

000 *Prune, Then Select: SELECT HIGH-QUALITY, IMPOR- 001 TANT, AND DIVERSE DATA USING TRAINING TRAJEC- 002 TORIES* 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

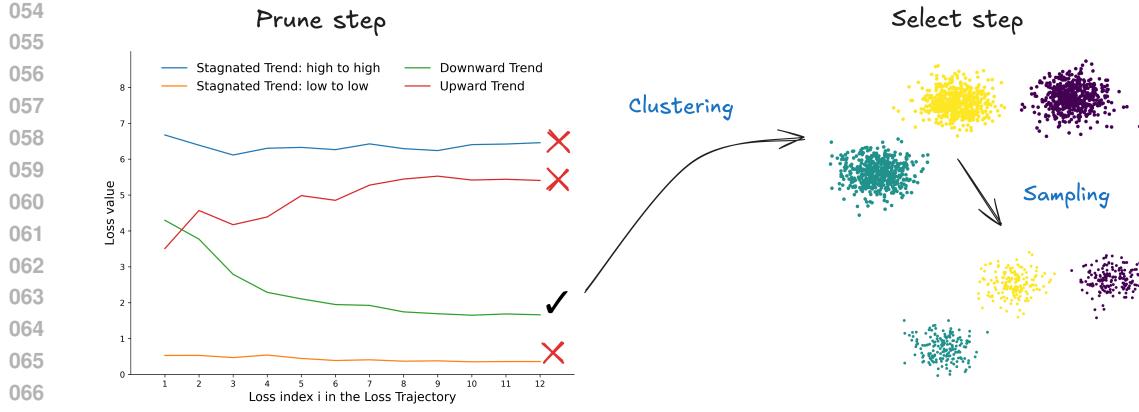
010 ABSTRACT 011

012 The rapid expansion of instruction datasets not only escalates the computational
013 cost of instruction fine-tuning but also brings data-related challenges, such as the
014 presence of noisy or low-quality samples and the redundancy caused by duplicate
015 or highly similar instances. To address these issues, data selection methods have
016 been proposed to reduce training expenses while preserving, or even enhancing,
017 model performance through fine-tuning on an appropriately chosen subset. In
018 this paper, we propose a new method named **PS**, containing a Prune step and
019 a Select step, to ensure selecting a high-quality, important, and diverse subset
020 by efficiently utilizing the training trajectories of data samples collected from a
021 small proxy model. Specifically, in the Prune step, we prune low-quality data
022 that do not exhibit a downward trend in their **loss trajectories**, as these samples
023 may negatively impact the model training. In the Select step, we introduce the
024 concept of **the learning trajectory** (i.e., the loss reduction trajectory or the loss
025 reduction rate trajectory), which provides a better representation of the model's
026 learning progress on each data sample, and use these **learning trajectories** as
027 sample features to cluster the retained samples from the Prune step. A balanced
028 selection is then performed across all clusters within a fixed budget. We validate
029 **PS** on the MathInstruct dataset (262K) with the open-source model suite Pythia by
030 comparing it against two categories of data selection methods: importance-based
031 and diversity-based methods. Experimental results show that our **PS** consistently
032 outperforms all baseline methods across budget constraints of 30K (11.5%), 50K
033 (19.1%), and 100K (38.2%). Notably, **PS** achieves superior performance with less
034 than 40% of the data compared to the model trained on the full dataset.
035

036 1 INTRODUCTION 037

038 Fine-tuning Large Language Models (LLMs) on instruction datasets, known as instruction tuning,
039 can unlock the potential of LLMs, enabling them to accomplish a wide variety of tasks by following
040 natural language instructions (Ouyang et al., 2022; Taori et al., 2023). Consequently, many efforts
041 have been devoted to collecting increasingly larger instruction-tuning datasets (Longpre et al., 2023;
042 Yue et al., 2023; 2024; Zhang et al., 2024), either through manual collection, annotation, and trans-
043 formation (Wei et al., 2022) or through automated synthesis methods (Wang et al., 2023; Taori et al.,
044 2023), aiming to build effective instruction-following models. However, the ever-growing size of in-
045 struction datasets raises several significant challenges. First, fine-tuning LLMs on massive datasets
046 incurs rapidly escalating computational costs. Second, both manually collected and automatically
047 generated instruction data often contain noisy or low-quality samples (Mindermann et al., 2022).
048 Third, when data is abundant, duplicate or highly similar samples are likely to exist, which might
049 increase the risk of overfitting and reduce training efficiency (Lee et al., 2022). **Data selection** (Qin
050 et al., 2024; Liu et al., 2025) is a promising direction to address these issues, which aims to carefully
051 identify a subset from the raw dataset within a given budget such that the model trained on this
052 subset achieves comparable or even better performance than one trained on the full dataset, while
053 simultaneously reducing computational costs.

Existing data selection approaches can be broadly grouped into three categories: quality-based,
importance-based, and diversity-based methods (Qin et al., 2024). Quality-based methods retain



068
069
070
071
072
073
074
075
076
077

Figure 1: The overview of our proposed **PS**, which consists of a **Prune step** and a **Select step**. In the **Prune step**, we first identify low-quality data by analyzing each data sample’s **loss trajectory**. Specifically, we categorize each training sample into one of three categories: downward trend, stagnated trend, and upward trend, based on its loss trend during model training. Since low-quality samples typically show no decrease or even an increase in loss over time, they hinder training efficiency or degrade model performance. We therefore prune samples with stagnated or upward trends (see Section 4.1 for details) to guarantee the quality and importance of the selected subset. In the **Select step**, we adopt **the learning trajectory**, a variant of the loss trajectory defined in Equation 3, as sample features to cluster the remaining samples. Then, under a fixed budget, we perform balanced sampling across all clusters to ensure diversity in the final subset (see Section 4.2 for details).

