REASONING COMPILER: LLM-Guided
Optimizations for Efficient Model Serving

Sujun Tang Christopher Priebe* Rohan Mahapatra*
University of California University of California University of California
San Diego San Diego San Diego
sujun@ucsd.edu cpriebelucsd.edu rohan@ucsd.edu

Lianhui Qin Hadi Esmaeilzadeh
University of California University of California
San Diego San Diego

lianhuiQucsd.edu hadi@ucsd.edu
Abstract

While model serving has unlocked unprecedented capabilities, the high cost of
serving large-scale models continues to be a significant barrier to widespread ac-
cessibility and rapid innovation. Compiler optimizations have long driven sub-
stantial performance improvements, but existing compilers struggle with neural
workloads due to the exponentially large and highly interdependent space of pos-
sible transformations. Although existing stochastic search techniques can be ef-
fective, they are often sample-inefficient and fail to leverage the structural context
underlying compilation decisions. We set out to investigate the research question
of whether reasoning with large language models (LLMs), without any retrain-
ing, can leverage the context-aware decision space of compiler optimizations to
significantly improve sample efficiency. To that end, we introduce a novel compi-
lation framework (dubbed REASONING COMPILER) that formulates optimization
as a sequential, context-aware decision process guided by a large language model
and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal
mechanism, suggesting hardware-informed transformations that reflect the cur-
rent program state and accumulated performance feedback. MCTS incorporates
the LLM-generated proposals to balance exploration and exploitation, facilitat-
ing structured, context-sensitive traversal of the expansive compiler optimization
space. By achieving substantial speedups with markedly fewer samples than lead-
ing neural compilers, our approach demonstrates the potential of LLM-guided
reasoning to transform the landscape of compiler optimization.'

1 Introduction

The rise of model serving for LLMs, diffusion models, and other neural models has enabled a new
class of intelligent systems, driving transformative applications in healthcare, education, and sci-
entific discovery. These models incur significant computational demands during inference, which
proportionally translate into substantial monetary costs. Driving down the cost of model serving is
critical, not merely to broaden access and democratize inference, but to catalyze faster cycles of in-
novation in model design and deployment. Achieving this goal demands reducing inference runtime
on computational infrastructure, resources that are not only expensive but also increasingly limited
in availability. Compiler optimizations are a critical enabler, not only for cost-efficient inferencing
across diverse applications but also for empowering rapid research iteration.

!Code is available at https://github.com/Anna-Bele/LLM_MCTS_Search
"Equal contribution
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Anna-Bele/LLM_MCTS_Search

Existing compilers struggle with neural models due to the exponentially large space of valid pro-
gram transformations (e.g., tiling, fusion, and layout changes). Each decision, such as selecting a
tiling factor or a parallelization strategy, introduces dependencies and constraints that influence the
feasibility and performance benefits of subsequent transformations. Rule-based optimizations also
often rely on hand-tuned heuristics that can overfit to a specific workload or hardware target. The
seminal work in superoptimization [1H3]] aimed to tackle these shortcomings through enumerative
or symbolic search, but the search space proved combinatorial and rugged. STOKE [4] showed that
high-quality programs often lie in regions separated by low-probability paths, and therefore adopted
Markov chain Monte Carlo (MCMC)-based randomized search. Neural compilers followed suit,
using evolutionary search or simulated annealing to navigate similarly irregular landscapes [SHS].
While these methods have shown promise in discovering performant configurations, they are fun-
damentally sample-inefficient. They overlook synergistic transformations that emerge only when
decisions are made with contextual awareness. These techniques also often explore redundant sub-
spaces or invalid configurations.

In contrast, we set out to investigate the research question of whether reasoning with large lan-
guage models (LLMs), without any retraining, can leverage the context-aware decision space of
compiler optimizations to significantly improve sample efficiency. To that end, we introduce a
novel compilation framework that couples LLM reasoning with Monte Carlo tree search (MCTS) to
guide compiler optimization. Hence, in our approach, compiler optimization is cast as a sequential
decision-making process, in which each transformation, such as tiling, fusion, or vectorization, is
selected with awareness of the current program state, while also assimilating downstream informa-
tion and propagating its implications upstream to guide future decisions. Our approach avoids the
prohibitive cost of fine-tuning LLMs as compilation policies, nor does it require additional training
or task-specific adaptation. In this formulation, the LLM evaluates partial transformation sequences
and proposes contextually appropriate next steps, drawing upon hardware-informed cost models
and the historical trajectory of optimization decisions to inform its proposal. The LLM serves as a
context-aware proposal engine: given the current schedule and its observed performance, it gener-
ates candidate transformations that are likely to be effective in the context of the traversed trajec-
tory. These LLM-guided reasoning choices are integrated into an MCTS framework that provides
a structured mechanism for balancing exploration and exploitation by evaluating LLM-suggested
transformations, expanding promising branches, and leveraging rollout feedback to adaptively steer
the search toward high-performing regions of the exponentially large optimization space.

This integration of LLM-based chain-of-thought (CoT) guidance with tree search combines contex-
tual reasoning and adaptability with principled, structured decision-making, enabling the compiler
to navigate the complexity of the search space with significantly improved sample efficiency. We
evaluate REASONING COMPILER and compare its improvements and sample efficiency with TVM,
which employs evolutionary search. Results show that REASONING COMPILER consistently achieves
significantly higher speedups than what TVM achieves using significantly fewer samples. On five
representative benchmarks (Llama-3-8B Attention Layer, DeepSeek-R1 MoE Layer, FLUX Attention
Layer, FLUX Convolution Layer, and Llama-4-Scout MLP Layer) and across five hardware platforms
(Amazon Graviton2, AMD EPYC 7R13, Apple M2 Pro, Intel Core i9, and Intel Xeon E3), REASON-
ING COMPILER achieves 5.0x average speedup using 5.8 x fewer samples, resulting in an average
of 10.8 x improvement over TVM in sample efficiency. For the end-to-end Llama-3-8B benchmark
across five hardware platforms, REASONING COMPILER uses 3.9 x fewer samples to achieve a 4.0 x
speedup, yielding a 5.6 x sample efficiency improvement. These results underscore the promise of
LLM-guided reasoning in neural compilation for efficient and scalable model serving.

2 Problem Formalization

Sopt. = argmax f ((0f, o -+ 0 07)(po)) QY
s'co*, |8'|<T

We consider the problem of optimizing an input program py € P representing a layer from a neu-
ral network for some objective function f : P — R > 0. This objective function represents
an evaluation of the program on the target platform for some figure of merit (e.g., latency, power,
utilization). Any program p € P can be transformed through the application of some transforma-
tion/optimization (used interchangeably from here on out) o € O, where each optimization is a
function o : P +— P that performs a targeted transformation to the program, thus introducing a

new variant of the program that is semantically equivalent to the original program but may perform
better or worse on a target hardware platform. In this way, successive application of transforma-
tions to a program can yield significant performance differences from the original. Therefore, given
some maximum transformation sequence length 7', the goal is to find a sequence of transformations
Sopt. = (01,02, ...,0p) such that n < T and f(pop.) = maxgco-, |s/|< f ((0}, 0 ---001)(po))
where pop. = (05,00,—10- - -001)(po) and O* is the Kleene stalﬂof O. These constraints collectively
define the optimization objective given in Equation (T).

To facilitate an efficient search over the space of valid program transformation sequences, we cast
the optimization problem as a finite-horizon Markov decision process (MDP) defined by the tu-
ple M = (8, A, P, R). This formulation provides a structured approach for sequential decision-
making in the transformation space, allowing the search process to account for how individual
transformations compound over time to affect final program performance. Compared to unstruc-
tured methods such as exhaustive or purely stochastic search, which often require a large number
of expensive program evaluations, casting the problem as an MDP enables more deliberate explo-
ration, offering the potential for improved sample efficiency. Each state s, € § corresponds to a
program p; € P obtained by applying a sequence of transformations to the original program py,
ie, s =pr = (0p0---001)(pp). An action a; € A corresponds to selecting a transformation
o € O to apply at step ¢, transitioning the current program to a new variant. Since the application
of a transformation is deterministic, the transition function P(sy11 | s¢,ap) is 1if sp11 = ag(sy)
and O otherwise. The reward function is defined as the objective value caused by the optimization
sequence, i.e., R(s¢, ar) = f(ae(pt)).

