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ABSTRACT

Ensuring computer and network system security is crucial in today’s digital landscape. Network
intrusion detection systems (NIDS) monitor network traffic to identify potential threats. However,
traditional NIDS struggle to adapt to evolving cyberattack tactics. To address this, we propose an
AI-enabled novelty detection framework to handle zero-day, out-of-distribution, and adversarial eva-
sion attacks. Our framework comprises three sequential deep neural network architectures: one for
the classifier and two for specific autoencoders, designed to effectively detect both known attack pat-
terns and novel, previously unseen samples. We use innovative transfer learning, unfreezing specific
neurons, and layer combinations to enhance resilience. Leveraging the one-shot learning approach in
the transfer learning component of the framework, we demonstrate continuous improvement in de-
tection accuracy for both known and novel network traffic patterns. Our experiments on benchmark
intrusion detection data sets achieved, on average, 98.5% accuracy in detecting various attacks.

1 INTRODUCTION

Network intrusion detection systems (NIDS) are designed to serve as vigilant sentinels, continuously monitoring net-
work traffic. Their primary function involves meticulously detecting unauthorized or potentially malicious activities
that threaten the confidentiality, availability, and integrity of the protected computer and network systems. Today,
cutting-edge anomaly-based NIDS detection methods leverage the capabilities of deep learning (DL) algorithms (re-
fer to Table 1). However, cyber attackers continuously devise new tactics to orchestrate a variety of sophisticated
maneuvers, including the creation of adversarial attacks to evade the defender’s detection mechanisms. Moreover,
they can ingeniously devise novel zero-day attacks, exploiting vulnerabilities that have yet to be identified or patched
by security systems. This poses a formidable challenge to detect intrusions in network traffic, compelling the need
for continuous improvement and innovation in the detection capabilities of the NIDS. The ongoing battle between
defenders and attackers necessitates enhancing NIDS capabilities, ensuring their ability to discern and counteract the
ever-changing adversarial strategies.

In the intricate realm of network security, the efficacy of classifiers and anomaly detectors emerges as a critical focal
point. Each detection mechanism wields unique strengths and grapples with distinct limitations, creating a duality
of capabilities and challenges. A DL-based classifier, harnessed to its training data set, demonstrates commendable
proficiency in identifying familiar attack patterns. Its well-learned parameters enable it to efficiently recognize known
threats, contributing to a robust defense posture. However, the classifier’s rigid adherence to its training data renders
it less effective in identifying novel attacks, emerging from the ever-evolving landscape of cyber threats, resulting in a
surge of false negatives. On the other end of the spectrum, the anomaly detector introduces a distinct paradigm to dif-
ferentiate between benign and malicious traffic. The DL-based detector thrives on its ability to detect deviations from
historical network communication patterns, irrespective of whether these anomalies correspond to known or novel
attacks. Its ability to transcend the boundaries of familiarity makes it an invaluable asset in the dynamic cybersecurity
landscape. However, this broad sensitivity to deviations often exacts a cost in terms of false positives. The misiden-
tification of benign or atypical network behavior results in a potentially higher volume of false alarms, consequently
amplifying the backlog of alerts awaiting investigation by human security analysts within a resource-constrained cy-
bersecurity environment. This, in turn, delays the inspection of genuine alerts within the backlog, compromising the
defending organization’s security posture.

Recent literature on state-of-the-art NIDS approaches (refer to Table 1) has leveraged both supervised and unsuper-
vised learning paradigms to develop classifiers and anomaly detectors. These studies have created various types of DL-
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Table 1: Recent state-of-the-art approaches in DL-based NIDS and their key characteristics

Detection paradigm Robustness
Data source Paper Year Learning paradigm Classification Anomaly Data set Model Zero-day Adversarial

Yang et al. (Yang et al., 2020) 2020 Unsupervised ✗ ✓ NSL-KDD, UNSW-NB15 AE ✓ ✗
Andresini et al. (Andresini et al., 2020) 2020 Supervised ✓ ✗ KDD Cup’99, UNSW-NB15, CICIDS2017 AE, CNN ✗ ✗
Bovenzi et al. (Bovenzi et al., 2020) 2020 Unsupervised, Supervised ✓ ✓ Bot-IoT AE ✓ ✗
Verkerken et al. (Verkerken et al., 2023) 2023 Unsupervised, Supervised ✓ ✓ CICIDS2017, CICIDS2018 AE, DNN ✓ ✗
Lam et al. (Lam, 2021) 2021 Supervised ✓ ✗ CICIDS2018 CNN ✗ ✗
Merna et al. (Gamal et al., 2021) 2021 Supervised ✓ ✗ Bot-IoT, UNSW-NB15 CNN ✓ ✗
Aljumah et al. (Aljumah, 2021) 2021 Supervised ✓ ✗ Bot-IoT CNN ✗ ✗
Akhtar et al. (Akhtar & Feng, 2021) 2021 Supervised ✓ ✗ NSL-KDD CNN ✗ ✗
Yu et al. (Yu & Bian, 2020) 2020 Supervised ✓ ✗ NSL-KDD, UNSW-NB15 CNN, DNN ✗ ✗
Jiang et al. (Jiang et al., 2020) 2020 Supervised ✓ ✗ NSL-KDD, UNSW-NB15 CNN, LSTM ✗ ✗
Yao et al. (Yao et al., 2021) 2021 Supervised ✓ ✗ NSL-KDD, KDD Cup’99 CNN, LSTM ✗ ✗
Liu et al. (Liu et al., 2021) 2021 Supervised ✓ ✗ NSL-KDD, CICIDS2017 CNN, LSTM, ✗ ✗
Wang et al. (Wang & Li, 2021) 2021 Supervised ✓ ✗ CICDDoS2019 CNN, Transformer ✗ ✗
Yin et al. (Yin et al., 2021) 2021 Supervised ✓ ✗ NSL-KDD, CICIDS2017 CNN, MHA ✗ ✗
Li et al. (Li et al., 2022) 2022 Supervised ✓ ✗ CICIDS2017, CICDoS2017 GNN ✗ ✗
Caville et al. (Caville et al., 2022) 2022 Self-supervised ✓ ✓ CICIDS2018, UNSW-NB15 GNN ✗ ✗

Flow data

Lan et al. (Lan et al., 2022) 2022 Supervised ✓ ✗ UNSW-NB15 GNN ✗ ✗

Sun et al. (Sun et al., 2020) 2020 Supervised ✓ ✗ CICIDS2017 CNN, LSTM ✗ ✗
Farrukh et al. (Farrukh et al., 2022) 2022 Supervised ✓ ✗ CICIDS2017, UNSW-NB15 CNN, LSTM, DNN ✗ ✗
Liu et al. (Liu et al., 2022b) 2022 Supervised ✓ ✗ CICIDS2017, ISCX2012, CSIC2010 LSTM, CNN, MHA ✗ ✗
De Lucia et al. (De Lucia et al., 2021) 2021 Supervised ✓ ✗ UNSW-NB15 1d-CNN, DNN ✗ ✗
Bierbrauer et al. (Bierbrauer et al., 2023) 2022 Supervised ✓ ✗ CICIDS2017,UNSW-NB15 1d-CNN, RF ✗ ✗
Yu et al. (Yu et al., 2021) 2021 Supervised ✓ ✗ CICIDS2017, CICIDS2018 CNN ✗ ✗
Hore et al. (Hore et al., 2023b) 2023 Unsupervised ✗ ✓ CICIDS2017 AE ✓ ✗
Premkumar et al. (Premkumar et al., 2023) 2023 Supervised ✓ ✗ CICIDS2017 GNN, DNN ✗ ✗

Packet data

Deep ResNIDS (this study) Unsupervised, Supervised ✓ ✓ CICIDS2017, CICIDS2018 AE, DNN ✓ ✓

based models, including autoencoders (AE), convolutional neural networks (CNNs), deep neural networks (DNNs),
long short-term memory (LSTM), multi-head attention (MHA), and graph neural networks (GNNs), among others.
These models were trained using either flow-based or packet-based network data. While only a handful of studies
have targeted identifying zero-day attacks, the majority have exclusively focused on detecting known attack patterns.
To the best of our knowledge, no prior work has comprehensively investigated novelty detection in network traffic
(zero-day, OOD, and adversarially perturbed evasion attacks) through the analysis of granular packet-level data.