078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

high-quality samples while discarding low-quality ones, typically by leveraging advanced LLMs to assign quality scores (Chen et al., 2024). Importance-based methods estimate sample importance using **intrinsic model metrics such as perplexity, loss, or gradients** (Jiang et al., 2019; Killamsetty et al., 2021). Diversity-based methods reduce data redundancy by clustering samples and selecting a portion from each cluster to obtain a representative subset (Sener & Savarese, 2018; Tirumala et al., 2023). Although these methods have shown promising results, focusing on a single dimension—quality, importance, or diversity—is insufficient for effective data selection. For instance, diversity-based methods promote the overall diversity of the subset but often overlook individual sample quality, potentially introducing low-quality data. Conversely, quality-based and importance-based methods emphasize sample-level quality or importance while neglecting global diversity, which can harm generalization. In addition, quality-based methods typically define “quality” through semantic attributes (e.g., grammatical correctness, fluency), while neglecting intrinsic model metrics, such as those leveraged by importance-based methods, that are critical for performance. **We therefore argue that an effective data selection strategy should integrate quality, importance, and diversity rather than relying on any single dimension.**

094
095
096
097
098
099
100
101
102
103
104
105
106
107

To identify an effective subset that is simultaneously high-quality, important, and diverse, a straightforward idea is to naively combine existing approaches. However, these different methods often rely on incompatible strategies for analyzing data samples, and combining them directly can introduce considerable computational overhead, which may negate the benefits of data selection. To address this, we propose a data selection method named **PS**, which guarantees the quality, importance, and diversity of the selected subset by efficiently leveraging data samples’ loss trajectories—the sequences of loss values computed on each sample using intermediate model checkpoints during training. **PS** consists of a **Prune step** and a **Select step**, illustrated in Figure 1. In the **Prune step**, we first analyze the loss trend of each data sample by fitting its loss trajectory with linear regression. High-quality samples typically exhibit a consistent downward trend in loss during training, indicating their importance for model learning from the perspective of intrinsic model metrics. In contrast, low-quality samples show no decrease or even an increase in loss over time, thereby hindering training efficiency or degrading model performance. We therefore prune samples without a downward trend in their **loss trajectories**, ensuring that the retained subset is both high-quality and important. To reduce additional computational cost, these loss trajectories are derived from a small proxy model rather than the target model. In the **Select step**, we introduce the concept of the **learn-**

108 **ing trajectory**—a variant of the loss trajectory that captures the model’s learning progress on each
 109 sample more directly—and use the learning trajectories as sample features to cluster the retained
 110 samples from the **Prune** step, enabling precise clustering results. Since learning trajectories can be
 111 derived directly from loss trajectories, this step introduces no additional overhead. We provide two
 112 types of learning trajectories: the loss reduction trajectory and the loss reduction rate trajectory. Fi-
 113 nally, given a fixed budget, we perform balanced selection across clusters to ensure diversity in the
 114 final subset.

115 We compare our **PS** against two types of data selection methods: importance-based and diversity-
 116 based methods on the MathInstruct dataset (Yue et al., 2023) by employing the open-source model
 117 suite Pythia (Biderman et al., 2023), where Pythia-70M serves as the small proxy model for gen-
 118 erating loss trajectories and learning trajectories for all data samples and Pythia-410M acts as the
 119 target model. The experimental results demonstrate that our **PS** consistently outperforms all baseline
 120 methods under different budget constraints of 30K (11.5%), 50K (19.1%), and 100K (38.2%). No-
 121 tably, with only 100K samples (less than 40% of the full dataset), **PS** achieves better performance
 122 than training on the entire 262K dataset. The advantages of **PS** are especially pronounced under
 123 smaller budgets (e.g., 30K, 50K), highlighting that learning trajectories provide more informative
 124 features for clustering, thereby enabling more effective data selection.

2 RELATED WORK

125 **Data Selection.** Data selection is a long-standing problem and can generally be categorized into
 126 importance-based, diversity-based, and quality-based methods (Qin et al., 2024). In importance-
 127 based approaches, each data sample will get an importance score where the importance criteria
 128 mainly rely on factors such as the perplexity (Marion et al., 2023), the error or loss of each sam-
 129 ple (Jiang et al., 2019; Mindermann et al., 2022; Paul et al., 2023), the gradient information during
 130 model training (Killamsetty et al., 2021; Paul et al., 2023), or the influence of a sample on the
 131 predictions of other samples (Pruthi et al., 2020; Xia et al., 2024). Diversity-based data selection
 132 approaches try to select a representative subset to cover all diversities within the dataset (Sener &
 133 Savarese, 2018; Sorscher et al., 2023; Tirumala et al., 2023; Wu et al., 2023). They typically divide
 134 all data samples into distinct clusters based on their sample features like embeddings (Sorscher et al.,
 135 2023; Tirumala et al., 2023) and then select a portion of data from each cluster. Quality-based ap-
 136 proaches involve either manually curating high-quality instruction data (Zhou et al., 2023a) or using
 137 advanced language models, such as ChatGPT or GPT-4 (OpenAI, 2023), to assign a quality score to
 138 each data example (Chen et al., 2024).

139 **Training Trajectories of Language Models.** Investigating the training trajectories of language
 140 models is essential for understanding how they perform and identifying ways to improve them. Xia
 141 et al. (2023) examines how the token-level training trajectories change as language models get larger.
 142 By analyzing the intermediate training checkpoints of differently sized OPT models (Zhang et al.,
 143 2022)—from 125M to 175B parameters—on the next-token prediction task, they find that training
 144 trajectories of tokens from differently-sized models largely overlap when plotting against validation
 145 perplexity, indicating that differently-sized models make similar predictions at a similar perplexity¹.
 146 Lin et al. (2024) also analyzes the token-level training dynamics² of language models for selecting
 147 useful tokens that should be aligned with the desired distribution to boost the model performance.
 148 Inspired by Xia et al. (2023), Yang et al. (2024) study the training trajectories across scales at a
 149 sample level. They empirically show that we can find groups of examples with similar training
 150 dynamics on large models by clustering the training trajectories of data samples collected from a
 151 smaller model.

3 PRELIMINARY

152 In this section, we introduce the loss trajectory and the learning trajectory of a data sample, both of
 153 which capture critical characteristics of the data sample throughout training and serve as the basis
 154 for the **Prune** and **Select** steps of our method, respectively.

155 ¹See Appendix B.5 of Xia et al. (2023).

156 ²It refers to training trajectories in these works.

162
163

Let $\theta \in R^n$ denote the parameters of a language model. We consider a training instruction dataset D_{train} consisting of N samples (i.e., $|D_{\text{train}}| = N$), where each data sample $d_i \in D_{\text{train}}$ is a (prompt, response) pair denoted as (x_i, y_i) (i.e., $d_i = (x_i, y_i)$), $i \in [N] = \{1, \dots, N\}$. Under a fixed budget B , our goal is to select a subset $S \subseteq D_{\text{train}}$ such that the number of samples in S satisfies $|S| = B$. Ideally, the language model trained on the selected subset S should achieve performance close to, or even better than, that of the model trained on the entire dataset D_{train} .

