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Abstract

Self-supervised learning (SSL) has achieved major advances in natural images
and video understanding, but challenges remain in domains like echocardiography
(heart ultrasound) due to subtle anatomical structures, complex temporal dynam-
ics, and the current lack of domain-specific pre-trained models. Existing SSL
approaches such as contrastive, masked modeling, and clustering-based methods
struggle with high intersample similarity, sensitivity to low PSNR inputs common
in ultrasound, or aggressive augmentations that distort clinically relevant features.
We present DISCOVR (Distilled Image Supervision for Cross Modal Video Repre-
sentation), a self-supervised dual branch framework for cardiac ultrasound video
representation learning. DISCOVR combines a clustering-based video encoder that
models temporal dynamics with an online image encoder that extracts fine-grained
spatial semantics. These branches are connected through a semantic cluster distil-
lation loss that transfers anatomical knowledge from the evolving image encoder
to the video encoder, enabling temporally coherent representations enriched with
fine-grained semantic understanding.Evaluated on six echocardiography datasets
spanning fetal, pediatric, and adult populations, DISCOVR outperforms both spe-
cialized video anomaly detection methods and state-of-the-art video-SSL baselines
in zero-shot and linear probing setups,achieving superior segmentation transfer
and strong downstream performance on clinically relevant tasks such as LVEF
prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR

1 Introduction

Modeling dynamic content in video data presents significant challenges due to complex spatio-
temporal relationships, high redundancy between frames, and the need to capture both short- and long-
range temporal dependencies [43, 34]. Echocardiography (heart or cardiac ultrasound) exemplifies
these video understanding challenges [25, 24]. With high frame rates (30–80 fps) [23], complex
anatomical motion, and variability in image appearance caused by speckle, shadowing artifacts,
and ultrasound probe variability [20], automated echocardiography analysis requires sophisticated
temporal modeling approaches. The information density in these videos is high, where features
critical for diagnosis may appear as subtle variations in wall motion, valve function, or blood
flow patterns that manifest only when viewed dynamically across multiple frames. Moreover, the
appearance of the heart can change drastically across different cardiac views, patient populations, and
imaging equipment. Developing robust video SSL models for comprehensive video understanding in
echocardiography faces additional obstacles due to data limitations. Expert annotations are costly,
labor-intensive, and if based on real-world hospital data often incomplete, capturing only specific
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Figure 1: Figure (left) compares two fine-grained videos: a natural scene of a person baking (left)
and an adult fetal heart ultrasound (right). The frame-level cosine similarity matrix, computed using
a pretrained VideoMAE model, shows that ultrasound frames are highly similar (mean=0.99), with
only minor local variations. This highlights the difficulty in distinguishing individual frames in such
medical videos. Figure (right) compares normal and abnormal adult echocardiograms that appear
nearly identical. However, on close inspection, it is revealed that the abnormal heart shows severe
biventricular systolic dysfunction and a dilated, globular left ventricle, underscoring the subtlety of
cardiac defects and the need for fine-grained structural analysis.

aspects of the rich information contained in these videos. This scarcity of labeled data motivates SSL
approaches that can leverage abundant unlabeled echocardiograms for model development [34, 26, 6].

Several SSL frameworks have been proposed for learning meaningful video representations, each with
particular limitations in the echocardiography context. Masked video modeling methods [37, 11, 10]
tend to focus on reconstructing low-level image features like textures or edges, limiting their ability
to capture high-level semantic information critical for clinical interpretation. This is especially
problematic for ultrasound, which inherently exhibits a low signal-to-noise ratio (SNR), making
approaches that rely on low-level pixel representations ineffective. Contrastive learning methods
[14, 29] struggle due to high inter-sample similarity and limited effective augmentations, making it
difficult to construct informative positive and negative pairs, often leading to representation collapse.
Clustering-based SSL methods have demonstrated strong semantic learning through self-distillation
but rely heavily on aggressive augmentations that risk disrupting essential anatomical details required
for fine-grained understanding.
To address these limitations, we propose DISCOVR (Distilled Image Supervision for Cross-Modal
Video Representation), a dual branch SSL framework tailored for echocardiography that jointly
captures temporal dynamics and fine-grained semantic structure. The video encoder is trained to
model temporal features using a clustering-based objective applied to masked video tokens, while an
online image encoder separately learns spatially rich and anatomically meaningful representations
from masked image views. To bridge the gap between spatial and temporal learning, we introduce
a semantic cluster distillation loss that transfers knowledge from the evolving image encoder to
the video encoder through semantic cluster alignment. This enables the video encoder to embed
fine-grained semantic detail into its temporally coherent representations, without relying on pretrained
models or heavy augmentations.
We extensively evaluate DISCOVR on six echocardiography datasets that span fetal, pediatric, and
adult populations, covering anomaly detection, classification (linear probing and zero-shot transfer),
and segmentation tasks. DISCOVR consistently outperforms prior self-supervised and anomaly
detection methods. It achieves an average F1 improvement of 3.4% for anomaly detection, a 2.4%
gain in linear probing, and a 1.5% increase in balanced accuracy under zero shot evaluation. For
segmentation, DISCOVR delivers a 3.1% relative improvement in Dice score (from 81.9 to 84.4),
despite using a simple segmentation head compared to more complex baseline architectures. These
results demonstrate that integrating spatial semantics with temporal dynamics through cross-modal
distillation yields robust and generalizable cardiac ultrasound video representations.
Overall, our contibutions are as follows:

• We develop an SSL method that jointly models temporal dynamics and spatial semantics by
integrating video self-distillation with an evolving semantic image encoder, without labels,
pretrained models, or augmentations.
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Figure 2: Overview of the DISCOVR framework. An input video is tokenized into 3D patches for
the video branch and per-frame 2D patches for the image branch. Both encoders perform masked
self-distillation. Masked video tokens are reconstructed by the video decoder, and dense semantic
features are extracted from the image encoder. The LSCD loss then aligns these outputs, distilling
fine-grained spatial semantics into the video representation to produce rich spatio-temporal features.