Our work addresses the challenges within both supervised and unsupervised learning paradigms, culminating in har-
moniously integrating their respective capabilities. The overarching goal of our study is to develop an adaptive and
responsive network intrusion detection framework that is robust and resilient in identifying known attacks, detecting
novel attacks, and discerning benign anomalies. We propose an innovative AI-enabled framework, harnessing the
power of supervised, unsupervised, and transfer learning methodologies, designed to detect novel patterns within net-
work traffic. At the core of this AI framework are three distinct sequential deep neural network (DNN) architectures,
each representing a separate stage. These stages have been constructed to effectively distinguish between recognized
attack patterns and the emergence of anomalies within network traffic. The models in the framework are trained using
packet-level network data, which enhances its suitability for real-time detection compared to a flow-level approach.
We discuss the limitations of flow-based NIDS in Section 2.

This study makes several notable contributions. The primary contribution lies in the development of a multistage
deep learning NIDS framework, Deep ResNIDS, for enhanced security and resilience to novel attacks. The study also
introduces an innovative transfer learning technique as another distinctive feature of the approach. This technique
involves selectively unfreezing specific neurons and layer combinations within the DNN architectures, combined with
the introduction of new layers during one-shot learning. The goal is to enhance the framework’s adaptability to novel
attacks while retaining its proficiency in recognizing known attack patterns. Experiments conducted using publicly
available network intrusion data sets demonstrate the effectiveness of our approach. The first-stage malicious packet
classifier excels in identifying known threats but faces challenges with new attacks, OOD, and perturbed known-attack
samples. This demonstrates the shortcoming of the DL-based classifiers found in literature. In contrast, the second-
stage autoencoder-based anomaly detector identifies false negatives by analyzing benign traffic from the first-stage
classifier and extends its detection ability to include zero-day, OOD, and adversarially perturbed network packets. The
third-stage autoencoder-based novelty detector further automates the identification of perturbed known attack samples
and effectively segregates novel network traffic patterns, thereby reducing the cognitive burden of the human security
analysts in identifying camouflaged known attacks and routing them for effective mitigation. The Deep ResNIDS
framework’s resilience is substantiated through experiments, showcasing that retrained malicious packet and novelty
detectors maintain accuracy against adversarial samples without compromising in-distribution attack pattern detection.
This underscores the scalability of the proposed multistage AI framework. Collectively, these insights propel the
advancement of adaptive network intrusion detection, substantially benefiting the cybersecurity community.
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The rest of this paper is organized as follows. Section 2 reviews literature on DL-based NIDS. Section 3 details our
AI framework, featuring a classifier and two autoencoders, along with an innovative transfer learning mechanism.
Section 4 discusses numerical experiments, and Section 5 presents the results and analysis. Lastly, Section 6 provides
conclusions from our study.

2 LITERATURE REVIEW

2.1 NETWORK INTRUSION DETECTION SYSTEMS (NIDS) AND CHALLENGES IN FLOW-BASED APPROACHES

Advancements in computing algorithms and the increased availability of computing resources have propelled the
utilization of DNN architectures in detecting malicious activities within NIDS. In a supervised learning approach,
DL-based NIDS are trained using both malicious and benign historical data. Conversely, in an unsupervised learning
approach, only benign data is employed to train the intrusion detection model (Ahmad et al., 2021; Imran et al.,
2022). DL-based NIDS are developed by utilizing features extracted either from network flows or directly from
packet data. The primary method for developing NIDS involves extracting features from flow data, where network
communications (flows) are analyzed by aggregating information from the respective packets. Flow-based features are
typically obtained from packet header data, often using tools like CIC FlowMeter (Sharafaldin et al., 2018). DL models
are then trained with these features for anomaly detection or malicious network traffic classification tasks. Flow-based
NIDS has specific limitations. They primarily analyze completed sender-receiver flows, which makes them suitable for
offline analysis (He et al., 2023). Since their focus is primarily on lower TCP/IP levels, they encounter challenges in
detecting higher-level attacks (Lee et al., 2001). For example, DDoS attacks often target headers, while SQL injection
attacks affect payloads (Liu et al., 2022a). In a flow-based approach, attacks are identified based on flow features,
often neglecting packet-level behavior. (A detailed literature review on DL-enabled NIDS using flow data is presented
in Appendix B.2.)

2.1.1 DL-ENABLED NIDS BASED ON PACKET DATA

An alternative approach to developing DL-enabled NIDS involves directly extracting features from individual packets
and training the model with these packet-based features. (Sun et al., 2020) introduced DL-IDS, which employs a
hybrid network combining CNN and LSTM to extract spatial and temporal features from raw network traffic data,
enhancing intrusion detection. To address the challenge of an unbalanced number of samples across different attack
types during model training, DL-IDS used a category weight optimization method for increased robustness. In another
study (Farrukh et al., 2022), a tool named “payload-byte” was introduced to extract packet payload bytes from publicly
available data sets containing raw packet capture (pcap) files. Using these extracted packets, several DL-based models
were trained to detect various attack types. Experimental results demonstrated that packet-based NIDS can be equally
effective as flow-based NIDS.

(Liu et al., 2022b) utilized raw packet data to construct a block sequence by analyzing the payload data within the pack-
ets. This approach captures both short-term and long-term dependency relationships among malicious bytes within the
payload data. Similarly, (Yu et al., 2021) introduced a CNN-based IDS called PBCNN, which processes raw packet
data to create a single image encompassing a certain number of packets belonging to a flow or session. This method
exhibits high efficiency when analyzing contemporary data sets such as CICIDS2017 and CICIDS2018. (Hore et al.,
2023b) conducted a comparative assessment of various autoencoder models for detecting anomalies within packet
data. They introduced a framework for deploying an autoencoder-based NIDS tailored to packet data and proposed a
novel metric to gauge reconstruction errors in packet-based autoencoders. (Premkumar et al., 2023) employed GNNs
and graph embedding techniques to construct a context-aware NIDS. They explored various approaches to represent
network data as graphs, both at the network flow and packet levels, using the CICIDS2017 data set. The outcomes
demonstrated that incorporating context from the GNN model enhances the attack detection performance.

