which enhances the quality of fusion representation
in the dual-branch contrastive learning framework. Extensive
experiments conducted on the AVE dataset for both fully supervised
and weakly supervised event localization, as well as Cross-Modal
Localization (CML) tasks, demonstrate the superior performance
of our model compared to state-of-the-art approaches.

Index Terms—Audio-visual event localization, audio-visual
information integration, cross-modal contrastive learning.
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I. INTRODUCTION

N A noisy environment, understanding the speaker’s content

becomes easier when observing the speaker’s facial expres-
sions and body movements in addition to listening to their voice.
Similarly, upon hearing a train whistle, individuals instinctively
scan their surroundings to locate the source. These examples
underscore the cognitive ability of the brain to integrate audio
and visual information [1]. According to the Sensory Integration
Theory [2], various sensory information inputs (visual, audi-
tory, olfactory, etc.) are transmitted and interact as bio-electrical
signals, culminating in integration within the cerebral cortex,
thereby facilitating decision-making and consciousness [3].

As multimedia becomes the predominant information
medium, the advent of video platforms like YouTube has opened
avenues for multimodal tasks in artificial intelligence [4]. Nu-
merous endeavors, spanning lip-reading [5], [6], sound/video
event detection [7], [8], [9], [10], sound synthesis [11], emo-
tion recognition [12], [13], and more, aim to endow machines
with human-like perception of external stimuli [4]. The comple-
mentary relationship between audio and visual cues enriches
our understanding of objects and scenes, leading to signifi-
cant advancements in tasks reflecting audio-visual coordination.
These tasks include audio-visual correspondence (AVC) [14],
[15], audio-visual instance discrimination (AVID) [16], [17],
[18], and audio-visual event localization (AVEL) [19], [20],
[21]. AVEL represents an artificial intelligence task centered
around the integration of audio-visual information and the local-
ization of audio-visual events. The Audio-Visual Event (AVE)
dataset [19], derived from Audioset [22], a large-scale dataset
of audio-visual events sourced from YouTube videos, serves as
the foundation for AVEL. Each sample in the AVE dataset is
an unconstrained video with both audio and visual tracks, en-
capsulating an audio-visual event (illustrations are presented in
Fig. 1).

Physiological and psychological research has elucidated that
semantic coherence plays a pivotal role in the integration of
multi-sensory input [3], while signal synchronization stands out
as a key factor in cross-modal perception integration [4]. As de-
picted in Fig. 2, incomplete or dysfunctional audio-visual sen-
sory integration processes can lead to advanced audio-visual
dysfunction. Indeed, the issue of audio-visual modality mis-
alignment (or inconsistency) pervades real-life unconstrained
videos, primarily manifesting in two dimensions. (1) From a vi-
sual modality perspective, the susceptibility of two-dimensional
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Fig. 1. Tllustration of audio-visual event localization tasks. (a) Illustration of
fully supervised AVEL. We sample the corresponding audio and visual frames at
equal intervals from a 10-second video. The visual frames depict three objects:

2 <.

“pot”,“man”, and “food”, while the audio frames capture two sound events:
“man speaking” and “frying”. An audio-visual event is identified only when the
visual object aligns semantically with the sound event, such as “frying food”.
All other combinations of audio and visual cues are labeled as “background”.
(b) Iustration of cross-modality AVEL. It aims to query the event boundary
of one modality from the corresponding input of another modality. Specifically,
visual localization from an audio sequence query is referred to as “vision-to-
audio”, and audio localization from a video sequence query is referred to as
“audio-to-vision”.

sound signals to noise and the complexity of sound sources ren-
der the audio content more uncontrollable. In certain scenar-
ios, the sound producer may not be visible in the video (e.g.,
voice-over), while in others, multiple sound sources in the envi-
ronment can introduce interference. (2) From an audio modality
perspective, visual scenes tend to harbor more content targets
and richer external interference (e.g., exposure, deformation,
watermarking, etc.), further complicating the identification of
audio content.

Early works address the audio-visual modality misalignment
for AVEL using fusion-based frameworks. They tend to fo-
cus on intra-modal information fusion methods. In their fu-
sion stages, single-modal features are input into an attention
module [19], [23], a Long Short-Term Memory (LSTM) net-
work [24], a Multimodal Factorized Bilinear (MFB) model [25],
or a well-designed Transformer module [26]. Subsequently,
many works [20], [21], [27], [28], [29], [30], [31], [32] introduce
residual lines or self-attention modules to interact cross-modal
information, enhancing the model’s audio-visual matching ca-
pability. To facilitate a fine-grained exploration of the fusion
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Fig. 2. Illustration of the sensory integration flowchart of the brain. audio
and visual signals are transmitted in the form of bio-electricity to the occipital
and temporal lobes respectively. Then they are further integrated in the cortex
to form primary and advanced integration consciousness. If the audio-visual
sensory integration process is incomplete or dysfunctional, it will lead to audio-
visual dysfunction. We extract three stages from this information process: fusion,
interaction, and integration.

mechanism of audio-visual information, inspired by the sen-
sory integration theory, we attempt to explain the AVEL prob-
lem from the perspective of information flow. Hence, we ab-
stract the audio-visual signal processing into three stages (as
shown in Fig. 2): merging the original audio-visual signals into
a new signal (Fusion-stage), independently incorporating the
new signal into the audio or visual signal (Interaction-stage),
and aggregating the incorporated audio or visual signals into a
decision signal (Integration-stage). Based on the above analy-
sis, we summarize three main issues of AVEL: (1) Pure global
fusion is insufficient to better represent audio-visual informa-
tion, and it is necessary to explore fine-grained intra-modal and
inter-modal feature fusion methods for audio-visual pairs; (2) To
align the semantic of audio-visual events, the event boundaries
in the audio modality are often not prominent, while events in the
visual modality are often influenced by changes in camera an-
gles. This directly leads to challenges in capturing the semantic
boundaries of audio-visual events; (3) In terms of model struc-
ture, models with interaction stages have poor robustness to mis-
aligned audio-visual events. Misaligned audio-visual pairs are
more prone to amplifying semantic errors during cross-modal
information interaction, which is inevitable in the structure of
fusion-based frameworks.

To address these issues, we propose a novel Cross-modal Con-
trastive Learning Network (CCLN) framework for AVEL, which
comprises a backbone network and a branch network. The back-
bone network is a fusion-based architecture aimed at fully ex-
ploiting intra-modal and inter-modal event information. In the
backbone network, we decompose the perception integration
process of audio-visual events into three stages: fusion, inter-
action, and integration, delving into the fine-grained investiga-
tion of audio-visual fusion mechanisms. The Self-constrained
Bi-modal Interaction (SBI) module is specifically designed
for the fusion and interaction of audio-visual information. It
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(b) Weakly-supervised Cross-modal Contrastive Learning

Fig. 3. The different procedures between self-supervised contrastive learn-
ing and our proposed weakly-supervised cross-modal contrastive learning.
Self-supervised contrastive learning (illustrated in subfigure (a)) contrasts each
anchor sample and its augmentation with the remaining negative samples in
the batch, which can be seen as a semantic clustering problem. Our weakly-
supervised cross-modal contrastive learning (illustrated in subfigure (b)) gen-
erates a classification sub-hypersphere guided by weak labels. Inside the sub-
hypersphere, all samples of the same class undergo semantic clustering to reduce
intra-class distance; outside the sub-hypersphere, all samples of the same class
serve as positive samples and contrast with the negative samples in the batch to
stretch inter-class distance.

computes audio-visual correlation matrices in a self-attention
manner, which are then fused separately into the visual and audio
modalities after gate thresholding. The SBI module effectively
serves as both a visual-guided audio and an audio-guided video
fusion pluggable structure. The fused features capture additional
cross-modal details that positively contribute to information in-
teraction. Additionally, we address the event-level audio-visual
semantic enhancement, which has been rarely considered in pre-
vious models. In the backbone network, we propose the Fore-
ground Event Enhancement (FEE) module, which strengthens
event semantic boundaries with adaptive weights while reduc-
ing the impact of background event noise. To reduce new noise
interference introduced by audio-visual integration and capture
weak cues of audio-visual associative semantics, we introduce
weak labels to enhance the self-supervised contrastive learn-
ing framework, transforming it into a cross-modal feature se-
mantic aggregation problem within the weak label domain (as
shown in Fig. 3(b)). Unlike most anchors that consider only
single-modal and single-positive factors, our Weakly-supervised
Cross-modal Contrastive Learning Loss (WCCL Loss) consid-
ers more multi-modal negative and positive factors. These pos-
itives come from samples of the same category as the anchor,
rather than from anchor data augmentation. The main innova-
tions of our work are:
® We investigate and elucidate the audio-visual fusion mech-
anism of the AVEL task from the perspective of infor-
mation flow, dividing the audio-visual fusion process into
three stages: fusion, interaction, and integration. This pro-
vides a novel approach to uncovering hidden cross-modal
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complementary information and enhancing the coupling of
audio-visual pairs.

e We incorporate pluggable SBI and FEE modules in the
fusion-based backbone network. The SBI module utilizes
a bi-modal attention structure integrated with audio-visual
fusion information to effectively capture inter-modal cor-
relations, while the FEE module emphasizes the signifi-
cance of event-level boundaries, better capturing the weak
semantic boundaries of audio-visual events.