• We introduce a novel online semantic distillation loss that continually transfers anatomical
knowledge from the evolving image encoder to the video encoder, enriching its temporal
representations with fine-grained spatial semantics to better capture clinically relevant
spatio-temporal patterns in echocardiography.

• DISCOVR is, to our knowledge, the most comprehensive self-supervised video represen-
tation model for echocardiography to date. Trained solely on normal videos, it models
healthy heart dynamics and detects pathology as deviations, eliminating the need for labeled
abnormal cases. Evaluated across six datasets spanning fetal, pediatric, and adult cohorts,
DISCOVR demonstrates strong generalization in zero-shot classification, linear probing,
anomaly detection, and segmentation, and achieves state-of-the-art performance on down-
stream cardiac function estimation (LVEF prediction), making it a versatile backbone for
ultrasound analysis.

2 Related Work

Self-supervised learning (SSL) aims to learn feature extractors directly from raw data by solving an
intrinsic task using supervision signals derived from the data itself, eliminating the need for manual
labels. Early image-based SSL relied on handcrafted pretext tasks such as solving jigsaw puzzles [28],
predicting rotations [12], or colorizing grayscale inputs [47]. Recent methods have shifted towards
instance discrimination via contrastive learning [44, 14, 5]. To understand how these ideas extend
to video and medical domains, we review the most relevant self-supervised methods in both areas,
highlighting shared limitations and how DISCOVR addresses them.

Video Self-Supervised Learning. Extending SSL to video introduces additional temporal com-
plexity, inspiring tasks such as frame order prediction [27, 45], spatio-temporal jigsaws [18], and
playback pace prediction [3, 40]. Recently, masked video modeling has become the dominant
approach: VideoMAE [37] reconstructs raw pixels from masked tubelets using a ViT backbone.
MGMAE [15] predicts optical flow to enhance temporal modeling, and motion-aware masking [10]
highlights dynamic regions. SIGMA [35] replaces pixel-level targets with Sinkhorn-regularized
cluster assignments, encouraging learning of semantic features. Yet, these approaches often rely on
frozen teachers, handcrafted objectives, or sensitive clustering parameters. DISCOVR addresses
these issues by introducing video self-distillation with evolving semantic guidance from an image
encoder, aligning fine-grained spatial and temporal features to produce coherent, high-level video
representations, without external supervision, handcrafted tasks, or modality-specific assumptions.

Self-Supervised Pretraining for Medical Videos. Given the limited availability of annotated data,
several works have adapted video SSL techniques to medical domains. Jiao et al. [16] explored

3



frame order and transformation prediction for fetal ultrasound. Ding et al. [8] extended MoCo with
a ViT for laparoscopic understanding. Jiao et al. [17] aligned ultrasound with synchronized speech
via cross-modal contrastive learning. Zhuang et al. [48] used Rubik’s cube-based supervision for
3D imaging. EchoFlow [33] generated synthetic echocardiograms via adversarial VAEs and latent
flow. Although effective in context, these methods inherit key limitations from natural video SSL,
including reliance on frozen teachers, hand-crafted objectives, and sensitive clustering parameters.
In addition, they adopt design choices tailored to natural images, such as short clip lengths and
the lack of mechanisms for capturing fine-grained spatial cues, both of which are inadequate for
clinical video analysis, where longer temporal context and detailed spatial reasoning are critical. In
contrast, DISCOVR uses long (64-frame) clips and introduces dynamic semantic guidance from
an evolving image encoder, enabling the video backbone to learn rich, fine-grained spatio-temporal
representations without reliance on pretrained models or handcrafted supervision.

3 Methodology

The modelling of echocardiography video-based tasks poses unique challenges, as models must
simultaneously detect fine-grained anatomical details, such as subtle septal defects, and accurately
track how these features evolve throughout the cardiac cycle to reliably identify anomalies. We
propose a unified self-supervised framework addressing these aspects without relying on labelled
data or external pretrained models. Our method integrates three complementary techniques: (1)
video self-distillation to capture global cardiac motion, (2) online spatial guidance to learn fine-
grained structural information, and (3) semantic cluster distillation (SCD) loss to transfer fine-grained
semantic knowledge from the evolving image encoder to the video model.

3.1 Video Self-Distillation

To capture how cardiac structures evolve throughout the cardiac cycle, it is essential to learn spatio-
temporal representations from echocardiography videos. We propose a video-level self-distillation
framework based on a student-teacher architecture with Vision Transformer (ViT)-based encoders
(Fig. 2) that models temporal dynamics and improves understanding of global heart motion. Given a
video input v, we partition it into non-overlapping 3D space-time patches (tube tokens), and prepend
a learnable class (CLS) token, resulting in a sequence x0, x1, . . . , xN , where x0 is the CLS token.

The teacher encoder Eθt processes the complete, unmasked video to produce a global representation,
whereas the student encoder Eθs processes multiple masked variants vM1, . . . , vMM

, each applying
distinct random space-time masks to enforce inference of missing content.

Both encoders output a global video representation via the CLS token:
zt = Eθt(v)[0], z(m)

s = Eθs(vMm
)[0]. (1)

The teacher parameters are updated using an exponential moving average (EMA) of the student
parameters:

θt ← λθt + (1− λ)θs, λ ∈ [0, 1). (2)
These CLS embeddings are subsequently mapped through linear projection heads characterized by
learnable weight matrices Wt (teacher) and Ws (student). The resulting embeddings are transformed
into probability distributions via temperature-scaled softmax operations:

Pt = softmax
(
Wtzt
τt

)
, P (m)

s = softmax

(
Wsz

(m)
s

τs

)
, (3)

where τt and τs are temperature parameters for the teacher and student, respectively.

