
Nested Named Entity Recognition as Latent Lexicalized Constituency
Parsing

Anonymous ACL submission

Abstract
Nested named entity recognition (NER) has001
been receiving increasing attention. Recently,002
Fu et al. (2020) adapt a span-based con-003
stituency parser to tackle nested NER. They004
treat nested entities as partially-observed con-005
stituency trees and propose the masked inside006
algorithm for partial marginalization. How-007
ever, their method cannot leverage entity008
heads, which have been shown useful in en-009
tity mention detection and entity typing. In010
this work, we resort to more expressive struc-011
tures, lexicalized constituency trees in which012
constituents are annotated by headwords, to013
model nested entities. We leverage the Eisner-014
Satta algorithm to perform partial marginaliza-015
tion and inference efficiently. In addition, we016
propose to use (1) a two-stage strategy (2) a017
head regularization loss and (3) a head-aware018
labeling loss in order to enhance the perfor-019
mance. We make a thorough ablation study020
to investigate the functionality of each com-021
ponent. Experimentally, our method achieves022
the state-of-the-art performance on ACE2004,023
ACE2005 and NNE, and competitive perfor-024
mance on GENIA, and meanwhile has a fast in-025
ference speed. Our code will be publicly avail-026
able at: github.com/xxx.027

1 Introduction028

Named Entity Recognition (NER) is a fundamen-029

tal task in information extraction, playing an es-030

sential role in many downstream tasks. Nested031

NER brings more flexibility than flat NER by al-032

lowing nested structures, thereby enabling more033

fine-grained meaning representations and broader034

applications (Byrne, 2007; Dai, 2018). Traditional035

sequence-labeling-based models have achieved re-036

markable performance on flat NER but fail to han-037

dle nested entities. To resolve this problem, there038

are many layer-based methods (Ju et al., 2018;039

Fisher and Vlachos, 2019; Shibuya and Hovy,040

2020; Wang et al., 2020, 2021) proposed to rec-041

ognize entities layer-by-layer in bottom-up or top-042

down manners. However, they suffer from the error 043

propagation issue due to the cascade decoding. 044

Recently, Fu et al. (2020) adapt a span-based 045

constituency parser to tackle nested NER, treating 046

annotated entity spans as a partially-observed con- 047

stituency tree and marginalizing latent spans out for 048

training. Their parsing-based method, namely PO- 049

TreeCRF, admits global exact inference thanks to 050

the CYK algorithm (Cocke, 1969; Younger, 1967; 051

Kasami, 1965), thereby eliminating the error prop- 052

agation problem. However, their method does not 053

consider entity heads, which provide important 054

clues for entity mention detection (Lin et al., 2019; 055

Zhang et al., 2020d) and entity typing (Katiyar and 056

Cardie, 2018; Choi et al., 2018; Chen et al., 2021). 057

For example, University and California are strong 058

clues of the existence of ORGEDU and STATE en- 059

tities in Fig.1. Motivated by this and inspired by 060

head-driven phrase structures, Lin et al. (2019) pro- 061

pose the Anchor-Region Network (ARN), which 062

identifies all entity heads firstly and then predicts 063

the boundary and type of entities governed by each 064

entity head. However, their method is heuristic 065

and greedy, suffering from the error propagation 066

problem as well. 067

Our main goal in this work is to obtain the 068

best of two worlds: proposing a probabilistically 069

principled method that enables exact global infer- 070

ence like Fu et al. (2020), meanwhile taking en- 071

tity heads into accounts like Lin et al. (2019). To 072

enable exact global inference, we also view ob- 073

served entities as partially-observed trees. Since 074

constituency trees cannot model entity heads, we 075

resort to lexicalized trees, in which constituents 076

are annotated with headwords. A lexicalized 077

tree embeds a constituency tree and a depen- 078

dency tree (Gaifman, 1965), and lexicalized con- 079

stituency parsing can thus be viewed as joint depen- 080

dency and constituency parsing (Eisner and Satta, 081

1999; Collins, 2003). Fig.1 illustrates an exam- 082

ple lexicalized tree. Joint dependency and con- 083

1

github.com/xxx

[Bickford]

[Bickford]

[Bickford]

Reginold Bickford ,

[researcher]

[researcher]

a researcher

[university]

at

[university]

[university]

[university]

the university

[California]

of California

[Diego]

at

[Diego]

San Diego
PER NAME STATE CITY

PER ORGEDU
Figure 1: An example sentence with a compatible latent lexicalized constituency tree (top) and observed entities
(down). All constituents are annotated by headwords with [·] and we omit the constituent labels. The dotted frame
shows an example of inherited head (blue) and non-inherited head (red). We can draw a dependency arc from the
inherited head to the non-inherited head. For example, University→ California. Hence a lexicalized constituency
tree embeds a constituency tree and a dependency tree.