170
171

3.2 LOSS TRAJECTORY

172
173
174

For a data sample $d_i = (x_i, y_i)$, $i \in [N]$, where we assume the response y_i contains M tokens (i.e., $y_i = (y_{i,1}, y_{i,2}, \dots, y_{i,M})$), and given a language model θ , its loss can be computed as follows:

175
176
177

$$\ell_i = \ell(d_i; \theta) = -\log p_{\theta}(y_i | x_i) = -\sum_{m=1}^M \log p_{\theta}(y_{i,m} | x_i, y_{i,1:m-1}). \quad (1)$$

178
179
180
181
182
183

This loss value depends jointly on the model parameters θ and the data sample d_i . At a single training step, it provides a static measure of how well the current model fits the sample. To obtain a more informative view, we can trace how the loss evolves over successive training steps, forming **the loss trajectory** for the data sample. From the model's perspective, the loss trajectory reflects how the model gradually adapts to a specific data sample; from the data's perspective, it reveals how that sample contributes to the model's overall learning process.

184
185
186
187
188
189

Ideally, the most accurate way to obtain a loss trajectory is to record the loss of each data sample at every training step, which would precisely capture its interaction with the model throughout training. However, this is prohibitively expensive in terms of both storage and computation, so we adopt a coarse but effective approximation. Specifically, we fine-tune the language model θ on the instruction dataset D_{train} and save T intermediate checkpoints θ^t , $t \in [T] = \{1, \dots, T\}$ during training. The loss trajectory of a data sample d_i is then approximated as a T -dimensional vector

190
191

$$\text{Loss trajectory} : (\ell_i^1, \ell_i^2, \dots, \ell_i^T) \quad (2)$$

192
193
194
195

where each element ℓ_i^t is the loss computed by Equation 1 using intermediate checkpoint θ^t on d_i . In our setting, each θ^t is obtained after training for a fixed number of iterations³ starting from θ^{t-1} and can be saved sequentially during the training process of θ .

196
197

3.3 LEARNING TRAJECTORY

198
199
200
201
202
203
204

Although the loss trajectory of a data sample provides valuable information about how the sample contributes to the model's learning during training, it does not directly reflect the model's progress in learning that sample. For example, while a decreasing loss does suggest improvement, the magnitude of improvement between successive training steps, i.e., how much the loss is reduced, often provides a clearer signal of the model's learning progress. This motivates us to move beyond raw loss trajectories and instead construct **learning trajectories** that explicitly capture the model's learning progress on each sample.

205
206
207
208
209

Inspired by findings in Multi-task Learning (MTL), where loss reduction or loss reduction rate has been shown to more accurately indicate task progress than raw loss values (Désidéri, 2012; Liu et al., 2021a;b; 2023), we extend this idea to the sample level by defining two types of learning trajectories—the loss reduction trajectory and the loss reduction rate trajectory—both derived as variants of the loss trajectory:

210
211
212
213

$$\text{Learning trajectory} : (\hat{\ell}^1, \dots, \hat{\ell}^{T-1}), \text{ where } \hat{\ell}_i = \underbrace{\ell^i - \ell^{i+1}}_{\text{loss reduction}} \text{ or } \underbrace{\frac{\ell^i - \ell^{i+1}}{\ell^i}}_{\text{loss reduction rate}}. \quad (3)$$

214
215

Equation 3 is also a coarse but effective approximation.

³Alternatively, checkpoints may be saved at different interval steps.

216 **Algorithm 1 PS**

217 **Input:** Training dataset D_{train} with corresponding training trajectories $\{(\ell_i^1, \ell_i^2, \dots, \ell_i^T)\}_{i=1}^N$, a positive threshold h , a fixed data budget B , the number of clusters K ;

218 **Initialization:** an empty set S_{tmp} , an empty set S ;

219

220 1: **Prune step:**

221 2: **for** each data sample $d_i \in D_{\text{train}}$ **do**

222 3: Fit its loss trend a_i with **the loss trajectory** $(\ell_i^1, \ell_i^2, \dots, \ell_i^T)$ using Equation 4;

223 4: **if** $a_i \leq -h$ **then**

224 5: $S_{\text{tmp}} \leftarrow S_{\text{tmp}} \cup d_i$.

225 6: **end if**

226 7: **end for**

227 8: **Select step:**

228 9: Run a clustering algorithm on **the learning trajectories** $(\hat{\ell}^1, \dots, \hat{\ell}^{T-1})$ (see Equation 3) of data

229 examples in S_{tmp} to form K clusters $\mathcal{C} = \{C_1, C_2, \dots, C_K\}$;

230 10: **for** each cluster C_k in \mathcal{C} **do**

231 11: Calculate $R_k = (B - |S|)/(K - k + 1)$, the number of examples that will be sampled from

232 C_k ;

233 12: **if** $|C_k| \leq R_k$ **then**

234 13: $S \leftarrow S \cup C_k$.

235 14: **else**

236 15: Sample a subset $S_k \subset C_k$ randomly, here $|S_k| = R_k$; then $S \leftarrow S \cup S_k$.

237 16: **end if**

238 17: **end for**

239 18: Return S

240 **4 METHODOLOGY**

241 Next, we detail how our method **PS** guarantees the quality, importance, and diversity of the selected

242 subset by efficiently leveraging the loss trajectories of data samples. **PS** consists of two steps:

243 the **Prune step** (Section 4.1), which identifies a high-quality and important subset by exploiting

244 loss trajectories, and the **Select step** (Section 4.2), which refines this subset by enforcing diversity

245 through learning trajectories, derived as variants of loss trajectories.

246

247 **4.1 PRUNE STEP**

248 In this step, we aim to use loss trajectories of data samples to identify a high-quality and important

249 subset from the raw dataset. As discussed in Section 3.2, the loss trajectory of a data example

250 reflects how it contributes to the model’s learning process during training. In general, high-quality

251 data samples facilitate learning, exhibiting a consistent downward trend in their loss as training

252 progresses. In contrast, noisy or low-quality samples hinder the training process, reducing training

253 efficiency or degrading model performance, typically showing no decrease or even an increase in loss

254 over time. From the perspective of intrinsic model metrics, such samples are also unimportant, since

255 they provide no learning signal or even misleading learning signals to model training. Therefore, by

256 analyzing the trend of loss trajectories, we can identify these low-quality and unimportant samples

257 and prune them, retaining only those that are both high-quality and important for effective training.