We align these probability distributions using the cross-entropy loss:

Lvid
ssl =

1

M

M∑
m=1

H(Pt, P
(m)
s ), (4)

where H denotes cross-entropy. This approach encourages the student to match the teacher’s global
representation of cardiac motion, despite observing only incomplete views of the video. Through
video-level self-distillation, the student learns to recover the evolving dynamics of anatomical
landmarks, capturing coherent motion patterns and structural features relevant to global heart function
throughout the cardiac cycle.
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3.2 Fine-Grained Online Spatial Guidance

Although video self-distillation promotes temporal consistency and global abstraction, it tends to
overlook fine-grained spatial features, particularly those critical to clinical interpretation in echocardio-
graphy. Echocardiography imaging captures the dynamics and appearance of anatomically complex
structures, where capturing subtle spatial details, such as mitral valve leaflet motion, septal wall
thickness, or endocardial border definition, is crucial. To address this, we introduce a two-part strategy
for enriching spatial detail and semantic structure in video representations:

a). Masked Image Self-Distillation. An online image encoder is trained to learn spatially rich
features from partially masked images, enabling the extraction of fine-grained semantic concepts.
b). Semantic Cluster Distillation (SCD). A cross-modal clustering objective aligns reconstructed
video tokens with spatial image features, encouraging the video model to organize its representation
space around semantically meaningful structures.

3.2.1 Masked Image Self-Distillation

To learn fine-grained semantic features, we train an image encoder Iθ in parallel with the video
encoder. Each video v is decomposed into individual frames {xt}, which are processed independently.
For each frame x, the teacher image encoder Iθt receives the full-resolution image, while the student
encoder Iθs is given N randomly masked variants {xMi

}Ni=1. Each output is projected using distinct
learnable heads Wt (teacher) and Ws (student), followed by softmax normalization:

P (i)
s = softmax

(
WsIθs(xMi)

τs

)
, Pt = softmax

(
WtIθt(x)

τt

)
, (5)

where τs and τt are temperature parameters. The loss function encourages the student to match the
teacher’s predictions across all masked views:

Limg
ssl =

1

N

N∑
i=1

H(Pt, P
(i)
s ), (6)

with H(·, ·) denoting the cross-entropy. This training objective promotes the emergence of spa-
tially grounded representations that encode fine-grained clinical concepts such as fetal heart valves,
ventricular anatomy, and septal delineation that may be underrepresented in purely temporal learning.

3.2.2 Semantic Cluster Distillation (SCD)

While Masked Image Self-Distillation enables the image encoder to learn spatially grounded repre-
sentations that capture fine-grained clinical concepts, it does not transfer this knowledge to the video
encoder. As a result, the spatial and temporal representations remain disjoint. To bridge this gap, we
introduce Semantic Cluster Distillation (SCD), a cross-modal objective that distills semantic structure
from the image encoder, guiding the video encoder to incorporate fine-grained spatial detail into its
token representations.

Given a masked video input, the student video encoder Eθs processes the visible tokens to produce
latent representations, which are then passed to a decoder ψ that reconstructs token-level features
ẑv ∈ RB×N×D, where B is the batch size, N is the number of masked tokens, and D is the feature
dimension. In parallel, the corresponding video frames are processed by the image encoder Iθt ,
producing spatial features ẑi ∈ RB×N×D. These image features are detached from the gradient
flow and serve as semantic targets. Both sets of features are projected onto a shared set of learnable
prototypes P ∈ RK×D, resulting in similarity scores:

sv =
ẑvP

⊤

τ
, si =

ẑiP
⊤

τ
, (7)

where τ is a temperature scaling parameter and K is the number of prototypes. The resulting scores
are transformed into Sinkhorn soft cluster targets using the Sinkhorn-Knopp algorithm:

qv = Sinkhorn(sv), qi = Sinkhorn(si). (8)

The SCD loss symmetrically aligns the two modalities by minimizing the cross-entropy between their
soft cluster assignments:

LSCD = CE(sv, stopgrad(qi)) + CE(si, stopgrad(qv)), (9)

5



Table 1: Comparison of video anomaly detection
methods on three echocardiography datasets.
Our method consistently outperforms SOTA ap-
proaches, demonstrating improved effectiveness
in identifying cardiac abnormalities across diverse
patient populations.

Dataset Model Balanced Acc. F1 AUC

EchoNet-
Dynamic

MNAD 52.25 52.08 53.15
MemAE 49.22 46.33 49.69
C2FPL 57.36 57.35 59.00
Ours 63.20 61.45 67.06

RVENET

MNAD 52.34 52.18 54.05
MemAE 47.65 32.10 44.68
C2FPL 47.88 47.86 46.30
Ours 56.23 53.88 57.42

Echo
Pediatric-
LVH

MNAD 47.86 47.85 47.31
MemAE 47.28 47.28 47.23
C2FPL 51.39 51.31 50.68
Ours 55.63 54.63 57.23

Abnormal

GT: 

Abnormal

Pred:

 Normal

Pred:

Abnormal  

Ours

MVD

Figure 3: Zero-Shot classification compar-
ison: (Top) The sweep from four-chamber
to three-vessel view reveals smaller left-sided
structures (LV and Ao) versus right-sided (RV
and PA), consistent with coarctation of the
aorta. (Middle) DISCOVR correctly identi-
fies the abnormality, focusing on the ventri-
cles in the four-chamber view and the Ao and
PA in the vessel view. (Bottom)A backbone
pretrained with MVD, in contrast, misclassi-
fies the video as normal.

where gradients are propagated only through the video model and the prototype matrix P , while
the image encoder is updated solely via its own self-distillation loss. This guides the video encoder
to anchor its token representations to the spatially grounded clusters discovered by the image
encoder, thereby distilling fine-grained anatomical detail into its temporal feature space. Semantic
Cluster Distillation thus embeds spatial semantics within temporal features, yielding spatio-temporal
representations that capture anatomically relevant detail in echocardiography videos.