stituency parsing has been shown to outperform084

standalone constituency parsing (Zhou and Zhao,085

2019; Fernández-González and Gómez-Rodríguez,086

2020) possibly because modeling dependencies be-087

tween headwords helps predict constituents cor-088

rectly. Hence, in the context of nested NER, we089

have reasons to believe that modeling latent lex-090

icalized constituency trees would bring improve-091

ment in predicting entities over modeling latent092

constituency trees, and we verify this in experi-093

ments.094

When using a lexicalized constituency tree for095

nested NER, only part of unlexicalized spans, i.e.,096

entities, are observed, so we need to marginalize097

latent spans and dependency arcs out for training.098

Inspired by the masked inside algorithm of Fu et al.099

(2020), we propose a masked version of the Eisner-100

Satta algorithm (Eisner and Satta, 1999), a fast101

lexicalized constituency parsing algorithm, to per-102

form partial marginalization. We also adopt the103

Eisner-Satta algorithm for fast inference.104

Besides the difference in parsing formalism and105

algorithms, our work also differs from the work106

of Fu et al. (2020) and Lin et al. (2019) in the107

following three aspects. First, inspired by Zhang108

et al. (2020a), we adopt a two-stage parsing strat-109

egy, i.e., we first predict an unlabeled tree and then110

label the predicted constituents, instead of using111

the one-stage parsing strategy of PO-TreeCRF. We112

show that two-stage parsing can improve the per-113

formance of both PO-TreeCRF and our proposed114

method. Second, Lin et al. (2019) observe that115

each entity head governs only one entity span in116

most cases, so they impose a hard constraint of117

that during learning and inference, which is poten-118

tially harmful since the constraint is not always 119

satisfied. Instead, we add a soft KL penalty term 120

to encourage satisfaction of the constraint, which 121

is reminiscent of posterior regularization (Ganchev 122

et al., 2010; Zhang et al., 2017). Third, consider- 123

ing that gold entity heads are not given, Lin et al. 124

(2019) propose a “bag loss” for entity boundary de- 125

tection and labeling. However, this loss is heuristic 126

and brings an additional hyperparameter, to which 127

the final performance is sensitive. In contrast, en- 128

tity boundary detection is learned in the first stage 129

of our method, and in the second stage, we propose 130

a more principled labeling loss based on expec- 131

tations (i.e., marginal likelihoods) of all possible 132

entity heads within gold entity spans, which can be 133

estimated efficiently and does not introduce new 134

hyperparameters. 135

We conduct experiments on four benchmark 136

datasets, showing that our model achieves state-of- 137

the-art results on ACE2004, ACE2005 and NNE, 138

and competitive results on GENIA, validating the 139

effectiveness of our method. 140

2 Preliminary 141

2.1 One-stage and Two-stage Parsing 142

A labeled constituency tree can be represented as 143

a rank-3 binary tensor T where Tijk = 1 if there 144

is a span from the i-th word to the j-th word with 145

label k in the tree and Tijk = 0 otherwise. We as- 146

sume the 0-th label is preserved for ∅ (i.e., no label) 147

without loss of generality. Similarly, an unlabeled 148

constituency tree can be represented as a binary ma- 149

trix T ′. One-stage span-based constituency parsers 150

decompose the score of a labeled constituency tree 151

2

into the scores of constituents sijk:152

s(T) =
∑
ijk

Tijksijk153

They use the CYK algorithm to recover the optimal154

labeled tree. In contrast, two-stage constituency155

parsers score unlabeled trees and constituent labels156

independently. They decompose the score of an157

unlabeled constituency tree into the scores of spans158

si,j :159

s(T ′) =
∑
ij

T ′ijsij160

They use the CYK algorithm to recover the optimal161

unlabeled tree in the first stage and then use a162

separate component to label spans, including the163

∅ label, in the second stage. Zhang et al. (2020c)164

show that adopting the two-stage parsing strategy165

leads to a better result in constituency parsing.166

2.2 PO-TreeCRF167

PO-TreeCRF (Fu et al., 2020) adapts a one-stage168

constituency parser to tackle nested NER. It views169

the set of entities y := {(i, j, k), . . . } as observed170

parts of a constituency tree T where (i, j) is the171

unlabeled entity span and k is the entity label. We172

refer to other constituents as latent spans. A labeled173

tree T is compatible with y if Tijk = 1 for any174

entity (i, j, k) ∈ y and Tij0 = 1 for all latent spans175

(i, j) (recall that the 0-th label is ∅). Define set176

T̃ (y) as all compatible trees with y. PO-TreeCRF177

maximizes the total likelihood of all compatible178

trees:179

s(y) = log
∑

T∈T̃ (y)

exp(s(T))180

log p(y) = s(y)− logZ181

where logZ is the log-partition function. The diffi-182

culty is how to estimate s(y) efficiently. Fu et al.183

(2020) propose the masked inside algorithm to184

tackle this, in which they set all incompatible span185

(overlapped but not nested with any of y) values186

to negative infinity before running the inside algo-187

rithm. We refer readers to their paper for more188

details.189

2.3 Lexicalized Parsing190

Figure 1 shows an example lexicalized constituency191

tree. We omit all constituent labels for brevity.192

Each constituent is annotated by a headword. A193

non-leaf constituent span consists of two adjacent194

sub-constituents and copies the headword from one 195

of them. We refer to the copied headword as the 196

inherited head and the other headword as the non- 197

inherited head. We can draw a dependency arc 198

from the inherited head to the non-inherited head. 199

A dependency tree can be obtained by reading off 200

all headwords recursively, and hence in this view, a 201

lexicalized constituency tree embeds a dependency 202

tree and a constituency tree. 203

The O(n4) Eisner-Satta algorithm (Eisner and 204

Satta, 1999) can be used to calculate the partition 205

function or obtain the best parse if we decompose 206

the score of a lexicalized constituency tree into 207

scores of spans and arcs. We refer interested read- 208

ers to Appendix A for details of the Eisner-Satta 209

algorithm. 210

3 Model 211

Notations Given a length-n sentence x = 212

x0, ..., xn−1 with (gold) entity set y := 213

{(i, j,Ω), . . . }, where (i, j) is an unlabeled en- 214

tity span and Ω is the set of entity labels (there 215

could be multiple labels for one entity). We de- 216

note ỹ as the set of unlabeled entity spans, i.e., 217

ỹ := {(i, j), . . . }. 218

3.1 Two-stage Strategy and Training Loss 219

The first stage always predicts 2n− 1 spans1 and 220

most of them are not entities. Hence naively adopt- 221

ing the two-stage parsing strategy to nested NER 222

suffers from the imbalanced classification problem 223

when predicting labels in the second stage because 224

the ∅ label would dominate all the entity labels. 225

To bypass this problem, we modify unlabeled con- 226

stituency trees by assigning 0-1 labels to unlabeled 227

constituency trees, where 0 stands for latent spans 228

and 1 stands for entities. It transfers the burden of 229

identifying non-entities to the first stage, in which 230

the binary classification problem is much more bal- 231

anced and easier to tackle. The total training loss 232

can be decomposed into: 233

L = Ltree + Llabel + Lreg 234

where Ltree is a 0-1 labeled constituency tree loss, 235

Llabel is a head-aware labeling loss and Lreg is a 236

regularization loss based on the KL divergence. 237

3.2 Stage I: Structure Module 238

Encoding and scoring We feed the sentence into 239

the BERT encoder (Devlin et al., 2019), apply 240

1A binary (lexicalized) constituency tree consists of exactly
2n− 1 constituents.