2.2 EVASION ATTACKS ON NIDS

Evasion attacks were first observed in computer vision by Szegedy et al., who demonstrated that minor image alter-
ations could mislead deep neural networks (Szegedy et al., 2013). Evasion attacks on NIDS can be categorized based
on the adversary’s knowledge of the classifier (Oprea & Vassilev, 2023). Black-box attacks involve zero knowledge of
the classifier, hyper-parameters, and training features. Gray-box attacks lack knowledge of the classifier but assume
some understanding of preprocessing functions leading to the training feature set. White-box attacks assume complete
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Figure 1: Deep ResNIDS - A multistage AI framework for novelty detection in network traffic

knowledge of the classifier and its training feature set. Adversarial attacks on NIDS involve manipulating data features
to deceive the underlying machine learning models. Studies in literature have investigated modeling various types of
adversaries and generating adversarial samples to deceive different types of NIDS. Flow-based adversarial attacks,
which attempt to reverse engineer perturbations from network flow into actual packets, are impractical (Rosenberg
et al., 2021). Hence, recent literature has focused on directly generating adversarial packets. (Homoliak et al., 2018)
crafted gray-box attack samples using tools like NetEM and Metasploit. (Hashemi et al., 2019) used trial and error
method to construct white-box attacks. (Kuppa et al., 2019) used manifold approximation (gray-box attack), (Han
et al., 2021) used generative adversarial network (gray-box attack), and (Sharon et al., 2022) used long short-term
memory-based method (black-box attack). (Hore et al., 2023a) developed a deep reinforcement learning (DRL) agent
to craft the adversarial packets by constraining the perturbations such that the new packet maintains functionality and
maliciousness.

To the best of our knowledge, no prior research has focused on developing a robust and resilient network intrusion
detection mechanism capable of accurately identifying known attacks as well as detecting zero-day, OOD, and eva-
sion attacks at granular packet-level network data. Additionally, the literature lacks a methodological approach for
efficiently retraining NIDS as new attack patterns emerge within the network, without compromising the accuracy of
detecting previously known attacks.

3 METHODOLOGY

Figure 1 shows an illustration of the multistage Deep ResNIDS framework. The initial stage consists of a DNN
classifier responsible for identifying malicious packets. The second stage employs a DNN anomaly detector, which
compares incoming benign packets (classified by the first stage DNN) against historical benign packets found in
the network. The third stage employs a DNN novelty detector to identify packets exhibiting novel characteristics.
The framework also incorporates a human-in-the-loop feedback mechanism, as found in a typical cyber operations
environment in real-world (Ganesan et al., 2016; Shah et al., 2019; 2023). This process involves labeling novel packets
following analyst investigation, leading to updates in the learning process of each DNN within the framework. Next,
we describe the framework’s components.

3.1 MALICIOUS PACKET DETECTOR

The forefront of the multistage framework houses the malicious packet detector. A DNN-based classification model
is developed using a data set containing both benign and attack packets observed in the network. The objective of this
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model is to identify known malicious packets while minimizing false positives. The formal description of this task is
given below:

fC(xi, θC) = P (yi = Malicious | xi, θC), (1)

where θC denotes the set of learned weight parameters of the classifier, xi represents the i-th sample packet, and f(.)
stands for the estimator function. This function seeks to ascertain the probability of a packet, xi, being categorized as
malicious. The parameter values are estimated using a training data set of known labeled packets, Sknown, comprising
both benign and malicious instances. The successfully identified malicious packets from the model are forwarded to
human analysts for appropriate action (see Figure 1).

3.2 ANOMALY DETECTOR

The anomaly detector in the second stage of the framework is developed to differentiate between true benign and
novel packets, including zero-day, OOD, and adversarial attacks that evaded the first stage detector. A packet that
passes the malicious packet detector with a classification label of benign is now passed through the anomaly detector.
The anomaly detection is achieved using the encoder-decoder architecture that reconstructs the input packet data. A
reconstruction error is then calculated, and a threshold is set to differentiate between previously seen benign packets
and novel packets. The anomaly detection task can be formally defined as follows:

x′
i = fBAE(xi; θBAE) (2)

yi =

{
Benign if RBAE(xi, x

′
i) ≤ τBAE

Anomalous otherwise
(3)

In Equation 2, x′
i denotes the reconstructed version of the packet xi by the encoder-decoder network, and θBAE are

the set of parameter weights for the autoencoder model. The optimal weights are obtained by training the model on
the set of known benign data, Sknown

benign, where Sknown
benign ⊂ Sknown. In Equation 3, the reconstruction loss

is computed using an error function RBAE(.) that measures the similarity between the original and the reconstructed
sample. If the reconstruction loss is greater than the selected threshold, τBAE , the packet is identified as an anomaly
to the true benign distribution in the network. The aim is to detect anomalies in the form of OOD attack packets
misclassified as benign by the malicious packet detector, adversarial examples crafted to evade the malicious packet
detector, and benign packets from unknown distributions.

3.3 NOVELTY DETECTOR

This stage follows the identification of anomalies in the preceding phase. The novelty detector employs an encoder-
decoder network architecture and is trained using artificially generated adversarial data samples. These samples are
crafted to successfully evade the detection capabilities of the malicious packet detection model. The primary objective
of the novelty detector is to determine whether a given packet is a perturbation of a known attack crafted using a known
toolchain or a genuinely novel packet. Any packets detected as novel are then directed to human analysts for careful
examination and labeling. The novelty detector holds significant importance within the proposed framework for the
following reasons. i) It effectively lightens the workload of human analysts by sifting out recognized adversarial attack
packets. ii) It can identify unfamiliar adversarial perturbations that share similarities with the synthetically generated
examples. iii) It serves as a barrier against the possibility of compromising the malicious packet detector. Introducing
artificially crafted adversarial packets into the training data set of the malicious packet detector can significantly disrupt
the decision boundary of the classification model. The novelty detection task can be formally defined as:

x′
i = fAAE(xi; θAAE) (4)

yi =

{
Adversarial attack if RAAE(xi, x

′
i) ≤ τAAE

Novelty otherwise
(5)

The workings of the novelty detection stage share great resemblance with anomaly detection since both employ au-
toencoders and rely on the reconstruction error metric to suggest if a particular anomalous packet data is truly novel. In
Equation 4, xi and x′

i carry the usual meaning of original and reconstructed packet data, respectively. θAAE denotes
the learned parameter weights of the novelty detector model. In Equation 5, the threshold under which an anomalous
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packet can be categorized as adversarial is set at τAAE . Any packet classified as novel is passed on to human ana-
lysts for further investigation and labeling. (Algorithm 1 in the Appendix outlines the steps involved in executing the
baseline framework, as depicted in Figure 1.)

3.4 RETRAINING WITH ONE-SHOT LEARNING

For an organization, the continual enhancement of its intrusion detection mechanism is critical in protecting against
evolving threats. Our framework introduces an innovative transfer learning technique to update the models within
the three stages, utilizing newly labeled (novel) data samples, as depicted in Figure 1. Given that a NIDS maintains
ongoing surveillance of network traffic, it is imperative to minimize the retraining time and its complexity. Equally
important is the need to avoid compromising the models’ ability to detect previously encountered attack patterns when
incorporating new data attributes. With these considerations in mind, we present a one-shot learning approach to
integrate the newly labeled packet data into the three DNNs.

