
Under review as a conference paper at ICLR 2024

GENERALIZING POINCARÉ POLICY REPRESENTA-
TIONS IN MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning policy representations is essential for comprehending the intricacies of
agent interactions and their decision-making processes. Recent studies have found
that the evolution of any state under Markov decision processes (MDPs) can be
divided into multiple hierarchies based on time sequences. This conceptualization
resembles a tree-growing process, where the policy and environment dynamics
determine the possible branches. In this paper, the multiple agent’s trajectory
growing paths can be projected into a Poincaré ball, which requires the tree to
grow from the origin to the boundary of the ball, deriving a new geometric idea
of learning Poincaré Policy Representations (P2R) for MARL. Specifically, P2R
captures the policy representations of Poincaré ball by a hyperbolic neural net-
work and constructs a contrast objective function that encourages embeddings of
the same policy to move closer together while embeddings of different policies
to move apart, which enables embed policies with low distortion. Experimental
results provide empirical evidence for the effectiveness of the P2R framework in
cooperative and competitive games, demonstrating the potential of Poincaré pol-
icy representations for optimizing policies in complex multi-agent environments.

1 INTRODUCTION

Figure 1: The state relationships of MDPs of
Overcooked environment could be divided into
multiple hierarchies based on time sequences
(left), which resembles a tree-growing process
projected into a Poincaré ball (right).

Multi-agent reinforcement learning (MARL) is
widely used in a variety of applications, ranging
from robotics (Kober et al., 2013) and autonomous
vehicles (Shalev-Shwartz et al., 2016) to real-time
strategy games (Vinyals et al., 2019), social net-
works (Chen et al., 2020b), and economic markets
(Qiu et al., 2021). In MARL, agents interact with
each other and their environment to learn effective
policies. One of the key challenges in MARL is
learning effective representations of the agents’ poli-
cies, which need to capture the characters of the poli-
cies and dynamics of the system that enable effi-
cient decision-making. Furthermore, policy repre-
sentations in MARL are crucial to realize coopera-
tion among agents, improve the performance and efficiency of the multi-agent system, and adapt to
different tasks and environments.

Many recent works have been devoted to learning informative representations for agent policies
using deep learning architectures for reinforcement learning (RL) (Albrecht & Stone, 2018; Pa-
poudakis et al., 2021; Rabinowitz et al., 2018). He et al. (2016) introduced a novel method that
focuses on the learning of a modeling network tasked with reconstructing the actions of a modeled
agent based on its observations. Grover et al. (2018) put forward an innovative approach that relies
on imitation learning where they train a mapping from observations to actions in a supervised man-
ner to capture a point-based policy representation. Raileanu et al. (2018) contributed to the field by
developing an algorithm designed to learn the inference of an agent’s intentions by leveraging the
policy of the controlled agent. Tacchetti et al. (2018) introduced a notable concept involving rela-
tional forward models that utilize graph neural networks for modeling agents. Zintgraf et al. (2021)
employed a Variational Autoencoder (VAE) for agent modeling, particularly for fully-observable

1

Under review as a conference paper at ICLR 2024

tasks. However, the aforementioned policy representation methods assume that the trajectory data
structure has Euclidean property with state linear transformation, and we notice that trajectory data
has an implicit hierarchical property, which induces tree-like state evolution.

We thus consider a different structure, and further find the evolution of any state of Markov decision
processes (MDPs) (Puterman, 2014) can be divided into multiple hierarchies. This conceptualiza-
tion resembles a tree-growing process, where the policy and environment dynamics determine the
possible branches. These hierarchical evolution relationships are nonlinear by the randomness of
the environment dynamic and the police, making hierarchy a natural basis to encode information
for MARL. In this work, we assume the agent policies are black boxes, that is, we can only access
them based on the interaction data with the environment, which we utilize to learn policy represen-
tations. Accordingly, learning effective policy representations should prioritize capturing precisely
hierarchically-structured features of the trajectories. Specifically, we leverage any state as the root
of the tree structure and construct trees, as shown in Figure 1. The growth space and direction of the
trees are determined by the action distribution of the policy and the environment randomness at each
time step. The trees formed by the trajectories of different policies exhibit distinct characteristics,
such as the width and depth of the left and right subtrees. Furthermore, the enclosing geometry of
the Poincaré ball is precisely exponential growth from the origin to the boundary, which enables
embedding the hierarchical tree-like trajectories with low distortion (Sarkar, 2011)).

In this paper, we model the trajectories of multi-agent interaction with each other and their envi-
ronment as the growth process of a tree and describe the tree-like trajectory data in a Poincaré ball.
We embed the any state of a trajectory in the central region of the Poincaré ball, and as the agent
interacts with the environment, the tree grows from the central region toward the edge of the ball.
Specifically, we propose a novel framework (P2R) to learn policy representations in Poincaré ball for
multi-agents. P2R captures the policy representations of Poincaré ball by a hyperbolic neural net-
work and constructs a contrast objective function that encourages embeddings of the same policy to
move closer together while embeddings of different policies to move apart.

Superiority of Poincaré Policy Representations. The experimental results demonstrate the effec-
tiveness of the P2R framework in both cooperative and competitive environments. These remarkable
findings emphasize the tremendous potential of Poincaré policy representations and illuminate the
path to enhancing policy optimization in complex multi-agent environments.

2 PRELIMINARIES

Reinforcement Learning The traditional formulation of the reinforcement learning (RL) prob-
lem revolves around the concept of a Markov Decision Process (MDP), defined by the tuple
M = (S,A, P,R, γ) where S and A stand for the state space and action space respectively, while
R(s, a) represents the reward function. The transition dynamics, denoted as P (s′|s, a), dictate how
the environment’s state evolves, and the discount factor γ ∈ [0, 1) quantifies the agent’s inclination
towards earlier rewards. Within this framework, we introduce a stochastic policy πθ that depends on
a parameter vector θ. The interaction between this policy and the environment leads to the creation
of a trajectory τ , which can be expressed as a sequence of state-action pairs: τ = {(st, at)}Tt=1, with
T representing the maximum time step in an episode. The agent’s ultimate goal is to learn a policy
that maximizes its expected discounted accumulative rewards over trajectories:

argmax
θ

Eτ∼πθ,P

[∞∑
t=0

γtR(st, at)

]
. (1)

It’s important to note that this formulation seamlessly extends to multi-agent scenarios.

Poincaré Geometry A hyperbolic space Hn represents an n-dimensional Riemannian manifold
with constant negative sectional curvature −c. Beltrami (1868b) established the equiconsistency of
hyperbolic and Euclidean geometry, introducing the renowned Poincaré ball model named after its
re-discoverer. The Poincaré ball (Bn, gB) is defined by the manifold Bn = {x ∈ Rn

∣∣ ∥x∥ < 1}
equipped with the Riemannian metric tensor gBx = λ2

xg
E , where λx := 2

1−∥x∥2 is the conformal

factor and gE denotes the Euclidean metric tensor.

2

Under review as a conference paper at ICLR 2024

The Poincaré ball model provides a geodesic distance for vector x, y ∈ Bn:

dB(x, y) = cosh−1

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (2)

Hyperbolic geometry does not like the Euclidean vector space which invokes the affine vector op-
erations such as the summation, multiplication, etc. To address this issue, we follow Ganea et al.
(2018); Shimizu et al. (2020), and utilize the framework of gyrovector spaces as introduced by Un-
gar (2022) to extend common vector operations into hyperbolic space. The curvature of Poincaré
ball is modified by c, Poincaré ball is then defined as Bn

c = {x ∈ Rn
∣∣ c∥x∥2 < 1, c ≥ 0}. The

corresponding conformal factor takes the form λc
x := 2

1−c∥x∥2 .