By formulating the problem as an MDP, we enable the use of planning algorithms such as Monte
Carlo tree search (MCTS) to explore program transformation sequences. Under standard assump-
tions, such as finite branching, bounded rewards, and a tree policy (e.g., UCT) that guarantees persis-
tent exploration, MCTS is consistent on finite-horizon problems: as the number of simulations tends
to infinity, it converges (with probability 1) to the optimal root action/sequence S that maximizes
the objective. With any finite simulation budget, it returns a high-quality but approximate solution.
Consequently, our framework (see yields a sequence S"th_ that approximately maximizes the
objective in practice while enjoying asymptotic optimality in theory.

3 REASONING COMPILER: Integrating LLM-Guided Contextual Reasoning
with Monte Carlo Tree Search

We present REASONING COMPILER, a novel compilation framework that unifies the structured ex-
ploration capabilities of Monte Carlo tree search (MCTS) with the contextual, history-aware reason-
ing of large language models (LLMs). While MCTS provides a principled approach to exploring
sequences of program transformations, compiler optimization introduces a unique challenge: the
successive application of transformations can exhibit complex, non-local interactions that are diffi-
cult to capture through purely stochastic or myopic policies. To address this, we employ an LLM
to model program transformation context, tracking which transformations have been applied, how
they impact performance, and what directions remain promising. This contextualization is essential
to enabling effective and sample-efficient search in compiler optimization.

Optimization interactions are complex, making efficient search challenging. Unlike tasks where
actions are relatively independent, program transformations compose in subtle and complex ways.
For example, the profitability of applying loop tiling may depend on the prior application of loop
fusion or unrolling. Additionally, transformations can introduce new, unforeseen opportunities/con-
straints for future transformations. These dependencies make the space of valid and useful transfor-
mation sequences both combinatorial and deeply contextual. While black-box optimization methods
such as evolutionary search and some implementations of reinforcement learning have achieved no-
table success in compiler autotuning [6}|8H10], they often do not explicitly model the nuanced struc-
tural and temporal dependencies between transformations. This can limit their ability to generalize
across contexts, as optimization efficacy depends on transformation histories. Even when guided by
local reward signals, they may struggle to capture the interplay between past decisions and future
opportunities, limiting their effectiveness in deeply contextual optimization landscapes. Our insight

The Kleene star operator, denoted with an asterisk (*), represents the set of all finite-length sequences, includ-
ing the empty sequence, formed from elements of a given set.

MCTS Tree
Update

Hardware
cost
model

Chain-of-Thought Prompt

Select
leaf node @
based on
UCT value

reasoning as well as the final lst of transformations.

@ Grandparent @ Parent @ Selected Leaf Node

Figure 1: Overview of the optimization workflow. The algorithm explores the tree to select a
candidate node. At this node, the LLM is prompted with contextual information to generate a
sequence of transformations, which are then applied to produce optimized code variants.

is that efficient search in this space benefits from an agent that reasons over transformation history,
structural code changes, and observed performance dynamics to choose the next step.

3.1 LLM-Guided Contextual Reasoning for Program Transformation Proposal

Contextual reasoning via LLMs. To address these challenges, REASONING COMPILER leverages
a large language model (LLM) as a contextual reasoning engine. The LLM is tasked with synthe-
sizing program transformation sequences that are not only syntactically valid but also informed by
the full history and structure of the program. By prompting the LLM with a rich, structured rep-
resentation of the current optimization state, we enable it to reason over the cumulative effects of
prior transformations, analyze performance trends, and identify differential improvements over prior
programs.

Figure |1] illustrates the optimization workflow. From the root program, REASONING COMPILER
traverses the tree by computing the UCT score [L1], selecting a promising leaf node (i.e., program)
p; for expansion by balancing exploitation of high-reward paths and exploration of under-sampled
branches based on visit statistics and node costs (see §3.2).

Prompt construction. At each expansion step in the search, the LLM receives a prompt that in-
cludes the source code and predicted performance cost for the current program p;, its parent p;_1,
and its grandparent p; 5. It also includes the ordered sequences of transformations that were applied
to reach each of these program variants, denoted .S;, S;_1, and S;_5. Finally, the full set of available
transformation operations O is included. Given this context, the LLM is explicitly instructed to:
(1) analyze the differences between program variants and their associated costs, identifying which
transformations contributed to observed performance changes; (2) reason about potential interac-
tions between previously applied and candidate future transformations, including both synergistic
and antagonistic effects; (3) synthesize a new sequence of transformations that is justified in the con-
text of the current program structure and transformation history; and (4) provide a rationale for the
proposed sequence, referencing specific code features and transformation interactions. This struc-
tured prompt is designed to elicit chain-of-thought (CoT) reasoning [12], encouraging the LLM to
perform deep, multi-step analysis and move beyond surface-level edits, instead generating proposals
that are both semantically meaningful and tailored to the evolving optimization trajectory.

Transformation proposal and validation. The LLM proposes a candidate transformation 0,11 €
O in the form of a string. Given the generative nature of the LLM, the output may include an invalid
or unrecognized transformation even though it is guided by a predefined set of valid transformations.
To ensure correctness, the output string is first parsed and filtered to retain only a transformation that
matches known valid names and transformation parameters. If no valid transformation is found,
REASONING COMPILER samples a random transformation from the valid set. The successfully vali-
dated and applied transformation yields a new program variant p;1, with its transformation history
updated as S;+1 = S; P (0;+1), where & denotes sequence concatenation. This new program variant
is scored using a hardware cost model and used to update the MCTS tree (see §3.2).

It is important to emphasize that the LLM is not the centerpiece of our contribution, but a necessary
enabler of effective search in this domain. Compiler optimization poses a uniquely challenging
setting due to the non-local, compositional nature of transformation interactions. Traditional black-
box search or heuristic-guided methods struggle to navigate such spaces efficiently. REASONING
COMPILER uses structured search (via MCTS) with learned contextual reasoning (via LLM + CoT)

Hardware
cost
model

!

(a) MCTS Expansion via LLM (b) MCTS Rollout (c) MCTS Backpropagation
Suggested Transformations

Figure 2: Structured tree search where nodes are (a) selected and expanded with the LLM
suggested transformations, (b) scored by a learned hardware cost model, and (c) updated
with performance estimates to guide future search.

to overcome these challenges. The result is a sample-efficient optimization algorithm capable of
discovering performant transformation sequences in high-dimensional, high-interaction spaces.

3.2 Structured Optimization via Monte Carlo Tree Search

MCTS as a sample-efficient planner. As described in we cast program optimization as a
finite-horizon decision process over the space of transformation sequences. Framing the problem
as an MDP allows REASONING COMPILER to consider long-term optimization effects and leverage
planning algorithms such as Monte Carlo tree search (MCTS) to explore this space deliberately and
efficiently.

MCTS operates over a tree T = (V, E) where V = P and E = O such that each node p € P is a
program from the state space & and each edge o € O corresponds to a transformation from the action
space A. This tree structure naturally supports the reuse of common transformation prefixes and
allows the planner to backpropagate value estimates from downstream program variants to upstream
decisions. Such reuse is critical in compiler optimization, where transformation sequences exhibit
both compounding effects and long-range interactions.

Selection via UCT. During the selection phase, MCTS traverses J from the root, recursively select-
ing child programs p; to maximize the UCT (Upper Confidence bounds applied to Trees) criterion:

1 In N(pzfl)
UCT(p;) = +
P = N) N(p)
where k(p;) is the estimated cost of p;, N(p;) is the visit count of node (i.e., program) p;, and ¢
governs the exploration-exploitation tradeoft.

)

LLM-guided expansion. As shown in Figure 2{a), once a promising leaf node p; is selected, an
LLM is queried to propose a transformation conditioned on p; and its ancestors (see §3.1). The
model generates a candidate transformation 0;4; € O, which is applied to p; to produce a new
program p;1 = 0;+1(p;). This results in a new node p; ;1 added to T corresponding to the updated
program and extended transformation path. To ensure T remains acyclic, if p; 1 already exists in the
tree, it is not added. By leveraging the LLM’s contextual reasoning, the system proposes globally
informed transformations that extend beyond myopic heuristics.