® We propose a two-branch contrastive learning framework
for AVEL for the first time to reduce the new noise in-
troduced during audio-visual fusion. To solve the semantic
alignment problem of cross-modal contrastive learning, we
introduce weak labels to constrain the audio-visual event
semantics, so that the model can obtain better cross-modal
semantic features.

e Experimental results on the extensively utilized AVE
dataset demonstrate that our proposed model surpasses
the state-of-the-art methods for both fully supervised and
weakly supervised event localization, as well as cross-
modal localization tasks.

II. RELATED WORK

A. Audio/video Anomaly Event Detection

Traditional audio/video anomaly event detection entails a bi-
nary classification task aimed at discerning the presence of au-
dio/visual anomaly events throughout the entire audio/video
scene. Treating an audio/video abnormal segment as an event
broadens the purview of audio/video anomaly detection to en-
compass single-modal (i.e., audio or visual) event localization.
Anomalies (i.e., anomalous events) typically manifest for brief
durations in real-world scenarios. Therefore, prior endeavors
have endeavored to establish normal patterns using various sta-
tistical models and classify segments diverging from these pat-
terns as abnormal events. Commonly employed methods for
identifying outliers as anomalies include Hidden Markov Model
(HMM) [33], Gaussian process modeling [34], sparse recon-
struction methods [35], and clustering-based approaches [36].
However, these methods may not effectively capture audio/video
time-series cues.

With the significant advancements in deep learning, some re-
searchers have turned to generative models for constructing nor-
mal behavior patterns, including Generative Adversarial Net-
works (GAN) [37] and Autoencoders [8], [9]. Additionally, the
Seg2Seg framework [38] has been widely applied to leverage
the temporal continuity of audio/video data. Sultani et al. [39]
propose a multi-instance weakly supervised framework for pre-
dicting visual normal/abnormal behavior, departing from the
sole modeling of normal behavior. This approach has yielded
promising results and has been further explored [38], [40]. In
recent years, self-supervised learning models [41], [42], relying
on data augmentation, have also gained considerable attention
in the anomaly detection domain. These models generate spatial
and temporal pseudo-abnormal data for self-supervised train-
ing alongside normal data. While these methods typically focus
on either audio or visual signals, we concurrently consider two
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types of heterogeneous data from different modalities. Similar to
single-modal event detection methods, we extract event features
from segments.

B. Audio-Visual Representation Learning

Audio-visual representation learning endeavors to obtain
high-quality joint representations of audio-visual pairs, requir-
ing the comprehensive utilization of complementary informa-
tion within and across audio-visual modalities. Early methods
for audio-visual representation were limited by computational
resources and mainly relied on mathematical and statistical ap-
proaches. However, with the rise of deep learning, audio-visual
representation has undergone significant evolution, embracing
fusion strategies rooted in both supervised and unsupervised
learning paradigms.

In most models, the prevailing paradigm operates under su-
pervised learning. These models typically utilize dual branches
to extract and process features from audio and visual channels,
subsequently employing a fusion module to integrate these fea-
tures. They are trained using actual audio-visual labels as super-
vised signals [43], [44], [45], [46]. For instance, Min et al. [43]
devise four distinct families of objective A/V quality predic-
tion models employing diverse multi-modal fusion strategies.
Xue et al. [44] introduce a co-attention model to supplant di-
rect multi-modal fusion, leveraging spatial and semantic cor-
relations between audio and visual features. Delving deeper
into audio-visual relationships with attention-based networks,
Liu et al. [45] employ a dense modality interaction network
integrating two innovative modules to harness audio-visual in-
formation. Conversely, significant strides have been made in
audio-visual representation learning through unsupervised (in-
cluding self-supervised) strategies. These approaches hinge on
semantic alignment achieved via contrastive learning losses.
For example, Owens et al. [47] endeavor to learn joint cross-
modal representations, considering sound and corresponding
visual images as supervisory signals in an unsupervised man-
ner. Zheng et al. [48] seek to generate modality-independent
representations for each individual in each modality via ad-
versarial learning, concurrently learning robust similarity for
cross-modal matching through metric learning. In this study,
the fusion-based backbone network we propose is rooted in the
analysis of information-flow transfer stages, with pluggable SBI
and FEE components designed to enhance the internal correla-
tion of audio-visual representation.

C. Audio-Visual Event Localization

Audio-visual event localization aims to identify audio-visual
events of interest within unconstrained, long video sequences
and predict the category to which these events belong. Specifi-
cally, the AVE task involves discovering event-matching video
segments within video sequences that contain both audio and
visual events (with the background considered as one event).
Subsequently, predictions are made regarding the categories
of audio-visual events, either at the segment level or video
level. Early models primarily focused on fusion methods for
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audio-visual signals, including early fusion of audio-visual fea-
tures and late fusion into predictions (i.e., integration). Tian
et al. [19] were the first to propose the AVE task and demon-
strate the effectiveness of audio-guided visual attention (AGVA),
which has become an important component of most subse-
quent models. Lin et al. [24] leverage the temporal-dependence
properties of LSTM to concatenate audio-visual single-modal
features for predictions. Ramaswamy et al. [25] incorporate a
bi-linear model to integrate the extracted audio-visual features.
Lin et al. [26] construct a complex audio-visual Transformer
structure with an AGVA module to capture the relationship in-
formation between audio and visual features. Xu et al. [23] de-
sign an attention structure and integrate predictions using matrix
dot product.

To further explore the complementary information of audio
and visual signals, and to reduce the noise generated during the
process of audio-visual fusion, many researchers have focused
on the multi-modal information interaction and integration pro-
cesses to construct more sophisticated networks. Wu et al. [27]
introduced a self-attention module to integrate intra-modal in-
formation dependencies and incorporated residual connections
for basic inter-modal information interaction. Xuan et al. [29]
utilized self-attention, adaptive attention, and LSTM modules to
create a network structure for audio-visual information interac-
tion through residual connections. Ramaswamy et al. [28] lever-
aged bilinear methods to achieve a more complex audio-visual
information interaction process, considering additional interac-
tion information during prediction generation. Zhou et al. [30]
employed a threshold to filter out strongly related event seg-
ments during the information interaction stage but also discarded
potentially valuable relevant information. Xia et al. [20] im-
proved the design of the information integration stage and used
an attention-based approach to suppress noise at both the tem-
poral and event levels. Wang et al. [21], [32] emphasized the im-
portance of event boundaries, advocating for finer-grained mod-
ulation of segment-level semantics and event-level relationships
following the fusion and interaction stages.

In our model, we thoroughly explore the fusion mechanism
of audio-visual information, refine the structural design, and
propose a cross-modal contrastive learning paradigm to reduce
the new noise generated by audio-visual fusion, conducting in-
depth research on various structural aspects.

D. Audio-Visual Contrastive Learning

In recent years, self-supervised contrastive learning mod-
els have witnessed significant advancements across various do-
mains [49]. Typically, the input to a self-supervised contrastive
learning model involves utilizing a positive pair, chosen through
co-occurrence [49], [50] or data augmentation [51], for each an-
chor sample. This selection method is often based on limited
prior knowledge, such as frames from different videos or patches
from distinct images, aimed at enhancing the model’s accuracy.
Tian et al. [50] were the pioneers in exploring the multi-view
coding (CMC) technique within a contrastive learning frame-
work, intending to encode various data views (e.g., brightness,
optical flow) from the same image sample. However, these data

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2025 at 13:05:56 UTC from IEEE Xplore. Restrictions apply.



2654

views primarily pertain to the visual modality and inherently
possess pre-existing semantic features. An intriguing concept
in self-supervised contrastive learning involves substituting the
positive pairs of the same modality with embeddings from dif-
ferent modalities, such as audio and video [16], [17].

Typically, contrastive loss is employed during the training
stage to minimize the distance between representations in the
last layer of a deep network. However, for multi-modal tasks,
the heterogeneity across modalities significantly reduces confi-
dence in representations based solely on feature similarity. Fur-
thermore, self-supervised contrastive learning based on a single
modality often requires heavy data augmentations to generate di-
verse views. To address the challenges posed by self-supervised
contrastive learning in the presence of multi-modal heterogene-
ity, an effective approach is to introduce labels to narrow or push
the distance between multi-modal samples. Kamnitsas et al. [52]
introduce a novel regularization method and apply it to joint
training classification heads with contrastive embeddings. Sub-
sequently, Khosla et al. [53] increase data augmentation, nor-
malize the contrastive embeddings, and propose a supervised
contrastive loss (SupCon loss), which achieves remarkable re-
sults across numerous pretext tasks. Inspired by the SupCon
loss, we introduce weak labels to mitigate noise introduced by
modality heterogeneity in cross-modal representation learning.
However, our approach differs from the SupCon loss in that we
deal with multi-modal data with weak labels at the segment or
video level, while the SupCon loss is applied to single-modality
(image) data with fine labels. Additionally, the SupCon loss es-
tablishes a multi-positive pattern for each anchor, whereas, in
the AVEL task, we must consider not only the label for each
feature but also the alignment of multi-modal data within the
same sample.

III. MOTIVATION

Traditionally, the fusion-based framework for AVEL has pre-
dominantly focused on integrating audio and visual information
flows, beginning from low-dimensional data and progressing
to higher-dimensional semantic information. Analogous to the
way human auditory and visual signals are transmitted and inte-
grated into the cerebral cortex to facilitate advanced audio-visual
functions, the design of AVEL frameworks should meticulously
consider audio-visual information processing. Hence, we have
delineated three stages of audio-visual information processing:
fusion (Fusion-stage), interaction (Interaction-stage), and inte-
gration (Integration-stage), mirroring the mechanism by which
humans process audio-visual signals. However, are all three
stages indispensable for AVEL? What challenges may arise from
the fusion-based model paradigm, and how have they been ad-
dressed? We aim to distill the essential elements of mainstream
AVEL frameworks to analyze the mechanism of audio-visual
information processing, as illustrated in Fig. 4.