Möbius addition. Given a curvature −c of Bn
c and x, y ∈ Bn

c , the Möbius addition is defined as:

x⊕c y =
(1 + 2c⟨x, y⟩+ c∥y∥2)x+ (1 + c∥x∥2)y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2 . (3)

Exponential and logarithmic maps. The exponential map expcx is a function from tangent space
TxBn

c
∼= Rn to Bn

c , which provides a way of mapping vectors from the Euclidean space to hyperbolic
space. Given x, y, v ∈ Bn

c , the exponential map expcx is defined by:

expcx(v) := x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
. (4)

The reverse process of exponential map is the logarithmic map, which is defined as:

logcx(y) :=
2√
cλc

x

arctanh(
√
c∥ − x⊕c y∥)

−x⊕c y

∥ − x⊕c y∥
. (5)

Parallel transport. Let TxBn
c be the tangent space to vector x ∈ Bn

c , the parallel transport es-
tablishes a linear isometric mapping between two tangent spaces, that is, relocating a tangent vector
y ∈ T0Bn

c to TxBn
c via vector affine operations. This process includes mapping y into Bn

c through
the exponential map, then transitioning to the point x using Möbius addition ⊕c, and finally mapping
into TxBn

c via logarithmic operation. The parallel transport is given by the following isometry:

P c
0→x(y) = logcx(x⊕c exp

c
0(y)) =

λc
0

λc
x

y. (6)

Through parallel transport, we can establish a connection between two distinct tangent spaces.

3 POINCARÉ POLICY EMBEDDINGS

In this work, we assume that the agent policies are black boxes, that is, our access to the policies
is solely through interaction data with the environment. Drawing inspiration from prior research,
specifically (Grover et al., 2018) and (Papoudakis et al., 2021), we recognize that trajectories, com-
posed of state-action pairs, inherently convey the policy’s characteristics. Leveraging trajectories as
a means to acquire policy embeddings proves to be an effective strategy.

To formalize this, our objective is to learn policy embeddings for each agent, denoted as fΘ : Eα →
Bn, where Eα represents the space of episode trajectories τα associated with agent α during interac-
tions with other agents and the environment, n signifies the dimensionality of the embeddings, and
Θ denotes the function’s parameters. These trajectories exclusively consist of state-action pairs for
agent α. Specifically, Θ = {Θ1, ...,ΘL} refers to the parameters of the hyperbolic neural network,
with each layer Θl encompassing weight parameters ΘM

l and bias parameters Θb
l . Accordingly, for

MARL, we introduce the following auxiliary tasks for learning an agent’s policy representation:

• 1. Policy representation. The policy embeddings should possess the capability to capture
hierarchical information. We project the trajectories into hyperbolic space and employ
hyperbolic fully-connected (FC) neural networks for policy representation learning.

3

Under review as a conference paper at ICLR 2024

• 2. Policy discrimination. The obtained policy embeddings should be adept at distinguishing
an agent’s policy from those of other agents. To achieve policy discrimination, we leverage
distance metrics within the Poincaré ball. Embeddings acquired from different trajectories
but corresponding to the same policy should be proximate in the embedding space, while
embeddings for distinct policies should exhibit greater separation.

3.1 OBTAIN POLICY REPRESENTATIONS IN POINCARÉ BALL

We propose a method for obtaining policy embeddings within the Poincaré ball. To ensure minimal
distortion, we first project trajectories into the Poincaré ball, and subsequently, we use a hyperbolic
neural network to learn policy representations from the projected trajectories.

We suppose the episode trajectory space Eα = {τkα}Kk=1 of agent α comprising K trajectories.
Since trajectories are situated within Euclidean space, and we need to learn policy embeddings in a
hyperbolic space. To bridge the gap between Euclidean trajectories τkα with dimensionality m and
the hyperbolic space Hm, we employ the exponential map from the origin of the Poincaré ball to
project τkα in hyperbolic space. We denote the result of mapping τkα into the hyperbolic space as τ̂kα ,
and this procedure is formally defined as follows:

τ̂k
α = expc

0(τ
k
α) = tanh

(√
c∥τk

α∥
) τk

α√
c∥τk

α∥
. (7)

Subsequently, we employ hyperbolic neural networks to extract hierarchical relationships and other
essential features embedded within these trajectories. This approach ensures a high capacity to
capture complex structures and extracts tree-like properties within the hyperbolic space. Specifically,
we leverage the Möbius matrix-vector multiplication (Ganea et al., 2018) to define hyperbolic neural
networks. Considering the l layer, given the weight parameters ΘM

l ∈ Mn,m(R) : Rm → Rn is a
linear map, which we identify with its matrix representation, then ∀(τ̂kα) ∈ Bn

c , we have:

ΘM
l ⊗c τ̂

k
α = (1/

√
c) tanh

(
∥ΘM

l τ̂kα∥
∥τ̂kα∥

tanh−1(
√
c∥τ̂kα∥)

)
ΘM

l τ̂kα
∥ΘM

l τ̂kα∥
. (8)

Biases are introduced into the hyperbolic neural networks, and these bias translations of the Poincaré
ball are naturally achieved by moving along geodesics. We leverage the parallel transport to give
the Möbius translation of τ̂kα ∈ Bn

c by the l layer bias parameters Θb
l ∈ Bn

c ,

τ̂kα ⊕c Θ
b
α = expcτ̂k

α
(P c

0→τ̂k
α
(logc0(Θ

b
l))) = expcτ̂k

α

(
λc

0
λc
τ̂k
α

logc0(Θ
b
l)

)
. (9)

Finally, the unified form of the hyperbolic neural network encompasses multiple layers and inte-
grates Equation (7), Equation (8), and Equation (9). Mathematically, it can be expressed as:

fΘl(τkα) = φl(Θ
M
l ⊗c

(
expc0

(
τkα
))

⊕c Θ
b
l), (10)

where φl represents the pointwise non-linearity of the l-th layer. In Equation (10), the trajectory τkα
undergoes a series of operations. Initially, it is mapped into the Poincaré ball using the exponen-
tial map. Subsequently, it undergoes a transformation based on weight parameters represented as
ΘM

l . Next, it is further adjusted based on bias parameters denoted as Θb
l , and finally, a non-linear

transformation is applied through φl. These steps are applied in each layer of the hyperbolic neural
network, effectively enabling the network to capture hierarchical features of the trajectories.

3.2 CONSISTENT POLICY REPRESENTATIONS FOR EACH AGENT

Policy embeddings derived from distinct trajectories of the same policy must maintain consistency,
signifying the adherence to common policy characteristics, and should exhibit proximity within the
embedding space. To ensure the consistency among policy embeddings obtained from different tra-
jectories of the same policy, we compute the distance between policy embeddings using the distance
equation within the Poincaré ball, as defined in Equation (2). Subsequently, we define a consistency

4

Under review as a conference paper at ICLR 2024

objective function based on this distance measure:

Lcon

(
Θ
)
=

1

A

A∑
α=1

Ek ̸=k′

log

1 +
dB

(
fΘ(τkα), fΘ(τk

′

α)
)

ϵ

+ µ

(
log

1

1− ∥fΘ(τkα)∥

) ,

(11)
where 1 ≤ k, k′ ≤ K, A denotes the number of agents, ϵ serves as an adjustment parameter, and
µ is the regularization coefficient. Employing the logarithm effectively scales down the calculated
distances and norms within the policy embedding in the Poincaré ball, resulting in smoother data
without altering the fundamental nature of the data or its relationships. The term on the left side of
the plus sign is designed to minimize the Poincaré distance between sample points. The denominator
includes an adjustment parameter ϵ to amplify the distance between the two embeddings based on
different task data. The term on the right side of the plus sign aims to minimize the embedding point
within the bounds of the radius in the Poincaré ball. Placing the norm in the denominator ensures
that the result remains positive when taking the logarithm.

By minimizing the distance between embeddings obtained from different trajectories of the same
policy, we obtain clusters of distinct embeddings of the same policy within the embedding space.
This process accentuates the common characteristics of the policy.