Rollout for local cost estimation. As shown in Figure b), once a new node p;y; is added to
the tree, REASONING COMPILER performs a lightweight MCTS rollout to estimate the long-term
impact of the transformation sequence that produced it. This is done by sampling a randomized
sequence of legal transformations o1, . . ., 04 and applying them to obtain a terminal program pi, =
(0g © -0 01)(pi+1). The objective is to minimize a hardware-level cost f (see §2), but evaluating
f requires compiling and running on real hardware, which is too expensive for the inner loop of
a planning algorithm. Following standard practice in compiler autotuning, REASONING COMPILER
replaces f with a learned, hardware-informed surrogate f that is cheap to evaluate and has been
shown to accelerate search while preserving final quality [[6, 7}, 9, [13H15]. Therefore, the cost model
evaluates this trajectory to produce an estimated cost £(p;+1) = f(psim)- This noisy but informative
proxy captures the downstream impact of reaching p; 1, enabling MCTS to balance immediate and
future consequences without incurring real-hardware runs.

Backpropagation. As shown in Figure c), the estimated cost (v;41) is then backpropagated to
all ancestors along the path to the root according to the update step k(pa) < k(pa) + k(pit1)
where p 4 is some ancestor program. The visit counts are also updated according to the update step
N(pa) < N(pa) + 1. These updates refine the empirical estimates that guide future selections.

4 Results

We implement REASONING COMPILER as an extension to MetaSchedule [8]]. The framework intro-
duces three modular components: (1) a prompt generator that serializes the current scheduling state,
including the IRModule, transformation trace (i.e., the applied schedule history), and hardware cost
model outputs, into structured prompts that capture the textual difference from the base IRModule
and reflect the current schedule’s performance; (2) an LLM interface that queries an external API
(e.g., OpenAl) and parses the LLM’s output into candidate transformation sequences; and (3) a tree
manager that performs MCTS with selection based on UCT score, expansion using LLM suggested
transformations, simulation with a hardware-informed cost model, and backpropagation for tree
statistics updates.

4.1 Experimental Setup

We evaluate REASONING COMPILER on five representative computational kernels drawn from
production-scale models: (1) self-attention layer from Llama-3-8B [16], (2) mixture-of-experts
(MoE) layer from DeepSeek-R1 [17]], (3) self-attention layer from FLUX (stable diffusion) [18]],
(4) convolution layer from FLUX [18], and (5) MLP Layer from Llama-4-Scout [19]. Compiler op-
timization is framed as a sequential decision process and guided by MCTS [20], using the Upper
Confidence bounds applied to Trees (UCT) criterion [[I1] with exploration parameter ¢ = /2 and
branching factor B = 2, following prior work [21},[22]]. During search, the LLM (OpenAl GPT-40
mini [23])) is queried using hierarchical context—specifically, the parent and grandparent schedules
and their transformations—to enable informed proposal generation. We compare three optimiza-
tion strategies: (1) TVM MetaSchedule [8]], which uses Evolutionary Search; (2) MCTS without
LLM guidance (MCTS); and (3) REASONING COMPILER that uses prompt-based proposal genera-
tion (LLM-Guided MCTS). All experiments are conducted using Apache TVM v0.20.0 [9} 24]. Our
main experimental environment is a dedicated Intel Core i9 workstation under a fixed software and
hardware stack to isolate scheduling effects. This main environment covers all five kernels above,
and is the ablation environment. To show portability and scalability across consumer and datacenter
processors, we evaluate each of the five kernels on a total of five hardware platforms: Amazon Gravi-
ton2, AMD EPYC 7R13, Apple M2 Pro, Intel Core 19, and Intel Xeon E3. We also report end-to-end
Llama-3-8B results across the same five platforms. Each experiment is repeated 20 times, and we
report the mean performance to ensure statistical stability. We further eliminate noise by disabling
background processes and ensuring no competing workloads during measurement. Additionally,
we leverage OpenAl and HuggingFace model serving APIs to access the respective models. The
implementation is open-sourced.

TVM (Evolutionary Search) —&— MCTS —&— Reasoning Compiler (LLM-Guided MCTS)
Llama-3-8B Attention Layer 1 DeepSeek-R1 MoE Layer 6 FLUX Attention Layer 3 FLUX Convolution Layer 15 Llama-4-Scout MLP Layer

T v 0 T v 0 T v 0 T v 0 T u
100 1000 100 1000 100 1000 100 1000 100 1000
Number of Samples Number of Samples Number of Samples Number of Samples Number of Samples

=) o
©

Relative Speedup
over Pre-Optimized Code
»
~
N
o

Figure 3: Relative speedup over pre-optimized code as a function of evaluated transforma-
tion proposals. REASONING COMPILER achieves superior sample efficiency, discovering high-
quality code with fewer samples across all operators in low-budget regimes.

4.2 Evaluation

We assess the sample efficiency of our LLM-guided compilation framework by analyzing how
code quality evolves with increasing search budget, quantified in terms of evaluated transforma-

tion proposals. Figure [3] presents results across five representative workloads, encompassing both
transformer-style attention layers and convolution-heavy architectures. Across all benchmarks, our
method achieves competitive or superior code performance with significantly fewer samples than
state-of-the-art black-box autotuners such as MetaSchedule with Evolutionary Search. These results
directly support the central hypothesis of our work: leveraging LLM-driven, context-aware reason-
ing enables more efficient and effective exploration of the compiler optimization space.

Rapid convergence in low-sample regimes. A consistent trend across all benchmarks is the rapid
ascent of code quality in the initial stages of search. This early-stage performance is critical in prac-
tice, as real-world compiler pipelines often operate under strict tuning time budgets. Figure [3|shows
Relative Speedup over Pre-Optimized Code on the y-axis, with the number of evaluated transforma-
tion proposals on the x-axis. Speedup is defined as the ratio of the execution time of the unoptimized
code to that of the optimized code after tuning. Higher values indicate more efficient and optimized
code. For instance, on the Llama-3-8B Attention Layer, LLM-Guided MCTS achieves a 7.08 x speedup
over the untuned baseline with just 36 samples, whereas Evolutionary Search requires 72 samples,
which is twice the budget to achieve comparable gains. On the Llama-4-Scout MLP Layer, the gap
is even more pronounced: LLM-Guided MCTS achieves 12.7x speedup at 20 samples, while Evolu-
tionary Search falls short of this mark even after 3000 samples.

Quantitative sample efficiency. To formally quantify sample efficiency, we compare the number
of samples required by each method to reach target speedups. On the FLUX Attention Layer, LLM-
Guided MCTS attains a 2x speedup using only 36 samples, while Evolutionary Search requires more
than 600 samples, a 16x reduction in tuning cost. On the FLUX Convolution Layer, LLM-Guided
MCTS consistently outperforms Evolutionary Search across nearly all budget levels and reaches
Evolutionary Search ’s final performance after evaluating just 400 samples.

Speedup relative to baselines. LLM-Guided MCTS not only produces better code, but does so
more aggressively and earlier in the search process. For example, on the DeepSeek-R1 MoE Layer,
LLM-Guided MCTS achieves a 3.3 x speedup over Evolutionary Search at 36 samples; on the Llama-

Table 1: Sample efficiency comparison between REASONING COMPILER and TVM on layer-wise
benchmarks across various hardware platforms.