258

259 However, the raw loss trajectory of a data sample can fluctuate significantly across training steps,

260 which complicates and undermines direct analysis. To address this issue, we approximate each

261 trajectory with linear regression, using the slope as an efficient indicator of its overall trend. For-

262 mally, given the trajectory $(\ell_i^1, \ell_i^2, \dots, \ell_i^T)$ for a data sample $d_i \in D_{\text{train}}$, we estimate its slope by

263 minimizing the squared error between observed and predicted loss values:

264

$$265 \quad f(a_i, b_i; d_i) = \min_{a, b} \sum_{j=1}^T \left(\ell_i^j - (a_i j + b_i) \right)^2. \quad (4)$$

266

267 With the slope a_i , we classify each training sample d_i into one of three categories with respect to a

268 predefined threshold $h > 0$:

- 270 • **Downward Trend.** For each sample d_i with $a_i < -h$, we classify its loss trajectory as having a
271 downward trend. This type of data is learnable for the model and should be retained.
- 272 • **Stagnated Trend.** If $-h \leq a_i \leq h$, the loss trajectory of d_i is classified as exhibiting a stagnated
273 trend. It can be further divided into two cases: (i) high to high: loss remains consistently high;
274 (ii) low to low: loss remains consistently low. In both cases, these samples should be pruned as
275 they do not contribute effectively to model learning.
- 276 • **Upward Trend.** If $h < a_i$, the sample’s loss trajectory shows an upward trend. These samples
277 should be pruned as they negatively impact the model’s learning process.
278

279 This classification method is inspired by prior work (Xia et al., 2023; Lin et al., 2024), but differs in
280 that we apply it at the sample level rather than the token level.

281 While this procedure provides a principled way to prune low-quality and unimportant samples, com-
282 puting loss trajectories for all data with the target model is computationally expensive. To reduce
283 this additional overhead and avoid negating the computational benefits of data selection, we lever-
284 age loss trajectories from a small model to guide our pruning step more efficiently. This strategy
285 is supported by prior evidence: Lin et al. (2024) adopt the same approach for token-level selection,
286 and Yang et al. (2024) show that data samples clustered by their training trajectories from a small
287 model tend to exhibit similar training dynamics in larger models. Together, these findings suggest
288 that small-model trajectories can serve as reliable proxies for their large-model counterparts.

290 4.2 SELECT STEP

291 In this step, we further refine the subset obtained from the **Prune** step. Specifically, we adopt the
292 framework of diversity-based data selection methods to ensure that the final subset maintains suf-
293 ficient diversity. Diversity-based methods typically group data samples into clusters based on their
294 features and then select a portion from each cluster. Since their effectiveness is highly sensitive to
295 the choice of clustering features, the representation of data samples plays a critical role. Traditional
296 approaches often use embeddings as sample features (Sorscher et al., 2023; Tirumala et al., 2023),
297 which primarily capture semantic attributes. Recent studies (Chen et al., 2023; Yang et al., 2024)
298 show that clustering based on loss trajectories yields more reliable groupings, and interpret such
299 clusters as “skills” that reflect different levels of knowledge. However, as discussed in Section 3.3,
300 loss trajectories, while informative, do not directly reflect the model’s progress in learning each sam-
301 ple. We argue that sample similarity should be measured by the model’s progress in learning each
302 sample, as captured by its learning trajectory.

303 To this end, we propose to use learning trajectories as clustering features, providing a more precise
304 basis for forming clusters or skills. This design introduces no additional overhead, since learn-
305 ing trajectories can be derived directly from loss trajectories. After generating a set of clusters
306 $\{C_1, C_2, \dots, C_K\}$ through a clustering algorithm such as K-means, we perform a balanced sam-
307 pling across clusters within a fixed budget (lines 9–17 of Algorithm 1). This ensures that each
308 cluster contributes equally to the final subset, preventing the selection from being dominated by a
309 few large clusters and preserving coverage across diverse learning patterns. The overall procedure
310 of **PS** is summarized in Algorithm 1.

312 5 EXPERIMENTS

314 5.1 EXPERIMENTAL SETUP

315 **Baselines.** Besides (1) Random Sampling, randomly selecting samples from the given dataset,
316 we also compare our method **PS** against two types of data selection methods: importance-based
317 methods and diversity-based methods. **The importance-based methods** include: (2) Least Confi-
318 dence (Bhatt et al., 2024) selection, which measures the model’s confidence as the product of prob-
319 abilities of the generated response given the prompt; (3) Middle Perplexity (Marion et al., 2023)
320 selection, which selects samples with moderate perplexity values; (4) High Learnability, defined by
321 the loss decrease before and after full fine-tuning (Zhou et al., 2023b); and (5) Confidence Curricu-
322 lum, proposed by Varshney et al. (2022), which selects examples with decreasing confidence scores
323 averaged over the past few epochs while mixing in a certain fraction of higher-confidence examples
from previous rounds. **The diversity-based methods** include: (6) Facility Locations (Bhatt et al.,

324 2024), which uses the last hidden states as features; (7) DiverseEvol (Wu et al., 2023), which utilizes
 325 the embeddings. Both methods employ a K -Center-based strategy (Sener & Savarese, 2018)
 326 that chooses K examples as centers of balls with equal radius, aiming to select a diverse subset but
 327 utilizing different sample features. Additionally, (8) SMALLTOLARGE (S2L) (Yang et al., 2024)
 328 characterizes samples via their loss trajectories. This method serves as our primary comparison
 329 baseline, as it can be viewed as the Select step of our approach, with the key distinction that we
 330 exploit learning trajectories rather than loss trajectories as the sample representation.

331
 332 **Training Dataset.** We follow SMALLTOLARGE (S2L) (Yang et al., 2024) to use the MathIn-
 333 struct dataset (Yue et al., 2023) to validate the effectiveness of our **PS**. It is meticulously compiled
 334 from 14 math datasets⁴, comprising a total of 262K training examples, ensuring extensive coverage
 335 across diverse fields of math. Moreover, the dataset integrates chain-of-thought (CoT) and program-
 336 of-thought (PoT) rationales, facilitating the effective use of tools and enabling diverse thought pro-
 337 cesses tailored to various math problems.