3

scalar mixing (Peters et al., 2018) to the last four241

layers of BERT, and apply mean-pooling to all sub-242

word embeddings to obtain word-level contextual243

embedding. We concatenate static word embed-244

ding, e.g., GloVe (Pennington et al., 2014), to the245

contextual embedding to obtain the word repre-246

sentation a = a0, .., an−1. Then we feed a into247

a three-layer bidirectional LSTM (Hochreiter and248

Schmidhuber, 1997) network (BiLSTM):249

. . . , (
−→
bi ,
←−
bi), · · · = BiLSTM([. . . , ai, . . .])250

Next, we use deep biaffine scoring functions (Dozat251

and Manning, 2017) to calculate span scores sc ∈252

Rn×n×2 and arc scores sd ∈ Rn×n:253

e
c,in/out
i = MLPc,in/out([

−→
bi ;
←−−
bi+1])254

e
d,in/out
i = MLPd,in/out([

−→
bi ;
←−
bi])255

scij = PN([ec,ini ; 1]TW c[ec,outj ; 1])256

sdij = PN([ed,ini ; 1]TW d[ed,outj ; 1]),257

where MLPs are multi-layer perceptrons that258

project embeddings into k-dimensional spaces;259

W c ∈ R(k+1)×2×(k+1),W d ∈ R(k+1)×(k+1) are260

trainable parameters; PN is Potential Normaliza-261

tion, which normalizes scores to follow unit Gaus-262

sian distributions and has been shown beneficial263

(Fu et al., 2020).264

Scores of trees A 0-1 labeled lexicalized con-265

stituency tree l embeds an unlabeled dependency266

tree d and a 0-1 labeled constituency tree c. The267

label set is {0, 1}, where 0 denotes latent spans and268

1 denotes entity spans. We use a binary rank-3 ten-269

sor C ∈ Rn×n×2 to represent c, where Cijk = 1 if270

and only if there is a span from xi to xj with label271

k in c; and a binary matrix D ∈ Rn×n to represent272

d, where Dij = 1 if and only if there is an arc from273

xi to xj in d. We define the score of l as :274

s(l) = s(c) + s(d)275

=
∑
ijk

Cijks
c
ijk +

∑
ij

Dijs
d
ij276

Structural tree loss We marginalize all latent277

spans and arcs out to define the loss:278

s(ỹ) = log
∑
T̃∈T̃

exp(s(T̃))279

Ltree = logZ − s(ỹ)280

where T̃ is the set of all compatible lexicalized281

trees whose constituents contain ỹ; logZ is the282

log-partition function that can be estimated by the 283

Eisner-Satta algorithm. For each compatible tree 284

T̃ ∈ T̃ , the 0-1 labels are assigned in accordance 285

with the entity spans in ỹ. We use a masked ver- 286

sion of the Eisner-Satta algorithm (Appendix A) to 287

estimate s(ỹ). 288

Regularization loss As previously discussed, en- 289

tity heads govern only one entity in most cases. But 290

imposing a hard constraint is sub-optimal because 291

there are also cases violating this constraint. Hence 292

we want to encourage the model to satisfy this 293

constraint in a soft manner. Inspired by posterior 294

regularization (Ganchev et al., 2010; Zhang et al., 295

2017), we build a constrained TreeCRF and mini- 296

mize the KL divergence between constrained and 297

original unconstrained TreeCRFs. The first prob- 298

lem is how to construct the constrained TreeCRF. 299

We propose to “hack” the forward pass (i.e., inside) 300

of the Eisner-Satta algorithm to achieve this: we 301

decrease the arc scores by a constant value (we typ- 302

ically set to 0.4) whenever the parent has already 303

governed an entity during computing the inside 304

values, so it discourages a head having several chil- 305

dren and thus governing several spans. We refer 306

readers to Appendix A for more details. The sec- 307

ond problem is how to optimize the KL divergence 308

efficiently for exponential numbers of trees. We 309

adopt the specific semiring designed to calculate 310

KL divergences between structured log-linear mod- 311

els (Li and Eisner, 2009) from the Torch-Struct 312

library (Rush, 2020) 2. The calculation of KL diver- 313

gence is fully differentiable and thus is amenable 314

to gradient-based optimization methods. It has the 315

same time complexity as the forward pass of the 316

Eisner-Satta algorithm. We denote the value of KL 317

divergence as Lreg. 318

3.3 Stage II: Labeling Module 319

To incorporate entity head information when label- 320

ing entity spans, we score the assignment of label 321

l ∈ L to a span (i, j) with head xk as follows: 322

e
l,in/out
i = MLPl,in/out([

−→
bi ;
←−−
bi+1]) 323

el,headi = MLPl,head([
−→
bi ;
←−
bi]) 324

slabelijkl = TriAff(el,ini , el,outj , el,headk), 325

where Triaff is the triaffine scoring function (Zhang 326

et al., 2020b); L is the set of all labels. We reuse 327

the encoder (BiLSTM) from Stage I. 328

2https://github.com/harvardnlp/
pytorch-struct/blob/master/torch_struct/
semirings/semirings.py

4

https://github.com/harvardnlp/pytorch-struct/blob/master/torch_struct/semirings/semirings.py
https://github.com/harvardnlp/pytorch-struct/blob/master/torch_struct/semirings/semirings.py
https://github.com/harvardnlp/pytorch-struct/blob/master/torch_struct/semirings/semirings.py

Nested named entities could have multiple labels.329

For instance, 7% entity spans in the NNE dataset330

(Ringland et al., 2019) have multiple labels. We331

use a multilabel loss introduced by Su (2020). For332

each (i, j,Ω) ∈ y, consider a potential head xk333

with i ≤ k ≤ j, we define the loss as:334

l(i, j, k,Ω) = log(1 +
∑

l∈L/Ω

exp(slabelijkl))

+ log(1 +
∑
l∈Ω

exp(−slabelijkl))

335

Since the gold entity heads are not given, we336

define the head-aware labeling loss based on ex-337

pectation over the headword for each entity span:338

Llabel =
∑

(i,j,Ω)∈y

∑
i≤k≤j

αijkl(i, j, k,Ω)339

where αijk is the marginal likelihood of xk being340

the headword of span (i, j) under the TreeCRF,341

which satisfies
∑

i≤k≤j αijk = 1 and can be esti-342

mated efficiently via the backward pass (i.e., back-343

propagation (Eisner, 2016)) of the Eisner-Satta al-344

gorithm.345

4 Experiment346

4.1 Setup347

We conduct experiments on four datasets:348

ACE2004 (Doddington et al., 2004), ACE2005349

(Walker, Christopher et al., 2006), GENIA (Kim350

et al., 2003) and NNE (Ringland et al., 2019). For351

ACE2004, ACE2005 and GENIA, we use the same352

data splitting and preprocessing as in Shibuya and353

Hovy (2020)3. For NNE, we use the official prepro-354

cessing script4 to split train/dev/test sets. We refer355

readers to Appendeix B.1 for implementation de-356

tails and to Appendix B.2 for data statistics of each357

dataset. We report span-level labeled precision (P),358

labeled recall (R) and labeled F1 scores (F1). We359

select models according to the performance on de-360

velopment sets. All results are averaged over three361

runs with different random seeds.362

4.2 Main Result363

We show the comparison of various methods on364

ACE2004, ACE2005 and GENIA in Table 1. We365

3https://github.com/yahshibu/
nested-ner-tacl2020-transformers

4https://github.com/nickyringland/
nested_named_entities/tree/master/
ACL2019%20Paper

note that there is an inconsistency in the data pre- 366

possessing. For instance, the data statistics shown 367

in Table 1 of (Shibuya and Hovy, 2020) and Table 368

5 of (Shen et al., 2021) do not match. More seri- 369

ously, we find Shen et al. (2021); Tan et al. (2021) 370

use context sentences, which plays a crucial role in 371

their performance improvement but is not standard 372

practice in other work. In addition, they report the 373

best result instead of the mean result. Hence we 374

rerun the open-sourced codes of Shen et al. (2021); 375

Tan et al. (2021) using our preprocessed data and 376

no context sentences and we report their mean re- 377

sults over three different runs. We also rerun the 378

code of PO-TreeCRF for a fair comparison. 379

We can see that our method outperforms PO- 380

TreeCRF, our main baseline, by 0.30/2.42/0.64 381

F1 scores on the three datasets, respectively. Our 382

method has 87.90 and 86.91 F1 scores on ACE2004 383

and ACE2005, achieving the state-of-the-art per- 384

formances. On GENIA, our method achieves com- 385

petitive performance. 386

We also evaluate our method on the NNE dataset, 387

whereby there are many multilabeled entities. Ta- 388

ble 2 shows the result: our method outperforms 389

Pyramid by 0.27 F1 score. 390

5 Analysis 391

5.1 Ablation Studies 392

We conduct a thorough ablation study of our model 393

on the ACE2005 test set. Table 3 shows the result. 394

Structured vs. unstructured We study the ef- 395

fect of structural training and structured decoding 396

as a whole. “Unstructured” is a baseline that adopts 397

the local span classification loss and local greedy 398

decoding. “1-stage“ is our re-implementation of 399

PO-TreeCRF, which adopts the latent structural 400

constituency tree loss and uses the CYK algorithm 401

for decoding. “1-stage+LEX” adopts the latent 402

structural lexicalized constituency tree loss and 403

uses the Eisner-Satta algorithm for decoding. All 404

methods use the same neural encoders. We can 405

see that “1-stage” outperforms the unstructured 406

baseline by 0.33 F1 score. Further, “1-stage+LEX” 407

outperforms “1-stage” by 0.25 F1 score, verifying 408

the effectiveness of using latent lexicalized con- 409

stituency tree structures. 410

1-stage vs. 2-stage On the unstructured model, 411

we adopt a 0-1 local span classification loss in the 412

first stage of the two-stage version, and we observe 413

that the two-stage version performs similarly the 414

5

https://github.com/yahshibu/nested-ner-tacl2020-transformers
https://github.com/yahshibu/nested-ner-tacl2020-transformers
https://github.com/nickyringland/nested_named_entities/tree/master/ACL2019%20Paper
https://github.com/nickyringland/nested_named_entities/tree/master/ACL2019%20Paper
https://github.com/nickyringland/nested_named_entities/tree/master/ACL2019%20Paper

Model ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Comparable
SH - - - 83.30 84.69 83.99 77.46 76.65 77.05
Pyramid-Basic 86.08 86.48 86.28 83.95 85.39 84.66 78.45 78.94 79.19
W(max) 86.27 85.09 85.68 85.28 84.15 84.71 79.20 78.16 78.67
PO-TreeCRFs† 87.62 87.57 87.60 83.34 85.67 84.49 79.10 76.53 77.80
Seq2set† 87.05 86.26 86.65 83.92 84.75 84.33 78.33 76.66 77.48
Locate&Label† 87.27 86.61 86.94 86.02 85.62 85.82 76.80 79.02 77.89
BARTNER 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.3 78.93
Ours 87.39 88.40 87.90 85.97 87.87 86.91 78.39 78.50 78.44
For reference
SH [F] - - - 83.83 84.87 84.34 77.81 76.94 77.36
Pyramid-Full [A] 87.71 87.78 87.74 85.30 87.40 86.34 - - -
PO-TreeCRFs [D] 86.7 86.5 86.6 84.5 86.4 85.4 78.2 78.2 78.2
Seq2set [C,P,D] 88.46 86.10 87.26 87.48 86.63 87.05 82.31 78.66 80.44
Locate&Label[C,P,D] 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54

Table 1: Results on ACE2004, ACE2005 and GENIA. SH: Shibuya and Hovy (2020); Pyramid-Basic/Full: Wang
et al. (2020)5; W(max/logsumexp): Wang et al. (2021)6; PO-TreeCRFs: Fu et al. (2020); Seq2set: Tan et al. (2021)
; Locate&Label: Shen et al. (2021); BARTNER: Yan et al. (2021). Labels in square brackets stand for the reasons
of the results being incomparable to ours. F: +Flair; A: +ALBERT, C: context sentences, P: POS tags, D: different
data preprocessing. † denotes that we rerun their open-sourced codes using our data.