TVM Reasoning Compiler Improvement
Hardware Sample
Benchmark p
Platform # Samples Speedup # Samples Speedup Sample Efficiency
Reduction Gain

Llama-3-8B Attention Layer 510 3.9x% 60 5.1x 8.5% 11.1x
Amazon Deepseek-R1 MoE Layer 980 2.7x 150 5.9% 6.5x% 14.4x
Graviton2 FLUX Attention Layer 320 1.6% 130 3.0x 2.5% 4.6x
ravitonz g1 ,Ux Convolution Layer 160 1.8x 20 4.1x% 8.0 18.2x
Llama-4-Scout MLP Layer 1,630 1.7x 500 4.0x 3.3%x 7.7
Llama-3-8B Attention Layer 1,400 2.1x 200 12.1x 7.0x 40.3 %
AMD Deepseek-R1 MoE Layer 2,290 1.7x 330 2.3x 6.9%x 9.4x
EPYC 7R13 FLUX Attention Layer 2,460 1.5 230 3.1x 10.7 % 22.1x
FLUX Convolution Layer 2,520 1.3x 470 4.8x 5.4x 19.6x
Llama-4-Scout MLP Layer 510 6.4x 100 10.2x 5.1x 8.1x
Llama-3-8B Attention Layer 1,010 3.3x 190 9.7x 5.3x 15.6x
Apple Deepseek-R1 MoE Layer 1,040 2.8% 230 4.8% 4.5% 7.8
M% FLUX Attention Layer 270 2.1x 50 3.7x 5.4x 9.5x
T0 FLUX Convolution Layer 2260 1.5x 510 5.5% 4.4x 16.2x
Llama-4-Scout MLP Layer 2,460 2.2x 440 3.4x 5.6 8.6
Llama-3-8B Attention Layer 920 10.5x 130 11.0x 7.1x 7.4x
Intel Deepseek-R1 MoE Layer 1,632 9.1x 192 9.1x 8.5% 8.5%
C 9 FLUX Attention Layer 1,000 5.1x 150 5.4x% 6.7x 7.0x
ore ¥ ELUX Convolution Layer 400 2.3x 72 2.3x% 5.6x 5.6x
Llama-4-Scout MLP Layer 230 5.6 20 12.7x 11.5% 26.1x
Llama-3-8B Attention Layer 2,760 3.9x%x 320 5.8x 8.6 12.8 %
Intel Deepseek-R1 MoE Layer 1,000 3.7x 180 4.4x 5.6 6.6
Xeon E3 FLUX Attention Layer 1,340 1.4x 450 3.4x 3.0x 7.1%
eon FLUX Convolution Layer 220 1.9x 40 2.2x 5.5% 6.4x
Llama-4-Scout MLP Layer 1,200 2.0x 300 6.1x 4.0x 12.2%
Geomean — — 2.7x — 5.0% 5.8x% 10.8 %

4-Scout MLP Layer, LLM-Guided MCTS achieves a 9.3x speedup over Evolutionary Search at 20
samples. This trend, which shows strong initial gains followed by convergence, demonstrates that
LLM-Guided MCTS quickly identifies high-performing regions of the search space, while Evolution-
ary Search’s uninformed search requires substantial exploration to reach similar quality.

Operator-specific trends. We observe that certain operator types, such as matrix multiplication op-
erations extracted from attention layers and MLP layer, exhibit sharper performance improvements.
This is likely due to recurring structural patterns such as loop fusion, tiling, and vectorization, which
pretrained LLMs can more readily recognize and exploit. Convolutional operators, by contrast, ex-
pose a broader and less regular transformation space. Nonetheless, REASONING COMPILER consis-
tently matches or exceeds baseline performance with fewer samples, underscoring its effectiveness
across diverse operator characteristics.

Sample efficiency across hardware platforms. As shown in Table [REASONING COMPILER
demonstrates superior sample efficiency compared to TVM across five hardware platforms on five

benchmarks. We define sample efficiency as the speedup achieved per sample (%). On
average, across all 25 platform-operator pairs, REASONING COMPILER achieves a 5.0x speedup us-
ing 5.8 x fewer samples, resulting in a 10.8 x improvement in sample efficiency. The performance
gains are particularly significant for compute-intensive workloads. For instance, for the Llama-3-
8B Attention Layer benchmark on AMD EPYC 7R13, REASONING COMPILER achieved a 12.1x
speedup in just 200 samples, while TVM required 1,400 samples to reach a 2.1x speedup. This
represents a 7.0 x sample reduction and a 40.3 x sample efficiency gain. On Intel Core i9, REASON-
ING COMPILER often matches or exceeds TVM’s peak with fewer trials: on the Llama-4-Scout MLP
Layer benchmark, REASONING COMPILER used 11.5x fewer samples for a 26.1x efficiency gain.

Table 2: Sample efficiency comparison between REASONING COMPILER and TVM on the end-
to-end Llama-3-8B benchmark across various hardware platforms.

TVM Reasoning Compiler Improvement

Hardware Sample Sample

Platform # Samples Speedup # Samples Speedup Re ducI:ion Efficiency
Gain

Amazon Graviton2 4,560 3.7x 1,440 5.1x 3.2x 4.4x
AMD EPYC 7R13 410 2.0x 140 2.2% 2.9x 3.2x
Apple M2 Pro 4,820 2.2% 1,770 3.9x% 2.7% 4.8x
Intel Core i9 3,800 2.2% 720 4.9x% 5.3x% 11.8x
Intel Xeon E3 4,640 5.0% 670 5.0% 6.9% 6.9 %
Geomean — 2.8x% — 4.0x 3.9x 5.6

End-to-end sample efficiency. For the end-to-end Llama-3-8B benchmark across the five hardware
platforms in Table 2] REASONING COMPILER’s sample efficiency improvement over TVM ranges
from 3.2x on AMD EPYC to 11.8x on Intel Core i9. End-to-end speedups range from 2.2x on
AMD EPYC to 5.1x on Amazon Graviton2. REASONING COMPILER consistently achieves signif-
icantly higher speedups: using 3.9x fewer samples, it achieves a 4.0x speedup and yields a 5.6
geometric-mean sample efficiency improvement over TVM.

Implications. These findings reinforce our core thesis: compiler optimization should be cast as a
structured decision process, enriched by prior knowledge and contextual reasoning. Our integration
of LLMs into Monte Carlo tree search results in a strategically guided and sample-efficient search,
particularly valuable in scenarios with constrained tuning budgets. By generating performant code
with orders-of-magnitude fewer samples, our framework offers both practical deployment advan-
tages and a compelling alternative to conventional, sample-inefficient compilation pipelines.

4.3 Ablation Study

4.3.1 Impact of LLM Choice and Reasoning Strategy

To better understand the contributions of different components in our approach, we conduct an ab-
lation study focused on the effects of LLM selection and reasoning modality. Figure d(a) shows the
relative speedup over unoptimized code as a function of the number of schedule samples evaluated
by LLM-Guided MCTS on the Llama-3-8B Attention Layer benchmark using a range of LLM models

—@— Historical Trace for Parent + Grandparent

—&— GPT-40 Mini Llama3.3-Instruct (70B) —#- Llama3.1-Instruct (8B)
) —A— Historical Trace for Parent + Grandparent + Great-Grandparent

OpenAl ol-mini_—@- DeepSeek-Distill (32B) _—— D Distill (78

=
=)
=
=)

O]

Relative Speedup
w

over Pre-Optimized Code

Relative Speedup
over Pre-Optimized Code

o
o

o
-
©

100 400 500 600 192

200 3 72 144
Number of Samples Number of Samples

(@ (b)

Figure 4: Ablation studies on LLM-Guided MCTS for the Llama-3-8B Attention Layer bench-
mark. (a) Comparing different LLMs as proposal engines shows stronger LLMs lead to faster
convergence. (b) Increasing the prompt’s historical trace depth improves sample efficiency.

36

for API calls. The x-axis indicates the cumulative number of schedules explored, while the y-axis
shows the best speedup achieved so far. This setup enables us to directly compare how effectively
various LLMs leverage contextual information to guide the search. The general trend of the re-
sults supports our central claim: compiler optimization benefits from goal-directed, context-aware
reasoning in terms of sample efficiency. Below, we discuss the specific behaviors that exemplify
different reasoning strategies.

Large instruction-tuned Llama3.3 (70B) achieves exceptional sample efficiency. The
instruction-tuned Llama3.3-70B model rapidly attains near-optimal performance, reaching a 9.69 x
speedup after only 36 samples, roughly 86% of the GPT-40 mini’s maximum speedup but with
less than 6% of its sampling budget. This corresponds to an approximately 15X improvement in
sample efficiency. Instruction tuning also significantly improves the ability of LLMs to generate
domain-specific, context-aware transformation proposals. The consistent performance advantage of
instruction-tuned models over untuned counterparts of comparable size confirms that semantic task
alignment, combined with sufficient model capacity, synergistically enhances the effectiveness of
sequential context reasoning in guiding compiler optimizations.