3.3 DISCRIMINATIVE REPRESENTATIONS BETWEEN MULTIPLE AGENTS

Policies inherently exhibit diverse action distributions given the same state, leading to distinct char-
acteristics in their trajectories. Policy discrimination stems from the varying action preferences
exhibited by different policies, leading to distinctive characteristics in their respective trajectories
during interactions with both the environment and other agents. Hence, it becomes imperative for
policy embeddings to clearly portray these distinctions among different policies.

These distinctions naturally surface in the embedding space, necessitating that emebddings of dis-
similar policies possess well-defined boundaries. To fulfill this criterion, we take measures to
achieve that emebddings of distinct policies are significantly separated within the Poincaré ball.
Similarly, we employ the distance calculation formula within the Poincaré ball, as defined in Equa-
tion (2), to quantify the dissimilarity between policy embeddings generated from trajectories of
different agents. Based on this distance measure, we construct the discriminative objective function:

Ldis

(
Θ
)
=

1

A

A∑
α ̸=α′

Ek

log

1 +
dB

(
fΘ(τkα), fΘ(τkα′)

)
ϵ

 , (12)

where A and ϵ also denote the number of agents and an adjustment parameter, respectively. Within
Equation (12), the application of the logarithm operation and the incorporation of ϵ in the denom-
inator follow the identical rationale as delineated in Equation (11). Therefore, by maximizing the
distance between embeddings derived from distinct agents’ trajectories, we establish clear bound-
aries among embeddings of different policies.

3.4 ENSEMBLE CONSISTENT-DISCRIMINATIVE REPRESENTATIONS

The consistency objective achieves that policy embeddings derived from different trajectories of the
same agent exhibit clustering tendencies in the embedding space. Conversely, the discriminative
objective aims to maximize the separation between policy embeddings of different agents within the
embedding space. These two objectives complement each other, and we introduce an ensemble ap-
proach that integrates both of them. Specifically, to estimate parameters Θ for policy representation
function fΘ, we solve the optimization problem by the total objective function, which combines the
above Equation (11) and Equation (12):

Lens = Lcon + βLdis, (13)

where β is a trade-off hyperparameter that controls the relative weights of the consistent and dis-
criminative terms. We train policy representation function by optimizing Equation (13) via stochas-

5

Under review as a conference paper at ICLR 2024

tic Riemannian optimization methods RSGD (Bonnabel, 2013). The algorithm for the proposed P2R
method is presented in Appendix A.1.

4 EXPERIMENTS

4.1 MULTI-AGENT ENVIRONMENTS

We evaluate the performance of our method P2R in two multi-agent environments (one cooperative,
one competitive): Overcooked (Carroll et al., 2019), and Pommerman (Resnick et al., 2018). These
environments impose stringent demands on the sequencing of agent actions, exhibiting a pronounced
hierarchical structure in the state evolution. More details about the experiments and additional ex-
periments are presented in Appendix B.

Cooperative The Overcooked environment, as shown in Figure 2, is a simplified version of the
popular video game Overcooked (Ghost Town Games, 2016). Within this environment, two agents
assume the roles of chefs in a kitchen tasked with cooking and serving dishes. The kitchen contains
only three types of objects: onions (yellow), dishes (white), and a cooking pot (dark grey). The task
involves agents placing three onions in the pot, allowing them to cook for a duration of 20 timesteps,
transferring the resulting soup into a dish (white), and subsequently serving it (light grey), giving all
players a reward of 20. The primary objective is to deliver the soup as many times as possible within
the time limit. The agents are equipped with six distinct actions: moving up, moving down, moving
left, moving right, taking no action (noop), and ”interact,” which triggers specific actions based on
the tile the player is facing, e.g. placing an onion on a counter. A pivotal aspect of the challenges pre-
sented in the Overcooked environments is the necessity for agents to possess a keen understanding
of their partner’s policy characteristics and execute effective coordination accordingly.

Figure 2: Overcooked environment layouts. From left to right: Cramped Room confines the agents
to a tight space, increasing the likelihood of agent collisions. Asymmetric Advantages tests whether
agents can devise high-level strategies that capitalize on their individual strengths. In Coordination
Ring, agents must effectively coordinate their movements to traverse between the bottom left and
top right corners of the kitchen. Forced Coordination compels agents to formulate a comprehensive
joint strategy since neither player can independently serve a dish. Counter Circuit involves a non-
obvious coordination strategy, where onions are passed over the counter to the pot rather than being
carried around. Each layout is equipped with one or more onion dispensers and dish dispensers,
providing an unlimited supply of onions and dishes, respectively.

Pommerman The Pommerman environment draws its inspiration from the classic console game
Bomberman (W., 1983). In our experiments, we utilize the simulator configured for two agents
whose initial positions are randomized close to any of the 4 corners of the board, as de-
picted in Figure 3. At each time step, each agent has the option to choose from six pos-
sible actions: movement in any of the four directions, staying in place, or placing a bomb.

Figure 3: Pommerman en-
vironment with 8×8 board.

The environment consists of cells that can be passages, rigid walls (dark
brown cells), or wood (light brown cells), with maps being randomly
generated. Importantly, there is always a guaranteed path between any
two agents on the map. The objective of the task is to be the last agent
standing, earning a reward of 1 for victory, while tie games result in an
episodic reward of -1. When an agent places a bomb, it explodes after 10
time steps, producing flames that last for 2 time steps. These flames have
the ability to destroy wood and kill agents within their blast radius. The
destruction of wood can reveal either a passage or a power-up (yellow
circles). Power-ups fall into three categories: those that increase the
blast radius of bombs, those that increase the number of bombs an agent

6

Under review as a conference paper at ICLR 2024

can place, and those that grant the ability to kick bombs. An episode of two-player Pommerman is
finished when an agent dies or when reaching 800 timesteps.

4.2 BASELINES

Local Information Agent Modelling (LIAM) (Papoudakis et al., 2021): This baseline presents
an encoder-decoder agent modeling method capable of extracting concise yet informative represen-
tations of modeled agents, relying solely on the local information available to the controlled agent
(including its local state observations and past actions). We include LIAM for two reasons: it em-
ploys a recurrent encoder for policy representation learning and leverages local state observations in
a manner akin to P2R. Through the results, we can compare the performance of memory modeling
based on recurrent encoders with tree-like hierarchical modeling in the Poincaré ball.

Agent Policy Representation Framework (AMF) (Grover et al., 2018): This baseline intro-
duced an inventive approach centered on imitation learning, where a supervised training scheme is
employed to map observations to actions, thereby capturing a point-based policy representation. In
contrast to P2R, which learns policy representations in the Poincaré ball, AMF operates in Euclidean
space. We can observe whether the policy embeddings within the Poincaré ball, as obtained by P2R,
result in better performance. All baselines are trained with PPO algorithm (Schulman et al., 2017).

Contrastive Agent Representation Learning (CARL): This baseline is inspired by (Papoudakis
et al., 2021) and is a non-reconstruction baseline based on contrastive learning (Oord et al., 2018).
CARL utilizes the trajectories of modeled agents during training but restricts execution to solely the
trajectories of the controlled agent. Further implementation details for this baseline can be found in
Appendix B.4. We included this baseline because the method is a non-reconstructive method that
embraces the concept of contrast and employs trajectory-based learning for policy representations.

4.3 EXPERIMENT RESULTS

Cooperative Figure 4 shows the mean episode rewards of all methods during training in the five
Overcooked environment layouts. These layouts necessitate specific sequences of actions from the
agents and display a state evolution resembling a hierarchical tree-like structure. Our experimental
results also validate the effectiveness of our P2R method in learning policy embeddings within the
Poincaré ball. It excels at extracting hierarchical information from agent trajectories, resulting in
more effective policy embeddings. Furthermore, these policy embeddings encapsulate a richer set
of information, which proves advantageous for the decision-making processes of agents.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0 0

2 0 0

Me
an

epi
sod

e r
ew

ard
s

I t e r a t i o n s

C r a m p e d R m .