Model NNE
P R F1

Pyramid-Basic 93.97 94.79 94.37
Ours 94.32 94.97 94.64

Table 2: Results on NNE.

one-stage version. On the other hand, we observe415

improvements on structured methods: “2-stage”416

outperforms “1-stage” by 0.23 F1 score and “2-417

stage+LEX” outperforms “1-stage+LEX” by 0.18418

F1 scores, validating the benefit of adopting the419

two-stage strategy. Moreover, "2-stage(0/1)+LEX"420

outperforms "2-stage+LEX" by 0.15 F1 score, sug-421

gesting the effectiveness of bypassing the imbal-422

anced classification problem.423

Effect of structural training and decoding We424

study the importance of structural training and de-425

coding in a decoupled way here. “-parsing” de-426

notes the case that we use the latent lexicalized427

constituency tree loss for training, while we do428

not use the Eisner-Satta algorithm for parsing and429

5They did not report Pyramid-Full with BERT only. How-
ever, with BERT+ALBERT, Pyramid-Full only outperforms
Pyramid-Basic with a small margin (< 0.1).

6The max and logsumexp versions are the best models for
BERT only and BERT+Flair respectively.

instead predict spans locally whenever their label 430

score of 1 is greater than that of 0. We can see 431

that it causes a performance drop of 0.49 F1 score, 432

indicating the importance of structural decoding, 433

i.e., parsing. It is also worth noting that “-parsing” 434

outperforms the unstructured baseline by 0.42 F1 435

score, showing the benefit of structural training 436

even without structural decoding. 437

Effect of head regularization We can see that 438

using the regularization loss brings an improvement 439

of 0.24 F1 score (86.32->86.56). In the case study 440

(Section 5.2), we observe that some common errors 441

are avoided because of this regularization. 442

Effect of head-aware labeling loss We can see 443

that using the head-aware labeling loss brings an 444

improvement of 0.30 F1 score (86.32 -> 86.62). 445

When combined with the head regularization, we 446

achieve further improvements because of more ac- 447

curate head estimation (Appendix B.3). 448

5.2 Case Study 449

Table 4 shows example predictions of our models. 450

In the first pair, “2-stage” predict reasonable struc- 451

tures (visualized in B.5), but fail to label entities, 452

whereas “2-stage (0-1)” predicts further correct 453

labels. The second pair shows that, by constrain- 454

6

Model P R F1
Unstructured(1-stage) 83.76 87.17 85.43
Unstructured(2-stage) 84.23 86.62 85.41
1-stage 84.08 87.52 85.76
1-stage + LEX 84.26 87.83 86.01
2-stage 84.68 87.33 85.99
2-stage + LEX 84.60 87.80 86.17
2-stage (0-1) + LEX 84.83 87.87 86.32

- parsing 84.26 87.40 85.83
+ head regularization 85.84 87.30 86.56
+ head-aware labeling 85.50 87.77 86.62
+ both (our final model) 85.97 87.87 86.91

Table 3: Ablation studies on the ACE2005 test set. LEX
represents lexicalized structures.

ing head sharing and head-aware entity labeling,455

“+both” successfully detect bus as a headword, then456

produce correct entity boundaries and labels. Be-457

sides, “+both” can be seen to handle both fine-458

grained and coarse-grained entities in the last two459

predictions: this bus near the airport is predicted460

into two entities but all sites and people in Iraq461

remains one multilabeled entity.462

Table 5 gives the most common headwords of463

each type predicted by our model on ACE2005. We464

find that the most frequently predicted headwords465

are gold headwords7, except for some common466

function words, e.g., in and of. It proves the ability467

of our model in recognizing headwords.468

5.3 Speed Comparison469

One concern regarding our method is that since470

the Eisner-Satta algorithm has a O(n4) theoretical471

time complexity, it would be too slow to use for472

NER practitioners. Fortunately, the Eisner-Satta473

algorithm is amenable to highly-parallelized im-474

plementation so that O(n3) out of O(n4) can be475

computed in parallel (Zhang et al., 2020b; Rush,476

2020), which greatly accelerates parsing. Empir-477

ically, we observe linear running time on GPUs478

in most cases. We show the comparison of (both479

training and decoding) running time in Table 6. We480

measure the time on a machine with Intel Xeon481

Gold 6278C CPU and NVIDIA V100 GPU.482

We can see that compared with PO-TreeCRF,483

which also uses a highly-parallelized implementa-484

tion of the O(n3) CYK algorithm, our method is485

around 20% slower in training and decoding, which486

7ACE2005 is additionally annotated with headwords. We
only use them for evaluation.

is acceptable. Notably, both PO-TreeCRF and our 487

method are much faster than Seq2Set (Tan et al., 488

2021) and Locate&Label(Shen et al., 2021). 489

6 Related Work 490

Nested NER Nested NER has been receiving in- 491

creasing attentions and there are many methods 492

proposed to tackle it. We roughly categorize the 493

methods into the following groups: (1) Span-based 494

methods: Luan et al. (2019); Yu et al. (2020); Li 495

et al. (2021) directly assign scores to each potential 496

entity span. (2) Layered methods: Ju et al. (2018); 497

Fisher and Vlachos (2019) dynamically merge sub- 498

spans to larger spans and Shibuya and Hovy (2020); 499

Wang et al. (2021) use linear-chain CRFs and recur- 500

sively find second-best paths for predicting nested 501

entities. (3) Hypergraph-based methods: Lu and 502

Roth (2015); Katiyar and Cardie (2018) propose 503

different hypergraph structures to model nested en- 504

tities but suffer from the spurious structure issue, 505

and Wang and Lu (2018) solve this issue later. (4) 506

Object-detection-based methods: Shen et al. (2021) 507

adapt classical two-stage object detectors to tackle 508

nested NER and Tan et al. (2021) borrow the idea 509

from DETR (Carion et al., 2020). (5) Parsing-based 510

methods (Finkel and Manning, 2009; Wang et al., 511

2018; Fu et al., 2020). (6) Sequence-to-sequence 512

methods (Yan et al., 2021). 513

Our method belongs to parsing-based meth- 514

ods. Finkel and Manning (2009) use a non-neural 515

TreeCRF parser. Wang et al. (2018) adapt a shift- 516

reduce transition-based parser. Fu et al. (2020) use 517

a span-based neural TreeCRF parser. All of them 518

cast nested NER to constituency parsing, while we 519

cast nested NER to lexicalized constituency pars- 520

ing and our method is thus able to model entity 521

heads. 522

Structured models using partial trees Full 523

gold parse trees are expensive to obtain, so there 524

are many methods proposed to marginalize over 525

latent parts of partial trees, performing either ap- 526

proximate marginalization via loopy belief prop- 527

agation or other approximate algorithms (Narad- 528

owsky et al., 2012; Durrett and Klein, 2014) or 529

exact marginalization via dynamic programming 530

algorithms (Li et al., 2016; Zhang et al., 2020b; Fu 531

et al., 2020; Zhang et al., 2021). Naradowsky et al. 532

(2012); Durrett and Klein (2014) construct fac- 533

tor graph representations of syntactically-coupled 534

NLP tasks whose structures can be viewed as la- 535

tent dependency or constituency trees, such as 536

7

Model Prediction
2-stage [I]PER have never heard of [a pig like [this]WEA]WEA before !
2-stage (0-1)‡ [I]PER have never heard of a pig like this before !