DeepSeek-R1-Distill-Qwen (32B) excels in long-horizon optimization. The DeepSeek-R1-
Distill-Qwen-32B model, employing a mixture-of-experts (MoE) architecture, exhibits a more grad-
ual improvement, starting with a 7.07 x speedup at 18 samples and reaching 9.98 x after 579 sam-
ples. The sparse expert routing inherent in MoE architectures likely facilitates exploration of com-
plex transformation sequences over extended horizons, complementing context-aware reasoning by
enabling specialized and conditional decision-making.

Lower-parameter models also achieve high sample efficiency. Despite their reduced scale,
smaller models still produce notable speedups relative to the untuned baseline. For example,
Llama3.1-Instruct (8B) reaches a 5.87x speedup, and DeepSeek-R1-Distill-Qwen (7B) achieves
a 4.86x speedup at just 36 samples. When compared to the widely used Evolutionary Search strat-
egy, which requires around 72 samples to achieve a 7.0x speedup and fails to reach comparable
performance for tuning the DeepSeek-R1 MoE Layer even after 3000 samples, these smaller models
consistently outperform. LLM-Guided MCTS with lower-parameter models achieves at least twice
the sample efficiency of Evolutionary Search, making them well-suited for efficient compiler opti-
mization in local or edge deployments.

Open-source models match proprietary models in performance. Our results demonstrate that
open-source LLMs, when adequately scaled and instruction-tuned, match or exceed the performance
of proprietary baselines such as GPT-40 mini. This underscores the broad applicability of our ap-
proach and its independence from proprietary data or architectures, enabling widespread adoption
of context-aware, LLM-guided compiler optimization.

4.3.2 Impact of Historical Trace Depth on Optimization Efficiency

Figure [{b) presents the relative speedup over unoptimized code as a function of the number
of schedule samples evaluated by LLM-Guided MCTS on the Llama-3-8B Attention Layer bench-
mark. Using a deeper historical trace (see Figure [I)) in the prompt (parent + grandparent + great-
grandparent) leads to faster convergence compared to the shallower trace (parent + grandparent).
For example, at 36 samples, the deeper trace achieves a speedup of approximately 7.13 %, slightly
surpassing the 7.08 x of the shallower trace. However, by 72 samples, the deeper trace saturates
at 11.36x speedup, while the shallower trace reaches only 8.38x, requiring many more samples

(around 579) to approach 11.3x performance. This demonstrates that including longer histori-
cal context enables the LLM to better capture dependencies and synergies in transformation se-
quences, resulting in more sample-efficient and goal-directed exploration, validating the advantage
of context-aware reasoning.

5 Related Work

Superoptimization. While our high-level goal of discovering highly efficient program variants
shares motivation with the superoptimization literature, our formulation and tractability differ sub-
stantially. Superoptimization aims to find the globally optimal instruction-level program, typically
via enumerative [1} 3], symbolic [2], or stochastic [4] search over low-level assembly variants;
hybrid [25] and neural [26] approaches have also been explored. STOKE [4] showed that high-
quality programs often reside in low-probability regions and made the leap to use randomized search
(MCMC). Neural compilers followed suit and relied on evolutionary search or simulated annealing
algorithms [5HS]]. In contrast, REASONING COMPILER treats optimization as a planning problem that
leverages MCTS to reason contextually about dependencies among transformations over structured
intermediate representations.

ML-Based Autotuning. Autotuning frameworks optimize performance-critical parameters (e.g.,
loop tile sizes, phase orderings, memory layouts) using a variety of ML-based techniques, includ-
ing linear models [27, 28], tree-based methods [29 30], Bayesian networks [31} 32], evolutionary
algorithms [29} 33| [34]], clustering [28 34], and reinforcement learning [10} 33H35|]. REASONING
COMPILER shares the same goal of performance-driven parameter selection, but distinguishes it-
self by combining LLM-based contextual reasoning with structured search (via MCTS) to explore
transformation sequences in a history- and structure-aware manner.

Machine Learning for Neural Compilation. Machine learning has been extensively applied to op-
timize neural network inference pipelines, including high-level graph-level optimizations [36-43]]
and low-level code generation [5} 9, 144-49]]. Systems such as TVM/Ansor [6l [7, 9] and FlexTen-
sor [50] employ learned cost models and evolutionary strategies to navigate large configuration
spaces. While these approaches are highly effective at tuning tensor programs, they typically fo-
cus on local parameter optimization or rely on domain-specific heuristics. REASONING COMPILER
moves beyond these works by introducing contextual reasoning through LLMs, enabling the system
to reason over transformation history, structural changes, and performance trends, an approach not
explored in prior neural compilation work.

LLMs for Code Reasoning and Optimization. LLMs have demonstrated capabilities in code
generation [S1H56], fuzzing [57]], bug repair [58]], and even high-level optimization [59]. Recent
work has explored the use of LLMs to generate phase orderings or perform disassembly [60l [61]].
REASONING COMPILER advances these approaches by embedding an LLLM in a structured decision
loop, leveraging it for context-aware reasoning within a grounded search process.

6 Conclusion

Compiling neural workloads remains a bottleneck for scalable model serving: traditional compil-
ers struggle with combinatorial transformation spaces, and the state-of-the-art neural compilers rely
on stochastic search, lacking sample efficiency and contextual awareness. This paper introduced
REASONING COMPILER, a novel framework that formulates compiler optimization as a sequential,
context-aware decision process, pairing LLM-generated proposals with MCTS and performance
feedback to reason and navigate through the optimization space efficiently. By enabling LLM rea-
soning in the compiler optimization process, we achieve a leap from randomized search to informed
and guided compilation. Our results show that REASONING COMPILER consistently yields faster
runtimes with markedly fewer evaluations without any retraining. These gains directly translate to
reduced operational cost of LLM services, lower energy usage per query, improved system respon-
siveness, more agile model deployment, faster model training, and accelerated innovation cycles,
among other benefits. Looking ahead, the same LLM that guides compilation can accelerate its own
inferencing, creating a virtuous, self-optimizing cycle in which sped-up LLMs enable more efficient
transformations and progressively better models and services.

10

Acknowledgments

We thank the anonymous reviewers for their insightful feedback. This work was in part supported
by the National Science Foundation (NSF) award CCF #2107598. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes not withstanding any copyright
notation thereon. The views contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied by the
U.S. Government.

References

[1] Henry Massalin. Superoptimizer: a look at the smallest program. In ASPLOS, 1987.
[2] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer. In

PLDI, 2002.

[3] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In ASPLOS,
2006.

[4] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ASPLOS,
2013.

[5] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions. arXiv, 2018.

[6] Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In NeurIPS,
2018.

[7] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida
Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor:
Generating high-performance tensor programs for deep learning. In OSDI, 2020.

[8] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin,
Masahiro Masuda, Cody Hao Yu, and Tianqi Chen. Tensor program optimization with proba-
bilistic programs. In NeurIPS, 2022.

[9] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan,
Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. TVM: An automated end-to-end optimizing compiler for deep learning. In OSDI,
2018.

[10] Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Esmaeilzadeh. Chameleon: Adaptive code
optimization for expedited deep neural network compilation. In /CLR, 2020.

[11] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In ECML, 2006.

[12] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

[13] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. Dynatune: Dynamic tensor program
optimization in deep neural network compilation. In ICLR, 2021.

[14] Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh. Glimpse: Mathematical embedding
of hardware specification for neural compilation. In DAC, 2022.

[15] Perry Gibson and José Cano. Transfer-tuning: Reusing auto-schedules for efficient tensor
program code generation. In PACT, 2023.

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang,
Angela Fan, et al. The Llama 3 Herd of Models. arXiv, 2024.

[17] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. arXiv, 2025.

[18] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

[19] Meta. The Llama 4 herd: The beginning of a new era of natively multimodal Al innovation.
https://ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025.

[20] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and Al in games, 4(1):1-43, 2012.

11

https://github.com/black-forest-labs/flux
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

[21] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In CG,
2007.

[22] Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235-256, 2002.