Unlike other approaches in literature where either only select neurons from a layer are unfrozen for retraining, or
additional layer(s) are added during retraining, our approach combines the strengths of both these transfer learning
methods. In our hybrid approach, an extra layer is introduced, and certain neurons within the adjacent layer(s) are
unfrozen. This combination enables the network to assimilate new information while also permitting the revision of
previously acquired knowledge. Training a neural network in a normal setting can be mathematically expressed as:

f : Rn → Rp

f(x) = O ◦ gK ◦ ... ◦ g2 ◦ g1 (6)

gk(x) = a(Wk ∗ x+ bk) ∀k ∈ K (7)

minwk∀k∈KL(.) (8)

Here, n and p are the input and output dimensions, respectively. f(.) is the estimator function which is a composition
of multivariate functions g1, g2, ..., gK and K is the set of hidden layers in the network as shown in Equation 6. O(.) is
the output function. Each function gk() is itself a multivariate function as well and can be defined by Equation 7, where
Wk and bk are weights and bias associated with the respective layer k. Equation 8 shows the objective of the neural
network training. The objective is to minimize the loss function, L(.) by adjusting the weight parameters of all the K
layers. The weight parameters are updated during backpropagation, generally, using a gradient descent algorithm, by
an amount λ ∗ ∂(L)

∂(wkj)
, where λ is the learning rate and ∂(L)

∂(wkj)
is the impact of the j-th neuron in the set of neurons Jk

of the k-th layer on the loss function L. The new weight can be written as:

wkj ← wkj − λ
∂(L)

∂(wkj)
∀k ∈ K, j ∈ Jk (9)

In Equation 9, wkj is the weight associated with k-th layer’s j-th neuron, which is updated for each layer, k ∈ K, and
for every neuron, j, in those layers. In our proposed hybrid one-shot transfer learning approach, we only allow certain
weights (old and new) to be updated. Hence, we revise the previous Equation 9 as follows:

wk′j′ ← wk′j′ − λ
∂(L)

∂(wk′j′)
∀k′ ∈ K ′, j′ ∈ J ′

k′ (10)

where all k′ ∈ K ′ are the trainable layers and all j′ ∈ J ′
k′ are the trainable neurons in the k’-th trainable layer.

It is to be noted that the total number of neurons that are trained using our hybrid approach of freezing weights is
significantly smaller than the total number of neurons that need to be trained in a full network. The hybrid approach
strikes a balance between accommodating novel data and preserving the existing knowledge, resulting in an updated
intrusion detection mechanism that efficiently integrates new insights without sacrificing the detection performance
for previously recognized attack patterns. (Figure 2 in the Appendix illustrates distinct transfer learning strategies
that can be employed during the one-shot retraining process, and Algorithm 2 in the Appendix shows the steps in the
one-shot transfer learning method.)
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4 EXPERIMENTAL SETUP

In this section, we outline the numerical experiments performed to evaluate the proposed framework. We begin by
describing the experimental data, followed by the baseline training and retraining of the models in the framework.

4.1 DATA DESCRIPTION

We conducted the numerical experiments using two publicly available popular data sets: CICIDS2017 (Sharafaldin
et al., 2019) and CICIDS2018 (Sharafaldin et al., 2018). Notably, compared to other publicly available data sets like
NSL-KDD (for Cybersecurity, 2009), KDD-CUP (Tavallaee et al., 2009), the CICIDS data sets are more recent, and
consequently more pragmatic representations of modern network traffic (Hindy et al., 2020). With the availability
of raw pcap files in the CICIDS data sets, the dependency on flow-level extracted features is reduced. The data
sets contain different attack and benign communication in pcap files distributed across certain days of the week. To
showcase the effectiveness of our framework, we create several training and testing data sets for the development of
the models at the various stages of the framework. We processed these pcap files as described in (Hore et al., 2023a)
to extract packet data from the raw pcap files.

We utilized the CICIDS2017 data set for initially training the different models in the framework. The data set contains
the following attacks: Port Scan, DoS, DDoS, Infiltration, Brute Force, Web Attack, and Botnet. To emulate the
limited knowledge of the baseline models in the framework, we use all attack types in our training, except Botnet. For
each attack type, we bifurcate the available data into train and test with 20% of data retained for testing. Further, to
emulate the OOD and zero-day attacks, we use attack data from the CICIDS2018 data set and Botnet attack data from
the CICIDS2017 data set, respectively. For the retraining experiments, we split the CICIDS2018 and Botnet data into
training and testing in a 1:9 ratio. We use the large hold-out set for testing and the smaller set for training. This setup
is to emulate the one-shot learning aspect of the framework, in which a smaller number of data samples are used for
retraining. We created a synthetically generated perturbed attack data set from the CICIDS2017 attack data samples
using the methods in (Ghadermazi et al., 2023). This data set is used to train the baseline novelty detector model in
the third stage of the framework. To show the framework’s effectiveness against adversarial attacks, we crafted new
perturbed samples that specifically evade the DNN-based malicious packet detector, using the DRL method in (Hore
et al., 2023a). Note that this new adversarial data is created using a different toolchain (DRL method) when compared
to the synthetically generated adversarial data used for training. We split the newly generated adversarial samples into
a 1:9 train-test ratio. The train set of adversarial samples is used for retraining the third-stage autoencoder and the
testing data set is used to evaluate its performance after retraining. We provide a GitHub link for the code files and
data sets used in this study. 1

4.2 BASELINE TRAINING OF THE FRAMEWORK

We first describe the setup for the malicious packet detector, followed by that of the anomaly detector and novelty
detector. We obtained the best hyperparameter values after trying different values for training the malicious packet
detector. The input size was selected to be the entire packet length of 1525. We used only three hidden layers, which
gave us the opportunity to expand the network if needed during the retraining of the malicious packet detector with
OOD and zero-day attacks. We also used a single neuron at the output layer with a sigmoid activation function due to
the choice of binary cross-entropy loss. In total, we use 12 hidden layers in the entire encoder-decoder network of the
anomaly detector. A combination of ReLU and Leaky ReLU activations are used in the network with mean absolute
error (MAE) as loss and Adam as the optimizer.

The majority of packets in the CICIDS data sets are way shorter in length than the maximum segment size. From our
analysis, we found out that the mean length of packets in the CICIDS2017 data set is under 200 bytes. Hence, we
use the first 200 features (bytes) of the benign packet data to train the anomaly detector. The novelty detector training
setup is very similar to the anomaly detector with the exception of the hidden layer architecture and the input size.

The input size is chosen to be 500 instead of 200 to facilitate the detection of adversarial perturbations encountered
at the tail end or at the middle of the packet data. We observed that a deeper autoencoder yields lower reconstruction
error for both OOD and adversarial attack samples, thereby missing out on the detection of novel attacks. This is
because the diversity amongst the adversarial samples and the sample size is limited. Hence, we selected a shallower

1https://github.com/Anonymousgit2024/RESNIDS
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autoencoder for the novelty detection task compared to the anomaly detector. (Table 4 and Table 5 in the Appendix
show the hyperparameter values selected for the models.)

4.3 RETRAINING EXPERIMENTS

We performed the retraining with a one-shot transfer learning methodology. We retrained the malicious packet detector
with zero-day, OOD, and adversarial attack packets. We used a maximum of 20% of data samples from different attack
types along with a maximum of 20% in-distribution attack data to retrain the malicious packet detector. Similarly, to
retrain the anomaly detector we perform one-shot learning with 25% of the available OOD benign samples. Lastly, the
novelty detector is trained with the train set of adversarial samples, as described earlier in this section. We conducted
comprehensive experiments to fix the location of the added trainable layer and the trainable neurons. (Table 6 in the
Appendix shows the final architecture of the retrained models.)

5 ANALYSIS OF RESULTS

5.1 BASELINE PERFORMANCE OF THE FRAMEWORK

Table 2 shows the detection accuracy of the malicious packet detector. The tables breaks down the % accuracy obtained
for each attack type and benign traffic. The classifier’s performance is exceptional in detecting the in-distribution
samples, as evidenced by a few recent studies (De Lucia et al., 2021; Bierbrauer et al., 2023). However, the attack
detection accuracy significantly drops when the classifier is subjected to OOD and zero-day attack samples. We
also noted that the classifier could not detect any test adversarial samples created using the DRL approach from the
literature targeting the DNN classifier (Hore et al., 2023a).