338
 339 **Evaluation benchmarks.** We also follow Yang et al. (2024) to evaluate all methods on three
 340 in-domain datasets, including GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and
 341 NumGLUE (Mishra et al., 2022) and three out-of-domain datasets, containing SVAMP (Patel et al.,
 342 2021), Mathematics (Davies et al., 2021), SimulEq (Koncel-Kedziorski et al., 2016). These cho-
 343 sen evaluation datasets consist of open-formed questions and cover diverse mathematical subjects,
 344 including calculus, algebra, probability, number theory, and geometry.

345
 346 **Evaluation metric.** We adopt the standard evaluation metric: exact match for open-formed eval-
 347 uation benchmarks. This metric evaluates the model’s accuracy by determining whether its generated
 348 answers precisely match the correct solutions. An answer is considered correct only if it exactly
 349 matches the reference solution⁵.

350 5.2 IMPLEMENTATION DETAILS

351 SMALLTOLARGE (S2L) (Yang et al., 2024) is our primary comparison baseline. They have im-
 352 plemented the baseline methods from (1) to (7) and demonstrate that S2L outperforms all of them.
 353 For convenience, we reproduce only the experimental results of S2L by strictly following the imple-
 354 mentation details reported in the original paper and implement our proposed **PS**.

355
 356 **Training details.** We employ the open-source model suite Pythia (Biderman et al., 2023) as our
 357 base model for conducting the experiments. Pythia-70M serves as the small proxy model used to
 358 generate the loss trajectories and learning trajectories for all training data samples where we save all
 359 middle checkpoints every 500 steps, which is suitable for both S2L and our **PS**. Pythia-410M acts
 360 as the target model for comparing different data selection methods. To ensure a fair comparison,
 361 we maintain a consistent training schedule across all methods, varying model sizes, and different
 362 data budgets. Specifically, all models are trained with a batch size of 128 and a maximum sequence
 363 length of 512. The number of training steps of all experiments is standardized to correspond to
 364 3 epochs on the respective dataset, including the full dataset and different selected subsets, with a
 365 learning rate of 2e-5, and a cosine learning rate scheduler with a 3% warm-up period.

366
 367 **Selection details.** In the Prune step, we employ the linear regression algorithm from the scikit-
 368 learn package to fit the loss trends of all data samples using the default settings. A threshold of
 369 $h = 0.02$ is applied to filter out low-quality data samples (i.e., the data point d_i with a slope $a_i \geq$
 370 -0.02 will be discarded). Finally, we prune 31K low-quality data samples (i.e., 12% of the full
 371 dataset), most of which exhibit a stagnated trend, and keep 230K high-quality samples. In the
 372 Select step, we use the K-means algorithm provided by the faiss package⁶ with $K = 100$ to cluster
 373 each source separately for 14 different sources of the MathInstruct dataset (Yue et al., 2023), same
 374 for reproducing S2L. In Yang et al. (2024), it was observed that this per-source selection benefits
 375 S2L, as different data sources within MathInstruct display distinct common patterns in their training
 376 trajectories. We compare all methods under three budget constraints: $B = 30K, 50K$, and $100K$.

⁴<https://huggingface.co/datasets/TIGER-Lab/MathInstruct>.

⁵<https://github.com/TIGER-AI-Lab/MAmmoTH>.

⁶<https://github.com/facebookresearch/faiss/tree/main>.

378
 379 Table 1: The performance of all data selection methods evaluated on both in-domain and out-
 380 of-domain datasets given three budget constraints of 30K, 50K, and 100K. Pythia-410M serves as
 381 the base model. To ensure a fair evaluation between S2L and **PS**, we sample three subsets for each
 382 method and each budget and train the model on each subset with three different seeds. Consequently,
 383 the results are averaged over nine models. The results for NONE are also averaged from three runs
 384 with different seeds. The highest average accuracies in each budget are bold. We use the loss
 385 reduction trajectory as the learning trajectory to report the results of our **PS**. We provide the results
 386 of using the loss reduction rate trajectory as the learning trajectory of **PS** in Table 3.
 387

Methods	Budget	In-domain				Out-of-domain			
		GSM8K	MATH	NumGLUE	Avg.	SVAMP	Mathematics	SimulEq	Avg.
Importance-based Methods	(PRETRAINED)		2.0	1.6	10.1	4.6	2.3	2.5	1.4
	RANDOM	30K	3.3	6.2	15.0	8.2	15.0	15.1	1.6
		50K	3.7	6.4	18.1	9.4	17.0	11.6	1.2
		100K	5.9	7.6	22.0	11.8	20.5	20.8	2.7
	LEAST CONFIDENCE	30K	2.7	1.3	18.0	7.0	13.7	3.3	1.4
		50K	2.1	1.7	21.0	8.3	14.5	3.5	1.0
		100K	2.5	3.3	23.5	9.8	20.8	6.3	3.7
	MIDDLE PERPLEXITY	30K	5.3	3.7	16.2	8.4	14.2	8.7	1.2
		50K	3.2	5.9	20.5	9.9	18.1	11.3	5.1
		100K	5.4	7.2	20.9	11.2	23.8	15.3	3.3
	HIGH LEARNABILITY	30K	6.1	1.6	19.1	8.9	10.7	9.9	1.4
		50K	6.1	2.1	18.6	8.9	14.5	14.0	2.1
		100K	7.4	9.2	29.8	15.5	20.7	19.4	10.3
	CONFIDENCE CURRICULUM	30K	4.2	6.3	15.4	8.6	18.9	16.5	1.4
		50K	6.6	3.3	16.9	9.0	19.9	19.6	2.1
		100K	4.6	6.3	17.1	9.3	21.0	15.2	1.8
Diversity-based Methods	FACILITY LOCATIONS	30K	4.2	7.7	10.0	7.3	11.8	13.8	1.2
		50K	5.7	9.1	12.4	9.1	15.4	18.6	1.6
		100K	7.4	10.9	30.5	16.3	26.2	21.9	9.3
	DIVERSEEVOL	30K	1.9	3.6	8.8	4.8	13.9	3.0	1.6
		50K	1.6	4.2	12.0	5.9	10.6	7.3	1.9
	100K	1.3	3.8	12.9	6.0	11.8	8.4	1.0	6.5
Combined	S2L [†]	30K	3.5	7.0	16.3	9.0	17.5	17.7	1.3
		50K	5.4	8.7	22.0	12.0	21.5	19.2	4.8
		100K	8.8	11.3	29.9	16.7	26.1	23.0	9.6
	PS [†] (Ours)	30K	3.4	7.5	19.2	10.0	19.9	17.6	2.1
		50K	5.6	9.2	23.3	12.7	23.9	19.4	4.7
	100K	9.2	11.2	29.3	16.6	28.0	22.9	9.7	20.2
	NONE [†]	262K	9.0	10.4	28.8	16.1	26.7	24.6	7.0
									19.4

[1] Methods with [†] are reproduced or implemented by ourselves.