Is the Fusion-stage necessary? Almost none of the model
architectures depicted in the first row of Fig. 4 incorporate an
information Interaction-stage; instead, they solely focus on in-
formation fusion. The AGVA model [19] demonstrates the ef-
ficacy of audio-guided visual attention for the first time, with
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its fusion architecture serving as the basis for most subsequent
models. In contrast to AGVA, the AVSDN model [24] concate-
nates LSTM-encoded audio-visual features into a global LSTM
for fusion. The ASA model [25] introduces a self-attention-like
module based on AGVA and computes cross-modal fusion in-
formation using addition. The AV-Trans model [26] integrates
a fusion module with a larger parameter scale, aiming to con-
struct more refined temporal/spatial fusion methods using the
Transformer [54] architecture. The CMRAN model [23] adopts
multiple attention modules, introducing temporal information
to enhance AGVA and fusing single-modal information with
two self-attention structures, respectively. Comparative analy-
sis reveals that both AVSDN and ASA outperform the baseline
AGVA, suggesting that the designed Fusion-stage effectively
enhances model performance. Furthermore, the performance re-
sults of AV-Trans and CMRAN indicate that a sophisticated fu-
sion module with a large parameter scale can significantly lever-
age the complementarity of cross-modal information.

Is the Interaction-stage necessary? The model architectures
depicted in Fig. 4(b) encompass, to varying extents, the three
stages of information processing (fusion, interaction, and inte-
gration). However, they often lack emphasis on the design of
the information integration stage, frequently implementing it
through simplistic operations such as addition, multiplication,
or concatenation. For instance, the DAM model [27] and CMAN
model [29] introduce straightforward residual lines to facilitate
cross-modal information interaction. The AVIN model [28] fo-
cuses on designing a complex information interaction module
but overlooks early information fusion, achieving results com-
parable to AV-Trans despite having smaller-scale parameters.
Conversely, the PSP model [30] adopts a more comprehensive
architecture design, incorporating an interaction module that
leverages earlier fusion information. Following the fusion stage
in the CMBS model [20], a more intricate interaction module
is established, and improvements are made to the integration
stage, resulting in enhanced model performance. Notably, the
frameworks presented in Fig. 4(b) consistently achieve improved
model performance with the addition of an Interaction-stage,
even if they have a simpler Fusion-stage (e.g., AVIN) compared
to the baseline AGVA. Particularly, PSP (with an Interaction-
stage) outperforms AV-Trans (without an Interaction-stage but
with a larger parameter scale) and CMRAN (with a more com-
plex fusion module but a weak Interaction-stage), highlighting
the critical role of the Interaction-stage. The overall performance
results of these models further affirm that well-designed infor-
mation interaction significantly benefits AVEL.

Is the Integration-stage necessary? Among the models il-
lustrated in Fig. 4(b), SRMN stands out for its comprehen-
sive design of audio-visual information processing, encom-
passing fusion, interaction, and integration stages, and it has
demonstrated superior performance compared to other mod-
els. However, attributing the superior performance of SRMN
solely to the design of the information processing stages or to
the influence of the event proposal modulation strategy remains
challenging. Similarly, previous studies either overlook or in-
completely address the design of the information Integration-
stage, making it difficult to draw definitive conclusions. Upon

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2025 at 13:05:56 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: LISTEN WITH SEEING: CROSS-MODAL CONTRASTIVE LEARNING FOR AUDIO-VISUAL EVENT LOCALIZATION

2655

| Audio-guided i )
| Visual Attention LSTM/Bi-LSTM
|n Concat Self-Attention

| ; : ” <
| Adaptive Attention Additive calculation

|VE: Visual Embedding  AE: Audio Embedding

| —— Fusion line | Evaluation Symbols:
| @ Designed fusion

© Simple fusion

—— Interaction line

— Integration line
l g @ Designed interaction

UOIST] UONORIUI UOTjeISIuUI

|
|
I ® Matrix mul : (0] Simple interaction
© Element mul | .Designed integration
O O © ®© O O @ OO © O 0 © O© O (evaluate) | @ Addition | @ Simple integration
68.6 72.6 73.8 76.8 774 (Acc%) | @ Threshold | 5 o his siage
_ AGVA AVSDN ASA AV-Trans CMRAN (models) | @ Transpose | aore paramerers |

(a) Fusion-based Frameworks (mainly focus on the fusion-stage)

g5 ) 5. §

=4 2

o a

0 70

L H =5 o
5 5

AE ]VE AE % \__branch backbone | / g

O e 0o 0o © @ @(evaluate) © © @ (evaluate)
73.3 77.8 79.5  (Acc.%) Fusion-based 79.9  (Acc.%)
CMAN PSP SRMN (models)) \_ Framework CCLN(Ours)models))

(b) Fusion-based Frameworks (with fusion, interaction, integration)

Fig. 4.

(¢) Two model frameworks

Comparison of audio-visual information processing frameworks for AVEL. The networks in subfigure (a) only highlight the role of the Fusion-stage and

give little consideration to information interaction and integration. The networks in subfigure (b) contain fusion, interaction, and integration stages, most of which
do not have a complete structural design. These networks can be abstracted into the fusion-based framework (shown on the left of subfigure (c)). To reduce the
noise generated by information fusion, we propose a cross-modal contrastive learning network framework (shown on the right of subfigure (c)), which is the first
dual-branch architecture framework for AVEL. The performance results reported in these figures are all under the fully supervised setting.

examining Fig. 4(a), we observe that despite the complex fusion-
stage designs in AVSDN and ASA (which lack an integration-
stage), their performance is notably inferior (by approximately
3% on average) compared to AV-Trans and CMRAN (both of
which incorporate a simple integration-stage). This observation
suggests that the integration-stage may indeed play a benefi-
cial role in audio-visual cross-modal information processing.
Nonetheless, specific ablation experiments are necessary to val-
idate this hypothesis.

Assumption: Based on the above analysis, we can outline
a general audio-visual information processing paradigm for
AVEL, as depicted on the left side of Fig. 4(c). Additionally,
insights drawn from previous frameworks (illustrated in (a)
and (b) of Fig. 4) provide valuable inspirations for designing
our framework: (1) Attention mechanism has been proven to
be beneficial in the information Fusion-stage, and its reason-
able use can achieve good model performance (refer to the
results of CMRAN); (2) Using LSTM to enhance the depen-
dency of intra-modal information is a good choice; (3) The
larger the model parameter scale, the greater the performance
advantage (refer to the results of AV-Trans), but it also intro-
duces more noise; (4) Information interaction should be consid-
ered, as demonstrated by high-performance models such as the

SRMN; (5) The contribution of the information integration-stage
requires further experimental exploration, and the treatment of
new noise in the audio-visual information processing should also
be considered.

Based on the considerations outlined above, we introduce
a novel AVEL model paradigm (depicted on the right side of
Fig. 4(c)). This paradigm incorporates a backbone network com-
prising three stages: information fusion, interaction, and integra-
tion, which collectively constitute the Cross-Modal Contrastive
Learning Network (CCLN). The detailed methodology of our
entire model is delineated in Section IV, while Section V-B
presents the fundamental aspects of each stage through exper-
imental analyses. In Fig. 5, we illustrate four specific branch
structures of the CCLN, and a comparative investigation is fur-
ther conducted in Section V-B.

IV. METHODOLOGY

Analogous to the human brain’s integration of multi-sensory
information, we conceptualize audio-visual event localization
as a process involving the fusion, interaction, and integration of
audio-visual pairs to predict and categorize events at either the
segment or video level.
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Fig. 5. The four contrastive branch structures of CCLN are illustrated. In the
figure, (a) mode denotes only the audio-visual fusion branch (AV), (b) mode
represents contrastive learning between the audio-visual fusion branch and the
visual branch, and the audio branch (AV+V+A), (c¢) mode indicates contrastive
learning between the audio-visual fusion branch and the visual branch only
(AV+V), and (d) mode signifies contrastive learning between the audio-visual
fusion branch and the audio branch only (AV+A).

A. Notations and Problem Statement

The goal of AVEL is to identify synchronously related audio-
visual pairs, content-matching audio and visual events, from an
unconstrained video. Suppose a video sequence containing au-
dio and visual modalities is {S7, S¢}1 ;. SP and S¢ represent
the visual and audio channels of the video sequence respec-
tively. The video sequence is divided into non-overlapping 7'
segments at equal intervals, and the sampling interval is taken
as one second in this paper. Consistent with the baseline [19],
AVEL explores learning under both fully supervised and weakly
supervised learning settings. The model of cross-modal localiza-
tion task, however, is learned under a fully supervised learning
setting.

AVEL under Fully Supervised Learning: In the fully su-
pervised learning setting, each audio-visual video segment is
assigned an event category label, and the model is trained
to predict the event category at the segment level. ytf =

fEy, fk C+1, fk
{yi "y " € {0,1}, >, y/ " = 1} represents the label of the
t'" segment, where t € {1,2,...,T}. Note that we treat the
background as an independent event category, where C' is
the number of label categories of a dataset, so the total
number of event categories is C' + 1. Thus, define Y /%! =
{yl,vl, ... yh} € RT*(C+D) g5 the label of the entire video
sequence. The prediction score of the t*" audio-visual pair in
the fully supervised training setting can be used to judge the
event category of the segment.