[23] OpenAl. Openai GPT-40 mini API. https://platform.openai.com/docs/models/gpt-40-mini,
2025.

[24] Apache TVM Community. Apache TVM v0.20.0. https://github.com/apache/tvm/releases/tag/
v0.20.0, 2025.

[25] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Scaling up superoptimization. In ASPLOS, 2016.

[26] Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet Kohli.
Learning to superoptimize programs. In ICLR, 2017.

[27] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using supervised classi-
fication. In CGO, 2005.

[28] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and
John Cavazos. Micomp: Mitigating the compiler phase-ordering problem using optimization
sub-sequences and machine learning. ACM Trans. Archit. Code Optim., 14(3), 2017.

[29] Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. Automatic construc-
tion of inlining heuristics using machine learning. In CGO, 2013.

[30] Ameer Haj-Ali, Hasan Genc, Qijing Huang, William Moses, John Wawrzynek, Krste
Asanovié, and Ion Stoica. Protuner: Tuning programs with monte carlo tree search. arXiv,
2020.

[31] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos,
and Cristina Silvano. Cobayn: Compiler autotuning framework using bayesian networks. ACM
Trans. Archit. Code Optim., 13(2), 2016.

[32] Erik Orm Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu, Adel Ejjeh,
Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi. Baco: A fast and portable
bayesian compiler optimization framework. In ASPLOS, 2023.

[33] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li.
Mlgo: a machine learning guided compiler optimizations framework. arXiv, 2021.

[34] Haolin Pan, Yuanyu Wei, Mingjie Xing, Yanjun Wu, and Chen Zhao. Towards efficient com-
piler auto-tuning: Leveraging synergistic search spaces. In CGO, 2025.

[35] Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic, John
Wawrzynek, and Ion Stoica. Autophase: Juggling hls phase orderings in random forests with
deep reinforcement learning. In MLSys, 2020.

[36] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep learning with
dynamic computation graphs. arXiv, 2017.

[37] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.
Taso: Optimizing deep learning computation with automatic generation of graph substitutions.
In SOSP, 2019.

[38] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing cnn model
inference on cpus. In ATC, 2019.

[39] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao
Liu, Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, and James
Laudon. Transferable graph optimizers for ml compilers. In NeurIPS, 2020.

[40] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han. Ios: Inter-
operator scheduler for cnn acceleration. In MLSys, 2021.

[41] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi Zhao, Lansong
Diao, Jun Yang, and Wei Lin. Fusionstitching: Boosting memory intensive computations for
deep learning workloads. arXiv, 2021.

[42] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques
Pienaar. Equality saturation for tensor graph superoptimization. In MLSys, 2021.

[43] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang, Deshi Chen, Lei Chen, Renwei Zhang,
Zhen Geng, Bin Cheng, and Xuefeng Jin. Apollo: Automatic partition-based operator fusion
through layer by layer optimization. In MLSys, 2022.

[44] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman
Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. Tiramisu:
A polyhedral compiler for expressing fast and portable code. In CGO, 2019.

12

https://platform.openai.com/docs/models/gpt-4o-mini
https://github.com/apache/tvm/releases/tag/v0.20.0
https://github.com/apache/tvm/releases/tag/v0.20.0

[45] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav Bodik, and Vinod
Grover. Fireiron: A data-movement-aware scheduling language for gpus. In PACT, 2020.

[46] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and Tony Nowatzki. Unit:
Unifying tensorized instruction compilation. In CGO, 2021.

[47] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan. Analytical
characterization and design space exploration for optimization of cnns. In ASPLOS, 2021.

[48] Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. Deepcuts: A deep learning optimization
framework for versatile gpu workloads. In PLDI, 2021.

[49] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko.
Hidet: Task-mapping programming paradigm for deep learning tensor programs. In ASPLOS,
2023.

[50] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: An auto-
matic schedule exploration and optimization framework for tensor computation on heteroge-
neous system. In ASPLOS, 2020.

[51] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv, 2023.

[52] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the
stack v2: The next generation. arXiv, 2024.

[53] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with oss-instruct. arXiv, 2023.

[54] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan
Wang, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual benchmarking on humaneval-x. In KDD, 2023.

[55] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH
Hoi. Codet5+: Open code large language models for code understanding and generation.
arXiv, 2023.

[56] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming—the rise of code intelligence. arXiv, 2024.

[57] Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang.
Universal fuzzing via large language models. arXiv, 2023.

[58] Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In ICSE, 2023.

[59] Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang,
Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yaz-
danbakhsh. Learning performance-improving code edits. In /ICLR, 2024.

[60] Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste
Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, and Hugh
Leather. Large language models for compiler optimization. arXiv, 2023.

[61] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Syn-
naeve, and Hugh Leather. LIm compiler: Foundation language models for compiler optimiza-
tion. In CC, 2025.

13

A LLM Prompt Example

Below we show an example prompt used in our LLM-Guided MCTS framework (refer to Figure [I)).

Example Code To be Optimized:

@tvm.script.ir_module
class MyModule:
@T.prim_func
def main (
A: T.Buffer((1, 16, 7168), "float32"),
B: T.Buffer((7168, 2048), "float32"),
C: T.Buffer((1, 16, 2048), "float32"),
) :
T.func_attr ({"global_symbol": "main", "tir.noalias": True})
for b, t, j, k in T.grid(1l, 16, 2048, 7168):
with T.block ("moe") :
vb, vt, vj, vk = T.axis.remap("SSSR", [b, t, 3J, kl)
with T.init () :
Clvb, vt, vijl] = T.float32(0)
Clvb, vt, vj] += Alvb, vt, vk] * B[vk, vj]

Prompt:

You are a code optimization assistant performing Monte Carlo Tree
Search (MCTS) on a given code to improve performance. Each code
has a corresponding history of transformations and predicted cost.
You are given the code of the selected node and its immediate
parent. Their main differences include:

Loop shapes:

Current:

for b_1, t_1, j_1 in T.grid(l, 2, 8), and then
j_2_init in T.grid(l), and later

j_2 in T.grid(1l).

Index example: vj = ... + J_1 = 64 + j_2 % 64
Parent:

for b_1, t_1, j_1 in T.grid(1, 2, 2),

then j_2_init in T.grid(4),

and later j_2 in T.grid(4).

Index example: vj = ... + J_1 x 256 + j_2 x 64

Tile decisions:
Current: sample_perfect_tile(..., decision=[4, 8, 1, 641])
Parent: sample_perfect_tile(..., decision=[4, 2, 4, 64])

Performance estimates:
Current: 0.773
Parent: 0.313

Available transformations:
TileSize, Parallel, ComputelLocation, Unroll

Task

Analyze the IR, trace, and predicted scores.

Then propose a sequence of transformations (you may repeat any) to
potentially improve performance.

Output your reasoning and your suggested transformations.

For example, your answer should be in the following format:

14

Reasoning: This code still has large loop extents, so I'd tile it
twice differently, then unroll.
Transformations to apply: TileSize, TileSize, Unroll.

LLM Response:

Reasoning: The current schedule tiles the Jj-axis as 2048=4x8x1x64,
whereas the parent uses 4x2x4x64. The higher predicted score of
the current node (0.773 vs. 0.313) suggests that expanding outer
parallel granularity (j_1=8) helped, but collapsing j_2 to 1
removed a small register—level tile, limiting unrolling and
hurting reuse within each j_3=64 chunk.

I would (1) reintroduce a non-unit j_2 while shrinking j_1 so that
j_1xj_2~=8; for instance, [4,4,2,64] keeps enough outer tasks but
creates a Jj_2xj_3=128-wide microtile that unrolls cleanly.

(2) Tile the 7168-step k-reduction to align with j_3=64, e.g.,
7168 = 7x16%x64; the l6-step inner slice can be unrolled to cut
loop overhead and improve register reuse across the j_3 tile.

(3) Move the compute of block "moe" to the j_1 level so each j_1
tile initializes/accumulates C locally, shortening live ranges and
reducing write-back pressure.

(4) Parallelize the outer j_1 (or t_1 if j_1 becomes too small) to
utilize cores without touching the reduction.

(5) Unroll the small j_2 loop and the k-inner microtile. These
changes retain the beneficial outer structure of the current node
while restoring a compact inner tile for ILP and cache locality,
which should further improve throughput.