4 Experiments and Results

Datasets. We use five ultrasound video datasets across fetal, pediatric, and adult populations. Two
private fetal heart datasets, FetalEcho1 and FetalEcho2, were each collected from different hospital
partners in the UK, comprising 10-second transverse, cephalad sweeps capturing five standard cardiac
views (Situs, 4CH, LVOT, 3VV, 3VT). FetalEcho1 includes 8273/414/317 and FetalEcho2 includes
4154/320/305 videos for training/validation/testing. For adult and pediatric echocardiography, we use
3 public datasets: EchoNet Dynamic (apical 4CH adult; 7378/1326/1326) [30], EchoPediatric LVH
(parasternal long-axis pediatric; 7837/1592/1592) [9], and RVENet (right ventricular pediatric/adult;
2516/487/573) [22]. Videos for adult and pediatric populations are labeled as normal or abnormal
based on ejection fraction (EF), with abnormal defined as EF < 45% or EF > 75% [7]. Fetal videos
are labeled as normal or abnormal based on expert evaluation by two fetal cardiologists(+10 years of
experience). For the downstream segmentation task, we utilize the CAMUS [21] dataset.
Evaluation. All baseline models use official implementations, with videos sampled in 64-frame
clips at a stride of 3. We adopt space-time tube embeddings from VideoMAE [37], treating each
2 × 16 × 16 cube as a token with 90% masking ratio. All models use a ViT base backbone with
consistent configurations. We evaluate representations using zero-shot classification and linear
probing. Zero-shot evaluation uses a weighted kNN classifier [44, 4] on frozen features, with k
selected based on validation balanced accuracy. Linear probing trains a linear classifier for 30 epochs
on a frozen backbone using a labeled validation set. During inference, each test video is divided
into 64-frame clips and classified independently; a video is labeled abnormal if any clip is predicted
abnormal. For segmentation evaluation, we add a linear layer followed by Conv2D upsampling
blocks to generate pixel-level masks while keeping the backbone frozen.
Baselines. We compare DISCOVR with SOTA video SSL methods SIGMA [35], MGMAE [15],
MVD [41], VideoMAE [37], and RAD-DINO [32], covering masked modeling, clustering, and dense
feature learning. For anomaly detection, we include SOTA methods MNAD [31], MemAE [13],
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Table 2: Linear probing classification re-
sults on five echocardiography datasets
spanning fetal, adult, and pediatric popula-
tions. Our method achieves SOTA results,
outperforming prior video SSL baselines and
generalizing effectively across diverse clini-
cal cohorts.

Dataset Model Acc Bal. Acc. F1

Fetal-
Echo 1

VideoMAE 60.19 60.01 59.82
MGMAE 59.55 59.40 59.30
SIGMA 63.11 62.93 62.78
Ours 65.70 65.52 65.39

Fetal-
Echo 2

VideoMAE 56.39 53.12 51.60
MGMAE 60.98 60.49 60.43
SIGMA 56.07 56.06 55.81
Ours 65.25 63.53 63.59

Echonet-
Dynamic

VideoMAE 71.04 70.86 70.85
MGMAE 61.84 61.81 61.81
SIGMA 75.57 75.48 75.50
Ours 77.68 77.61 77.63

Echo
Pediatric-
LVH

VideoMAE 60.87 60.94 60.71
MGMAE 54.71 51.70 49.46
SIGMA 58.42 57.27 57.24
Ours 62.81 61.64 61.66

RVENET

VideoMAE 60.03 60.31 59.70
MGMAE 59.16 59.15 59.15
SIGMA 59.51 59.25 58.98
Ours 62.65 62.68 62.65

Table 3: Zero-shot evaluation across five
echocardiography datasets covering fetal,
adult, and pediatric populations. Our method
consistently outperforms existing video SSL
baselines, demonstrating robust generalization
across diverse clinical populations.

Dataset Population Model Acc Bal. Acc. F1

Fetal-
Echo 1 Fetal

RAD-DINO 55.34 55.35 55.34
VideoMAE 60.52 60.81 60.00
SIGMA 54.37 54.91 51.90
MGMAE 60.84 61.03 60.64
MVD 59.87 60.20 59.15
Ours 62.46 62.79 61.79

Fetal-
Echo 2 Fetal

RAD-DINO 54.10 51.46 50.62
VideoMAE 50.49 48.01 47.21
SIGMA 55.41 51.90 49.92
MGMAE 59.34 56.71 56.09
MVD 59.34 55.45 53.14
Ours 59.67 57.18 56.69

Echonet-
Dynamic Adult

RAD-DINO 59.43 59.63 59.34
VideoMAE 57.16 57.91 55.07
SIGMA 53.47 54.46 49.04
MGMAE 51.21 52.23 46.13
MVD 60.11 60.94 57.56
Ours 62.59 63.20 61.45

Echo
Pediatric-
LVH

Pediatric

RAD-DINO 53.14 52.27 52.26
VideoMAE 51.57 53.98 50.47
SIGMA 47.55 49.56 46.80
MGMAE 46.61 48.91 45.45
MVD 49.56 51.91 48.46
Ours 54.65 55.63 54.63

RVENET Adult,
Pediatric

RAD-DINO 55.67 55.65 55.65
VideoMAE 54.97 55.64 52.24
SIGMA 52.36 53.18 47.64
MGMAE 53.23 54.08 48.17
MVD 54.62 55.12 53.17
Ours 55.67 56.23 53.88

and C2FPL [2], which rely solely on spatial-temporal learning without external modules like object
detectors, pose estimators, or optical flow, often tailored to natural images.

4.1 Comparison with Video Anomaly Detection Methods

Table 1 compares the anomaly detection performance of DISCOVR with several state-of-the-
art approaches. DISCOVR achieves the highest F1 score for all datasets (61.45% for EchoNet
Dynamic, 53.88% for RVENET, and 54.63% for EchoPediatric LVH) as well as the highest balanced
accuracy (63.20%, 56.23%, and 55.63%, respectively), substantially outperforming C2FPL, MemAE,
and MNAD for all reported metrics. C2FPL relies on a multi-stage pseudo-labeling process to
enhance anomaly discrimination, while both MemAE and MNAD incorporate sophisticated memory
mechanisms and feature regularization in their inference pipelines. These methods employ targeted,
anomaly-specific inference strategies and complex architectures.
In contrast, DISCOVR builds on a simple self-supervised learning framework that jointly learns
spatial and temporal features, utilizing only a straightforward zero shot kNN classifier at inference.
DISCOVR not only achieves state-of-the-art scores, including the highest AUCs of 67.06 on EchoNet
Dynamic, 57.42 on RVENET, and 57.23 on EchoPediatric LVH, but also demonstrates that richer
spatio-temporal representations learned via simple SSL can offer more effective and efficient anomaly
detection than more sophisticaed anomaly detection techniques without reliance on specialized or
resource intensive modules.