AVEL under Weakly Supervised Learning: In the weakly
supervised learning setting, we can only get the video-
level labels. Yweak = {ywh|ywk e {0 1}, 26wk — 11 ¢
R+ is denoted the label of an entire video. This setting is
more suitable for real-world general situations where fine an-
notations are not readily available but poses a higher challenge
to the robustness of the model. In this paper, we perform lin-
ear transformation and average pooling on Y /%! to obtain the
video-level labels.

Cross-modality Localization Task of AVEL: The cross-modal
localization task of AVEL aims to determine the boundaries
corresponding to audio-visual events and is conducted under
fully supervised training at the segment level. In either the audio
or video modality, each segment’s label is binary, denoted as
0 or 1. Consequently, the label for the entire video segment
can be represented as Y™ = {(y1,y2,...,y7)|y: € {0,1}} €
RT>1 It is noteworthy that the model for the CML task does
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not necessitate the design of an audio-visual fusion structure or
a classification head; its ultimate objective is to compute the
distance between predicted segments in the query modality and
given modality event segments.

B. Overall Model Structure

Fig. 6 illustrates the overall structure of our CCLN model,
which primarily comprises a backbone network and a branch
network (visual branch). The backbone network is composed of
five key modules: (1) Feature Embedding: This module separates
audio and visual frames from an unconstrained long video, trans-
forms and encodes them into high-dimensional feature vectors;
(2) Fusion-Stage: Using audio embeddings to guide visual em-
beddings through a co-attention strategy, this module achieves
cross-modal fusion and enhances inter-modal temporal depen-
dence; (3) Interaction-Stage (SBI module): In this stage, audio
and visual information interact, with the degree of interaction
controlled by adaptive parameters;(4) Integration-Stage (FEE
module): Based on the integration of inter-modal information,
this module employs the FEE branch to reduce background event
noise; (5) Classification: In this module, decision information is
utilized to train a classifier under the constraint of the loss func-
tions, which makes predictions based on the training results.

The preprocessed audio and video segments are fed into the
feature embedding module, where a deep convolutional network
abstracts them into high-dimensional semantic features respec-
tively. In the Fusion-stage, the audio-visual features are aligned
by a spatial attention structure (i.e. audio-guided visual atten-
tion model [19]), and then a Bi-LSTM component [24] and
a self-attention component is applied to the audio and visual
modalities separately to strengthen the long and short term de-
pendence of the intra-modal information. Subsequently, the en-
coded feature v¥" and a*, corresponding to audio and visual, are
sent to the SBI module for refined interaction of audio-visual
signals. In the Interaction-stage, a bi-attention structure is de-
signed to filter and fuse the correlation information between
audio-visual modalities, and the correlation information as well
as the cross-modal residual information are used to guide the
generation of visual feature vT and audio feature a’. Then, in
the Integration-stage, based on integrating the intra-modal infor-
mation of audio and visual modality, the adaptive weight branch
of the FEE module is introduced to improve the attention of
foreground events. Finally, in the classification module, the in-
tegrated information vZ and aZ are linearly transformed to gen-
erate the audio-visual event predictions. Note that vf', af’, v7,
al, vZ and aZ are all vectors of dimension RB*T*dv

C. Feature Embedding

The task of the feature embedding module is to extract and
encode abstract audio and visual representations and unify them
into feature vectors of the same dimension. First, the raw audio
and visual channels are separated from the unconstrained video
containing audio and visual pairs. The visual channel samples 7’
cubes S" at the same interval, and the audio Mel-spectrum 5S¢
is also sampled at equal intervals into 7" segments after the Mel-
scale filter banks. Each image cube or audio Mel-spectrogram
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Fig. 6.

The overall architecture of our CCLN model. Preprocessed audio and visual raw data are input into pre-trained deep convolutional networks to extract

single-modal high-dimensional features, which are then fed into the CCLN dual-branch network. In the fusion-based backbone branch, audio and visual features
undergo processing through three stages: fusion, interaction, and integration. In the fusion stage, we employ an audio-guided visual attention module and a Bi-LSTM
module for intra-modal information enhancement and initial inter-modal fusion. In the interaction stage, we design the SBI module, where the correlation matrix
after audio-visual fusion is used to construct cross-modal attention, which is then fused into audio and visual features after the threshold gate. In the integration
stage, the FEE module further filters and integrates to generate event-level predictions, enhancing the boundaries of audio-visual events. The CCLN model utilizes

the visual branch after the fusion stage as the contrastive branch.

segment is then fed into an independent pre-trained deep con-
volutional neural network (CNN) to extract high-dimensional
feature v € RT*H*xWxdso or oF ¢ RT*dsa [] and W are the
height and width of the video frame respectively, and the dimen-
sions of d¢, and d, are not equal here.

D. Backbone Network

Analogous to the way audio and visual signals are analyzed
and transmitted in human brain regions related to audio-visual
integration, the backbone branch network serves the purpose of
filtering and fusing intra and inter-modal signals in our model.
The backbone network mainly consists of three audio-visual in-
formation processing modules: the Fusion-stage, the Interaction-
stage, and the Integration-stage.

Fusion-stage: The Fusion-stage is used to effectively obtain
the early audio-visual fusion information and enhance intra-
modal information dependence. The audio-guided visual at-
tention (AGVA) mechanism [19] has fully demonstrated that
it can adaptively find the corresponding audio object or visual
activity from the visual modality of each video segment. There-
fore, we employ this spatial attention approach to compensate
for audio-visual information in visual features. Then, we adopt
Bi-directional Long Short-Term Memory (Bi-LSTM) to estab-
lish long short-term dependence information for audio or vi-
sual features along the time direction, and the visual represen-
tation v € R7*?> and audio representation af" € R7*% are
obtained after a self-attention structure. In this process, the di-
mension d,, of audio features and dimension d,, of visual features
are already equal after linear transformation. The whole process

can be recorded as:

v = AGV A (UE, aE) (D
o' = Sa (Bl (vA)) )
af = Sa (Bl (aE)) 3)

where BI(-) and Sa(-) represent Bi-LSTM and self-attention
operations, respectively.

Interaction-stage (SBI Module): Although the use of a more
complex Fusion-stage design [26] can improve the performance
of the model, it also introduces unexplained and uncancelable
noise, which limits the final performance of the model. At the
same time, the computational resource consumption caused by
a large number of parameters is not necessary for the model
performance, and we can exceed its performance by optimizing
the information flow. PSP [30] clearly simulates the processing
of intra and inter-modal information flows, attempting to find
strongly correlated audio-visual pair through a one-hot encoded
correlation matrix, but the hard threshold also inadvertently loses
richer multi-modal interaction information. CMBS [20] designs
a more complete information interaction structure, but the re-
dundancy in the structure often introduces new fusion noise. In
the Interaction-stage, we design the SBI module to exchange
audio-visual information through a bi-attention structure and
apply cross-residual information to compensate for missing in-
formation.

The detailed structure of our designed cross-modal informa-
tion interaction component, the SBI module, is shown in Fig. 7.
Among feature representation methods, the attention mechanism
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Fig.7. The architecture of the SBI module (left) and FEE module (right). SBI
is a size-invariant pluggable component with dual input and dual output, used for
the interaction of audio-visual information under parameter constraints in the
interaction stage, effectively balancing cross-modal complementary information
and new noise information. In the FEE module, we design a weight-adjustable
branch containing only foreground events to capture event boundaries at the
event level, reducing noise from background events. Note that the data dimen-
sions in the figure correspond to the fully supervised AVEL.

is superior to the recurrent and convolutional layers in terms of
computational complexity and path length between long-term
dependencies. The output vectors v*" and a’" of the fusion-stage
module are linearly transformed as V;, V5 and Ay, Ao, respec-
tively. They are all of the same dimension R7*¢, and d is equal to
d,. First, we choose Scaled Dot-Product Attention (SDPALt) to
calculate the fusion feature AV® of V5 and A1, since it can be im-
plemented using highly optimized matrix multiplication code
to achieve much faster and more space-efficient performance.
And then the audio-visual correlation matrix h”* is transposed
to obtain the h®¥ matrix. Subsequently, h** and h*" are filtered
and normalized with hyperparameter 7 and dot multiplied with
V; and A, to generate the fused visual feature v and audio
feature o™ . This process is represented as:

Vi, Va, Ay, A = lin (0" Wi, vF Wa,a" W3, a"Wy) (4

h = T(hya) (6)
oM =V ®@ h(T) (7
a™ = Ay ® B (1) 8)

where Wy, W, W3 and W, are linear transform weights, all
with dimension R4*9, [in(-) denotes the linear transformation,
o(+) denotes the Softmax function, ® is the dot product, and
T(-) denotes the matrix transpose operation.