[2] The results of other methods without [†] are reported by Yang et al. (2024).

[3] NONE indicates the results from the model trained on the full MathInstruct dataset.

5.3 RESULTS AND ANALYSIS

Table 1 shows that our **PS** consistently outperforms all baseline methods, including S2L, across the three budget constraints of 30K, 50K, and 100K. Furthermore, both S2L and our **PS** achieve better performance using less than 40% of the data (i.e., 100K samples) compared to the model trained on the full dataset (i.e., 262K samples). Note that the reported results for **PS** are based on using the loss reduction trajectory as the learning trajectory. See Table 3 for the results obtained with the loss reduction rate trajectory as the learning trajectory.

In particular, when the budget is smaller, the effectiveness of our method becomes more notable. With a 100K budget, the average accuracy of our **PS** is slightly lower than S2L on the three in-domain datasets (16.6 vs. 16.7) but surpasses S2L on the three out-of-domain datasets with an absolute improvement of 0.6 (20.2 vs. 19.6). At a 50K budget, **PS** outperforms S2L on the in-domain datasets with an absolute improvement of 0.7 (12.7 vs. 12.0) and on the out-of-domain datasets with an improvement of 0.8 (16.0 vs. 15.2). When the budget is reduced to 30K, **PS** achieves an even greater advantage, outperforming S2L by 1.0 on the in-domain datasets (10.0 vs. 9.0) and by 1.1 on the out-of-domain datasets (13.2 vs. 12.1). This indicates that using the learning trajectories as sample features to cluster the retained data samples from the Select step indeed can obtain more precise clustering results. In the Select step, all our selections across different budgets are carried

432 out on the fixed clustering results of $\{C_1, C_2, \dots, C_K\}$ obtained by running a clustering algorithm
 433 on the retained data samples. Given a small budget, the more accurate the clustering results, the
 434 more diverse the extracted subset, ensuring better performance of the trained model on this subset.
 435

436 5.4 ABLATION STUDY

438 **Loss trajectories can be used to help distinguish between high-quality and low-quality data**
 439 **samples.** In the **Prune** step, we prune 31K low-quality data samples (i.e., 12% of the full dataset)
 440 and keep 230K high-quality samples. We conduct experiments, the results of which are presented in
 441 Table 2, to validate that the data samples whose loss trajectories show a non-downward trend (i.e.,
 442 stagnated trend or upward trend) are low-quality samples compared with those with downward trend
 443 loss trajectories from two perspectives.

444 Firstly, removing 31K data samples whose loss
 445 trajectories show a non-downward trend does
 446 not hurt the model’s performance. As most
 447 of these samples exhibit a stagnated trend during
 448 training (with only 79 out of 31K samples
 449 showing an upward trend in their loss trajectories),
 450 the model’s performance on the retained
 451 samples shows only a marginal improvement,
 452 as shown in the upper section of Table 2. Sec-
 453 ondly, we compare the performance of mod-
 454 els trained on the 30K data samples exhibiting
 455 **non-downward trend** loss trajectories with
 456 those trained on 30K samples showing **down-
 457 ward trend** loss trajectories. Specifically, we
 458 propose two strategies for selecting data ex-
 459 amples with **downward trend** loss trajectories.
 460 The first is our **PS**, and the second involves
 461 selecting samples with the steepest downward
 462 trends (i.e., the smallest slope values a_i). As seen in the lower section of Table 2, the models trained
 463 on the 30K data samples exhibiting **non-downward trend** loss trajectories have worse performance,
 464 confirming that these samples are of lower quality compared to those with **downward trend** loss
 465 trajectories. Moreover, **PS** outperforms the strategy of selecting data examples with the steepest
 466 downward trends, highlighting the importance of selecting a diverse subset of data samples.
 467

468 6 CONCLUSION

469 In this paper, we propose a data selection method named **PS**, which consists of a **Prune** step and
 470 a **Select** step, to obtain a high-quality, important, and diverse subset by leveraging the training tra-
 471 jectories of data samples collected from a small proxy model. In the **Prune** step, we analyze each
 472 sample’s loss trajectory to identify and prune low-quality data. In the **Select** step, we introduce
 473 the learning trajectory as a more informative sample feature for clustering and then perform bal-
 474 anced sampling across all clusters with a fixed budget. We validate **PS** on the MathInstruct dataset
 475 with the open-source model suite Pythia by comparing it against eight data selection methods. Our
 476 **PS** consistently outperforms all baselines across budget constraints of 30K, 50K, and 100K, with
 477 particularly strong gains under smaller budgets (e.g., 30K, 50K), demonstrating the effectiveness of
 478 learning trajectories for diversity-based methods. Notably, with only 100K samples (less than 40%
 479 of the full dataset), **PS** achieves better performance than training on the entire 262K dataset.
 480

481 LIMITATION

482 We have currently validated our method only on the MathInstruct dataset using the open-source
 483 model suite Pythia. In the future, we plan to evaluate the proposed method on a broader range
 484 of datasets, especially synthetic datasets that are likely to contain a substantial amount of noisy
 485 data samples. We anticipate that our **Prune** step will demonstrate even greater advantages on such

Table 2: The ablation study results for our **Prune** step. Steepest means selecting samples
 which loss trajectories with the steepest down-
 ward trends (i.e., the smallest slope values a_i).