We performed the anomaly detection task to detect true benign packets by setting a threshold based on the 95-percentile
reconstruction error. We obtained the reconstruction threshold value of 0.09 by testing the trained autoencoder on the
benign data samples from the CICIDS2017 test set, similar to the work in (Hore et al., 2023b). All packets passing
through the anomaly detector exceeding this threshold value were considered anomalies. Table 2 shows the detection
accuracy (in %) of the anomaly detector. It can be observed that the autoencoder detects anomalies (OOD samples of
the various attack types) with a 99% accuracy. The anomaly detector is also able to detect the newest traffic pattern
from the zero-day attack with more than 92% accuracy. Finally, the model is also adept at recognizing adversarial
samples generated using a different toolchain (DRL) with an average detection rate of more than 97%. However,
its detection accuracy decreases when subjected to benign packets from the CICIDS2018 data set. It is only able to
detect 25% of them, resulting in many false positives. To counter this, we perform retraining with one-shot learning to
redefine the new trend for benign traffic and present the retraining results in the following subsection.

The samples considered anomalous by the autoencoder model in the second stage are passed to the novelty detector
in the final stage to identify if they are adversarial perturbations of known attacks. We found the reconstruction
error value of 0.105 to effectively differentiate between known adversarial perturbations and novel packets. Table 2
shows the performance of the novelty detector against the various anomalous packets from the previous stage. The
model is able to detect, on average, more than 89% of attack packets from the CICIDS2018 data set (OOD). Since
the adversarial samples used for testing the framework were created from a different toolchain (DRL) than the ones
used to train the autoencoder, the model identifies 75% of them as novel packets for the baseline performance of the
framework. All the packets identified as novel are to be forwarded to human analysts for investigation and labeling.
We emulate the presence of analysts and apply the true labels to these packets to demonstrate the retraining of the
DNNs using these small number of novel samples identified at the end of the third stage in the framework.

5.2 PERFORMANCE EVALUATION AFTER ONE-SHOT LEARNING

We evaluated various retraining techniques using the one-shot learning paradigm, as outlined in Appendix (refer to
Figure 3). Experiments show that our proposed hybrid approach, with a significantly smaller number of trainable
parameters (refer to Table 7 in the Appendix), can achieve superior accuracy, making the computation viable for
real-time NIDS, compared to the other approaches from literature.

We evaluate the framework’s performance against zero-day, OOD, and adversarial attack samples following retraining.
Table 3 displays the first-stage malicious packet detector’s performance. This classifier demonstrates exceptional
accuracy, exceeding 98%, in detecting zero-day attacks (Botnet) from the CICIDS2018 data set, and it also identifies
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Table 2: Baseline performance of the framework

Attack
Type

Malicious
Packet Detector Anomaly Detector Novelty Detector

In-
distribution

Out-of-
distribution

Zero-day
attack

Adversarial
Samples

In-
distribution

Out-of-
distribution

Zero-day
attack

Adversarial
Samples

Out-of-
distribution

Zero-day
attack

Adversarial
Samples

PortScan 99.97 - -

0

- - -

97.67

- -

75

DoS 99.21 68.34 - - 99 - 88 -
DDoS 99.89 6.75 - - 99 - 98 -

Infiltration 99.79 19.19 - - 99 - 95 -
Brute Force 99.81 61.42 - - 99 - 86 -
Web Attack 99.92 35.35 - - 99 - 81 -

Botnet - - 38.78 - - 92.61 - 99.02
Benign 99.47 91.29 - 95 25 - 85 -

Table 3: Retraining performance of the malicious packet detector

Attack
type

In-
distribution

Out-of-
distribution Zero-day Adversarial

Samples
Port Scan 99.94 - -

97.03

DoS 97.85 99.49 -
DDoS 99.34 99.94 -

Infiltration 99.73 93.06 -
Brute Force 99.18 98.45 -
Web Attack 99.39 99.03 -

Botnet - - 98.25
Benign 99.06 96.25 -

over 97% of the adversarial samples in the test set. Notably, the model’s detection accuracy remains consistent for both
in-distribution and OOD samples. Results from the second-stage anomaly detector, retrained with benign packets from
the CICIDS2018 data set, reveal its ability to detect nearly 90% of OOD benign packets and 99% of in-distribution
samples. After retraining, the novelty detector successfully identifies most of the adversarial attack packets. Only
0.01% of the adversarial samples, in contrast to the baseline’s 75%, are flagged as novel packets for analyst inspection,
indicating improved performance. We also performed an ablation study validating the effectiveness of the various
components and their arrangement in the framework. The results are shown in the Appendix (F.1).

5.3 COMPARING AGAINST RECENT STATE-OF-THE-ART METHOD FROM LITERATURE

Finally, we compare the Deep ResNIDS framework with a recent multi-stage NIDS (Verkerken et al., 2023). While
the original method used flow-based data, we applied it to packet-level data for a direct comparison. The ResNIDS
framework achieved an overall accuracy of over 99%, while the literature’s framework only reached 38.15% accuracy
when tested with CICIDS2017 data. The literature’s method excelled in detecting benign traffic with 100% accuracy
but struggled with attack samples due to the poor performance of the one-class support vector machine (OC-SVM). In
contrast, the proposed ResNIDS framework had a slightly higher false positive rate with a benign detection accuracy
of 94.57% but achieved 100% accuracy in detecting attack packets.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we developed the Deep ResNIDS framework for novelty detection in network traffic, employing su-
pervised, unsupervised, and transfer learning methods. Our experiments, conducted on publicly available network
intrusion data sets, demonstrate the effectiveness of our framework in detecting in-distribution, OOD, zero-day, and
adversarial attacks. Our study showcases a promising approach for defending organizations against evolving adver-
saries, thereby enhancing system robustness and resilience to novel attacks. Our main focus was on developing the
novelty detection framework’s ability to adapt quickly with limited samples. Future research could explore optimal
retraining timing and sample sizes for DNNs to maintain accuracy for both seen and unseen samples. Additionally,
future work can investigate the best strategy for allocating human resources to analyze and label novel samples.
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REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of both our proposed framework and the associated results, we have incorporated
the following components within our submission: 1) To enable the replication of the underlying mechanisms of the
proposed models within our framework, we have provided Algorithm 1 and Algorithm 2 in the Appendix A. 2) We have
provided the hyperparameter values used for the baseline training and retraining experiments of the models in Table 4,
Table 5, and Table 6 in the Appendix. 3) We have made the source code and data sets available for implementation in
an anonymous GitHub link (https://github.com/Anonymousgit2024/RESNIDS). 4) Keeping the reproducibility of the
results in mind, we have published the trained models and the data sets used for different experiments evaluating the
proposed ResNIDS framework (as described in Section 4.1). We have also included an appropriate README file in
the GitHub folder to navigate the code files and the data sets.
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hybrid intrusion detection approach in iot scenarios. In GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, pp. 1–7, 2020. doi: 10.1109/GLOBECOM42002.2020.9348167.

Evan Caville, Wai Weng Lo, Siamak Layeghy, and Marius Portmann. Anomal-e: A self-supervised network intrusion
detection system based on graph neural networks. Knowledge-Based Systems, 258:110030, 2022.

Michael J De Lucia, Paul E Maxwell, Nathaniel D Bastian, Ananthram Swami, Brian Jalaian, and Nandi Leslie.
Machine learning raw network traffic detection. In Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III, volume 11746, pp. 185–194. SPIE, 2021.

Yasir Ali Farrukh, Irfan Khan, Syed Wali, David Bierbrauer, John A. Pavlik, and Nathaniel D. Bastian. Payload-byte:
A tool for extracting and labeling packet capture files of modern network intrusion detection datasets. In 2022
IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT), pp. 58–67,
2022. doi: 10.1109/BDCAT56447.2022.00015.

Canadian Institute for Cybersecurity. NSL KDD Dataset. https://www.unb.ca/cic/datasets/nsl.
html, 2009. [Online; accessed 19-August-2023].