The SBI module aligns the relevant salient information of the
audio and visual features through the fusion strategy, and we
adopt the information interaction strategy to further reduce the
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background noise of the audio-visual pairs. Just as the fusion
and interaction of different modality information in the human
brain are carried out simultaneously, the interaction process and
the fusion process in our model are also carried out simultane-
ously, which is realized by the residual line. The encoded initial
features are cross-added with the fused features v and a™ to
obtain the interactive features v’ and a’. The SBI module can be
regarded as a dimension-invariant dual-input-output pluggable
device for bi-modal interaction. This process is written as,

vl =0 @aM 9)

! (10)

al =af @ oM
Integration-stage (FEE Module): Previous audio-visual inte-
gration strategies have mostly relied on simple dot products
and element-wise multiplication, which can easily result in
information loss and introduce noise. Therefore, we employ
self-attention structures and Layer normalization to further in-
tegrate single-modal information. Additionally, previous meth-
ods mostly generate segment-level classification heads, utilizing
segment-level or video-level labels for supervised learning. This
strategy overlooks the learning of event-level knowledge, mak-
ing it difficult to distinguish boundaries between audio-visual
events. In our FEE module, we construct event-level classifica-
tion heads, enabling the model to better localize event bound-
aries.

In the Integration-stage, we integrate the interactive audio-
visual information to form the prediction for classification de-
cisions. Firstly, v/ and a! are pushed into a self-attention com-
ponent to enhance intra-modal information integration of audio
and visual modalities. The output results are then processed by
a simple position-wise fully connected feed-forward layer and a
normalization layer (i.e. F1 + Ln layer) in turn to produce the v%
and o features. Finally, the output is simply averaged to get a
preliminary decision value of P°“¢, and P°“! is transformed by
different linear transformations to get three different predictions
P/, Pf¢ and P°. The process is summarized as follows,

v” = Ln (Fl(Sa (v"))) (11)
a” = Ln (FI(Sa(a'))) (12)
Pt = 2 (07 ©a”) (13)
P° =lin (P @ Ws) (14)
Pl =lin (P @ W) (15)
P = Maz (lin (P°" @ W+)) (16)

where W5 € R>(CHD Wy € RO! and Wy € R™C are lin-
ear transform weights. The dimensions of vZ, aZ and P°"* are
both RT*¢, FI(-) and Ln(-) denote the feed-forward layer and
normalization layer.

In particular, we calculate prediction labels for CML tasks
from formulas (11) and (12) :

P2 = sqrt (Max ((vz — aZ)2 , O)) (17)
where sqrt(-) means to find the square root, and P2, € RT*!
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Due to the high uncertainty of the background event, the FEE
module is used to widen the distance between foreground events
and background even to reduce background noise. The C' dimen-
sion of Pf¢ is the category number of audio-visual events in a
dataset, that is, the number of foreground events relative to back-
ground events. We design another weight branch to calculate the
final foreground event prediction. v’ and a? after linear transfor-
mation screen out the first K values through TopK function. The
average values of the results are calculated and transformed into
v® € RY and a® € R after the activation function. After mul-
tiplying v¢ and a®, multiply with P7¢ to get foreground event
prediction P¢ € R, This process can be expressed as,

v =p (Mecm (TopK (Zin (UI)))) (18)
a®=p (Mecm (TopK (Zin (al)))) (19)
P¢ = P/°® (v° ® a®) (20)

where TopK () and Mean(-) represent sorting and averaging
operations, respectively. p is the Sigmoid activation function.

E. Classification

Prediction P? is processed differently under different training
settings. We defined W5 as W5 (under full supervised settings)
and W5 (under weak supervised settings) respectively. This
transformation can be described as,

Pry = lin (POUt ® Wf5)
P,y = lin (P°" © W)

2n
(22)

where the dimension of weight Wy and W,s5 are
R&(E+1) " So the predictions Pj,; and P, have the
same dimension R7*(C+1D In the fully supervised set-
ting, Pruy = {p{,p§,...,p§:} e RT*(C+1) is the final pre-

diction score and the t*" prediction is represented as pf =

{p{k|ptfk € {Oa ]-}a Zk;cill p{k = 1at = ]-7 27 .- 7T}
We add a weighted branch in the weakly supervised setting
to improve the correlation of captured video-level synchronous

audio-visual pairs.
O =p(R(lin (P, @ Wy)))

Pweak:Pw®9

(23)
(24)

where W), € R(C+1*1 g learnable parameters in the linear
layers. R denotes the ReLU activation function. © € R”*! is
the weight vector we get from the linear weight branch. Thus,
video-level prediction under weakly supervised setting can be
expressed as Pyear = {pWF[pW* € {0,1}, chill pUkF =1} €
R(C+1)

In addition, we take the features after the fusion stage as the
input of the branch network and get the prediction features P
(or P%) after processing by the self-attention component and
linear layer. P, P? and P® all have dimensions R7*1,

P = Ln (FI (Sa (v7)))
P* = Ln (Fl(Sa(a™)))

(25)
(26)
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TABLE I
ABLATION EXPERIMENTS ON AVE DATASET IN TWO SETTINGS

Method Fully Sup.  Weakly Sup.
Acc.(%) Ace.(%)

Fusion-stage

w /o Fusion-stage 73.5 69.2

w/o AGVA 74.1 70.4

w/o Bi-LSTM 78.4 73.3

w/o Self-Att. 77.8 73.1

Interaction-stage

w/o SBI 75.0 71.6

Integration-stage

w/o FEE 76.3 71.8

CCLN(ours) 79.9 75.2

“W/0” and “w/” indicates that the module is removed or used.

TABLE I
ABLATION EXPERIMENTS OF BRANCH MODE ON AVE DATASET
Branch Mode Fully Sup.  Weakly Sup.
Acc.(%) Acc.(%)
(a) AV 78.2 73.7
(b) AV +V 79.9 75.2
(c) AV + A 78.6 74.1
(d) AV+V + A 79.3 74.6

Corresponding to the modes in figure 5.

F. Loss Design

In our CCLN framework, our weakly-supervised cross-modal
contrastive learning loss (WCCL loss), introduces video-level
event weak labels rather than semantics to bring related audio-
visual pairs closer together. Specifically, regarding the predic-
tion P; of one modality as the anchor, all the corresponding
predictions P, with the same label within a batch are positives.
i € I ={1---2N}istheindex of any anchor within a batch, and
define the index domain except anchoras A(:) = I \ {i}.pisthe
index of all positives with the same label within a batch, and its
value domain can be written as B(i) = {p € A(i),y;" =y, }.
The other 2(N — 1) samples within the same batch are called
negatives. Our WCCL loss can be defined as,

£wccl = - Z IOg

el
1 exp(P; ® P,/6) <Y on
|B(2)] peBli) D aea() €XP(P @ Po/0) 1Y

where, § € R is a scalar temperature parameter.

AVEL in the fully supervised setting is a segment-level multi-
class classification problem. We adopt multi-class focal loss
Lygion P, € RTOH) with y/ull ¢ RTX(CF1) and fore-
ground event enhancement loss (i.e. multi-class cross-entropy
loss) Ly, e on Pj‘?u” € RT*C with Yfeu” € RT*C In addition,
we contrast the visual branch prediction P? and the fusion pre-
diction P/ are guided by label Yffu” € RT*! for contrastive

learning using our WCCL loss (see Table II for details). Losses
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function in this setting is defined as,

T C+1
Lonf1 = Z > FL(Ppy, Y™ a,7)) (28)
t 1 k=1
1 T C+1
Lonfe = -7 Z Z Yiuulog (Pfu) 29
t=1 k=1
Lot = Lucet (PP ) (30)
‘cfull - ['mfl + )‘-‘Cmfe + ancl (31)

where F'L(.) denotes binary focal loss.

The AVEL task can be regarded as a binary classification
problem in the weakly supervised setting. We consider binary
focal loss Ly on P°_., € REFL with Yweek ¢ RE+! and
foreground event enhancement loss Ly on PS . € R with
Y. € RO, Similarly, we contrast the visual branch predlc—
tion P} _ .. and the fusion prediction Pj;ea i With label Ywm i for
contrastive learning using WCCL loss. These loss functions can
be denoted as,

C+1
Lyp = — Z FL(Poeu Y% 7)) (32)
C+1
Ebfe = Z weaklog weak:) (33)
ACbcl = Achcl (PU Pf Yweak) (34)
Loeak = Lo + 2Lyse + 1L (35)

Unlike the preceding tasks, the CML model does not require a
classification head. We consider binary cross-entropy loss Ly .
on P2, € RT*! with Y™ € RT*L The design of contrastive
learning loss is the same as that of weakly supervised AVEL.

»bee - Z chllo.g cml) (36)
['bcl = Ewccl (Pv’ Pfaycml) (37)
Lemi = Lyfe + ALy (38)

V. EXPERIMENTS

A. Experimental Descriptions

Datasets: The Audio-Visual Event (AVE) dataset [19], which
contains 4143 samples covering 28 event categories, is used
to evaluate model performance for the AVEL task. It contains
audio and visual events, and the temporal boundaries of audio-
visual events are manually annotated. It extensively covers real-
life scenes and objects such as the church bell, frying food,
train horn, toilet flush, baby cry/infant cry, etc. The AVE dataset
has segment-level and video-level labels with clear temporal
boundaries. The number of samples for each event category is
between 60 and 188, each sample lasts 10 seconds long, and
the sample is guaranteed to contain at least one audio-visual
event that lasts 2 seconds long. Despite the rigorous hand-picked
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annotation, the AVE dataset also has problems such as content
misalignment, viewpoint mutation, missing visual events, etc.,
but it is the most widely used large-scale audio-visual event
dataset at present.