Methods	Budget	In-domain Avg.	Out-of-domain Avg.
NONE	262K	16.1	19.4
PS-P	230K	16.2	19.7
Non-downward trend	30K	7.65	8.3
Downward trend	Steepest	30K	11.1
	PS	30K	13.2
	Steepest	50K	12.0
	PS	50K	12.7
	Steepest	100K	13.3
	PS	100K	16.6
			20.2

486 datasets. Meanwhile, we will also conduct experiments with a broader range of model architectures
 487 and larger model sizes, such as the LLaMA family.
 488

489 **ETHICS STATEMENT**
 490

491 This paper does not involve any ethics-related issues. The data and resources utilized in this work
 492 are open-source and widely adopted in numerous existing studies.
 493

494 **THE USE OF LARGE LANGUAGE MODELS (LLMs)**
 495

496 We used large language models (LLMs) exclusively for writing assistance in the preparation of
 497 this paper, specifically to improve clarity, grammar, and readability. No research ideas, methods,
 498 analyses, or results were generated by LLMs. All scientific content is entirely the work of the
 499 authors.
 500

501 **REFERENCES**
 502

503 Gantavya Bhatt, Yifang Chen, Arnav Das, Jifan Zhang, Sang Truong, Stephen Mussmann, Yinglun
 504 Zhu, Jeff Bilmes, Simon Du, Kevin Jamieson, Jordan Ash, and Robert Nowak. An experi-
 505 mental design framework for label-efficient supervised finetuning of large language models. In
 506 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Com-
 507 putational Linguistics: ACL 2024*, pp. 6549–6560, Bangkok, Thailand, August 2024. Associa-
 508 tion for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.390. URL <https://aclanthology.org/2024.findings-acl.390>.
 509

510 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
 511 lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
 512 Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
 513 models across training and scaling, 2023. URL <https://arxiv.org/abs/2304.01373>.
 514

515 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
 516 Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with
 517 fewer data, 2024. URL <https://arxiv.org/abs/2307.08701>.
 518

519 Mayee F. Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher
 520 Ré. Skill-it! a data-driven skills framework for understanding and training language models, 2023.
 521 URL <https://arxiv.org/abs/2307.14430>.
 522

523 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 524 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 525 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.
 526

527 Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
 528 Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
 529 by guiding human intuition with ai. *Nature*, 600(7887):70–74, 2021.
 530

531 Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimiza-
 532 tion. *Comptes Rendus Mathematique*, 350(5):313–318, 2012. ISSN 1631-073X. doi: <https://doi.org/10.1016/j.crma.2012.03.014>. URL <https://www.sciencedirect.com/science/article/pii/S1631073X12000738>.
 533

534 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 535 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
 536 URL <https://arxiv.org/abs/2103.03874>.
 537

538 Angela H. Jiang, Daniel L. K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R.
 539 Ganger, Gauri Joshi, Michael Kaminsky, Michael Kozuch, Zachary C. Lipton, and Padmanabhan
 Pillai. Accelerating deep learning by focusing on the biggest losers, 2019. URL <https://arxiv.org/abs/1910.00762>.
 540

540 Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh
 541 Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training,
 542 2021. URL <https://arxiv.org/abs/2103.00123>.

543

544 Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
 545 MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow
 546 (eds.), *Proceedings of the 2016 Conference of the North American Chapter of the Association for
 547 Computational Linguistics: Human Language Technologies*, pp. 1152–1157, San Diego, California,
 548 June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL
 549 <https://aclanthology.org/N16-1136>.

550 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
 551 Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
 552 URL <https://arxiv.org/abs/2107.06499>.

553

554 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 555 Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2024.
 556 URL <https://arxiv.org/abs/2404.07965>.

557 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
 558 multi-task learning. *Advances in Neural Information Processing Systems*, 34, 2021a.

559

560 Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization, 2023.

561

562 Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
 563 Wayne Zhang. Towards impartial multi-task learning. In *International Conference on Learning
 564 Representations*, 2021b. URL <https://openreview.net/forum?id=IMPnRXEWpvr>.

565 Ziche Liu, Rui Ke, Yajiao Liu, Feng Jiang, and Haizhou Li. Take the essence and discard the dross:
 566 A rethinking on data selection for fine-tuning large language models. In Luis Chiruzzo, Alan
 567 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas
 568 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
 569 1: Long Papers)*, pp. 6595–6611, Albuquerque, New Mexico, April 2025. Association for
 570 Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.336.
 571 URL <https://aclanthology.org/2025.nacl-long.336/>.

572 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
 573 Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
 574 for effective instruction tuning, 2023. URL <https://arxiv.org/abs/2301.13688>.

575

576 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When
 577 less is more: Investigating data pruning for pretraining llms at scale, 2023. URL <https://arxiv.org/abs/2309.04564>.

578

579 Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch,
 580 Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin
 581 Gal. Prioritized training on points that are learnable, worth learning, and not yet learnt. In Ka-
 582 malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
 583 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 584 *Proceedings of Machine Learning Research*, pp. 15630–15649. PMLR, 17–23 Jul 2022. URL
 585 <https://proceedings.mlr.press/v162/mindermann22a.html>.

586

587 Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
 588 and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical reason-
 589 ing tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings
 590 of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 591 Papers)*, pp. 3505–3523, Dublin, Ireland, May 2022. Association for Computational Linguistics.
 592 doi: 10.18653/v1/2022.acl-long.246. URL <https://aclanthology.org/2022.acl-long.246>.

593

OpenAI. Gpt-4 technical report, 2023.

594 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 596 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 597 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 598 URL <https://arxiv.org/abs/2203.02155>.

599 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math
 600 word problems?, 2021. URL <https://arxiv.org/abs/2103.07191>.

602 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Find-
 603 ing important examples early in training, 2023. URL <https://arxiv.org/abs/2107.07075>.

606 Garima Pruthi, Frederick Liu, Mukund Sundararajan, and Satyen Kale. Estimating training data in-
 607 fluence by tracing gradient descent, 2020. URL <https://arxiv.org/abs/2002.08484>.

609 Yulei Qin, Yuncheng Yang, Pengcheng Guo, Gang Li, Hang Shao, Yuchen Shi, Zihan Xu, Yun
 610 Gu, Ke Li, and Xing Sun. Unleashing the power of data tsunami: A comprehensive survey on
 611 data assessment and selection for instruction tuning of language models, 2024. URL <https://arxiv.org/abs/2408.02085>.

613 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 614 approach, 2018. URL <https://arxiv.org/abs/1708.00489>.

616 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural
 617 scaling laws: beating power law scaling via data pruning, 2023. URL <https://arxiv.org/abs/2206.14486>.