Linear Probing. Table 2 shows that DISCOVR achieves the highest balanced accuracy and F1
score in linear probing for anomaly detection across all echocardiography datasets. For example,
on Echonet Dynamic, DISCOVR attains an F1 of 77.63 compared to 75.50 for SIGMA, and on
FetalEcho 2, achieves 63.59 versus 60.43 for MGMAE. These improvements are consistent across
fetal, pediatric, and adult cohorts. While VideoMAE and MGMAE rely on high masking ratios
and pixel-level reconstruction, their representations often miss subtle anatomical landmarks and
temporally distributed abnormalities, reflecting a lack of deeper semantic abstraction. Clustering-
based approaches such as SIGMA can capture some temporal variation but lack explicit semantic
guidance, limiting their ability to identify clinically relevant landmarks. In contrast, DISCOVR
leverages semantic supervision from the image encoder through online distillation, combined with
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Figure 4: Barplot comparing the segmentation
performance across different models. Our pro-
posed DISCOVR approach achieves the highest
Dice score of 0.844, outperforming both special-
ized segmentation architectures (DeepLab-V3,
UNET) and other self-supervised methods.

GTVideoMAE Ours MGMAE SIGMA

 0.82 0.810.91 0.92

0.870.84 0.780.65

0.900.01 0.300.56

Input 

0.75 0.78 0.73 0.91

Figure 5: Segmentation comparison on the
CAMUS dataset for left ventricular endo-
cardium (LV Endo), left ventricular epicardium
(LV Epi), and left atrium (LA). Our method pro-
duces accurate and consistent masks, achieving
higher Dice scores (bottom right) than baseline
methods.

temporal modeling in the video branch. This enables DISCOVR to capture fine-grained spatial
features and their evolution over time, resulting in representations that are both robust and clinically
meaningful for anomaly detection in cardiac ultrasound.
Zero-Shot. Table 3 shows that DISCOVR achieves the highest balanced accuracy and F1 score for
zero shot classification across all echocardiography datasets. For example, on Echonet Dynamic,
DISCOVR reaches an F1 of 61.45 compared to 57.56 for the best baseline, and on FetalEcho 1,
achieves 61.79 versus 60.64 for MGMAE. These improvements are consistent across fetal, pediatric,
and adult cardiac cohorts. This stronger performance reflects DISCOVR’s ability to integrate
semantic features captured by the image encoder with temporal dynamics modeled by the video
branch, explicitly aligned through the SCD loss during self-supervised training. Pixel reconstruction
models such as VideoMAE and MGMAE focus primarily on low-level appearance and texture, and
clustering approaches like SIGMA, while using temporal clips, lack explicit semantic guidance.
Image-based baselines like RAD-DINO do not leverage temporal information, while methods such
as MVD that rely on external pretrained teachers may be less adaptable to the clinical and domain-
specific challenges of ultrasound video. DISCOVR’s capabilities are further highlighted in the
qualitative example of Fig. 3, where it detects subtle cardiac structures and correctly classifies a
challenging fetal video as abnormal, while MVD fails to capture these cues and predicts a normal
outcome. This underscores how DISCOVR’s features are sufficiently fine-grained to enable accurate
zero shot anomaly detection, even without task-specific tuning.

4.2 Segmentation Evaluation
We evaluate the effectiveness of DISCOVR representations for downstream cardiac segmentation
using the CAMUS dataset [21]. As shown in Fig 4, DISCOVR achieves the highest Dice score (0.844),
outperforming specialized segmentation architectures such as UNet and DeepLabV3 (0.816 and
0.819, respectively, both with BYOL pretraining).When compared using a simple linear+upsampling
head on a frozen backbone, DISCOVR also surpasses other SSL-based video models, including
VideoMAE (0.747), MGMAE (0.767), and SIGMA (0.759). Fig. 5 highlights these advantages:
DISCOVR produces consistently accurate and well-aligned segmentation masks for LV Endo, LV Epi,
and especially the left atrium. For the challenging left atrium segmentation (blue mask), MGMAE
misses the structure entirely (Dice = 0.01), while SIGMA and VideoMAE also perform poorly (Dice
= 0.30 and 0.56). DISCOVR, in comparison, achieves 0.90, demonstrating superior ability to segment
subtle structures and delineate boundaries due to its fine-grained feature learning.

4.3 LVEF Prediction

We evaluate the effectiveness of DISCOVR representations for downstream cardiac function esti-
mation using the EchoNet-Dynamic ejection fraction dataset [30]. As shown in Table 4, DISCOVR
achieves the lowest Mean Absolute Error (MAE) of 7.79 under the standard linear probing setup,
outperforming other self-supervised baselines such as VideoMAE (8.02) and MGMAE (8.88). When
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fine-tuning only the last three encoder blocks, DISCOVR further reduces the MAE to 6.32, demon-
strating the strength of its learned representations even with limited adaptation. In comparison, the
fully supervised EchoNet-Dynamic model [30] is trained end to end with all parameters updated.
Under an ejection fraction–only setup without segmentation labels, DISCOVR surpasses these fully
supervised baselines, including MC3 with an MAE of 6.59, the base EchoNet-Dynamic model with
7.35, and R3D with 7.63. The full EchoNet-Dynamic architecture achieves an MAE of 4.05 using a
large multi-task design with 71.1 million parameters co-trained on 20,060 manual segmentation trac-
ings. These results show that DISCOVR, through self-supervised pretraining and partial fine-tuning,
learns powerful cardiac representations that rival or exceed fully supervised models trained end to
end.

Table 4: LVEF prediction results on the EchoNet-Dynamic dataset. Our self-supervised method is
compared against other SSL methods and fully-supervised baselines from [30].