Parameters Setup: The video channel of the raw sample is at
a frame rate of 30 fps and is 10 seconds long, cut into segments
at one-second intervals. We adopt the VGG-19 network [55]
pre-trained on ImageNet [56] to extract visual feature vectors.
Each segment then is averaged and aggregated into one visual
frame of the segment, sampling the video as a visual frame
cube with dimension R19*7*7%512 In particular, the dimension
of the visual input feature in the CML task is R10*512_ Each
segment-level audio feature is a 80—bin log Mel filter bank, cal-
culated by short-time Fourier transform (STFT) and fast Fourier
transform (FFT). Then, the Mel filter bank features are extracted
from each short-time frame, and combined with frame-level fea-
tures to form a time-frequency representation. The VGG-like
network [57] pre-trained on AudioSet [22] is used to extract
audio feature vectors with dimension R0*128,

We implement our experiments on one NVIDIA Tesla V100
SXM2 under the PyTorch framework, Dropout function to reg-
ularize all the linear mappings. According to our experience,
in the SBI module, we set 7 = 0.05 under the fully supervised
setting and 7 = 0.06 under the weakly supervised setting. We
balance the contribution of each loss by empirically selecting the
optimal parameters (A = 150 and 7 = 25 under the fully super-
vised setting, A = 100 and 77 = 50 under the weakly supervised
setting). Focal loss parameters « and  use default parameters.
During the training stage, we set the batch size to 128 using the
Adam optimizer with the default settings. There are 200 epochs
throughout the training process. The initial learning rate is set at
le — 3(under the fully supervised) and 1e — 4(under the weakly
supervised). In the CML task, we set 7 = 0.05, 7 = 0.05, and
the initial learning rate at le — 4.

Evaluation Metric: To make a fair comparison with other
models, we follow the same evaluation metric as earlier works.
Accuracy (Acc.) is often used to assess the proportion of cor-
rect predictions a model makes on the test dataset. Its metric
is based on a confusion matrix and involves calculations of TP
(true positive), TN (true negative), FP (false positive), and FN
(false negative).

B. Ablation Experiments

In this section, we first verify the role of each component
(i.e., the Fusion-stage, Interaction-stage, and Integration-stage)
of the backbone network through ablation experiments under
both fully supervised and weakly supervised settings, and the
experimental results are shown in Table I. For the sake of fairness
and reliability of the results, we compare reproducible models,
including the recent SOTA model CMBS. We use “w/0” and
“w/” respectively to indicate that the component is removed
or used during the experiment. Firstly, the AGVA, Bi-LSTM,
and Self-Attention components of the Fusion-stage all make
important contributions to the model performance, which to-
gether improve the model performance by 6.4% (fully super-
vised) and 6.0% (weakly supervised). In particular, among the
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TABLE III
ABLATION EXPERIMENTS OF CML TASK ON AVE DATASET

Method A2V V2A Average
Acc.(%)  Acc(%)  Acc.(%)

Fusion-stage

w/o Fusion-stage 51.8 53.6 52.7

w/o AGVA 53.1 552 542

w/o Bi-LSTM 59.7 61.3 60.5

w/o Self-Att. 56.8 57.1 57.0

Interaction-stage

w/o SBI 52.5 534 53.0

CCLN(ours) 63.3 64.4 63.9

“W/0” and “W/” indicates that the module is removed or used.

three components of the Fusion-stage, AGVA plays a relatively
greater role. Secondly, the application of the Interaction-stage
(SBI module) improves the model performance by about 4%
(4.9%/tully supervised, 3.6%/weakly supervised). Finally, the
Integration-stage (FEE module) can achieve an extra 3% gain in
model performance (3.6%/fully supervised, 3.4%/weakly super-
vised). According to the results, the contribution of Fusion-stage
is relatively higher, which may be due to the introduction of new
noise in the process of cross-modal information interaction and
integration. Therefore, the weights of the three stages need to
find an optimal balance point to minimize the impact of noise.
Although the role of the three stages of audio-visual information
processing is different, we demonstrated their positive impact on
model performance by ablation experiments.

Corresponding to the structural exploration of the model
contrastive branch in Section III (shown in Fig. 5), we verify
the rationality of the “AV+V” mode with ablation experiments.
From the results in Table II, we can conclude: (1) Compared with
the fusion-based mode (“AV” mode), the model performance of
the “AV+V” mode are improved by 1.7% (fully supervised) and
1.5% (weakly supervised), which indicates that the two-branch
structure framework can effectively reduce the noise caused by
the fusion-based framework; (2) From the results of “AV+V”” and
“AV+A” modes, the visual modality has a greater positive effect
on model performance than the audio modality; (3) The results
of the “AV+V+A” mode are not optimal, combined with the lim-
ited performance improvement of the “AV+A” mode, which may
be caused by the audio modality is more sensitive to noise. Ac-
cording to the experimental results, we finally chose the “AV+V”
mode as the branch structure of CCLN.

Similarly, we conduct ablation experiments on various com-
ponents of our model for the cross-modality localization task,
and Table III presents the experimental results. Unlike the fully
supervised and weakly supervised audio-visual event localiza-
tion task, where boundaries are determined by matching pre-
dicted labels of the query modality with ground truth labels of
the given modality, the CML task calculates the distance be-
tween predicted labels of the query modality and ground truth
labels of the given modality to establish matching boundaries.
Therefore, we removed the FEE module from the CCLN model.
As shown in Table III, when the Interaction-stage design is re-
moved from the CCLN model, the overall model performance
decreases by 10.9% (from 63.9% to 53.0%). Similarly, when
the Fusion-stage design is removed from the CCLN model, the
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overall model performance decreases by 11.2% (from 63.9% to
52.7%). The results of the ablation experiments once again con-
firm the significance of cross-modal fine-grained fusion design
in audio-visual event localization tasks.

C. Parameter Sensitivity Experiments

In our model, the hyperparameter 7 in the SBI module is
an important variable that regulates the degree of audio-visual
correlation. The experimental results of 7 with 0.01 intervals
between 0.01 and 0.10 are shown in Table IV. We find that the
model accuracy fluctuates little in fully supervised and weakly
supervised settings. As the value of 7 increases, it increases first
and then decreases, but the optimal value is different under dif-
ferent settings. This means that the degree of audio-visual corre-
lation is different for segment-level and video-level AVEL tasks.
Therefore, we end up choosing 7 = 0.05 in the fully supervised
setting and 7 = 0.06 in the weakly supervised setting. It is note-
worthy that in the CML task, we preserve the parameters when
the model achieves optimal accuracy under both “A2V” and
“V2A” settings. Consequently, we solely conduct the parameter
sensitivity experiment for “A2V” and selected 7 = 0.05.

D. Comparison Experiments

We compare our model CCLN with the baseline AGVA [19]
and the recent state-of-the-art (SOTA) models (all results are
listed in Table V). Our model exceeds the accuracy results of ex-
isting models (79.9% in the fully supervised setting, 75.2% in the
weakly supervised setting). In both fully supervised and weakly
supervised settings, our model outperforms the baseline AGVA
by 11.3% and 8.5%. Compared to the recent SOTA models, our
CCLN exhibits a performance improvement of 0.4% over the
SRMN [32] model in the fully supervised setting and 1.0% over
the CMBS [20] model in the weakly supervised setting. Note
that by designing the information processing, our model outper-
forms AV-Trans with more parameters (exceeds 3.1% for fully
supervised and 5.0% for weakly supervised).

Fig. 8 shows the superior performance of our model in another
form. It is noteworthy that all results in the figure are reproduced
using the original code provided in the papers. Compared with
AVGA (the baseline), our model accuracy exceeds its accuracy
in 22 categories and approaches it in 4 categories. Particularly,
in the “cat” category, our model accuracy outperforms the base-
line by 39.4% (from 33.3% to 72.7%). Compared with CMBS
(the latest SOTA model), our model accuracy exceeds its accu-
racy in 18 categories and approaches it in 2 categories. In the
“car” category, we achieve the maximum accuracy advantage
of 14.3% (from 78.9% to 93.2%). Experimental results verify
that the overall performance of our model is better than other
models. In addition, the accuracy of the “background” category
of the three models is about 50% (49.4%/AGVA, 53.4%/CMBS,
56.4%/CCLN), which confirms the complexity of background
noise and the necessity of considering it.

Table VI presents the comparative experimental results of our
CCLN model with other SOTA models on the CML task of the
AVE dataset. In the CML task of AVEL, only when the predicted
boundaries exactly match the ground truth are they considered
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TABLE IV
EFFECTS OF VARIOUS VALUES OF HYPERPARAMETER 7 ON OUR MODEL ACCURACY

T 0.01 002 003 004 005 006 007 008 009 0.10

Fully Supervised Acc.(%) 784 783 787 79.0 799 791 793 78.6 788 785

Weakly Supervised Acc.(%) 728 732 731 741 743 752 745 744 73.0 739
Cross-modality (A2V) Acc.(%) 61.8 622 626 625 633 630 624 627 619 623

The results of the three training settings are shown.

1.0 = AGVA
= CMBS
= CCLN(ours)

0.8
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Fig. 8.

Bar chart comparison of model accuracy on AVE dataset in the fully supervised setting. Each set of bar charts depicts the accuracy of AGVA (the

baseline), CMBS, and our model CCLN for each audio-visual event. We show the accuracy differences between the three models across 29 event categories
(including “background”). The results of the CMBS model are obtained from our reproduction of their code.