619 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 620 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 621 https://github.com/tatsu-lab/stanford_alpaca, 2023.

623 Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S. Morcos. D4: Improving llm pre-
 624 training via document de-duplication and diversification, 2023. URL <https://arxiv.org/abs/2308.12284>.

626 Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Let the model decide its curriculum for multi-
 627 task learning. In Colin Cherry, Angela Fan, George Foster, Gholamreza (Reza) Haffari, Shahram
 628 Khadivi, Nanyun (Violet) Peng, Xiang Ren, Ehsan Shareghi, and Swabha Swayamdipta (eds.),
 629 *Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Pro-
 630 cessing*, pp. 117–125, Hybrid, July 2022. Association for Computational Linguistics. doi: 10.
 631 18653/v1/2022.deeplo-1.13. URL <https://aclanthology.org/2022.deeplo-1.13>.

632 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 633 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
 634 2023. URL <https://arxiv.org/abs/2212.10560>.

636 Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 637 Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL
 638 <https://arxiv.org/abs/2109.01652>.

640 Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved
 641 diverse data sampling for efficient instruction tuning. *arXiv preprint arXiv:2311.08182*, 2023.

642 Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
 643 Luke Zettlemoyer, and Ves Stoyanov. Training trajectories of language models across scales,
 644 2023. URL <https://arxiv.org/abs/2212.09803>.

646 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
 647 Selecting influential data for targeted instruction tuning. In *International Conference on Machine
 Learning (ICML)*, 2024.

648 Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
649 Scalable data selection for fine-tuning large language models by summarizing training trajectories
650 of small models, 2024. URL <https://arxiv.org/abs/2403.07384>.

651 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhua Chen.
652 Mammoth: Building math generalist models through hybrid instruction tuning, 2023. URL
653 <https://arxiv.org/abs/2309.05653>.

654 Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhua Chen. Mammoth2: Scaling instructions from the
655 web, 2024. URL <https://arxiv.org/abs/2405.03548>.

656 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyu
657 Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A
658 survey, 2024. URL <https://arxiv.org/abs/2308.10792>.

659 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
660 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
661 Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
662 moyer. Opt: Open pre-trained transformer language models, 2022. URL <https://arxiv.org/abs/2205.01068>.

663 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
664 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
665 Lima: Less is more for alignment, 2023a. URL <https://arxiv.org/abs/2305.11206>.

666 Haotian Zhou, Tingkai Liu, Qianli Ma, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
667 Lobass: Gauging learnability in supervised fine-tuning data, 2023b. URL <https://arxiv.org/abs/2310.13008>.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Methods	Budget	In-domain				Out-of-domain			
		GSM8K	MATH	NumGLUE	Avg _{std}	SVAMP	Mathematics	SimulEq	Avg _{std}
S2L	30K	3.5 \pm 0.6	7.0 \pm 0.8	16.3 \pm 1.4	9.0 \pm 0.8	17.5 \pm 1.5	17.7 \pm 2.1	1.3 \pm 0.6	12.1 \pm 0.9
	50K	5.4 \pm 1.1	8.7 \pm 0.4	22.0 \pm 3.2	12.0 \pm 1.4	21.5 \pm 1.6	19.2 \pm 2.2	4.8 \pm 1.8	15.2 \pm 1.4
	100K	8.8 \pm 0.7	11.3 \pm 0.4	29.9 \pm 0.9	16.7 \pm 0.5	26.1 \pm 1.3	23.0 \pm 2.3	9.6 \pm 1.3	19.6 \pm 1.1
PS reduction	30K	3.4 \pm 0.6	7.5 \pm 0.5	19.2 \pm 1.8	10.0 \pm 0.9	19.9 \pm 1.6	17.6 \pm 1.6	2.1 \pm 0.9	13.2 \pm 0.9
	50K	5.6 \pm 0.5	9.2 \pm 0.4	23.3 \pm 1.6	12.7 \pm 0.7	23.9 \pm 1.3	19.4 \pm 1.1	4.7 \pm 1.0	16.0 \pm 0.6
	100K	9.2 \pm 0.7	11.2 \pm 0.3	29.3 \pm 2.3	16.6 \pm 0.7	28.0 \pm 1.3	22.9 \pm 2.6	9.7 \pm 1.3	20.2 \pm 1.2
PS reduction rate	30K	3.6 \pm 0.5	7.9 \pm 0.3	17.2 \pm 2.4	9.6 \pm 1.0	18.4 \pm 1.3	17.6 \pm 1.5	1.6 \pm 0.4	12.5 \pm 0.7
	50K	5.6 \pm 0.8	9.4 \pm 0.6	22.7 \pm 1.7	12.5 \pm 0.9	22.4 \pm 1.5	19.7 \pm 1.5	2.6 \pm 0.8	14.9 \pm 0.4
	100K	9.3 \pm 0.8	11.0 \pm 0.4	29.6 \pm 1.8	16.6 \pm 0.5	27.4 \pm 1.8	22.8 \pm 2.3	7.7 \pm 2.1	19.3 \pm 1.1
NONE	262K	9.0 \pm 0.6	10.4 \pm 1.0	28.8 \pm 1.9	16.1 \pm 0.8	26.7 \pm 1.3	24.6 \pm 2.4	7.0 \pm 1.6	19.4 \pm 1.0

Table 3: The performance of S2L and **PS** evaluated on both in-domain and out-of-domain datasets given three budget constraints of 30K, 50K, and 100K. Pythia-410M serves as the base model. To ensure a fair evaluation between S2L and **PS**, we sample three subsets for each method and each budget and train the model on each subset with three different seeds. Consequently, the results are averaged over nine models. The results for NONE are also averaged from three runs with different seeds.

A MORE RESULTS

Table 3 is the results of **PS** reduction rate obtained with the loss reduction rate trajectory as the learning trajectory. At a 30K budget, **PS** reduction rate outperforms S2L on the in-domain datasets with an absolute improvement of 0.6 (9.6 vs. 9.0) and on the out-of-domain datasets with an improvement of 0.4 (12.5 vs. 12.1). At a 50K budget, **PS** reduction rate surpasses S2L on the in-domain datasets with an absolute improvement of 0.5 (12.5 vs. 12.0) while slightly trailing S2L on the out-of-domain datasets (14.9 vs. 15.2). With a 100K budget, the average accuracy of **PS** reduction rate is slightly lower than S2L.