2-stage (0-1) [Police]PER surrounded [this bus near [the airport]FAC]VEH,FAC with [guns]WEA drawn .
+ both‡ [Police]PER surrounded [this bus]VEH near [the airport]FAC with [guns]WEA drawn .
+ both‡ [Blix]PER stressed that [council]ORG resolutions call for [[U.N.]ORG inspectors]PER to

have access to [all sites and people in [Iraq]GPE]FAC,PER .

Table 4: Two sentences with predicted entity decorated. Blue entities are correct and red entities are wrong. The
underlined words are the entity heads. Models annotated with ‡ predict all entities correctly.

Type Most Frequent Headwords
PER you, I, he, they, i, his, of, their, we, who
LOC world, of, area, there, coast, where, beach, desert, Southeast, that
ORG we, they, Starbucks, its, court, company, military, of, their, companies
GPE U.S., Indonesia, Baghdad, city, state, Russian, we, country, Iraqi, where
FAC airport, house, jail, in, prison, street, of, it, hospital, home
VEH of, car, in, aircraft, that, bus, plane, lincoln, deck, its
WEA gun, weapons, arms, guns, firearms, missile, bullet, knife, rifles, Kalashnikov

Table 5: The most common (top 10) headwords of each entity type predicted by our method on the ACE2005 test
set. Red words are not headwords in the gold annotation.

Model Train Sents/sec
PO-TreeCRF 2m1s 205
2-stage 2m15s 184
2-stage + LEX 2m23s 173
Seq2set 3m24s 122
Locate&Label 4m23s 94

Table 6: Speed comparison for training one epoch on
ACE2005.

NER, semantic role labeling (SRL), and relation537

extraction. Li et al. (2016); Zhang et al. (2020b)538

perform partial marginalization to train (second-539

order) TreeCRF parsers for partially-annotated de-540

pendency parsing. Zhang et al. (2021) view arcs541

in SRL as partially-observed dependency trees;542

Fu et al. (2020) view entities in nested NER as543

partially-observed constituency trees; and we view544

entities in nested NER as partially-observed lexi-545

calized constituency trees in this work.546

Lexicalized parsing Probabilistic context-free547

grammars (PCFGs) have been widely used in syn-548

tactic parsing. Lexicalized PCFGs (L-PCFGs)549

leverage headword information to disambiguate550

parsing and are thus more expressive. Eisner and551

Satta (1999) propose an efficient O(n4) algorithm552

for lexicalized parsing. Collins (2003) conduct a 553

thorough study of lexicalized parsing. Recently, 554

neurally parameterized L-PCFGs have been used 555

in unsupervised joint dependency and constituency 556

parsing (Zhu et al., 2020; Yang et al., 2021). Our 557

work removes the grammar components and adapts 558

the dynamic programming algorithm of lexical- 559

ized parsing (Eisner and Satta, 1999) in the spirit 560

of span-based constituency parsing (Stern et al., 561

2017). 562

7 Conclusion 563

We have presented a parsing-based method for 564

nested NER, viewing entities as partially-observed 565

lexicalized constituency trees, motivated by the 566

close relationship between entity heads and entity 567

recognition. Benefiting from structural modeling, 568

our model does not suffer from error propagation 569

and heuristic head choosing and is easy for reg- 570

ularizing predictions. Furthermore, our highly- 571

parallelized implementation enables fast training 572

and inference on GPUs. Experiments on four 573

benchmark datasets validate the effectiveness and 574

efficiency of our proposed method. 575

8

References576

Kate Byrne. 2007. Nested named entity recognition in577
historical archive text. In International Conference578
on Semantic Computing (ICSC 2007), pages 589–579
596.580

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,581
Nicolas Usunier, Alexander Kirillov, and Sergey582
Zagoruyko. 2020. End-to-end object detection with583
transformers. In Computer Vision - ECCV 2020 -584
16th European Conference, Glasgow, UK, August585
23-28, 2020, Proceedings, Part I, volume 12346 of586
Lecture Notes in Computer Science, pages 213–229.587
Springer.588

Pei Chen, Haibo Ding, Jun Araki, and Ruihong Huang.589
2021. Explicitly capturing relations between en-590
tity mentions via graph neural networks for domain-591
specific named entity recognition. In Proceedings of592
the 59th Annual Meeting of the Association for Com-593
putational Linguistics and the 11th International594
Joint Conference on Natural Language Processing595
(Volume 2: Short Papers), pages 735–742, Online.596
Association for Computational Linguistics.597

Billy Chiu, Gamal Crichton, Anna Korhonen, and598
Sampo Pyysalo. 2016. How to train good word em-599
beddings for biomedical NLP. In Proceedings of600
the 15th Workshop on Biomedical Natural Language601
Processing, pages 166–174, Berlin, Germany. Asso-602
ciation for Computational Linguistics.603

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-604
moyer. 2018. Ultra-fine entity typing. In Proceed-605
ings of the 56th Annual Meeting of the Association606
for Computational Linguistics (Volume 1: Long Pa-607
pers), pages 87–96, Melbourne, Australia. Associa-608
tion for Computational Linguistics.609

J. Cocke. 1969. Programming languages and their com-610
pilers: Preliminary notes.611

Michael Collins. 2003. Head-driven statistical models612
for natural language parsing. Computational Lin-613
guistics, 29(4):589–637.614

Xiang Dai. 2018. Recognizing complex entity men-615
tions: A review and future directions. In Pro-616
ceedings of ACL 2018, Student Research Workshop,617
pages 37–44, Melbourne, Australia. Association for618
Computational Linguistics.619

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and620
Kristina Toutanova. 2019. BERT: Pre-training of621
deep bidirectional transformers for language under-622
standing. In Proceedings of the 2019 Conference623
of the North American Chapter of the Association624
for Computational Linguistics: Human Language625
Technologies, Volume 1 (Long and Short Papers),626
pages 4171–4186, Minneapolis, Minnesota. Associ-627
ation for Computational Linguistics.628

George Doddington, Alexis Mitchell, Mark Przybocki,629
Lance Ramshaw, Stephanie Strassel, and Ralph630
Weischedel. 2004. The automatic content extraction631

(ACE) program – tasks, data, and evaluation. In 632
Proceedings of the Fourth International Conference 633
on Language Resources and Evaluation (LREC’04), 634
Lisbon, Portugal. European Language Resources As- 635
sociation (ELRA). 636

Timothy Dozat and Christopher D. Manning. 2017. 637
Deep biaffine attention for neural dependency pars- 638
ing. In 5th International Conference on Learning 639
Representations, ICLR 2017, Toulon, France, April 640
24-26, 2017, Conference Track Proceedings. Open- 641
Review.net. 642

Greg Durrett and Dan Klein. 2014. A joint model 643
for entity analysis: Coreference, typing, and link- 644
ing. Transactions of the association for computa- 645
tional linguistics, 2:477–490. 646

Jason Eisner. 2016. Inside-outside and forward- 647
backward algorithms are just backprop (tutorial pa- 648
per). In Proceedings of the Workshop on Structured 649
Prediction for NLP, pages 1–17, Austin, TX. Asso- 650
ciation for Computational Linguistics. 651

Jason Eisner and Giorgio Satta. 1999. Efficient pars- 652
ing for bilexical context-free grammars and head au- 653
tomaton grammars. In Proceedings of the 37th An- 654
nual Meeting of the Association for Computational 655
Linguistics, pages 457–464, College Park, Maryland, 656
USA. Association for Computational Linguistics. 657

Daniel Fernández-González and Carlos Gómez- 658
Rodríguez. 2020. Multitask pointer network 659
for multi-representational parsing. CoRR, 660
abs/2009.09730. 661