(a) Cramped Rm.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0 0

2 0 0

Me
an

epi
sod

e r
ew

ard
s

I t e r a t i o n s

A s y m m . A d v .

(b) Asymm. Adv.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0 0

2 0 0

Me
an

epi
sod

e r
ew

ard
s

I t e r a t i o n s

C o o r d . R i n g

(c) Coord. Ring

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0 0

2 0 0

Me
an

epi
sod

e r
ew

ard
s

I t e r a t i o n s

F o r c e C o o r d .

(d) Force Coord.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0 0

Me
an

epi
sod

e r
ew

ard
s

I t e r a t i o n s

C o u n t e r C i r c .

(e) Counter Circ.

Figure 4: Average episode rewards on each layout of the Overcooked environment during training,
shaded regions indicate the standard deviation over five training seeds.

Cramped Room: In this layout, two agents are prone to collisions in the confined space. If agents
perceive their teammate’s behavioral characteristics, they will adjust their strategies based on their
teammate’s actions to minimize collisions while completing the task. As shown in Figure 4(a), P2R-
PPO typically results in one agent learning to complete the task faster in the initial approximately 100
iterations of the experiment while the other agent remains inactive, causing minimal interference.
The P2R policy embeddings quickly learn the characteristics of the teammate’s policy, and both
agents operate without interference from each other, resulting in high scores in the initial stages.
As the training process progresses, the previously inactive agent also attempts to complete the task,
leading to collisions in the confined space, reducing task efficiency. The P2R policy embeddings

7

Under review as a conference paper at ICLR 2024

provide behavioral features, such as action execution sequences, for both agents, encouraging faster
cooperation. In contrast, other baselines exhibit a more stable learning process, but even in the initial
stages, significant interference between the two agents occurs.

Asymmetric Advantages: In this layout, two agents need to learn how to allocate the use of the two
pots. If both agents only choose one pot, it leads to inefficient task completion. Therefore, the
policy embeddings need to include sufficient hierarchical action information, including the order in
which agents select pots, the frequency of pot usage, and time allocation, among others. As shown in
Figure 4(b), P2R-PPO learn policy embeddings in the Poincaré ball demonstrate better performance.

Coordination Ring: The training process in this layout is similar to that in the Cramped Room, as
depicted in Figure 4(c). Our P2R-PPO method learns policy embeddings that extract more informa-
tion about action hierarchy and action sequence relationships, enabling the agents to quickly learn
to avoid collisions and efficiently complete tasks.

Forced Coordination: In this layout, the right agent handles two pots and soup delivery while the
left agent is responsible for providing onions and plates, the essence of the challenge lies in the
coordination of action execution sequences between the two agents. Moreover, due to the limited
positions at the central interaction counter (only three positions), the left agent needs to provide the
corresponding raw materials based on the right agent’s soup delivery, and the right agent must adjust
the order of cooking and delivery based on the sequence of raw materials provided by the left agent.
As shown in Figure 4(d), P2R-PPO demonstrates better performance that enables the agents to learn
to cooperate more quickly. Furthermore, the agents even learn a form of “laziness” to some extent
during training. For a period of time, the left agent places multiple onions and plates on the counter,
and the right agent takes them one by one, causing both agents to constantly shuttle between their
respective corridors. However, the left agent eventually learns to place one onion or plate at a time
in the grid next to the pot, and the right agent learns to take raw materials only from the nearest grid.
This is because P2R’s policy embeddings effectively capture the hierarchical characteristics of the
behavior of the agent on the right side, and the agent on the left side has learned to “slack off” by
utilizing the information provided by the policy embeddings.

Counter Circuit: In this layout, the most efficient cooperative policy involves passing onions through
the central counter instead of both agents continuously circling the ring. As illustrated in Figure 4(e),
the two agents using our P2R policy embeddings learn each other’s action hierarchy characteristics,
significantly improving cooperation efficiency.

0 5 0 0 1 0 0 0
0 . 0

0 . 5

1 . 0

 P 2 R - P P O
 L I A M - P P O
 A M F - P P O
 C A R L - P P O
 P P O

Wi
n R

ate

I t e r a t i o n s

P o m m e r m a n

Figure 5: Average win rates of base-
line agents against naive PPO agents
across five training seeds in the Pom-
merman environment.

Competitive In Pommerman experiment, agents move to po-
sitions that could potentially eliminate their opponents by plac-
ing bombs and then quickly retreating. This results in repeated
action sequences that exhibit clear hierarchical action patterns,
and the evolution of states also demonstrates a tree-like hier-
archical structure. To test the effectiveness of policy embed-
dings, we combine the opponent’s embeddings with the cur-
rent state as the input for the agent. If the learned opponent’s
policy embeddings are effective, the agent, when making ac-
tion selections, will take into account the characteristics of the
opponent’s policy. If the opponent’s policy is ineffective, the
current agent cannot obtain information about the opponent,
which will directly reflect in the win rate results. We con-
ducted two sets of experiments: (1) comparing the win rates
of all baselines combined with PPO against the naive PPO al-
gorithm and (2) comparing the win rates between all baselines
(include naive PPO) after training for 1000 iterations, and all baselines are combined with PPO. In
terms of winning rates, the combination of the PPO algorithm with policy embeddings learned by
P2R achieved the highest winning rates in both sets of experiments. This demonstrates that learning
policy embeddings within the Poincaré ball is more effective at capturing hierarchical information.

The average win rates of baseline agents against naive PPO agents across five training seeds
are shown in Figure 5. In the initial stages of the training process, policies are busy ex-
ploring the environment and have not yet exhibited hierarchical state evolution characteristics.

8

Under review as a conference paper at ICLR 2024

P2R-PPO LIAM-PPO AMF-PPO CARL-PPO PPO

P2
R-

PP
O

LI
AM

-P
PO

AM
F-

PP
O

CA
RL

-P
PO

PP
O

0.51 0.68 0.74 0.81 0.87

0.31 0.5 0.52 0.6 0.8

0.25 0.47 0.49 0.56 0.72

0.18 0.39 0.32 0.5 0.69

0.12 0.19 0.27 0.3 0.5 0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Win rates of baseline agents
in adversarial matches after 1000 itera-
tions in the Pommerman environment.

Therefore, there is not enough information provided for P2R to
learn hierarchical characteristics. As the training process pro-
gresses, all baseline methods effectively learn the characteris-
tics of the opponent’s policy, with P2R method showing su-
perior performance. Moreover, agents in adversarial matches
tend to exhibit certain patterns, meaning that policies reveal
some habitual action sequences. When P2R method capture
such characteristics, it outperforms other methods when com-
bined with PPO, resulting in higher win rates. The win rates
between all baselines (include naive PPO) after training for
1000 iterations are shown in Figure 6. By comparing the
win rates between each baseline and P2R, we observe that
our P2R method achieves higher win rates (over 50%) against
other algorithms. In competitive environments where action
sequences exhibit strong hierarchical characteristics and state evolution resembles tree-like growth,
learning policy embeddings in the Poincaré space proves effective in capturing the hierarchical fea-
tures of policies, thereby enhancing the decision-making process.

4.4 EMBEDDING ANALYSIS

We qualitatively visualize the policy embeddings learned by P2R via HoroPCA (Chami et al., 2021).
As shown in Figure 7 for 10 test interaction episodes of 5 randomly selected agents in the initial cases
and after trained cases of the Forced Coordination of Overcooked and Pommerman, respectively.
The policy embedding visualizations of other environments are in Appendix B.2.