Merna Gamal, Hala M Abbas, Nour Moustafa, Elena Sitnikova, and Rowayda A Sadek. Few-shot learning for discov-
ering anomalous behaviors in edge networks. Computers, Materials & Continua, 69(2), 2021.

Rajesh Ganesan, Sushil Jajodia, Ankit Shah, and Hasan Cam. Dynamic scheduling of cybersecurity analysts for
minimizing risk using reinforcement learning. ACM Transactions on Intelligent Systems and Technology (TIST), 8
(1):1–21, 2016.

Jalal Ghadermazi, Ankit Shah, and Nathaniel Bastian. Towards real-time network intrusion detection with image-
based sequential packets representation. TechRxiv, 2023. doi: https://doi.org/10.36227/techrxiv.23291588.v1.

10

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html


Dongqi Han, Zhiliang Wang, Ying Zhong, Wenqi Chen, Jiahai Yang, Shuqiang Lu, Xingang Shi, and Xia Yin. Eval-
uating and improving adversarial robustness of machine learning-based network intrusion detectors. IEEE Journal
on Selected Areas in Communications, 39(8):2632–2647, 2021.

Mohammad J Hashemi, Greg Cusack, and Eric Keller. Towards evaluation of nidss in adversarial setting. In Pro-
ceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data
Communication Networks, pp. 14–21, 2019.

Ke He, Dan Dongseong Kim, and Muhammad Rizwan Asghar. Adversarial machine learning for network intrusion
detection systems: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2023.

Hanan Hindy, David Brosset, Ethan Bayne, Amar Kumar Seeam, Christos Tachtatzis, Robert Atkinson, and Xavier
Bellekens. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE
Access, 8:104650–104675, 2020.

Ivan Homoliak, Martin Teknos, Martı́n Ochoa, Dominik Breitenbacher, Saeid Hosseini, and Petr Hanacek. Improv-
ing network intrusion detection classifiers by non-payload-based exploit-independent obfuscations: An adversarial
approach. arXiv preprint arXiv:1805.02684, 2018.

Soumyadeep Hore, Jalal Ghadermazi, Diwas Paudel, Ankit Shah, Tapas K Das, and Nathaniel D Bastian. Deep
packgen: A deep reinforcement learning framework for adversarial network packet generation. arXiv preprint
arXiv:2305.11039, 2023a.

Soumyadeep Hore, Quoc Nguyen, Yulun Xu, Ankit Shah, Nathaniel Bastian, and Trung Le. Empirical evaluation of
autoencoder models for anomaly detection in packet-based nids. TechRxiv, 2023b. doi: https://doi.org/10.36227/
techrxiv.24043608.v1.

Muhammad Imran, Noman Haider, Muhammad Shoaib, Imran Razzak, et al. An intelligent and efficient network
intrusion detection system using deep learning. Computers and Electrical Engineering, 99:107764, 2022.

Kaiyuan Jiang, Wenya Wang, Aili Wang, and Haibin Wu. Network intrusion detection combined hybrid sampling
with deep hierarchical network. IEEE access, 8:32464–32476, 2020.

Aditya Kuppa, Slawomir Grzonkowski, Muhammad Rizwan Asghar, and Nhien-An Le-Khac. Black box attacks on
deep anomaly detectors. In Proceedings of the 14th international conference on availability, reliability and security,
pp. 1–10, 2019.

Nguyen Tung Lam. Detecting unauthorized network intrusion based on network traffic using behavior analysis tech-
niques. International Journal of Advanced Computer Science and Applications, 12(4), 2021.

Jin Lan, Jia Z Lu, Guo G Wan, Yuan Y Wang, Chen Y Huang, Shi B Zhang, Yu Y Huang, and Jin N Ma. E-minbatch
graphsage: An industrial internet attack detection model. Security and Communication Networks, 2022, 2022.

Wenke Lee, Salvatore Stolfo, Philip Chan, Eleazar Eskin, Wei Fan, Matt Miller, S. Hershkop, and Junxin Zhang. Real
time data mining-based intrusion detection. volume 1, pp. 89–100 vol.1, 02 2001. ISBN 0-7695-1212-7. doi:
10.1109/DISCEX.2001.932195.

Yuzhen Li, Renjie Li, Zhou Zhou, Jiang Guo, Wei Yang, Meijie Du, and Qingyun Liu. Graphddos: Effective ddos
attack detection using graph neural networks. In 2022 IEEE 25th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pp. 1275–1280. IEEE, 2022.

Chao Liu, Zhaojun Gu, and Jialiang Wang. A hybrid intrusion detection system based on scalable k-means+ random
forest and deep learning. Ieee Access, 9:75729–75740, 2021.

Jiaxin Liu, Xucheng Song, Yingjie Zhou, Xi Peng, Yanru Zhang, Pei Liu, Dapeng Wu, and Ce Zhu. Deep anomaly
detection in packet payload. Neurocomputing, 485:205–218, 2022a. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2021.01.146. URL https://www.sciencedirect.com/science/article/pii/
S0925231221016349.

Jiaxin Liu, Xucheng Song, Yingjie Zhou, Xi Peng, Yanru Zhang, Pei Liu, Dapeng Wu, and Ce Zhu. Deep anomaly
detection in packet payload. Neurocomputing, 485:205–218, 2022b.

11

https://www.sciencedirect.com/science/article/pii/S0925231221016349
https://www.sciencedirect.com/science/article/pii/S0925231221016349


Jielun Liu, Ghim Ping Ong, and Xiqun Chen. Graphsage-based traffic speed forecasting for segment network with
sparse data. IEEE Transactions on Intelligent Transportation Systems, 23(3):1755–1766, 2022c. doi: 10.1109/
TITS.2020.3026025.

Alina Oprea and Apostol Vassilev. Adversarial machine learning: A taxonomy and terminology of attacks and miti-
gations (draft). Technical report, National Institute of Standards and Technology, 2023.

Augustine Premkumar, Madeleine Schneider, Carlton Spivey, John Pavlik, and Nathaniel D Bastian. Graph represen-
tation learning for context-aware network intrusion detection. In Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications V, volume 12538, pp. 82–92. SPIE, 2023.

Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Adversarial machine learning attacks and defense
methods in the cyber security domain. ACM Computing Surveys (CSUR), 54(5):1–36, 2021.

Ankit Shah, Rajesh Ganesan, Sushil Jajodia, and Hasan Cam. A two-step approach to optimal selection of alerts for
investigation in a csoc. IEEE Transactions on Information Forensics and Security, 14(7):1857–1870, 2019. doi:
10.1109/TIFS.2018.2886465.

Ankit Shah, Rajesh Ganesan, Sushil Jajodia, Hasan Cam, and Steve Hutchinson. A novel team formation framework
based on performance in a cybersecurity operations center. IEEE Transactions on Services Computing, pp. 1–13,
2023. doi: 10.1109/TSC.2023.3253307.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new intrusion detection dataset
and intrusion traffic characterization. ICISSp, 1:108–116, 2018.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. A detailed analysis of the cicids2017 data set. In In-
formation Systems Security and Privacy: 4th International Conference, ICISSP 2018, Funchal-Madeira, Portugal,
January 22-24, 2018, Revised Selected Papers 4, pp. 172–188. Springer, 2019.

Yam Sharon, David Berend, Yang Liu, Asaf Shabtai, and Yuval Elovici. Tantra: Timing-based adversarial network
traffic reshaping attack. IEEE Transactions on Information Forensics and Security, 17:3225–3237, 2022.