Jenny Rose Finkel and Christopher D. Manning. 2009. 662
Nested named entity recognition. In Proceedings of 663
the 2009 Conference on Empirical Methods in Nat- 664
ural Language Processing, pages 141–150, Singa- 665
pore. Association for Computational Linguistics. 666

Joseph Fisher and Andreas Vlachos. 2019. Merge and 667
label: A novel neural network architecture for nested 668
NER. In Proceedings of the 57th Annual Meet- 669
ing of the Association for Computational Linguis- 670
tics, pages 5840–5850, Florence, Italy. Association 671
for Computational Linguistics. 672

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang, 673
and Fei Huang. 2020. Nested named entity recogni- 674
tion with partially-observed treecrfs. 675

Haim Gaifman. 1965. Dependency systems and 676
phrase-structure systems. Inf. Control., 8(3):304– 677
337. 678

Kuzman Ganchev, João Graça, Jennifer Gillen- 679
water, and Ben Taskar. 2010. Posterior Regulariza- 680
tion for Structured Latent Variable Models. Journal 681
of Machine Learning Research, 11(67):2001–2049. 682

Sepp Hochreiter and Jürgen Schmidhuber. 1997. 683
Long short-term memory. Neural computation, 684
9(8):1735–1780. 685

9

https://doi.org/10.1109/ICSC.2007.107
https://doi.org/10.1109/ICSC.2007.107
https://doi.org/10.1109/ICSC.2007.107
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.18653/v1/P18-3006
https://doi.org/10.18653/v1/P18-3006
https://doi.org/10.18653/v1/P18-3006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
http://arxiv.org/abs/2009.09730
http://arxiv.org/abs/2009.09730
http://arxiv.org/abs/2009.09730
https://aclanthology.org/D09-1015
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
http://arxiv.org/abs/2012.08478
http://arxiv.org/abs/2012.08478
http://arxiv.org/abs/2012.08478
https://doi.org/10.1016/S0019-9958(65)90232-9
https://doi.org/10.1016/S0019-9958(65)90232-9
https://doi.org/10.1016/S0019-9958(65)90232-9
http://jmlr.org/papers/v11/ganchev10a.html
http://jmlr.org/papers/v11/ganchev10a.html
http://jmlr.org/papers/v11/ganchev10a.html

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.686
2018. A neural layered model for nested named en-687
tity recognition. In Proceedings of the 2018 Con-688
ference of the North American Chapter of the Asso-689
ciation for Computational Linguistics: Human Lan-690
guage Technologies, Volume 1 (Long Papers), pages691
1446–1459, New Orleans, Louisiana. Association692
for Computational Linguistics.693

Tadao Kasami. 1965. An efficient recognition694
and syntax-analysis algorithm for context-free lan-695
guages.696

Arzoo Katiyar and Claire Cardie. 2018. Nested named697
entity recognition revisited. In Proceedings of the698
2018 Conference of the North American Chapter of699
the Association for Computational Linguistics: Hu-700
man Language Technologies, Volume 1 (Long Pa-701
pers), pages 861–871, New Orleans, Louisiana. As-702
sociation for Computational Linguistics.703

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GE-704
NIA corpus–a semantically annotated corpus for bio-705
textmining. Bioinformatics, 19(Suppl 1):i180–i182.706

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A707
method for stochastic optimization. In 3rd Inter-708
national Conference on Learning Representations,709
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,710
Conference Track Proceedings.711

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,712
Donghyeon Kim, Sunkyu Kim, Chan Ho So,713
and Jaewoo Kang. 2019. BioBERT: a pre-714
trained biomedical language representation model715
for biomedical text mining. Bioinformatics,716
36(4):1234–1240.717

Fei Li, ZhiChao Lin, Meishan Zhang, and Donghong Ji.718
2021. A span-based model for joint overlapped and719
discontinuous named entity recognition. In Proceed-720
ings of the 59th Annual Meeting of the Association721
for Computational Linguistics and the 11th Interna-722
tional Joint Conference on Natural Language Pro-723
cessing (Volume 1: Long Papers), pages 4814–4828,724
Online. Association for Computational Linguistics.725

Zhenghua Li, Min Zhang, Yue Zhang, Zhanyi Liu,726
Wenliang Chen, Hua Wu, and Haifeng Wang. 2016.727
Active learning for dependency parsing with partial728
annotation. In Proceedings of the 54th Annual Meet-729
ing of the Association for Computational Linguistics730
(Volume 1: Long Papers), pages 344–354, Berlin,731
Germany. Association for Computational Linguis-732
tics.733

Zhifei Li and Jason Eisner. 2009. First- and second-734
order expectation semirings with applications to735
minimum-risk training on translation forests. In Pro-736
ceedings of the 2009 Conference on Empirical Meth-737
ods in Natural Language Processing, pages 40–51,738
Singapore. Association for Computational Linguis-739
tics.740

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 741
2019. Sequence-to-nuggets: Nested entity mention 742
detection via anchor-region networks. In Proceed- 743
ings of the 57th Annual Meeting of the Association 744
for Computational Linguistics, pages 5182–5192, 745
Florence, Italy. Association for Computational Lin- 746
guistics. 747

Wei Lu and Dan Roth. 2015. Joint mention extrac- 748
tion and classification with mention hypergraphs. 749
In Proceedings of the 2015 Conference on Empiri- 750
cal Methods in Natural Language Processing, pages 751
857–867, Lisbon, Portugal. Association for Compu- 752
tational Linguistics. 753

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari 754
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen- 755
eral framework for information extraction using dy- 756
namic span graphs. In Proceedings of the 2019 757
Conference of the North American Chapter of the 758
Association for Computational Linguistics: Human 759
Language Technologies, Volume 1 (Long and Short 760
Papers), pages 3036–3046, Minneapolis, Minnesota. 761
Association for Computational Linguistics. 762

Jason Naradowsky, Sebastian Riedel, and David A 763
Smith. 2012. Improving nlp through marginaliza- 764
tion of hidden syntactic structure. In Proceedings 765
of the 2012 Joint Conference on Empirical Methods 766
in Natural Language Processing and Computational 767
Natural Language Learning, pages 810–820. 768

Jeffrey Pennington, Richard Socher, and Christopher 769
Manning. 2014. GloVe: Global vectors for word 770
representation. In Proceedings of the 2014 Confer- 771
ence on Empirical Methods in Natural Language 772
Processing (EMNLP), pages 1532–1543, Doha, 773
Qatar. Association for Computational Linguistics. 774

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt 775
Gardner, Christopher Clark, Kenton Lee, and Luke 776
Zettlemoyer. 2018. Deep contextualized word rep- 777
resentations. In Proceedings of the 2018 Confer- 778
ence of the North American Chapter of the Associ- 779
ation for Computational Linguistics: Human Lan- 780
guage Technologies, Volume 1 (Long Papers), pages 781
2227–2237, New Orleans, Louisiana. Association 782
for Computational Linguistics. 783

Nicky Ringland, Xiang Dai, Ben Hachey, Sarvnaz 784
Karimi, Cecile Paris, and James R. Curran. 2019. 785
NNE: A dataset for nested named entity recognition 786
in English newswire. In Proceedings of the 57th An- 787
nual Meeting of the Association for Computational 788
Linguistics, pages 5176–5181, Florence, Italy. Asso- 789
ciation for Computational Linguistics. 790

Alexander Rush. 2020. Torch-struct: Deep structured 791
prediction library. In Proceedings of the 58th An- 792
nual Meeting of the Association for Computational 793
Linguistics: System Demonstrations, pages 335– 794
342, Online. Association for Computational Linguis- 795
tics. 796

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, 797
Wen Wang, and Weiming Lu. 2021. Locate and 798