(a) Forced Coord. initial (b) Forced Coord. trained (c) Pommerman initial (d) Pommerman trained

Figure 7: Policy embeddings obtained by P2R for 10 test episodes involving 5 randomly selected
agents are visualized using HoroPCA for two different environments. Each color represents a dis-
tinct agent policy. Intuitively, policy embeddings of the same agent tend to cluster together in space,
while those of different agents are dispersed, indicating that P2R effectively captures diverse policy
features and exhibits strong discriminative power in policy representation.

The initial policy embeddings in the Poincaré ball are scattered within a certain region. After train-
ing, the P2R method distinctly separates the ten policy for each of the five agents into five clusters.

5 CONCLUSION

In conclusion, this paper presents a novel framework for multi-agent reinforcement learning
(MARL) based on a new geometric policy representation perspective from the non-Euclidean hy-
perbolic projection. By leveraging the hierarchical structure inherent in Markov decision processes
(MDPs), our approach projects the trajectories of multiple agents onto a Poincaré ball, enabling
policy representations that are both efficient and effective. Our key innovation lies in modeling the
policy representation as a tree-growing process from the centric Poincaré ball to its boundary. To
enhance this hierarchical property for further geometric generalization, we design a contrastive ob-
jective function that encourages consistent policies to be embedded closer together in the hyperbolic
space, while pushing inconsistent policies farther apart. This leads to representing those policies
with low distortion using only a few dimensions, demonstrating the geometric expression of hyper-
bolic embeddings in MARL. Experimental results showcase the superiority of our P2R framework
over state-of-the-art methods across cooperative and competitive games. These findings emphasize
the potential of non-Euclidean policy representations for improving the performance and scalability
of control policies in complex multi-agent environments.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Eugenio Beltrami. Teoria fondamentale degli spazii di curvatura costante. Annali di Matematica
Pura ed Applicata (1867-1897), 2:232–255, 1868a.

Eugenio Beltrami. Teoria fondamentale degli spazii di curvatura costante memoria. F. Zanetti,
1868b.

Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of scale-
free graphs in the hyperbolic plane. IEEE/ACM transactions on Networking, 26(2):920–933,
2018.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Edoardo Cetin, Benjamin Chamberlain, Michael Bronstein, and Jonathan J Hunt. Hyperbolic deep
reinforcement learning. arXiv preprint arXiv:2210.01542, 2022.

Ines Chami, Albert Gu, Dat P Nguyen, and Christopher Ré. Horopca: Hyperbolic dimensionality
reduction via horospherical projections. In International Conference on Machine Learning, pp.
1419–1429. PMLR, 2021.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
self-supervised models are strong semi-supervised learners. In Advances in Neural Information
Processing Systems, 2020a.

Yang Chen, Jiamou Liu, He Zhao, and Hongyi Su. Social structure emergence: A multi-agent rein-
forcement learning framework for relationship building. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1807–1809, 2020b.

Andrej Cvetkovski and Mark Crovella. Hyperbolic embedding and routing for dynamic graphs. In
IEEE INFOCOM 2009, pp. 1647–1655. IEEE, 2009.

Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai, and George Dahl. Em-
bedding text in hyperbolic spaces. In Proceedings of the Twelfth Workshop on Graph-Based
Methods for Natural Language Processing (TextGraphs-12), pp. 59–69, 2018.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018.

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.
In International Conference on Machine Learning, pp. 3556–3565. PMLR, 2020.

Ghost Town Games. Overcooked, 2016. https://store.steampowered.com/app/
448510/Overcooked/.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International conference on machine learning,
pp. 1802–1811. PMLR, 2018.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning, pp. 1804–1813. PMLR,
2016.

10

https://store.steampowered.com/app/448510/Overcooked/
https://store.steampowered.com/app/448510/Overcooked/

Under review as a conference paper at ICLR 2024

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

Robert Kleinberg. Geographic routing using hyperbolic space. In IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications, pp. 1902–1909. IEEE, 2007.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Dmitri Krioukov, Fragkiskos Papadopoulos, Amin Vahdat, and Marián Boguná. Curvature and
temperature of complex networks. Physical Review E, 80(3):035101, 2009.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems, 30, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial ob-
servability for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:19210–19222, 2021.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Dawei Qiu, Jianhong Wang, Junkai Wang, and Goran Strbac. Multi-agent reinforcement learning for
automated peer-to-peer energy trading in double-side auction market. In IJCAI, pp. 2913–2920,
2021.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International conference on machine learning, pp. 4218–
4227. PMLR, 2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In International conference on machine learning, pp. 4257–
4266. PMLR, 2018.

Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian Togelius, Kyunghyun
Cho, and Joan Bruna. Pommerman: A multi-agent playground. In CEUR Workshop Proceedings,
volume 2282. CEUR-WS, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
symposium on graph drawing, pp. 355–366. Springer, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Yuval Shavitt and Tomer Tankel. Hyperbolic embedding of internet graph for distance estimation
and overlay construction. IEEE/ACM Transactions on Networking, 16(1):25–36, 2008.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv
preprint arXiv:2006.08210, 2020.

11

Under review as a conference paper at ICLR 2024

Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zambaldi, Neil C Rabinowitz,
Thore Graepel, Matthew Botvinick, and Peter W Battaglia. Relational forward models for multi-
agent learning. arXiv preprint arXiv:1809.11044, 2018.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincar\’e glove: Hyperbolic word
embeddings. arXiv preprint arXiv:1810.06546, 2018.

Abraham Ungar. A gyrovector space approach to hyperbolic geometry. Springer Nature, 2022.

Abraham A Ungar. Hyperbolic trigonometry and its application in the poincaré ball model of hy-
perbolic geometry. Computers & Mathematics with Applications, 41(1-2):135–147, 2001.

Abraham Albert Ungar. Analytic hyperbolic geometry and Albert Einstein’s special theory of rela-
tivity. World Scientific, 2008.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

W. Bomberman, 1983. https://en.wikipedia.org/wiki/Bomberman.

Jörg A Walter. H-mds: a new approach for interactive visualization with multidimensional scaling
in the hyperbolic space. Information systems, 29(4):273–292, 2004.

Tao Yu and Christopher M De Sa. Numerically accurate hyperbolic embeddings using tiling-based
models. Advances in Neural Information Processing Systems, 32, 2019.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
bayesian reinforcement learning via meta-learning. arXiv preprint arXiv:2101.03864, 2021.

12

https: //en.wikipedia.org/wiki/Bomberman

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ALGORITHM

Algorithm 1 P2R
Require: number of policies A, batch size H for each policy, max iteration Q, period to train policy
representation module U .
Initialize: A policies {πα}Aα=1, parameters of policy representation module: Θ, environment
Env , policy experience replay buffer {D1, · · · , DA}, representation experience replay buffer
{B1, · · · , BA}, representation buffer F , policy embeddings {π̂1, · · · , π̂α, · · · , π̂A}.

1: while q < Q do
2: Reset the environment Env

3: for α = 1, 2, · · · ,A policies do
4: Get teammate’s (or opponent’s) policy embedding π̂α′ for πα via Equation (10).
5: for each episode running time step t do
6: Get state sαt from environment Env for policy πα.
7: Sample action aαt from policy πα(a

α
t |sαt , π̂α′).

8: Apply the action aαt to the environment.
9: Get next state sαt+1 and the reward rαt .

10: Store the transition (sαt , a
α
t , r

α
t , s

α
t+1) into policy experience replay buffer Dα.

11: Store the transition (sαt , a
α
t , r

α
t , s

α
t+1) into representation experience replay buffer Bα.

12: if environment E done then
13: Continue
14: end if
15: end for
16: if size of replay buffer Dα greater than batch size H then
17: Update policies πα with policy objective function.
18: Clear policy experience replay buffer Bα.
19: Continue
20: end if
21: end for
22: if q mod U == 0 then
23: for α = 1, 2, · · · ,A policies do
24: for k = 1, 2, ...,K trajectories in replay buffer Dα do
25: Compute the policy embeddings {π̂k

α}
A,K
α=1,k=1 via Equation (10).