Model MAE ↓ RMSE ↓ EF Labels Seg. Labels
Self-Supervised (Linear Probing)
VideoMAE 8.02 11.16 ✓
MGMAE 8.88 12.47 ✓
DISCOVR (Ours) 7.79 10.89 ✓

Self-Supervised (Fine-tuning)
DISCOVR (finetune last 3 blocks) 6.32 8.62 ✓

Fully-Supervised Baselines [1] trained only with EF Data
MC3 (All frames) 6.59 9.39 ✓
EchoNet-Dynamic (EF, All frames) 7.35 9.53 ✓
R3D (All frames) 7.63 9.75 ✓
DISCOVR (finetune last 3 blocks,64 frames) 6.32 8.62 ✓

EchoNet-Dynamic (Full model) 4.05 5.30 ✓ ✓

5 Ablation Study

In this section, we ablate the key components of the training objective in our model, DISCOVR.
All experiments are conducted on the Echonet Dynamic dataset and evaluated using the k-nearest
neighbor (kNN) protocol. This setup allows us to assess the discriminative quality of the learned
representations in a fully frozen setting without additional fine-tuning.

Effect of Loss Components. We evaluate the effect of two core loss components used in DISCOVR:
(i) the video self-distillation component (Lvid

ssl ), and (ii) the semantic cluster distillation component
with online image guidance (LSCD). Table 5a reports the performance of these losses individually
and in combination in zero-shot settings. Using only Lvid

ssl yields modest performance (F1 = 48.23%),
as it primarily captures global temporal structure via CLS tokens but lacks guidance for fine-grained
semantics. Introducing LSCD leads to a substantial improvement (F1 = 61.45%, Balanced Accuracy
= 63.20%), as the evolving image-based semantic clusters enrich the temporal features learned by the
video model and encourage focus on more fine-grained, spatially grounded information. For more
detailed ablation, refer to supplementary section B.1.4.

Effect of Backbone Size. We investigate how transformer backbone size impacts DISCOVR’s
representation quality. We evaluate ViT-Small and ViT-Base variants, each paired with matching
DINO image encoders, on the Echonet Dynamic dataset using kNN evaluation (Table 5b). ViT-Base
achieves superior performance (F1=61.45%, balanced accuracy=63.20%) compared to ViT-Small
(F1=57.52%, balanced accuracy=59.44%). The smaller model’s reasonable performance indicates
DISCOVR learns meaningful representations even with limited capacity.

Effect of Number of Frames. In this ablation, we evaluate how the number of frames sampled from
each video clip affects the representational quality learned by our model. We experiment with three
temporal lengths: 16, 32, and 64 frames. All other training settings are kept constant, and the results
are reported in Table 5d. We observe a clear upward trend in performance with increasing frame
count. Using 16 frames results in an F1 score of 55.68%, which improves to 57.45% with 32 frames.
The best performance is achieved with 64 frames, yielding an F1 score of 61.45% and balanced
accuracy of 63.20%. These results support the intuition that ultrasound, being a temporally dense and
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Table 5: Ablation studies reported with Balanced Accuracy, Precision, and F1 score.

(a) Effect of loss terms

Lvid
ssl LSCD Bal. Acc. Precision F1

✓ ✗ 52.27 53.16 48.23
✓ ✓ 63.20 65.35 61.45

(b) Backbone size

Backbone Bal. Acc. Precision F1

ViT-Small 59.44 61.03 57.52
ViT-Base 63.20 65.35 61.45

(c) Masking ratio

Mask (%) Bal. Acc. Precision F1

50 55.60 56.90 52.98
75 56.25 57.58 53.85
90 63.20 65.35 61.45

(d) Number of frames

Frames Bal. Acc. Precision F1

16 57.89 59.45 55.68
32 59.54 61.36 57.45
64 63.20 65.35 61.45

dynamic modality, benefits from longer clips. More frames provide richer temporal context, enabling
the model to capture fine-grained spatial and temporal motion patterns across the cardiac cycle.

Effect of Masking Ratio. Table 5c shows a steady improvement in performance as the masking ratio
increases, with F1-score rising from 52.98% (50%) to 61.45% (90%). Higher masking forces both
the video encoder and the semantic image guidance branch to infer more from sparse visual cues,
encouraging the model to focus on the most salient and non-redundant features. This promotes the
learning of richer representations that better capture subtle and fine-grained spatio-temporal patterns,
resulting in improved anomaly detection performance.

Computational Cost and Scalability. We report the computational cost, of our method in Table 6.
The table shows both training and inference statistics, showing GPU memory usage and F1-score for
each method on EchoNet-Dynamic, for a batch size of 1, 64 frames, and a spatial size of 112× 112.
During training, DISCOVR uses slightly more GPU memory (10.5GB) compared to prior methods
(between 9.0 and 9.5GB) but achieves a notable +6.38% improvement in F1-score over the closest
competitor. At inference, all methods, including DISCOVR, use identical ViViT-like encoders,
resulting in nearly the same GPU memory footprint and FLOPS. This demonstrates that our method’s
performance improvements come with minimal extra training cost and no penalty for inference
efficiency.

Table 6: Training and inference GPU memory, FLOPS, and F1-score on EchoNet-Dynamic, batch
size = 1, 16 frames, 112× 112 resolution.

Model Train Mem (GB) F1-score Infer Mem (GB) Infer. FLOPS
MGMAE [15] 9.0 46.13 1.153 101.85
VideoMAE [37] 9.0 55.07 1.153 101.85
SIGMA [35] 9.2 49.04 1.153 101.85
Video-distillation 9.5 48.23 1.153 101.85
DISCOVR (Ours) 10.5 61.45 1.153 101.85

6 Conclusion

We introduce DISCOVR, a self-supervised model for learning video representations in echocar-
diography across diverse patient populations. Our approach combines masked video modeling,
temporal self-distillation, and online spatial supervision, unified by a Semantic Cluster Distillation
(SCD) objective that aligns video and image features through cross-modal clustering, without re-
lying on labeled anomalies or pretrained models. Extensively evaluated on six echocardiography
datasets spanning fetal, pediatric, and adult populations, DISCOVR consistently outperforms previous
self-supervised and anomaly detection methods for multiple tasks, including anomaly detection,
classification (zero-shot and linear probing), and segmentation. DISCOVR’s task-agnostic design
and its applicability to diverse patient groups establish it as a strong foundation for screening cardiac
conditions and developing assistive tools for echocardiography.
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Appendix