10

https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/P16-1033
https://doi.org/10.18653/v1/P16-1033
https://doi.org/10.18653/v1/P16-1033
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P19-1510
https://doi.org/10.18653/v1/P19-1510
https://doi.org/10.18653/v1/P19-1510
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216

label: A two-stage identifier for nested named en-799
tity recognition. In Proceedings of the 59th Annual800
Meeting of the Association for Computational Lin-801
guistics and the 11th International Joint Conference802
on Natural Language Processing (Volume 1: Long803
Papers), pages 2782–2794, Online. Association for804
Computational Linguistics.805

Takashi Shibuya and Eduard Hovy. 2020. Nested806
named entity recognition via second-best sequence807
learning and decoding. Transactions of the Associa-808
tion for Computational Linguistics, 8:605–620.809

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A810
minimal span-based neural constituency parser. In811
Proceedings of the 55th Annual Meeting of the As-812
sociation for Computational Linguistics (Volume 1:813
Long Papers), pages 818–827, Vancouver, Canada.814
Association for Computational Linguistics.815

Jianlin Su. 2020. Extend “softmax+cross entropy” to816
multi-label classification problem.817

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,818
and Yueting Zhuang. 2021. A sequence-to-set net-819
work for nested named entity recognition. In Pro-820
ceedings of the 30th International Joint Conference821
on Artificial Intelligence, IJCAI-21.822

Walker, Christopher, Strassel, Stephanie, Medero,823
Julie, and Maeda, Kazuaki. 2006. ACE 2005 Mul-824
tilingual Training Corpus. Type: dataset.825

Bailin Wang and Wei Lu. 2018. Neural segmental hy-826
pergraphs for overlapping mention recognition. In827
Proceedings of the 2018 Conference on Empirical828
Methods in Natural Language Processing, pages829
204–214, Brussels, Belgium. Association for Com-830
putational Linguistics.831

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018.832
A neural transition-based model for nested mention833
recognition. In Proceedings of the 2018 Conference834
on Empirical Methods in Natural Language Process-835
ing, pages 1011–1017, Brussels, Belgium. Associa-836
tion for Computational Linguistics.837

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020.838
Pyramid: A layered model for nested named en-839
tity recognition. In Proceedings of the 58th Annual840
Meeting of the Association for Computational Lin-841
guistics, pages 5918–5928, Online. Association for842
Computational Linguistics.843

Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and844
Taro Watanabe. 2021. Nested named entity recog-845
nition via explicitly excluding the influence of the846
best path. In Proceedings of the 59th Annual Meet-847
ing of the Association for Computational Linguistics848
and the 11th International Joint Conference on Nat-849
ural Language Processing (Volume 1: Long Papers),850
pages 3547–3557, Online. Association for Computa-851
tional Linguistics.852

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng 853
Zhang, and Xipeng Qiu. 2021. A unified generative 854
framework for various NER subtasks. In Proceed- 855
ings of the 59th Annual Meeting of the Association 856
for Computational Linguistics and the 11th Interna- 857
tional Joint Conference on Natural Language Pro- 858
cessing (Volume 1: Long Papers), pages 5808–5822, 859
Online. Association for Computational Linguistics. 860

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021. 861
Neural bi-lexicalized PCFG induction. In Proceed- 862
ings of the 59th Annual Meeting of the Association 863
for Computational Linguistics and the 11th Interna- 864
tional Joint Conference on Natural Language Pro- 865
cessing (Volume 1: Long Papers), pages 2688–2699, 866
Online. Association for Computational Linguistics. 867

D. Younger. 1967. Recognition and parsing of context- 868
free languages in time n3. Inf. Control., 10:189– 869
208. 870

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020. 871
Named entity recognition as dependency parsing. In 872
Proceedings of the 58th Annual Meeting of the Asso- 873
ciation for Computational Linguistics, pages 6470– 874
6476, Online. Association for Computational Lin- 875
guistics. 876

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020a. 877
Fast interleaved bidirectional sequence generation. 878
In Proceedings of the Fifth Conference on Machine 879
Translation, pages 503–515, Online. Association for 880
Computational Linguistics. 881

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu, 882
and Maosong Sun. 2017. Prior knowledge integra- 883
tion for neural machine translation using posterior 884
regularization. In Proceedings of the 55th Annual 885
Meeting of the Association for Computational Lin- 886
guistics (Volume 1: Long Papers), pages 1514–1523, 887
Vancouver, Canada. Association for Computational 888
Linguistics. 889

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Effi- 890
cient second-order TreeCRF for neural dependency 891
parsing. In Proceedings of the 58th Annual Meet- 892
ing of the Association for Computational Linguistics, 893
pages 3295–3305, Online. Association for Computa- 894
tional Linguistics. 895

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, 896
Zhenghua Li, Guohong Fu, and Min Zhang. 2021. 897
Semantic role labeling as dependency parsing: 898
Exploring latent tree structures inside arguments. 899
ArXiv, abs/2110.06865. 900

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020c. 901
Fast and accurate neural crf constituency parsing. 902
Proceedings of the Twenty-Ninth International Joint 903
Conference on Artificial Intelligence. 904

Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe 905
Ma, and Eduard Hovy. 2020d. A two-step approach 906
for implicit event argument detection. In Proceed- 907
ings of the 58th Annual Meeting of the Association 908

11

https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://kexue.fm/archives/7359
https://kexue.fm/archives/7359
https://kexue.fm/archives/7359
https://arxiv.org/abs/2105.08901
https://arxiv.org/abs/2105.08901
https://arxiv.org/abs/2105.08901
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2020.acl-main.577
https://aclanthology.org/2020.wmt-1.62
https://doi.org/10.18653/v1/P17-1139
https://doi.org/10.18653/v1/P17-1139
https://doi.org/10.18653/v1/P17-1139
https://doi.org/10.18653/v1/P17-1139
https://doi.org/10.18653/v1/P17-1139
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/2020.acl-main.667
https://doi.org/10.18653/v1/2020.acl-main.667
https://doi.org/10.18653/v1/2020.acl-main.667

for Computational Linguistics, pages 7479–7485,909
Online. Association for Computational Linguistics.910

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase911
Structure Grammar parsing on Penn Treebank. In912
Proceedings of the 57th Annual Meeting of the913
Association for Computational Linguistics, pages914
2396–2408, Florence, Italy. Association for Compu-915
tational Linguistics.916

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.917
The return of lexical dependencies: Neural lexical-918
ized PCFGs. Transactions of the Association for919
Computational Linguistics, 8:647–661.920

A Details of the Eisner-Satta algorithm921

Table 7 describes the Eisner-Satta algorithm in the922

parsing-as-deduction framework. Each deductive923

rule of the Eisner-Satta algorithm has only one924

word participating in the computation in addition,925

e.g., p and h, resulting in one-order higher than the926

CYK algorithm.927

The masked version of the Eisner-Satta algo-928

rithm masks scores similar to PO-TreeCRF except929

for different label sets in our model “2-stage” and930

“2-stage (0/1)”. For the construction of constrained931

trees, we introduce a minor penalty (0.4 in our pa-932

per) on type I items’ scores if the item represents a933

gold entity. We show the pseudocode of the stan-934

dard Eisner-Satta algorithm, the masked version of935

the Esiner-Satta algorithm and the construction of936

constrained trees all in Algorithm 1.937

B Experiments938

B.1 Implementation Details939

We use BERT (bert-large-cased) and GloVe940

(6B-100d) to obtain word representations for941

ACE2004, ACE2005, and NNE. For GENIA, we942

use BioBERT (biobert-large-cased-v1.1) (Lee et al.,943

2019) and BioWordvec (Chiu et al., 2016) instead944

to match its domain. The hidden size of BiLSTM945

is set to 400. We use an Adam optimizer (Kingma946

and Ba, 2015) and a linear learning rate scheduler.947

We warm up training for 2 epochs and decay learn-948

ing rates to 0 linearly for the rest of the epochs. The949

peak learning rates are 5e− 5 for BERT/BioBERT950

and 5e−3 for the other parts of the neural networks.951

B.2 Data statistics952

Table 9 shows the statistics of ACE2004, ACE2005,953

GENIA and NNE. We report the number of multil-954

abeled entities and single-word entities in addition.955

Items:

I [i, j, h,−]: span [i, j] is headed by word wh

and its parent is not determined. i ≤ h ≤ j.