26: Store the policy embeddings {π̂k
α}

A,K
α=1,k=1 into representation buffer F .

27: end for
28: Clear policy experience replay buffer Bα.
29: end for
30: Compute Lens via Equation (13) with the policy embeddings in representation buffer F .
31: Update Θ for policy representation module.
32: Clear representation buffer F .
33: end if
34: end while

The pseudocode for our P2R method is presented in Algorithm 1. In the initial phase, we start
with several policies A and define parameters for the policy representation module. We also set up
environment memory buffers to store experiences for both policies and representations and initial
policy embeddings. During the training loop, We iterate through training steps until we reach a
specified maximum Q. For each policy, we interact with the environment to gather experiences. At
each step, the policy selects an action based on its current state and its own policy representation.
These experiences are stored in a replay buffer. If the buffer size exceeds a certain threshold (batch
size), we update the policy to improve its performance. For every U iteration, we focus on improving
the policy representations. Specifically, we compute and store the policy embeddings for each policy
using the experiences. Then, we calculate a total loss based on these embeddings. This loss guides us

13

Under review as a conference paper at ICLR 2024

in updating the policy representation module parameters to create better embeddings. We continue
this loop until we have completed the maximum number of iterations Q.

The policy representation module updates the interval U , which is variable and adaptive. Initially,
the interval U is kept short because policy changes are frequent at the outset of training, necessi-
tating frequent updates. As the algorithm progresses and policies become more stable, the update
interval can be extended. Since policy characteristics evolve during the iterative training process,
it is essential to train using the most recent data. To achieve this, we clear the representation ex-
perience replay buffer upon completing each policy representation training iteration. This ensures
that the training of policy representations always utilizes the most up-to-date data collected from the
evolving policies.

A.2 REINFORCEMENT LEARNING TRAINING

The Poincaré policy embedding π̂k
α of agent α can be used to condition the RL optimized policy.

Consider the augmented space Saug = S × Π̂, where S is the original observation space of the
controlled agent in the P2R-PPO, and Π̂ is the representation space about the agent’s policies. The
advantage of learning the policy on Saug compared to S is that the policy can specialize for different
π̂ ∈ Π̂. The input to the actor and critic is the local observation and the generated policy embedding.
We do not back-propagate the gradient from the actor-critic loss to the parameters of the policy rep-
resentation module. We use different learning rates for optimizing the parameters of the networks of
RL and the policy representation module. We empirically observed that P2R exhibits high stability
during learning, allowing us to use a larger learning rate compared to RL. Based on the general re-
inforcement learning objective Equation (1), we use the policy embeddings as the policy condition
to optimal policy for agent α:

argmax
θ

Eτ∼πθ,P

[∞∑
t=0

γtR((st, π̂α′), at)

]
, (14)

where π̂α′ denotes the policy embedding of agent α′, which could be the teammate’s policy em-
beddings in the cooperative environments and also could be the opponent’s policy embeddings (if
available) in the competitive environments.

In our experiments, we optimized the policy of the controlled agent using Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), however, other reinforcement learning algorithms could be
used in its place.

A.3 RELATED WORK

Policy representation of MARL Learning policy representations is crucial to understanding the
emergence of complex phenomena of agents in multi-agent reinforcement learning. A generative
method is proposed in (Grover et al., 2018), which proposed an innovative approach that relies on
imitation learning where they train a mapping from observations to actions in a supervised manner
to capture a point-based policy representation. Two meta-learning methods are proposed in (Rusu
et al., 2018; Ghosh & Bellemare, 2020), and they both regard the latent generative representation
of learning model parameters as the policy representation, and the method in (Ghosh & Bellemare,
2020) shows more stable performance. (Tacchetti et al., 2018) proposed relational forward models
to model agents using graph neural networks. (Zintgraf et al., 2021) uses a VAE for agent modeling
for fully-observable tasks. (Rabinowitz et al., 2018) proposed the Theory of mind Network (Tom-
Net), which learns embedding-based representations of modeled agents for meta-learning. (Cetin
et al., 2022) show that performance improvements of RL algorithms correlate with the increasing
hyperbolicity of the discrete space spanned by their latent representations and also validates the
importance of appropriately encoding hierarchical information.

Hyperbolic representation Hyperbolic geometry, as introduced by Beltrami (Beltrami, 1868a)
and further developed by Cannon (Cannon et al., 1997), offers a compelling framework for mod-
eling hierarchically-structured features and capturing non-linear relationships, exemplified by the
Poincaré ball. Hyperbolic space has found application in various embedding tasks (Kleinberg, 2007;
Walter, 2004; Shavitt & Tankel, 2008; Krioukov et al., 2009; Cvetkovski & Crovella, 2009; Krioukov

14

Under review as a conference paper at ICLR 2024

et al., 2010; Bläsius et al., 2018). Building upon this foundation, Nickel et al. (Nickel & Kiela,
2017) proposed learning Poincaré embeddings for symbolic data, emphasizing latent hierarchical
structures. Dhingra et al. (Dhingra et al., 2018) extended these ideas to text and sentence embed-
ding using the Poincaré model, eliminating the need for a projection step through re-parametrization.
Tifrea et al. (Tifrea et al., 2018) innovatively embedded words within a Cartesian product of hyper-
bolic spaces, drawing theoretical connections to Gaussian word embeddings and Fisher geometry.
Addressing numerical instability concerns, Yu et al. (Yu & De Sa, 2019) developed a method capable
of efficiently representing any point with a small, fixed bounded error within hyperbolic networks.

B ADDITIONAL EXPERIMENTS

B.1 ABLATION STUDY

B.1.1 ABLATE MODULE

To evaluate the contributions of the key modules of the P2R algorithm to its overall performance, we
conducted the following ablation study. We systematically removed the consistent policy represen-
tation module and the discriminative representation module separately from the method. We then
compared the performance differences between the modified methods and the complete method to
assess the contributions of these two modules to the method’s performance.

We conducted experiments in both the Overcooked environment with its five layouts and the Pom-
merman environment. In Overcooked, we compared the cooperation scores of the algorithms with
each module removed after 650 algorithm iterations and updates. In Pommerman, we compared the
adversarial win rates of the algorithms with each module removed after 1000 algorithm iterations
and updates.

0

5 0

1 0 0

1 5 0

2 0 0

C r a m p e d R m .

P P O - E N S P P O - C O N P P O - D I S
(a) Cramped Rm.

0

5 0

1 0 0

1 5 0

2 0 0
A s y m m . A d v .

P P O - E N S P P O - C O N P P O - D I S
(b) Asymm. Adv.

0

5 0

1 0 0

1 5 0

2 0 0

C o o r d . R i n g

P P O - E N S P P O - C O N P P O - D I S
(c) Coord. Ring

0

5 0

1 0 0

1 5 0

F o r c e d C o o r d .

P P O - E N S P P O - C O N P P O - D I S
(d) Forced Coord.

0

5 0

1 0 0

1 5 0

C o u n t e r C i r c .

P P O - E N S P P O - C O N P P O - D I S
(e) Counter Circ.

Figure 8: Ablation Study results of the five Overcooked environment layouts.

The experimental results are shown in Figure 8. In our ablation study, we still used the PPO al-
gorithm as the policy training algorithm, meaning that all the modified algorithms after removing
specific modules were trained in combination with the PPO algorithm. PPO-CON represents the
method where the discriminative representation module is removed, but the consistent policy rep-

15

Under review as a conference paper at ICLR 2024

resentation module is retained. PPO-DIS, on the other hand, represents the method where the con-
sistent representation module is removed, but the discriminative policy representation module is
retained. PPO-ENS represents the complete P2R method combined with PPO.

In all of the experimental environments, the PPO-ENS method achieved the best results, indicating
that the consistent policy representation module and the discriminative policy representation module
are indeed complementary, and their combined use yields the best performance.