Pengfei Sun, Pengju Liu, Qi Li, Chenxi Liu, Xiangling Lu, Ruochen Hao, and Jinpeng Chen. Dl-ids: Extracting
features using cnn-lstm hybrid network for intrusion detection system. Security and communication networks,
2020:1–11, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed analysis of the kdd cup 99 data set. In
2009 IEEE symposium on computational intelligence for security and defense applications, pp. 1–6. Ieee, 2009.

Miel Verkerken, Laurens D’hooge, Didik Sudyana, Ying-Dar Lin, Tim Wauters, Bruno Volckaert, and Filip De Turck.
A novel multi-stage approach for hierarchical intrusion detection. IEEE Transactions on Network and Service
Management, pp. 1–1, 2023. doi: 10.1109/TNSM.2023.3259474.

Haomin Wang and Wei Li. Ddostc: A transformer-based network attack detection hybrid mechanism in sdn. Sensors,
21(15):5047, 2021.

Yanqing Yang, Kangfeng Zheng, Bin Wu, Yixian Yang, and Xiujuan Wang. Network intrusion detection based on
supervised adversarial variational auto-encoder with regularization. IEEE access, 8:42169–42184, 2020.

Ruizhe Yao, Ning Wang, Zhihui Liu, Peng Chen, and Xianjun Sheng. Intrusion detection system in the advanced
metering infrastructure: a cross-layer feature-fusion cnn-lstm-based approach. Sensors, 21(2):626, 2021.

Sheng-lin Yin, Xing-lan Zhang, and Shuo Liu. Intrusion detection for capsule networks based on dual routing mecha-
nism. Computer Networks, 197:108328, 2021.

Lian Yu, Jingtao Dong, Lihao Chen, Mengyuan Li, Bingfeng Xu, Zhao Li, Lin Qiao, Lijun Liu, Bei Zhao, and
Chen Zhang. Pbcnn: packet bytes-based convolutional neural network for network intrusion detection. Computer
Networks, 194:108117, 2021.

Yingwei Yu and Naizheng Bian. An intrusion detection method using few-shot learning. IEEE Access, 8:49730–
49740, 2020.

12



A APPENDIX

B ADDITIONAL LITERATURE REVIEW

B.1 COMPUTER SECURITY INCIDENT RESPONSE TEAM (CSIRT) PROCESS

Organizations of various sizes have CSIRTs responsible for cybersecurity operations, including incident management,
response, and mitigating the impact of cyber-attacks. The CSIRT is a unique combination of personnel and technology,
working in tandem to protect the organization from cyber-attacks. The standard procedure followed by the CSIRT
involves assigning NIDS-generated alerts to their cybersecurity analysts for the purpose of identifying and mitigating
attacks. Analysts conduct two levels of alert inspections: primary (Level 1) and secondary (Level 2). Level 1 inspection
focuses on identifying novel traffic samples, while Level 2 analysts conduct in-depth investigations and remediation
of the attack incidents. The findings from these investigations are then documented to build threat intelligence.

B.2 DL-ENABLED NIDS BASED ON FLOW DATA

Convolutional neural networks (CNNs), known for their spatial information-capturing capabilities, are widely used
in image classification and object detection. They have also shown promise in intrusion detection systems (Lam,
2021; Aljumah, 2021; Akhtar & Feng, 2021; Gamal et al., 2021). Since flow-based data lack spatial relationships,
CNNs are often combined with other DL models like recurrent neural networks (RNNs) and multi-head attention
(MHA) networks in hybrid systems. In such setups, CNNs serve as feature extractors, while RNNs are used for
classification (Jiang et al., 2020). Some notable models in the NIDS domain include Yu et al.’s (Yu & Bian, 2020)
few-shot learning-based model, which utilizes DNN and CNN for feature extraction and dimension reduction. Yao et
al. (Yao et al., 2021) designed an intrusion detection model for advanced metering infrastructure (AMI) by combining
CNN and long short-term memory (LSTM) for feature fusion. Liu et al. (Liu et al., 2021) developed a two-stage
NIDS using k-means and random forest for binary classification, followed by deep learning algorithms for further
categorization. Wang et al. (Wang & Li, 2021) introduced DDosTC, a hybrid neural network combining self-attention
mechanisms with CNN to detect DDoS attacks in software-defined networks. Additionally, Yin et al. (Yin et al., 2021)
proposed a deep capsule NIDS with an attention mechanism to enhance feature extraction and prioritize impactful
features on the model output.

AE is a DL method that employs unsupervised learning paradigm, operating on data samples without labels. In AE,
the objective is to reconstruct inputs while minimizing the discrepancy between input and output. Yang et al. (Yang
et al., 2020) introduced a NIDS framework called supervised variational autoencoder with regularization and deep
neural network (SAVAER-DNN) for identifying less common and zero-day attacks. Their evaluation on NSL-KDD
and UNSW-NB15 data sets revealed reduced accuracy in identifying minority attack categories. Andresini et al. (An-
dresini et al., 2020) introduced a multistage NIDS model that incorporates the concept of AE. This model includes a
convolutional layer and two fully connected layers. It employs two separate AEs during an initial unsupervised phase,
trained on normal and attack data to reconstruct samples. In the supervised stage, these reconstructed samples create
an augmented data set, serving as input for a 1D-CNN. The model achieved superior performance compared to other
DL models on data sets such as KDD Cup’99, UNSW-NB15, and CICIDS2017. Bovenzi et al. (Bovenzi et al., 2020)
proposed a hierarchical multistage approach that integrates a multi-modal denoising autoencoder (DAE) in the first
stage and soft output classifiers in the second stage. The soft output classifier identifies unknown attacks by apply-
ing a confidence threshold to predictions. This approach employs the open-set approach in multi-class classification,
optimizing the confidence threshold for each known attack type. Similarly, Verkerken et al. (Verkerken et al., 2023)
introduced an innovative multi-stage strategy for hierarchical intrusion detection, accommodating both binary and
multiclass detection while minimizing latency and bandwidth demands and addressing known and zero-day attacks.

Graph neural networks (GNNs) and graph representation learning (GRL) have also been proposed for intrusion detec-
tion in NIDS (Li et al., 2022; Caville et al., 2022; Lan et al., 2022). Li et al.(Li et al., 2022) introduce GraphDDoS,
which uses GNNs to identify low-rate and high-rate DDoS attacks by analyzing packet connections and flow rela-
tionships. GraphSAGE (Liu et al., 2022c) was developed to tackle scalability challenges in GNNs by selecting a
set number of nodes from a given node’s neighborhood, instead of considering the entire neighborhood. Caville et
al. (Caville et al., 2022) made a significant enhancement to the GraphSAGE model by implementing it in a self-
supervised manner. This novel approach, known as Anomal-E, utilizes the same graph structure (with flows and
endpoints representing edges and nodes, respectively) without necessitating any labels. Lan et al. (Lan et al., 2022)
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Figure 2: Retraining strategies for the deep neural networks

introduced another graph-based NIDS known as E-minBatch GraphSAGE. This approach incorporates a pre-sampling
step prior to model training, leading to the creation of smaller graphs and improved scalability.

C RETRAINING STRATEGIES FOR THE DEEP NEURAL NETWORKS

Figure 2 illustrates distinct transfer learning strategies that can be employed during the one-shot retraining process. In
Figure 2 (a), a fully trained network undergoes a transfer learning scheme involving the freezing of weights associated
with trained layers. An additional layer is introduced, with only the newly added layer being allowed for training.
Figure 2 (b) demonstrates a scenario where select neurons from a layer are unfrozen for retraining, without necessitat-
ing the addition of new weights to the pre-trained network. Our proposed hybrid approach, illustrated in Figure 2 (c),
combines the strengths of both of the aforementioned transfer learning methods.