Transformations to apply: TileSize, TileSize, ComputelLocation,
Parallel, Unroll, Unroll.

15

B Sample Efficiency and Speedup Results

Table [3] presents the relative speedup of three methods—Evolutionary Search, MCTS, and LLM-
Guided MCTS—evaluated across the different benchmarks. Speedup is measured as the ratio of
execution time for the unoptimized code to that of the optimized code after applying a given number
of transformation proposals. The table captures performance as a function of the number of samples
explored. Higher values indicate more effective optimization. For instance, LLM-Guided MCTS
consistently achieves higher speedups with fewer samples, demonstrating superior sample efficiency
and faster convergence compared to MCTS and Evolutionary Search. This table corresponds to
Figure [3]in the paper.

Table 3: Speedup over unoptimized code across varying numbers of samples for different
compiler optimization methods.

Number of Samples 18 36 72 144 192 600 900 1632 5952

Evolutionary Search 4.67 570 7.74 798 940 954 1120 12.04 13.18
Llama-3-8B Attention Layer MCTS 414 468 8.11 850 9.66 994 11.79 1244 12.63
MCTS + LLM 452 7.08 838 879 1056 1133 12.10 12.57 12.87

Number of Samples 36 54 72 144 192 600 900 1632 3000

Evolutionary Search ~ 2.11 227 390 410 507 6.60 662 931 9.13
DeepSeek-R1 MoE Layer MCTS 593 633 679 687 693 724 818 884 890
MCTS + LLM 705 733 834 853 910 945 11.06 11.74 11.74

Number of Samples 36 54 72 150 200 600 1000 1500 3000

Evolutionary Search 2.22 244 273 273 4.64 471 5.11 5.61 5.58
FLUX Attention Layer MCTS 362 379 385 404 437 509 556 540 5.64
MCTS + LLM 448 467 489 537 542 543 559 560 5.67

Number of Samples 36 72 150 200 400 600 1000 1600 3000

Evolutionary Search ~ 2.08 2.11 215 219 229 232 244 245 2.55
FLUX Convolution Layer MCTS 2.11 2.13 2,18 237 238 238 244 244 245
MCTS + LLM 221 230 229 236 247 247 251 2.55 2.58

Number of Samples 20 50 100 250 400 600 1000 1500 3000

Evolutionary Search ~ 1.36 2.28 3.61 559 559 575 576 594 594
Llama-4-Scout MLP Layer =~ MCTS 176 251 405 541 783 813 858 890 8.90
MCTS + LLM 12.74 1274 1274 1275 1275 1324 1326 13.52 13.79

16

C Impact of LLM Choice and Reasoning Strategy

As a continuation of Figure[d]a), Table f]reports speedup over unoptimized code on three additional
benchmarks: DeepSeek-R1 MoE Layer, FLUX Attention Layer, and FLUX Convolution Layer. Each
block of the table corresponds to a different benchmark and shows the best speedup achieved by
LLM-Guided MCTS as a function of the number of schedules sampled using the reasoning model
listed in the table. Rows compare different reasoning models used for API call generation, including
both proprietary (e.g., GPT-40 mini, OpenAl ol-mini) and open-source models (e.g., Llama3.3-
Instruct, DeepSeek-Distill). Across all benchmarks, the results show that more capable mod-
els—those that are larger or instruction-tuned—consistently achieve higher speedups with fewer
samples. For example, Llama3.3-Instruct (70B) and DeepSeek-Distill (32B) achieve near-maximal
speedup within the first 72—-150 samples, while smaller models such as DeepSeek-Distill (7B) or
Llama3.1-Instruct (8B) reach similar performance more gradually. These results validate the gener-
ality of our findings: the use of context-aware LLMs accelerates convergence in LLM-Guided MCTS
across diverse code domains. Moreover, the performance of open-source models is competitive with
proprietary alternatives, further supporting the accessibility and reproducibility of our method.

Table 4: Speedup over unoptimized code across varying numbers of samples for different
choices of API call models.

Number of Samples 18 36 72 150 200 600
GPT-40 mini 452 7.08 838 879 1056 11.33
Llama3-8B Attention Layer ~OpenAl ol-mini 463 464 737 914 915 11.77
Llama3.3-Instruct (70B) 515 9.68 9.69 9.80 9.80 9.8l
DeepSeek-Distill-Qwen (32B) 7.07 8.14 8.23 877 878 9.98
Llama3.1-Instruct (8B) 3.60 587 6.28 846 863 10.52
DeepSeek-Distill-Qwen (7B) 4.06 4.86 6.68 6.82 794 11.58
Number of Samples 18 36 72 150 200 600
GPT-40 mini 6.14 7.05 833 853 9.10 945
DeepSeek-R1 MoE Layer OpenAl ol-mini 456 6.65 859 929 1055 11.56
Llama3.3-Instruct (70B) 730 7770 796 8.06 8.60 9.22
DeepSeek-Distill-Qwen (32B) 5.56 8.11 949 10.17 11.02 12.02
Llama3.1-Instruct (8§B) 429 431 698 870 9.18 9.21
DeepSeek-Distill-Qwen (7B) 6.89 735 735 1022 1034 10.44
Number of Samples 18 36 72 150 200 600
GPT-40 mini 409 448 489 537 542 543
FLUX Attention Layer OpenAl ol-mini 329 299 527 553 565 567
Llama3.3-Instruct (70B) 267 312 482 486 571 571
DeepSeek-Distill-Qwen (32B) 3.56 4.29 429 454 499 521
Llama3.1-Instruct (8B) 2.01 343 355 3.80 3.87 5.21
DeepSeek-Distill-Qwen (7B) 3.02 3.76 3.83 454 494 517
Number of Samples 18 36 72 150 200 600
GPT-40 mini 1.65 221 230 229 236 247
FLUX Convolution Layer OpenAl ol-mini 237 237 238 239 245 254
Llama3.3-Instruct (70B) 230 235 247 251 256 257
DeepSeek-Distill-Qwen (32B) 1.41 226 232 235 240 245
Llama3.1-Instruct (8B) 211 230 239 255 255 256

DeepSeek-Distill-Qwen (7B) 1.56 2.18 242 244 2:46 2:45

17

D Impact of Historical Trace Depth on Optimization Efficiency

As a continuation of Figure f{b), Table [5] presents the data for the ablation study on the depth of
historical trace included in the prompt sent to the LLM. Specifically, we compare two configurations:
the “Parent + Grandparent” setting, where the prompt contains information from the current node
and its two immediate ancestors, and the “Parent + Grandparent + Great-Grandparent” setting, where
the prompt additionally includes the great-grandparent node. These variations allow us to assess the
impact of deeper context windows on the effectiveness of LLM-Guided MCTS.

Results show that increasing the historical context generally improves sample efficiency across all
benchmarks. For example, on DeepSeek-R1 MoE Layer, adding one more ancestral node boosts
early performance significantly, achieving a 9.39x speedup at just 18 samples compared to 6.14 x
for the shallower context. Similarly, on Llama-3-8B Attention Layer, the extended context leads to a
higher final speedup (11.87x vs. 11.33%) and earlier convergence. The performance gains, while
smaller, are also consistent on FLUX Attention Layer and FLUX Convolution Layer, with improve-
ments observed across all sample budgets. These findings confirm that providing richer historical
context enables the LLM to make more informed decisions at each step of the search, ultimately
enhancing the sample efficiency of LLM-Guided MCTS.

Table 5: Speedup over unoptimized code across varying numbers of samples for different
context lengths.