However, there is a slight variation in performance. In the Asymmetric Advantages layout (Figure
8(b)), Coordination Ring layout (Figure 8(c)), and Forced Coordination layout Figure (8(d)), the
PPO-CON method, which eliminates the discriminative policy representation module, performed
relatively well. On the other hand, in the Cramped Room layout (Figure 8(a)) and Counter Circuit
layout (Figure 8(e)), the PPO-DIS method, which eliminates the consistent policy representation
module, performed better. Upon analyzing these differences, we found that the effectiveness of the
modules depends on the flexibility of policies. In environments where policies have more room
for diverse strategies, retaining the discriminative policy representation module (PPO-DIS) is more
effective, highlighting its greater role in such scenarios. Conversely, in environments where policy
flexibility is limited and diverse strategies are difficult to generate, retaining the consistent policy
representation module (PPO-CON) is more effective, indicating its greater impact in such environ-
ments. Additionally, these experimental results align closely with the results of policy embedding
visualization B.2.

PPO PPO-CON AMF-DIS PPO-ENS

PP
O

PP
O-

CO
N

PP
O-

DI
S

PP
O-

EN
S

0.49 0.4 0.31 0.12

0.59 0.51 0.38 0.33

0.68 0.61 0.49 0.39

0.87 0.66 0.6 0.5 0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 9: PPO-ENS, PPO-DIS, PPO-CON, and PPO win rates in adversarial matches after 1000
iterations in the Pommerman environment.

In the Pommerman environment, the mutual win rates among the algorithms are depicted in Figure ,
the PPO-ENS algorithm achieved higher win rates compared to both PPO-CON and PPO-DIS. This
finding similarly demonstrates that in competitive environments, the consistent policy representation
module and discriminative policy representation module complement each other. Additionally, in
the Pommerman environment, we observed that the performance of PPO-DIS was superior to PPO-
CON. This is because the Pommerman environment falls into the category of environments with a
large policy space, meaning it can easily generate a variety of distinct styles of policies. Thus, the
discriminative policy representation module plays a more significant role, aligning with the results
observed in the Cramped Room layout and Counter Circuit layout of the Overcooked environment.

B.1.2 EMBEDDING ANALYSIS

To evaluate the robustness of the policy embeddings learned by P2R, we compute multiple embed-
dings for each policy based on different episodes of interaction at test time. Inspired by (Grover et al.,
2018), our evaluation metric is based on the intra- and inter-cluster geodesic distance in Poincaré
ball between embeddings. The geodesic distance in Poincaré ball is defined in Equation (2). The
intra-cluster geodesic distance for an agent is the average pairwise distance between its embeddings
computed on the set of test interaction episodes involving the agent. Similarly, the inter-cluster

16

Under review as a conference paper at ICLR 2024

geodesic distance is the average pairwise distance between the embeddings of an agent with those
of other agents. Let Tα = {τkα}

Ki

k=1 denote the set of test interactions involving agent α. We define
the intra-inter cluster ratio in Poincaré ball (CRPB) based on geodesic distance as:

CRPB =

1
A
∑A

α=1
1

K2
i

∑Ki

k ̸=k′ dB(τ
k
α , τ

k′

α)

1
A(A−1)

n∑
α̸=α′

1
Ki

Ki∑
k=1

dB(τkα , τ
k
α′)

, (15)

where A is the number of policies. CRPB measures the ratio between the average pairwise dis-
tances within clusters of trajectories and the average pairwise distances between different clusters of
trajectories.

The numerator calculates the average pairwise distances within clusters. For each policy (indexed by
α), it computes the average pairwise geodesic distances between the trajectories within that policy’s
set of test episode trajectories. These distances are calculated between all pairs of trajectories within
the same policy. The numerator then takes the average of these average distances across all policies.

The denominator calculates the average pairwise distances between different clusters. It considers
all possible pairs of policies (indexed by α and α′s) where α′ is the other agent except agent α. For
each pair of policies, it computes the average pairwise geodesic distances between the trajectories
of policy α (indexed by k) and the trajectories of policy α′ (also indexed by k). The denominator
then takes the average of these average distances across all possible pairs of policies.

In simpler terms, CRPB quantifies how closely related the trajectories within each policy (intra-
cluster) are compared to the distances between different policies (inter-cluster) in the Poincaré ball.
A higher CRPB value indicates that trajectories within the same policy are more similar to each
other than they are to trajectories from other policies, suggesting that the policy embeddings in the
Poincaré ball effectively cluster similar policies together. A ratio less than 1 suggests that there is a
signal that identifies the agent, and the signal is stronger for lower ratios.

Table 1: Intra-inter clustering ratios in Poincaré ball (CRPB) for Overcooked environment five lay-
outs and Pommerman environment.

P2R-CON P2R-DIS P2R-ENS
Cramped Rm. 0.72 0.58 0.22
Asymm. Adv. 0.82 0.63 0.43
Coord. Ring 0.85 0.70 0.50
Forced Coord. 0.79 0.66 0.32
Counter Circ. 0.76 0.54 0.29

Pommerman 0.75 0.52 0.25

The intra-inter clustering ratios are reported in Table 1. The experimental results demonstrate that
PPO-ENS has the lowest CRPB values in all environments, indicating its strong ability to identify
the agent, which is consistent with the results and conclusions in Section B.1.1. Moreover, when
comparing the CRPB values of PPO-ENS in various environments, it is lowest in the Cramped Room
layout and highest in the Coordination Ring layout. This result is also consistent with the findings
from Section 4.4, where the policy embeddings in the Cramped Room layout exhibit excellent clus-
tering with clear boundaries, making it easier to identify the agent. Conversely, in the Coordination
Ring layout, the boundaries of policy embeddings are somewhat blurred, and even some outliers
appear.

P2R-DIS has lower CRPB values in all environments compared to P2R-CON. This is because
the calculation Equation (15) determines that the discriminative representation module’s effect is
slightly stronger than the consistent representation module. During training, different policy em-
beddings of the same agent reflect the characteristics of that policy, leading to a natural clustering
effect in space. Whether there is a discriminative representation module determines the dispersion

17

Under review as a conference paper at ICLR 2024

of policy embeddings in space. Additionally, in this formula, as long as the denominator is large
enough, it can to some extent limit the value of CRPB.

B.2 EMBEDDING VISUALIZATION

In Section 4.4, we chose two environments, Forced Coordination of the Overcooked from the co-
operative category and Pommerman from the competitive category, to showcase policy embedding
visualizations. In this section, we provide a comprehensive display of the visualization results for
the five layouts in the Overcooked and the Pommerman environment (which includes the results
presented in Section 4.4).

(a) Cramped Rm. initial (b) Cramped Rm. trained (c) Asymm. Adv. initial (d) Asymm. Adv. trained

(e) Coord. Ring initial (f) Coord. Ring trained (g) Counter Circ. initial (h) Counter Circ. trained

(i) Forced Coord. initial (j) Forced Coord. trained (k) Pommerman initial (l) Pommerman trained

Figure 10: Policy embeddings obtained by P2R for 10 test episodes involving 5 randomly selected
agents are visualized using HoroPCA for five Overcooked layouts and Pommerman environment.
Each color represents a distinct agent policy. Intuitively, policy embeddings of the same agent tend to
cluster together in space, while those of different agents are dispersed, indicating that P2R effectively
captures diverse policy features and exhibits strong discriminative power in policy representation.