D ALGORITHMS FOR DEEP RESNIDS

E NUMERICAL EXPERIMENTS: HYPERPARAMETERS OF THE MODELS

F ADDITIONAL RESULTS

F.1 ABLATION STUDY

In the subsequent analysis, we emphasize the value of distinct models within the Deep ResNIDS framework by employ-
ing an ablation study, a methodical approach aimed at gaining deeper insights into intricate systems. Our framework
consists of three principal components: a malicious packet detector, an anomaly detector, and a novelty detector.
The novelty detector, situated in the third stage, plays a pivotal role in sifting out adversarially manipulated instances
from known attack categories within novel network packets. When this autoencoder is utilized in isolation within the
framework, the result will entail the aggregation of all other packets—those unaffected by adversarial perturbations,
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Algorithm 1: Deep ResNIDS algorithm
Input: Malicious packet detector parameters (θC ), Anomaly detector parameters (θBAE ), Novelty detector parameters (θAAE )
Output: Decision regarding the incoming network traffic (packet classification and mitigation decision).

1 /* Set Novel benign traffic buffer Bbenign, Novel malicious traffic buffer Battack , Adversarial attack buffer Badv to []. */
2 for each incoming packet do
3 Extract normalized packet-level features
4 Pass extracted packet, xi, to the malicious packet detector, fC(.).
5 if fC(xi, θC) == ’Malicious’ then
6 Forward the communication for attack mitigation to analyst level 2
7 end
8 else
9 Forward xi to the anomaly detector, fBAE(.).

10 if fBAE(xi, θBAE) == ’Benign’ then
11 Declare the communication as benign
12 end
13 else
14 Forward xi to the novelty detector, fAAE(.)
15 if fAAE(xi, θAAE) == ’Novelty’ then
16 Forward the communication for further investigation to analyst level 1
17 if analyst level 1 feedback == ’Novel Benign’ then
18 Store the communication in Bbenign

19 end
20 if analyst level 1 feedback == ’Novel Attack’ then
21 Store the communication in Battack

22 end
23 if analyst level 1 feedback == ’Novel Adversarial Attack’ then
24 Store the communication in Badv

25 end
26 end
27 else
28 Declare the communication as an adversarial attack
29 Forward the communication for attack mitigation to analyst level 2
30 end
31 end
32 end
33 end
34 if enough samples in Bbenign and Battack and Badv then
35 Retrain malicious packet detector, fC(.) using Algorithm 2
36 Obtain θC,retrained

37 Set θC = θC,retrained

38 end
39 if enough samples in Bbenign then
40 Retrain anomaly detector, fBAE(.) using Algorithm 2
41 Obtain θBAE,retrained

42 Set θBAE = θBAE,retrained

43 end
44 if enough samples in Badv then
45 Retrain anomaly detector, fAAE(.) using Algorithm 2
46 Obtain θAAE,retrained

47 Set θAAE = θAAE,retrained

48 end
49 return Network traffic classification and mitigation action

Algorithm 2: Retraining with one-shot transfer learning algorithm
Input: Baseline malicious packet detector parameters (θC ), Baseline anomaly detector parameters (θBAE ), Baseline novelty detector parameters (θAAE )
Output: Retrained malicious packet detector parameters (θC,retrained) / Retrained anomaly detector parameters (θBAE,retrained) / Retrained novelty

detector parameters (θAAE,retrained)
1 for each model in Deep ResNIDS Framework do
2 Select h number of data points from the respective packet buffer (Bbenign, Battack , Badv)
3 Add an additional hidden layer in the DNN classifier/autoencoder
4 Fine-tune the position of the added layer for best performance
5 Select certain perceptrons from the adjacent layers of the newly added layer to make them trainable
6 Fine-tune the quantity and positions of the trainable perceptrons
7 Retrain the models with the selected data points
8 end
9 return Retrained malicious packet detector parameters θC,retrained / Retrained anomaly detector parameters θBAE,retrained / Retrained novelty detector

parameters, θAAE,retrained
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Table 4: Training hyperparameters for the malicious packet detector

Training
Hyperparamters Values

Input Size 1525
No. of Classes 2
No. of Hidden

Layers 3

Hidden Layer
Sizes 128,64,32

Activations ReLU
Output

Activation Sigmoid

Loss Binary
Crossentropy

Optimizer Adam
Metrics Accuracy

Batch Size 1024
Epoch Size 50

Table 5: Training hyperparameters for the anomaly detector and the novelty detector

Training
Hyperparamters

Anomaly
Detector

Novelty
Detector

Values Values
Input Size 200 500

Hidden Layer
Architecture (Encoder)

150,150,75,
50,25,12

400,300,250,
125

Hidden Layer
Architecture (Decoder)

12,25,50,
75,150,150

125,250,300,
400

Activations Leaky ReLU,
ReLU

Leaky ReLU,
ReLU

Latent Dimension 6 62
Loss MAE MAE

Optimizer ADAM ADAM
Batch Size 256 256
Epoch Size 500 500
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Table 6: Classifier and autoencoder architectures prior to and during one-shot transfer learning

Model
Hidden

Layer Architecture Location and Number
of Trainable Neurons

Retraining
DataBefore After

Malicious Packet Detector 128,64,32 128,64,32,32 3th Layer (21)
4th Layer (32)

CICIDS2018,
Botnet

Malicious Packet Detector 128,64,32,32 128,64,32,32,32 4th Layer (10)
5th Layer (32)

Adversarial
Examples

Anomaly Detector

Encoder-
150,150,75,50, 25, 12

Decoder-
12,25,50,75,150,150

Encoder-
150,150,75,50,50, 25, 12

Decoder-
12,25,50,50,75,150,150

Encoder-
4th Layer (16)
5th Layer (50)
6th Layer (8)
7th Layer (4)

Decoder-
1st Layer (4)
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Figure 3: In-distribution and out-of-distribution sample detection evaluation after retraining
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Table 7: Comparison of the number of trainable parameters for different retraining strategies

Retraining
Method

Number of Trainable
Parameters for
Stage 1 DNN

Number of Trainable
Parameters for
Stage 2 DNN

Layer Addition 1056 3850
Freezing Neurons 10336 8346
Hybrid Approach 11392 13446
Naive Approach 2532847 189624

Table 8: Ablation study on the ResNIDS framework

Packet
Type

Model Detection Accuracy
Malicious Packet

Detector (Classifier)
Anomaly Detector

(Autoencoder)
Port Scan 99.97 99.75

DoS 99.21 99.7
DDoS 99.89 89.88

Infiltration 99.79 99.96
Brute Force 99.81 97.94
Web Attack 99.92 99.93

Benign 99.47 95

including benign and malicious packets—under the umbrella of anomalies. However, such an approach is not practical
as it would generate a high volume of false alarms due to the presence of benign traffic.

Next, we demonstrate the significance of each of the other two models by studying them individually. We presented the
baseline performance of the malicious packet detector in Table 2, revealing that when operating on its own, the clas-
sifier overlooks a substantial proportion of OOD and zero-day attack instances. As previously reported, the anomaly
detector in the second stage, as shown in Table 2, effectively detects a significant portion of samples that the clas-
sifier misses, thereby justifying this sequential arrangement. In Table 8, we provide a comparative analysis of the
performance of the malicious packet detector and the anomaly detector using the same data set comprising benign and
malicious samples. The results highlight that the classifier’s accuracy outperforms in a significant majority of attack
and benign network traffic scenarios. Furthermore, the classifier assists human analysts by providing appropriate la-
bels for effective attack mitigation strategies, validating its position as the primary line of defense in network attack
detection.
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