A Dataset Distribution

This section presents the dataset distributions for our five echocardiography video datasets: Fe-
talEcho1 (Fig.6), FetalEcho2 (Fig.7), EchoNet-Dynamic (Fig.8), EchoNet-Pediatric (Fig.9), and
RVENET (Fig.10). For each dataset, the bar chart displays the number of unique samples in the
training, validation, and test sets. The accompanying pie charts illustrate the class distributions
(Normal vs. Abnormal) within the validation and test sets.
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Figure 6: Dataset Distribution for Fetal-Echo1 dataset
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Figure 7: Dataset Distribution for Fetal-Echo2 dataset
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Figure 8: Dataset Distribution for Echo-Dynamic dataset
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Figure 9: Dataset Distribution for Echo-Pediatric dataset
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Figure 10: Dataset distribution for RVENET dataset

B Additional Results:

B.1 Full Finetuning

B.1.1 Evaluation Setup

We follow the same evaluation procedure as described in the experiments section in the main paper,
but fine-tune the entire backbone along with the linear layer. All other evaluation settings remain
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unchanged. Results are reported on the Echonet Dynamic dataset to assess end-to-end supervised
performance.

B.1.2 Evaluation Result:

Under full fine-tuning, as shown in Table 7, all models experience a drop in performance compared
to their linear probing results, reflecting overfitting due to the limited labeled validation data. Despite
this, DISCOVR achieves the highest F1 score of 70.44%, outperforming MGMAE (65.99%), SIGMA
(61.46%), and VideoMAE (57.31%). DISCOVR’s structured representation learning, through tempo-
ral distillation and cross-modal clustering, appears to provide more robust and adaptable features,
enabling it to generalize better even when fully fine-tuned on a small dataset.

Table 7: Table showing the full-finetuning result of DISCOVR compared to other baselines on the
Echo-Dynamic Dataset

Model (%) Accuracy Balanced Acc. Precision Recall F1-Score
VideoMAE 57.62 57.94 58.27 57.94 57.31

SIGMA 61.69 62.00 62.41 62.00 61.46
MGMAE 65.99 66.08 66.10 66.08 65.99

Ours 70.51 70.42 70.50 70.42 70.44

B.1.3 Generalisation to Other Modalities.

To test whether DISCOVR generalizes beyond echocardiography, we evaluated its transfer per-
formance on two distinct medical image benchmarks: the Breast Ultrasound Images dataset [1]
(cancer detection across 600 patients) and DermMNIST [46] (skin lesion classification). Both breast
ultrasound and echocardiography require the detection of small, irregular regions of altered tissue,
such as hypoechoic tumors in the breast or localized wall motion abnormalities in the heart, making
the ability to identify subtle structural changes in one domain directly applicable to the other. Sim-
ilarly, DermMNIST demands fine-grained visual discrimination between morphologically similar
skin lesions. For both benchmarks, we froze the DISCOVR encoder and trained a linear classifier,
comparing performance directly across methods.

As shown in Table 8, our method demonstrates strong generalization across both tasks. On the Breast
Ultrasound dataset, DISCOVR improves balanced accuracy by 2.01% over VideoMAE, 19.83% over
SIGMA, and 12.01% over MGMAE. For DermMNIST, DISCOVR achieves an accuracy of 71.68%,
outperforming VideoMAE by 2.85%, SIGMA by 3.00%, and MGMAE by 3.85%. These results
demonstrate strong generalization to multiple medical image analysis tasks beyond echocardiography.
Further, to assess generalization to natural video data, we pretrained and evaluated all models on the
Kinetics 400 action recognition benchmark, using a zero-shot protocol where KNN classification
with K = 20 was applied to features using 64 frames from the frozen video backbone. As shown in
Table 9, DISCOVR achieves the highest Top-1 accuracy at 22.3%, outperforming MVD by 3.6%,
MME by 3.2%, and VideoMAE by 1.6%, while also requiring the fewest pretraining epochs. These
results highlight that DISCOVR not only excels at medical video tasks but also learns generalizable
representations efficiently for large-scale natural video datasets.

Table 8: Linear Probing results on the Breast Ultrasound dataset and DermMNIST. For Breast
Ultrasound, we report Balanced Accuracy (Bal. Acc.) and F1; for DermMNIST, we report overall
Accuracy (Acc.).

Method Breast Ultrasound DermMNIST
Balanced Accuracy F1 Score Accuracy

VideoMAE 61.75 64.45 68.83
SIGMA 43.93 42.21 68.68
MGMAE 51.75 52.34 67.83
DISCOVR (Ours) 63.76 65.44 71.68
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Table 9: Zero-Shot KNN classification performance on Kinetics-400
Model Epochs Top-1 Accuracy (%)

MVD [41] 1600 18.7
MME [36] 800 19.1

VideoMAE [37] 800 20.7
DISCOVR (Ours) 400 22.30

B.1.4 Loss function Ablation detailed.

To rigorously evaluate each component, we have added baselines using only masked image or only
video self-distillation. Indeed, we find that the settings perform suboptimally, as shown in Table 1,
confirming that spatial or temporal cues alone are insufficient for strong representation learning. In
contrast, combining both with the SCD loss, which explicitly distills fine-grained semantic structure
from the image branch into the video backbone, achieves the best results. This supports our intuition
that SCD is crucial for aligning spatial semantics with temporal dynamics, enabling more robust and
clinically meaningful video representations.

Table 10: Effect of the different loss terms on classification performance (Balanced Accuracy,
Precision, and F1).

Lvid
ssl Limg

ssl LSCD Bal. Acc. Precision F1

✓ ✗ ✗ 52.27 53.16 48.23
✗ ✓ ✗ 53.66 55.22 49.43
✓ ✓ ✓ 63.20 65.35 61.45

C Implementation Details

All models are implemented in PyTorch 2.6 and trained on RTX 8000 GPUs (48 GB) with a batch
size of 8 using the AdamW optimizer. Videos are processed as 64-frame clips sampled at a stride of 3
and resized to 112× 112.