TABLE V
COMPARISON RESULTS OF OUR MODEL WITH THE SOTA MODELS FOR
AUDIO-VISUAL EVENT LOCALIZATION ON THE AVE DATASET IN FULLY
SUPERVISED AND WEAKLY SUPERVISED SETTINGS

Method Fully Sup.  Weakly Sup.
Acc.(%) Acc.(%)

AGVA [58] 68.6 66.7
AVSDN [24] 72.6 67.3
DAM w/o Matching [27] 70.7 -
DAM w /Self-Matching [27] 74.2 -
DAM w/Cross-Matching [27] 74.5 -
CMAN [29] 73.3 70.4
ASA [59] 74.8 68.9
AVIN [28] 75.2 69.4
CSEA [44] 72.9 66.4
CSPA [44] 74.1 68.0
CSPEA [44] 76.5 70.2
AV-Trans [26] 76.8 70.2
CMRAN w/o CMRA [23] 76.1 72.0
CMRAN w/Self-Att. [23] 76.4 72.5
CMRAN w/Co-Att. [23] 76.6 722
CMRAN w/CMRA-F [23] 75.6 71.7
CMRAN w/CMRA [23] 77.4 72.9
PSP [30] 77.8 73.5
CMBS [20] 79.3 74.2
CAPB [21] 79.3 -
SRMN [32] 79.5 -
CCLN(ours) 79.9 75.2

a correct matching; otherwise, it will be deemed an incorrect
matching. The percentage of correct matchings is utilized to as-
sess the accuracy performance of the model. In Table VI, we
respectively report the results for audio-to-vision (A2V) and
vision-to-audio (V2A), while “Average” computes the mean ac-
curacy for both settings. Compared to the baseline model AGVA,
our CCLN model exhibits an accuracy improvement of 18.5%
(A2V) and 28.8% (V2A), respectively. In comparison to the

TABLE VI
COMPARISON RESULTS OF OUR MODEL WITH THE SOTA MODELS FOR CML
ON THE AVE DATASET

Method A2V V2A Average
Acc. (%)  Acc.(%)  Acc.(%)
AGVA [58] 44.8 35.6 40.2
DAM w/RNN [27] 47.9 41.8 449
DAM w/Avg. Pooling [27] 46.1 46.0 46.1
DAM w/Max Pooling [27] 46.2 45.8 46.0
DAM w/LSTM [27] 48.1 43.5 45.8
DAM w/GRU [27] 474 45.5 46.5
DAM w/Bi-LSTM [27] 48.1 442 46.2
DAM w/Self-Att. [27] 48.5 47.1 47.8
CSPA [44] 39.3 333 36.3
CSEA [44] 48.5 50.7 49.6
CSPEA [44] 49.0 51.0 50.0
SRMN [32] 51.6 53.1 524
CAPB [21] 51.9 53.4 52.6
CCLN(ours) 63.3 64.4 63.9

“A2v”: visual localization from audio query; “v2a”™:

“average™: averaged accuracy of a2v and v2a.

audio localization from visual query;

latest model CAPB, our CCLN model shows an accuracy en-
hancement of 11.4% (A2V) and 11.0% (V2A). This is primarily
attributed to the cross-modal representation advantage brought
by the dual-branch contrastive learning framework we designed.

E. Qualitative Analysis

Fig. 9 shows two examples of qualitative analysis of our
model. For comparison purposes, the first row of each example
is a waveform image (divided into 10 segments) of the audio
track with event labels, and the third row shows the ground truth
(GT) frames with labels (red boxes represent the event labels).
In addition, the attention heat maps of the baseline (the second
row) and our model (the fourth row) are given, marking the
localized event frames with blue and yellow boxes respectively.
Both examples (“Goat” and “Train horn”) contain background
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Fig. 9.

Qualitative visual analysis of our model on two event examples (“Goat” and “Train horn”). Each example is divided into 10 segments, the first row of

each example is a waveform image of the audio track with event labels, and the third row is visual images with the ground truth (GT) labels (the red boxes represent
the event labels), and the second and fourth rows are the attention heat maps of baseline and our model (the predicted event location frames are marked with blue

and yellow boxes, respectively).
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(a) Qualitative analysis results of the sample “Az3L_C6IANO0.mp4” .
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(b) Qualitative analysis results of the sample “1zhxj3rpBcU.mp4”.

(Matched)

Fig. 10. Qualitative results of our model on the CML task. Each example
comprises two tasks: audio-to-vision (A2V) and vision-to-audio (V2A), both
corresponding to the same ground truth. Green dashed boxes indicate segments
where the predicted location of the query sequence matches the ground truth in
the input sequence, while red dashed boxes indicate mismatches.

noise, and the second example in particular has the problem of
dynamic visual multi-targets and multi-sound sources, which
increases the difficulty of AVEL.

After qualitative analysis of the results in Fig. 9, we can draw
the following conclusions: (1) The audio-guided visual attention
(AGVA) employed alone in the baseline makes attention more
sensitive to noise (the fourth frame of the “Goat” event, the
eighth frame of the “Train horn” event). In other words, AGVA
achieves rough cross-modal audio-visual correlation, while the
noise reduction mechanism considered in our model achieves
better results. (2) The attention effect of our model has a wider
receptive field than the baseline (the heat area covers a larger por-
tion of the visual target) and more accurate object localization
(the heat area is closer to the visual object contour). Therefore,
our model can effectively capture hidden intra and inter-modal
correlations, and the refined selection of the SBI module not
only expands the receptive domain but also improves the model
accuracy. Of course, our model still has much room for im-
provement in semantic audio-visual understanding against back-
ground noise. For example, our model and baseline mislocate
the seventh and ninth frames respectively, in the second example
in Fig. 9. This is because, in the second example, the eighth and
ninth frames are not very different in audio or visual modality,
making it difficult to determine the boundaries of the audio-
visual event. In addition, the richer background noise in the sec-
ond example poses a greater challenge to model performance.

In the qualitative analysis of the cross-modality localization
task, we perform visualizations of the audio-to-vision (A2V)

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2025 at 13:05:56 UTC from IEEE Xplore. Restrictions apply.



2664

and vision-to-audio (V2A) tasks on the same test samples.
In Fig. 10, green dashed boxes indicate segments where the
predicted location of the query sequence matches the ground
truth in the input sequence, while red dashed boxes indicate
mismatches. In Fig. 10(a), despite the varying visual content,
our model accurately localizes the corresponding audio query
sequence. Similarly, our model successfully localizes the cor-
responding visual query sequence within the noisy audio input
sequence. Fig. 10(b) illustrates a challenging case analysis of
our model. Taking a 2-second visual segment labeled as “Bus”
as the query, our model accurately matches the corresponding
audio-visual event boundaries within the given audio input se-
quence. Conversely, when taking a 2-second audio segment la-
beled as “Bus” as the query, our model encounters mismatched
results: the ground truth event boundaries for this sample are
from the 3 rd to the 5th second, whereas our model’s matched
event boundaries span from the 4th to the 6th second. However,
from the visualization results, it is evident that there is a high de-
gree of similarity both the visual and audio modalities from the
3 rd to the 6th second. Therefore, distinguishing the audio-visual
event boundaries between 3 to 5 seconds is a significant chal-
lenge. The continuity of visual content within the sample and
the presence of background noise in the audio severely disrupt
the model’s ability to determine audio-visual event boundaries.

VI. CONCLUSION

We propose a novel dual-branch cross-modal contrastive
learning framework for AVEL. In the backbone network of the
framework, we extract and validate the crucial roles of the fu-
sion, interaction, and integration stages of audio-visual signals
to explore and elucidate the mechanism of audio-visual fusion,
providing a paradigm for model algorithm design. Specifically,
we design a pluggable SBI module to integrate visual informa-
tion, audio information, and audio-visual fusion information,
and filter associated semantics through gate thresholding to fur-
ther globally exploit strongly associated audio-visual events; we
design an FEE module to integrate audio-visual signals at the
event level, capturing event boundaries and enhancing the sep-
aration between foreground and background events. To obtain
high-quality event representations in the backbone network of
audio-visual fusion, we introduce a visual branch as a contrastive
branch and design a weak-label-guided supervised contrastive
loss function to enhance the model’s representational capacity.
Extensive experiments on public AVE datasets demonstrate the
effectiveness of the proposed model. The results also indicate
that by optimizing different stages of cross-modal information
processing, the model’s performance can surpass that of com-
plex models with large-scale parameters.

REFERENCES

[1] L. A. Ross, D. Saint-Amour, V. M. Leavitt, D. C. Javitt, and J. J. Foxe,
“Do you see what i am saying? Exploring visual enhancement of speech
comprehension in noisy environments,” Cereb. Cortex, vol. 17, no. 5,
pp. 1147-1153, 2007.

[2] M. C. Smith, Sensory Integration: Theory and Practice. Philadelphia, PE,
USA: FA Davis, 2019.

[3]

[4]

(5]

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

J. Jiang, A. Fares, and S.-H. Zhong, “A brain-media deep framework to-
wards seeing imaginations inside brains,” I[EEE Trans. Multimedia, vol. 23,
pp. 1454-1465, 2021.

W. Zhu, X. Wang, and W. Gao, “Multimedia intelligence: When multime-
dia meets artificial intelligence,” IEEE Trans. Multimedia, vol. 22, no. 7,
pp. 1823-1835, Jul. 2020.

C. Sheng, X. Zhu, H. Xu, M. Pietikdinen, and L. Liu, “Adaptive semantic-
spatio-temporal graph convolutional network for lip reading,” IEEE Trans.
Multimedia, vol. 24, pp. 3545-3557, 2022.