The visualizations of the six initial policy embeddings and the visualizations of the policy embed-
dings after training in the six environments are shown in Figure 10. We can observe that, overall,
policy embeddings learned under the P2R algorithm tend to exhibit good dispersion in the Poincaré
space. They effectively cluster the policy embeddings of the current policy within a specific region in
the space. Specifically, in the Cramped Room layout (Figure 10(b)), Counter Circuit layout (Figure
10(h)), and Pommerman environment (Figure 10(l)), the clusters of policy embeddings are notably
dispersed, and their boundaries are more distinct. These results indicate that in environments where
diverse policy features are easily generated, particularly in those with a highly pronounced hierar-
chical structure and deeper, broader state evolution hierarchies, the policy embeddings learned by
the P2R algorithm tend to form stronger clusters in the space. Conversely, if the environment lacks

18

Under review as a conference paper at ICLR 2024

such strong hierarchical characteristics, the performance of P2R may weaken, resulting in slightly
weaker clustering in the space and occasional outliers among the policy embeddings.

B.3 EXPERIMENT DETAILS

For all the baselines, we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017) to
train 10 agents with 5 different seeds in each environment, that is, 2 agents use one seed. P2R,
AMF, and CARL, which are utilized for learning policy representations, are aligned with the iterative
nature of policy optimization. Given that each iteration of policy updating may introduce alterations
in its characteristics, we integrate policy representation learning alongside these iterations. To be
specific, we acquire policy embeddings at periodic intervals during the course of policy updating
under the assumption that within these intervals, the policy’s characteristics remain relatively stable.
Subsequently, these learned policy embeddings can be employed to condition the reinforcement
learning-optimized policy.

To elaborate, at each time step when making decisions, the policy combines the current state with the
corresponding policy representation, creating an input for the policy network. The LIAM method
generates latent variables denoted as z at each time step, augmented with the observation data of
the controlled agent, which can also serve as conditioning factors for the reinforcement learning
optimized policy.

B.4 CONTRASTIVE AGENT REPRESENTATION LEARNING

In this section, we introduce the Contrastive Agent Representation Learning (CARL) algorithm,
which is a baseline algorithm in this work, mentioned in Section 4.2, and the implementation is
similar to (Papoudakis et al., 2021).

CARL employs an approach to extract policy embeddings from agent trajectories within the envi-
ronment, and it does so without relying on reconstruction. Instead, it leverages local information
available to controlled agents, such as their current state and previous actions. During training,
CARL has access to the trajectories of all agents in the environment. Still, during execution, it only
relies on locally available trajectories.

To extract these policy embeddings, CARL employs a self-supervised learning framework, drawing
from recent advancements in contrastive learning (Oord et al., 2018; He et al., 2020; Chen et al.,
2020a). Let’s consider a scenario with A agents and a batch of K global episodic trajectories
denoted as {τkglo}Kk=1. Each global trajectory consists of the trajectory of the controlled agent α and
the trajectories of all other agents α′, given by τkglo = {τkα , τkα′}.

Positive pairs are defined within each episode k in the batch between the controlled agent’s trajectory
and another agent’s trajectory:

pos = {τkα , τkα′} (for all α ̸= α′ in the batch),

neg = {τkα , τk
′

α } (for all k ̸= k′ in the batch).
(16)

Two encoders are assumed to exist within CARL: a recurrent encoder that sequentially processes
the controlled agent’s trajectories fw : τα → Πα, generating the policy embedding π̂α, and another
recurrent encoder that processes the trajectories of other agents fu : τα′ → Πα′ , producing the
policy embeddings π̂′

α, w and u are the parameters of the two recurrent encoder, respectively. The
policy embedding π̂α is utilized as input for both the actor and critic components of the Proximal
Policy Optimization (PPO) algorithm.

During training, given a batch of episode trajectories, CARL constructs positive and negative pairs as
defined in Equation (16). It then minimizes the InfoNCE loss (Oord et al., 2018), which encourages
positive pairs to be close and negative pairs to be distant in the embedding space:

LCARL = −
A∑

α̸=α′

log
exp{cos(π̂k

α, π̂
k
α′)/κ}∑K

k ̸=k′ exp{cos(π̂k
α, π̂

k′
α)/κ}

, (17)

where cos represents the cosine similarity, and κ controls the temperature of the softmax function,
influencing the contrastive loss.

19

Under review as a conference paper at ICLR 2024

C HYPERBOLIC GEOMETRY

C.0.1 GEODESICS

In the context of the Poincaré ball model, geodesics are the shortest paths or curves between two
points within hyperbolic space, as shown in Figure C.0.1. The Poincaré ball is a representation of
hyperbolic geometry, which is characterized by its intrinsic curvature and differs from Euclidean
geometry, where space is flat.

Figure 11: Geodesics (the blue line) on the Poincaré ball model and the shortest curve between two
points, analogous to a straight line in the Euclidean space.

In hyperbolic geometry, space is negatively curved, which means it curves away from itself, creating
a non-Euclidean geometry. This curvature is in direct contrast to Euclidean space, which is flat (zero
curvature). The Poincaré ball is one of several models used to represent hyperbolic space. In this
model, the entire hyperbolic space is mapped within the interior of a unit ball (i.e., a ball with a
radius of 1). The boundary of the ball represents infinity in hyperbolic space.

Geodesics in the Poincaré ball model are the shortest paths or curves between two points within the
unit ball, and the geodesic that passes through the center of the Poincaré ball between two points
is the orthogonal bisector of the chord connecting those points. Unlike Euclidean geometry, where
straight lines are the shortest paths, geodesics in hyperbolic geometry are curved and can be thought
of as the most efficient routes between points within the curved space. Geodesics in hyperbolic
space curve inwards towards the center of the Poincaré ball. Given two points within the unit ball,
there is always one unique geodesic connecting them.

Geodesics in the Poincaré ball model are essential in various fields, including mathematics, physics,
and computer science. They are used to study hyperbolic geometry, model complex networks, and
capture hierarchical relationships in data and machine learning.

C.0.2 GYROVECTOR SPACES

Gyrovector spaces are mathematical structures used in hyperbolic geometry to extend vector-like
operations to spaces with constant negative curvature, such as hyperbolic space (Ungar, 2008; 2001;
2022). They are a fundamental concept within the framework of non-Euclidean geometry and pro-
vide a way to perform vector-like operations in these curved spaces.

Hyperbolic geometry, also known as Lobachevskian geometry, is a non-Euclidean geometry in
which the curvature of space is constant and negative. Unlike Euclidean geometry, where paral-
lel lines never intersect, hyperbolic geometry allows multiple parallels through a single point and
exhibits various properties distinct from Euclidean space. In Euclidean geometry, vectors repre-
sent quantities that have both magnitude and direction. Gyrovector spaces aim to provide a similar
framework for working with quantities in hyperbolic space. However, due to the curvature of this
space, the behavior of vectors and vector-like entities differs from what we observe in Euclidean
geometry.

20

Under review as a conference paper at ICLR 2024

A gyrovector space is based on the concept of a gyrogroup. A gyrogroup is a set equipped with
a binary operation, analogous to addition in vector spaces. The operation in gyrogroups is often
referred to as gyroaddition. Gyroaddition combines two elements of the gyrogroup to produce a
result that retains the properties of a gyrovector. A gyrovector space is a vector space defined within
the context of hyperbolic geometry. It consists of gyrovectors as its elements and gyroaddition as the
binary operation. Gyrovector spaces obey the rules of vector spaces, such as closure, associativity,
and the presence of additive and multiplicative identities.

21

	Introduction
	Preliminaries
	Poincaré Policy Embeddings
	Obtain policy representations in Poincaré ball
	Consistent policy representations for each agent
	Discriminative representations between multiple agents
	Ensemble consistent-discriminative representations

	Experiments
	Multi-Agent Environments
	Baselines
	Experiment Results
	Embedding Analysis

	Conclusion
	Appendix
	Algorithm
	Reinforcement Learning Training
	Related Work

	Additional Experiments
	Ablation study
	Ablate Module
	Embedding Analysis

	Embedding Visualization
	Experiment Details
	Contrastive Agent Representation Learning

	Hyperbolic Geometry
	Geodesics
	Gyrovector spaces