II [i, j,−, p]: span [i, j] is headed by arbitrary
word wh. The common parent is wp. p < i or
k < p.

Axiom items: [i, i, i,−], 1 ≤ i ≤ n
Goal items: [1, n, r,−], 1 ≤ r ≤ n
Deductive rules:

I
[i, k, h,−]
[i, k,−, p]

attach left/right

II
[i, j,−, p] [j + 1, k, p,−]

[i, k, p,−]
complete left

III
[i, j, p,−] [j + 1, k,−, p]

[i, k, p,−]
complete right

Table 7: The Eisner-Satta algorithm described in the
parsing-as-deduction framework.

PER LOC ORG GPE FAC VEH WEA
ρ 0.57 0.02 0.18 0.14 0.05 0.03 0.02
PER 0.92 0.00 0.06 0.03 0.01 0.03 0.00
LOC 0.00 0.74 0.00 0.02 0.01 0.01 0.00
ORG 0.02 0.00 0.83 0.02 0.03 0.02 0.00
GPE 0.00 0.07 0.03 0.87 0.04 0.00 0.00
FAC 0.00 0.06 0.01 0.00 0.77 0.04 0.00
VEH 0.00 0.00 0.00 0.00 0.01 0.73 0.00
WEA 0.00 0.00 0.00 0.00 0.01 0.00 0.90
∅ 0.06 0.13 0.08 0.06 0.12 0.18 0.10

Table 8: Error distribution on the ACE2005 test set nor-
malized along with columns. ρ is the gold label distri-
bution. Each row is a gold label and each column is
a predicted label. ∅ denotes entities not recognized by
our model.

B.3 Studies on Headwords 956

We conduct more experiments to analyze the be- 957

havior of head regularization. Table 10 shows the 958

results of models trained with different penalty con- 959

stants of the head regularization. c = 0 means no 960

constraint applied, and larger c means harder con- 961

straint. We observe that too hard constraints (e.g., 962

c = 1) are less effective than proper constraints 963

(e.g., c = 0.4). We choose c = 0.4 as the penalty 964

constant for experiments in the main body. Table 11 965

shows the results if we apply head regularization 966

only when decoding. We observe that the over- 967

all performance changes marginally, although the 968

number of shared heads is significantly reduced, 969

12

https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337

ACE2004 ACE2005 GENIA NNE
train dev test train dev test train dev test train dev test

sentences 6198 742 809 7285 968 1058 15022 1669 1855 43457 1989 3762
- nested 2718 294 388 2797 352 339 3222 328 448 28606 1292 2489
entities 22195 2514 3034 24827 3234 3041 47006 4461 5596 248136 10463 21196
- nested 10157 1092 1417 9946 1191 1179 8382 818 1212 206618 8487 17670
- single-word 11527 1363 1553 13988 1852 1706 12933 1009 1392 166183 7291 14397
- multi-type 3 1 1 9 3 2 21 5 5 16769 792 1583

Table 9: Statistics of ACE2004, ACE2005, GENIA and NNE. An entity is considered nested if contains any entity
or is contained by any entity. A sentence is considered nested if contains any nested entity.

possibly because the head accuracy is still low and970

the labeling module is trained to pay less atten-971

tion to the headwords as they are noisy. Finally,972

we analyze the number of shared heads and the973

head accuracy for models trained with head reg-974

ularization and head-aware entity labeling. Table975

12 shows few shared heads and high head accu-976

racy, consistent with the high overall performance.977

Besides, we observe that adding the head-aware en-978

tity labeling does not reduce the shared headwords979

much, showing the limitation of models to learn980

such prior knowledge.981

B.4 Error Distribution982

We report the error distribution in Table 8. Com-983

pared with PO-TreeCRF, we reduce the error rates984

off all extremely imbalanced classes (VEH, FAC,985

LOC and WEA).986

B.5 Predicted Parse Tree987

Here we draw the parse trees in 5.2. Fig. 2a shows988

a tree produced by “2-stage”, which is reasonable.989

But the label module of “2-stage” fail to label spans990

correctly due to the label imbalance problem. “2-991

stage (0-1)” predict the same tree but correct labels.992

Fig. 2b shows a tree predicted by “2-stage (0-1)”.993

The model fail to detect headwords, e.g., bus and994

airport. In contrast, Fig. 2c shows a tree predicted995

by “2-stage (0-1) + both”, in which shared heads996

are much fewer and correct headwords are found.997

13

Algorithm 1: The Eisner-Satta Algorithm
input: sc ∈ Rn×n×B for span scores, where B is #sent in a batch
input: sd ∈ Rn×n×B for arc scores
input: enable_soft_constraint for whether enable the soft exclusive head constraint
input: mask ∈ Rn×n for incompatible spans. (optional)
define: H ∈ Rn×n×n×B for type I span in Table 7
define: P ∈ Rn×n×n×B for type II span in Table 7
initialize: H:,:,: = −∞, P:,:,: = −∞

1 if mask is given then
2 for all i, j, sc[i, j] = −∞ if mask[i, j] is true.
3 end
4 for i = 0 to n− 1 do
5 H[i, i, i] = sc[i, i]
6 for j = 0 to n− 1 do
7 P [i, i, j] = sd[i, j] +H[i, i, i]
8 end
9 if enable_soft_constraint then

10 H[i, i, i]− = c // c is a small positive constant (0.4 in our paper).
// Equivalent to minus c for arcs headed by i.

11 end
12 end
13 for w = 1 to n− 1 do
14 for i = 0 to n− w − 1 do
15 j = i+ w
16 for h = i to j do
17 H[i, j, h] = sc[i, j] + log

∑
r∈[i,j]

[exp(P [i, r, h] +H[r + 1, j, h]) + exp(H[i, r, h] + P [r + 1, j, h])]

// complete left/right
18 end
19 for p = 0 to n− 1 do
20 P [i, j, p] = log

∑
h∈[i,j]

exp(H[i, j, h] + sd[h, p]) // attach left/right

21 end
22 if enable_soft_constraint then
23 for h = i to j do
24 H[i, j, h]− = c
25 end
26 end
27 end
28 end
29 return H[0, n− 1, 0] ≡ logZ

14

c 0 0.1 0.2 0.3 0.4 0.5 0.6
F1 86.32 86.45 86.54 86.53 86.56 86.49 86.41

Table 10: The impact of different constants used to construct constrained trees for training on ACE2005. A higher
value means harder constraints.

c -2 0 0.2 0.4 0.6 1
F1 86.38 86.44 86.46 86.46 86.43 86.41

#shared 347 234 30 10 7 6
Head acc. 43.19 48.45 57.27 57.94 58.33 58.08

Table 11: Results of different constants when decoding. #shared denotes the number of entities having shared
headwords. Models are trained without the head regularization. Head accuracy do not count single word spans.
Results are of one run.

0 0.4 0 + HA 0.4 + HA
#shared 234 73 216 10

Head acc. 48.45 59.42 73.58 81.00

Table 12: Number of shared heads and head accuracy on the ACE2005 test set. HA means head-aware entity
labeling. The head accuracy do not count single word spans. Results are of one run.

I have never heard of a pig like this before !

(a) A tree predicted by “2-stage”. It produce reasonable structures, but the labeling module can not label them well.

Police surrounded this bus near the airport with guns drawn .

(b) A tree predicted by “2stage (0-1)”. It fails to detect “bus” and “airport” as headwords.

Police surrounded this bus near the airport with guns drawn .

(c) A tree predicted by “2-stage (0-1) + both”. It detect “bus” and “airport” as headwords correctly. The span this bus near the
airport do not exist on the tree.

Figure 2: Predicted dependency trees. We highlight interesting spans.

15