For both video and image self-distillation, we use a student-teacher setup where the teacher processes
the full input and the student observes N = 4 randomly masked views. The teacher network is
updated via an exponential moving average (EMA) of the student with momentum λ = 0.996. A
fixed temperature τs = 0.1 is used for the student, while the teacher temperature τt is linearly warmed
from 0.04 to 0.07 over the first 30 epochs. Semantic Cluster Distillation (SCD) uses K = 3000
learnable prototypes, with similarity scores computed via temperature-scaled dot products (τ = 0.1)
and cluster assignments generated using the Sinkhorn-Knopp algorithm (10 iterations, ϵ = 0.05).
Models are trained for 400 epochs with a learning rate of 1.5× 10−4, weight decay of 0.05, and 40
warmup epochs.

D Broader Impact and Limitations

In this work, we introduce DISCOVR, a novel self-supervised model for echocardiography video
understanding across fetal, pediatric, and adult populations. Trained without labeled abnormal cases,
DISCOVR learns rich spatiotemporal representations and enables zero-shot inference. One key
application of DISCOVR is in the early screening of heart diseases, where it can assist clinicians
by flagging potential anomalies in echocardiography videos. This has significant clinical relevance,
as congenital heart defects affect approximately 1 in 100 newborns, with up to 50% missed during
prenatal screening [38, 19, 39], and cardiovascular diseases remain the leading global cause of
death [42]. By reducing reliance on large, labeled datasets, DISCOVR offers a scalable and accessible
solution, particularly for deployment in low-resource settings.

While DISCOVR shows strong potential, its current scope is focused specifically on echocardiography,
and it has not yet been evaluated on other imaging modalities. The model was trained and tested on
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five datasets collected from distinct clinical sites, each with its own imaging protocols, devices, and
patient cohorts. As a result, the demographic and geographic diversity of the data may be limited.
Further validation is needed to assess the model’s generalizability across broader clinical settings,
populations, and imaging systems.
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Figure 11: Figure (left) compares two fine-grained videos: a natural scene of a person baking (left)
and an adult heart ultrasound (right). The frame-level cosine similarity matrix, computed using a
pretrained VideoMAE model, shows that ultrasound frames are highly similar (mean=0.99), with
only minor local variations. This highlights the difficulty in distinguishing individual frames in such
medical videos. Figure (right) compares normal and abnormal fetal echocardiograms, which appear
almost identical despite one being abnormal. This illustrates the inherent difficulty of distinguishing
subtle cardiac abnormalities in fetal imaging.

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we develop a self-supervised video foundational model for
echocardiography and show its performance across fetal, pediatric and adult population
across various downstream tasks. Our novelty lies in the DISCOVR framework, which
combines a clustering-based video encoder for temporal dynamics with a DINO-inspired
image encoder for spatial semantics, unified through a novel online semantic distillation loss
that transfers anatomical knowledge from the evolving image encoder to the video encoder
without relying on labels or external pretrained models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our model is focused on echocardiography, and we have made it clear in
the introduction/abstract and conclusion. Further, we have added a broader impact and
limitations section in the appendix to discuss our assumptions and limitations of the current
work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: In our paper, we have no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have a dedicated Experiments section where we detail all implementation
specifications, evaluation protocols, and dataset characteristics needed for reproducing our
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code and model weights upon acceptance. The paper
utilizes four open-source datasets. The additional two fetal datasets are private, and we can
not release them publicly due to data governance requirements of our study/hospital partner
agreements. We have described the data characteristics for these datasets.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have a dedicated section detailing experimental settings, evaluation, and
dataset details. We have also included the dataset split visualization and detailed implemen-
tation details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Reporting classical confidence intervals or p-values would require training each
configuration multiple times to estimate variance, an approach that is impractical for video
self-supervised learning (SSL) methods, which typically demand substantial computational
resources and incur high environmental costs. Instead, we assess robustness by evaluating our
model architecture on five distinct echocardiography datasets covering fetal, pediatric, and
adult populations. Across all settings, our method consistently outperforms strong baselines
by a large margin, demonstrating reliable generalization without requiring repeated runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information is mentioned in the Experiment and Results section in main
paper and the implementation section of the Appendix.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the work is built using anonymized patient data and conforms with all
other NeurIPS guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We mention the societal impact of our work which has potential to support
experts in detecting heart diseases across diverse patient populations and enhance clinical
workflows through various downstream applications in the abstract, introduction, and con-
clusion sections. We have also added a separate Broad Impact and Limitations section in the
appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We have cited all sources whose data or code we have utilized. Descriptions of
each dataset are provided below:
(a) Fetal-Echo1 and Fetal-Echo2: These are private datasets collected as part of a private

project. Ethics approval has been obtained, and all data were anonymised before model
development. We will provide the ethics approval number and any other required
documentation upon publication, in compliance with the double-blind review policy.

(b) EchoNet-Dynamic and EchoNet-Pediatric: Both are publicly available datasets
released by Stanford University for non-commercial research use under a Stanford
University Research Use Agreement, which we adhere to. For more information,
see: https://echonet.github.io/dynamic/, https://echonet.github.io/
pediatric/.

(c) RVENet: This dataset is available for non-commercial research use under a Research
Use Agreement with Semmelweis University, which we comply with. For more
information, see: https://rvenet.github.io/dataset/.

(d) CAMUS: This dataset is publicly available for research use and requires citation
of the original publication, which we have provided. For more information, see:
https://www.creatis.insa-lyon.fr/Challenge/camus/databases.html.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will be releasing code, model weights and will be mentioning the license
of use in the GitHub page.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper utilizes two private datasets, FetalEcho1 and FetalEcho2, collected
from our partner hospitals. We have obtained institutional approvals, including ethics
clearance and data anonymization approval. Specific details, such as the ethics approval
number, will be provided upon acceptance to comply with the double-blind review policy.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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