Number of Samples 18 36 72 150 200 600
Llama-3-8B Attention Layer “p, o 1 Grandparent 452 708 838 879 1056 1133
Parent + Grandparent + Great-Grandparent 3.63 7.13 11.36 11.86 11.86 11.87
Number of Samples 18 36 72 150 200 600
DeepSeek-R1 MoE Layer “p, o 1 Grandparent 614 705 833 853 910 945
Parent + Grandparent + Great-Grandparent 9.39 1031 10.31 10.49 10.59 10.65
Number of Samples 18 36 72 150 200 600
FLUX Attention Layer Parent + Grandparent 409 448 489 537 542 543
Parent + Grandparent + Great-Grandparent 4.21 455 4.81 547 553 5.6l
Number of Samples 18 36 72 150 200 600
FLUX Convolution Layer “p. o\ Grandparent 165 221 230 229 236 247

Parent + Grandparent + Great-Grandparent 1.73 222 232 235 249 250

18

E Ablations of MCTS Branching Factor

To determine the value of MCTS branching factor (B), we ablate on B = 2 and B = 4. In Table[6]
results show that when branching factor B = 2, LLM-Guided MCTS is more sample-efficient than
when B = 4. Our choice of B = 2 aligns with prior works [21, 22]]. If a higher branching factor
is chosen, then there are more possible next steps, which require more sampling effort (i.e., more

simulations) to cover these expanded possibilities at the same level of thoroughness.

Table 6: Speedup over unoptimized code across varying humbers of samples for different

branching factors.

Number of Samples 18 36 72 150 200 600
Llama-3-8B Attention Layer “p—% 452 708 838 879 1056 1133
B=4 416 7.88 835 889 986 10.99
Number of Samples 18 36 72 150 200 600
DeepSeek-R1 MoE Layer “p—5 6.14 705 833 853 9.10 945
B=4 208 429 429 728 729 9.10
Number of Samples 18 36 72 150 200 600
FLUX Attention Layer B=2 409 448 489 537 542 543
B=4 240 348 397 495 497 555
Number of Samples 18 36 72 150 200 600
FLUX Convolution Layer ~ ~p'_" 165 221 230 229 236 247
B=4 191 197 223 223 225 243

19

F Cost of LLMs Used in Experiments

In Table [/} for each benchmark, we report the API cost of running a full experiment with every
LLM used to generate transformation proposals. We run a high number of samples to understand
the boundary of performance improvements and allow the algorithm to saturate. For OpenAl, our
main results used GPT-40 mini, the lowest-cost model available at submission time. For open-source
models, we used Hugging Face APIs through the Nscale hyperscaler provider. Across benchmarks,
these open-source models achieved competitive speedups and sample efficiency relative to GPT-
40 mini, indicating that open-source models are a viable alternative when commercial APIs are
impractical. Costs of open-source models could be further reduced by local deployment.

Table 7: Cost of different LLM APIs per entire experiment (USD) across layer-wise and end-to-
end benchmarks.

Model

Layer / Task GPT-40 OpenAl Llama3.3- DeepSeek- Llama3.1- DeepSeek-

mini ol-mini Instruct (70B) Distill (32B) Instruct (8B) Distill (7B)

Llama-3-8B Attention Layer $0.89 $6.56 $2.07 $1.55 $0.31 $2.07
DeepSeek-R1 MoE Layer $0.90 $6.63 $2.09 $1.57 $0.31 $2.09
FLUX Attention Layer $0.88 $6.47 $2.03 $1.52 $0.30 $2.03
FLUX Convolution Layer $1.12 $8.25 $2.67 $2.00 $0.40 $2.67
Llama-4-Scout MLP Layer $0.90 — — — — —
End-to-End Llama-3-8B $1.59 — — — — —

G LLM Proposal Validity and Fallback Rates

LLM-generated transformations can occasionally be syntactically valid but semantically redundant
or performance-regressive. During any single MCTS expansion, proposals that fail basic validity
checks (e.g., naming or use-context non-compliance) are simply discarded while the remaining valid
proposals proceed, and no fallback is triggered. A fallback occurs only when all LLM-generated
proposals in that expansion are invalid, in which case the search reverts to the default, non-LLM
expansion policy and continues without interruption. In Table [8] we report the fallback rate as
the average fraction of expansions that trigger this non-LLM path (i.e., expansions in which all
LLM proposals are invalid). To prevent downstream harm from poor but valid transformations,
the cost model evaluates all proposed transformations before they are added to the tree; proposals
with low estimated values are naturally pruned. Because the transformation space is a known, finite
set of legal rewrites, most correctness issues reduce to naming compliance and use-context, which
modern instruction-tuned LLMs typically handle well. Empirically, commercial models (GPT-40
mini and OpenAl ol-mini) show 0% fallback rates, larger open-source models perform similarly
(Llama3.3-Instruct 70B at 0.08% and DeepSeek-Distill 32B at 0.17%), whereas smaller models
exhibit higher fallback rates (Llama3.1-Instruct 8B at 10.50% and DeepSeek-Distill 7B at 17.20%).

Table 8: Fallback rate by model used as the transformation proposal generator.

Model Fallback Rate
GPT-40 mini 0%
OpenAl ol-mini 0%
Llama3.3-Instruct (70B) 0.08%
DeepSeek-Distill (32B) 0.17%
Llama3.1-Instruct (§B) 10.50%
DeepSeek-Distill (7B) 17.20%

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We demonstrate accurately the paper’s contributions and scope in the abstract,
(introduction), and §4|(results) to support the claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The authors acknowledge that their method currently depends on external
APIs for querying large language models, which may pose reproducibility and scalability
concerns due to cost and access restrictions. They also recognize that the system’s perfor-
mance can vary across model types and that the evaluation is limited to six representative
state-of-the-art benchmarks. Moreover, since the approach relies on prompt formatting and
reasoning traces, its effectiveness may degrade in settings where context length or LLM
interpretability is constrained.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

21

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on practical compiler optimization techniques rather than
theoretical developments. As such, it does not present formal theorems or proofs. However,
in we provide a formal problem formulation to clearly define the optimization setting
and guide our methodology. No theoretical claims are made that would require formal
assumptions or correctness proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided a detailed experimental setup and included the link to our
GitHub repository. We also described in detail our method in §3.1]and §3.2] to make sure
our experiments can be reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.

» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.
* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

22

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We included the link to our repository in the abstract. The repository contains
instructions on how to set up and run the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In §4.1] we specified all the experiment details necessary to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

23

https://github.com/Anna-Bele/LLM_MCTS_Search
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: All experiments are repeated 20 times, and the results are averaged to ensure
statistical stability, as described in §4.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the machine details in §4.1 and the README in the GitHub
repository provides the steps.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

24

https://neurips.cc/public/EthicsGuidelines

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work presents a compiler optimization framework that leverages LLM
reasoning for efficient model serving. The positive societal impacts include reducing the
computational cost of deploying large machine learning models, which in turn improves
accessibility and scalability, as discussed in abstract, introduction, and conclusion (see §E]

and §6).
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or associated datasets which have high
risk of misuse. It rather focuses on compiler-level optimizations for efficient ML model
serving, which poses no direct safety or misuse concerns that would warrant safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

25

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our method is integrated with Apache TVM v0.20.0 [9]], an open-source
machine learning compiler stack released under the Apache License 2.0. We properly cite

the original work [8| 9] and ensure full compliance with its licensing terms. We also use
OpenAl or HuggingFace’s model serving and utilize their APIs to access the models.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We integrate the proposed approach into open-source TVM scheduling and
also make our code open source, as discussed in §4.1}

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

26

paperswithcode.com/datasets

15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Large language models are an integral part of our method. We use them in the
program optimization process to guide transformation proposals in compiler optimization
search. This use of LLMs is central, and is described in detail in All of our usage com-
plies with responsible Al guidelines, and models used (e.g., OpenAl’s models, LLaMA-3,
DeepSeek) are publicly accessible using APIs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Formalization
	DarkBlueReasoning Compiler: Integrating LLM-Guided Contextual Reasoning with Monte Carlo Tree Search
	LLM-Guided Contextual Reasoning for Program Transformation Proposal
	Structured Optimization via Monte Carlo Tree Search

	Results
	Experimental Setup
	Evaluation
	Ablation Study
	Impact of LLM Choice and Reasoning Strategy
	Impact of Historical Trace Depth on Optimization Efficiency

	Related Work
	Conclusion
	LLM Prompt Example
	Sample Efficiency and Speedup Results
	Impact of LLM Choice and Reasoning Strategy
	Impact of Historical Trace Depth on Optimization Efficiency
	Ablations of MCTS Branching Factor
	Cost of LLMs Used in Experiments
	LLM Proposal Validity and Fallback Rates