C. Sheng et al., “Importance-aware information bottleneck learn-
ing paradigm for lip reading,” IEEE Trans. Multimedia, vol. 25,
pp. 6563-6574, 2023.

C. Bilen, G. Ferroni, F. Tuveri, J. Azcarreta, and S. Krstulovié, “A frame-
work for the robust evaluation of sound event detection,” in Proc. 2020
IEEE Int. Conf. Acoust., Speech Signal Process., 2020, pp. 61-65.

D. Gong et al., “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” in
Proc. 2019 IEEE/CVF Int. Conf. Computer Vis., 2020, pp. 1705-1714.
D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autore-
gression for novelty detection,” in Proc. 2019 IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 481-490.

P. Wu et al., “Not only look, but also listen: Learning multimodal violence
detection under weak supervision,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp- 322-339.

H. Zhou, Z. Liu, X. Xu, P. Luo, and X. Wang, “Vision-infused deep
audio inpainting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 283-292.

W. Nie, M. Ren, J. Nie, and S. Zhao, “C-GCN: Correlation based graph
convolutional network for audio-video emotion recognition,” IEEE Trans.
Multimedia, vol. 23, pp. 3793-3804, 2021.

M. Ren, X. Huang, W. Li, D. Song, and W. Nie, “LR-GCN: Latent
relation-aware graph convolutional network for conversational emotion
recognition,” IEEE Trans. Multimedia, vol. 24, pp. 44224432, 2022.

R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in Proc. IEEE
Int. Conf. Computer Vis., 2017, pp. 609-617.

T. Afouras, Y. M. Asano, F. Fagan, A. Vedaldi, and F. Metze,
“Self-supervised object detection from audio-visual correspondence,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 10575-10586.

P. Morgado, N. Vasconcelos, and I. Misra, “Audio-visual instance discrim-
ination with cross-modal agreement,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2021, pp. 12475-12486.

P. Morgado, I. Misra, and N. Vasconcelos, “Robust audio-visual instance
discrimination,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 12934-12945.

A. Piergiovanni, A. Angelova, and M. S. Ryoo, “Evolving losses for unsu-
pervised video representation learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 133-142.

Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event local-
ization in unconstrained videos,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 247-263.

Y. Xia and Z. Zhao, “Cross-modal background suppression for audio-
visual event localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 19989-19998.

H. Wang, Z.-J. Zha, L. Li, X. Chen, and J. Luo, “Context-aware proposal—
boundary network with structural consistency for audiovisual event lo-
calization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11,
pp. 15872-15882, Nov. 2024.

J. F. Gemmeke et al., “Audio set: An ontology and human-labeled dataset
for audio events,” in Proc. 2017 IEEE Int. Conf. Acoust., Speech Signal
Process., 2017, pp. 776-780.

H. Xu, R. Zeng, Q. Wu, M. Tan, and C. Gan, “Cross-modal relation-aware
networks for audio-visual event localization,” in Proc. 28th ACM Int. Conf.
Multimedia, 2020, pp. 3893-3901.

Y.-B. Lin, Y.-J. Li, and Y.-C. F. Wang, “Dual-modality seq2seq network
for audio-visual event localization,” in Proc. [CASSP 2019-2019 IEEE Int.
Conf. Acoust., Speech Signal Process., 2019, pp. 2002-2006.

J. Ramaswamy and S. Das, “See the sound, hear the pixels,” in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis., Mar. 2020, pp. 2959-2968.
Y.-B. Lin and Y.-C. F. Wang, “Audiovisual transformer with instance at-
tention for audio-visual event localization,” in Proc. Asian Conf. Comput.
Vis., Nov. 2020, pp. 274-290.

Y. Wu, L. Zhu, Y. Yan, and Y. Yang, “Dual attention matching for audio-
visual event localization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 6292-6300.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2025 at 13:05:56 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: LISTEN WITH SEEING: CROSS-MODAL CONTRASTIVE LEARNING FOR AUDIO-VISUAL EVENT LOCALIZATION

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2025 at 13:05:56 UTC from IEEE Xplore. Restrictions apply.

J. Ramaswamy, “What makes the sound?: A dual-modality interacting
network for audio-visual event localization,” in Proc. 2020 IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 4372-4376.

H. Xuan, Z. Zhang, S. Chen, J. Yang, and Y. Yan, “Cross-modal atten-
tion network for temporal inconsistent audio-visual event localization,” in
Assoc. Advance. Artif. Intell. (AAAI), 2020, pp. 279-286.

J. Zhou, L. Zheng, Y. Zhong, S. Hao, and M. Wang, “Positive sample
propagation along the audio-visual event line,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2021, pp. 8436-8444.

C. Xue, X. Zhong, M. Cai, H. Chen, and W. Wang, “Audio-visual event
localization by learning spatial and semantic co-attention,” IEEE Trans.
Multimedia, vol. 25, pp. 418-429, 2023.

H. Wang, Z.-J. Zha, L. Li, X. Chen, and J. Luo, “Semantic and relation
modulation for audio-visual event localization,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 6, pp. 7711-7725, Jun. 2023.

L. Kratz and K. Nishino, “Anomaly detection in extremely crowded scenes
using spatio-temporal motion pattern models,” in Proc. 2009 IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 1446-1453.

K. W. Cheng, Y. T. Chen, and W. H. Fang, “Video anomaly detection and
localization using hierarchical feature representation and gaussian process
regression,” in Proc. 2015 IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 2909-2917.

W. Luo, L. Wen, and S. Gao, “A revisit of sparse coding based anomaly
detection in stacked RNN framework,” in Proc. 2017 IEEE Int. Conf.
Comput. Vis., 2017, pp. 341-349.

R. T. Ionescu, F. S. Khan, M.-I. Georgescu, and L. Shao, “Object-
centric auto-encoders and dummy anomalies for abnormal event detec-
tion in video,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2019, pp. 7834-7843.

M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversarially learned
one-class classifier for novelty detection,” in Proc. 2018 IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 3379-3388.

J. X. Zhong et al., “Graph convolutional label noise cleaner: Train a plug-
and-play action classifier for anomaly detection,” in Proc. 2019 IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1237-1246.

W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in
surveillance videos,” in Proc. 2018 IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 6479-6488.

Y. Zhu and S. Newsam, “Motion-aware feature for improved video
anomaly detection,” 2019, arXiv:1907.10211.

P. Wu, W. Wang, F. Chang, C. Liu, and B. Wang, “DSS-Net: Dynamic
self-supervised network for video anomaly detection,” IEEE Trans. Mul-
timedia, vol. 26, pp. 2124-2136, 2024.

C.Huang, Q. Xu, Y. Wang, Y. Wang, and Y. Zhang, “Self-supervised mask-
ing for unsupervised anomaly detection and localization,” IEEE Trans.
Multimedia, vol. 25, pp. 44264438, 2023.

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]
(53]
[54]
[55]

[56]

[57]

[58]

[59]

2665

X. Min, G. Zhai, J. Zhou, M. C. Farias, and A. C. Bovik, “Study of subjec-
tive and objective quality assessment of audio-visual signals,” IEEE Trans.
Image Process., vol. 29, pp. 6054-6068, 2020.

C. Xue, X. Zhong, M. Cai, H. Chen, and W. Wang, “Audio-visual event
localization by learning spatial and semantic co-attention,” IEEE Trans.
Multimedia, vol. 25, pp. 418-429, 2023.

S. Liu et al., “Dense modality interaction network for audio-visual event
localization,” IEEE Trans. Multimedia, vol. 25, pp. 2734-2748, 2022.

F. Feng, Y. Ming, N. Hu, H. Yu, and Y. Liu, “CSS-Net: A consistent seg-
ment selection network for audio-visual event localization,” IEEE Trans.
Multimedia, vol. 26, pp. 701-713, 2024.

A. Owens and A. A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 631-648.

A.Zheng et al., “Adversarial-metric learning for audio-visual cross-modal
matching,” IEEE Trans. Multimedia, vol. 24, pp. 338-351, 2022.

O. Henaff, “Data-efficient image recognition with contrastive predictive
coding,” in Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 4182-4192.

Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in Proc.
Eur. Conf. Comput. Vis., Glasgow, U.K.: Springer, 2020, pp. 776-794.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. 37th Int. Conf.
Mach. Learn., ser. Proc. Mach. Learn. Res., H. D. IIl and A. Singh, Eds.,
PMLR, Jul. 2020, vol. 119, pp. 1597-1607. [Online]. Available: https:
/Iproceedings.mlr.press/v119/chen20j.html

K. Kamnitsas et al., “Semi-supervised learning via compact latent space
clustering,” in Proc. 2018 Int. Conf. Mach. Learn., 2018, pp. 2459-2468.
P. Khosla et al., “Supervised contrastive learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, vol. 33, pp. 18661-18673.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, vol. 30.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, 2017.

S. Hershey et al., “CNN architectures for large-scale audio classification,”
in Proc. 2017 IEEE Int. Conf. Acoust., Speech Signal Process., 2017,
pp. 131-135.

Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event localization
in unconstrained videos,” in Proc. Eur. Conf. Comput. Vis., Sep. 2018,
pp. 252-268.

J. Ramaswamy and S. Das, “See the sound, hear the pixels,” in Proc. 2020
1EEE Winter Conf. Appl. Comput. Vis., 2020, pp. 2959-2968.


https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


