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ABSTRACT

Although deep neural networks (DNNs) achieve state-of-the-art accuracy on large-
scale and fine-grained prediction tasks, they are high capacity models and often
cannot be deployed on edge devices. As such, two distinct paradigms have emerged
in parallel: 1) edge device inference for low-level tasks, 2) cloud-based inference
for large-scale tasks. We propose a novel hybrid option, which marries these
extremes and seeks to bring the latency and computational cost benefits of edge
device inference to tasks currently deployed in the cloud. Our proposed method
is an end-to-end approach, and involves architecting and training two networks in
tandem. The first network is a low-capacity network that can be deployed on an
edge device, whereas the second is a high-capacity network deployed in the cloud.
When the edge device encounters challenging inputs, these inputs are transmitted
and processed on the cloud. Empirically, on the ImageNet classification dataset,
our proposed method leads to substantial decrease in the number of floating point
operations (FLOPs) used compared to a well-designed high-capacity network,
while suffering no excess classification loss. A novel aspect of our method is that,
by allowing abstentions on a small fraction of examples (< 20%), we can increase
accuracy without increasing the edge device memory and FLOPs substantially (up
to 7% higher accuracy and 3X fewer FLOPs on ImageNet with 80% coverage),
relative to MobileNetV3 architectures.

1 INTRODUCTION

Deep Neural Networks (DNNs) achieve state-of-the-art (SOTA) performance on challenging tasks
such as image recognition (Tan & Le, 2019; Howard et al., 2019), language modelling (Devlin et al.,
2018), and machine translation (Wu et al., 2016b). High accuracy on such tasks often comes at
a high memory and compute cost, making DNN deployment on low resource edge hardware like
microcontroller units (MCUs) very challenging (Banbury et al., 2021; Fedorov et al., 2019; Lin et al.,
2020; Fedorov et al., 2020; Gural & Murmann, 2019).

Edge-Device and Cloud ML As such, two paradigms currently co-exist. Edge-device inference
utilizes lightweight architectures and focuses on low-level tasks such as smart messaging and face
recognition (Google LLC, 2021). In parallel, more complex and nuanced tasks are deployed in the
cloud, which is a term we use to refer to over-provisioned hardware platforms like a GPU server
(Alemi, 2016). The fundamental drawback of cloud ML, however, is the increased latency and energy
consumption arising from communication, which can be prohibitive for many applications. Indeed,
the meager cost, size, and power requirements of MCUs make them the platform of choice for a
large number of applications, so that MCU shipments outnumber GPU shipments by roughly 50 to 1
(Fedorov et al., 2019; Lin et al., 2020).

While methods like pruning (Molchanov et al., 2017; Han et al., 2015), quantization (Jacob et al.,
2018), knowledge distillation (Hinton et al., 2015), and adaptive computation (Bejnordi et al., 2019)
could be leveraged to reduce the size of cloud-based models, these strategies fundamentally limit
the resulting achievable accuracy due to the reduced model capacities (Fedorov et al., 2019; Lin
et al., 2020). For example, SOTA accuracy on ImageNet is 84.3% (Tan & Le, 2019) with 37B FLOPs;
whereas the best deployable model on an STM32F746 MCU under 5 frames per second constraint
achieves 51.1% accuracy with 12.8M FLOPs (Lin et al., 2020) .

Hybrid Edge-Cloud Inference. Motivated by these emerging trends, we propose a best-of-both
hybrid solution, which allows for deploying cloud-based AI tasks on edge devices like MCUs, while
lowering the average total latency (the sum of communication and computational latency).
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Figure 1: HYBRID MODEL. Cheap base (b)
and routing models (r) run on, e.g., a micro-
controller; Expensive global model (g) runs on,
e.g., a cloud server. r uses x and features of b
to decide if g is evaluated or not.

Our end-to-end hybrid approach involves architecting
and training three distinct networks in concert, indi-
vidually named ‘base’, ‘global’, and ‘routing’ (Fig. 1).
The base model is compact and designed for devices
with low-resource hardware constraints like latency and
memory usage. In contrast, the global model has a large
capacity and is deployed in the resource-rich cloud en-
vironment. Finally, the routing model, which is very
compact, is used to decide whether a query should be
communicated to the global model, or handled entirely
by the base model, thus enabling the two to work in
tandem to maximise performance while controlling us-
age of computational or communication resources (see
Fig. 3). Ideally, the global and base models are fine-
tuned to be most accurate on the queries routed specifically to them, while the routing model in turn
only issues queries to the global model when they are too hard to be processed by the base model.

Technical Contributions.
Training Methodology. Learning an efficient hybrid model requires us to solve the challenging
problem of discovering regions of ‘easy’ queries, where classification can reliably be performed by a
simple model. In addition, training is challenging since a choice of base and global model affects the
optimal routing, which cyclically affects the former. We propose an alternating-optimisation scheme
that can be modularly executed, and design an efficient proxy supervision for the router, which
together allow for simplified training. The result is a flexible scheme that can be used either to train
all three models or only a subset. The routing model is further designed with a flexible assignment
criterion that allows efficiently trading-off between a range of accuracy and resource usages, thus
yielding a variety of operating points with a single training round.

Figure 2: Base FLOP gains in the hybrid system
at different levels of accuracy w.r.t. a stand-alone
model, collated from Tables 1 and 3 (see Appendix
§B.5 for details); 3 in 10 examples routed to a
cloud model, a 70% reduction in communication
latency w.r.t. purely cloud-based service.

Neural Architecture Search (NAS). Hybrid design also
raises a novel architectural issue - while present DNN
architectures are aligned towards a single model that
performs end-to-end inference, a hybrid scheme may
require a coupled design for the base and global mod-
els to best exploit the available resources. To discover
efficient joint designs, we propose a NAS method that
utilises an efficient proxy score to quickly determine
fitness of a pair of base and global architectures, and
performs an evolutionary search to optimise the ac-
curacy at any given combined resource usage. Our
approach is flexible and can also be used to, e.g.,
adapt a base architecture to a given global model.

Empirical Validation. Proposed above is a novel
end-to-end methodology to design and train resource-
efficient hybrid architectures and models that can per-
form at SOTA accuracy whilst satisfying hardware
constraints. Extensive experimentation on the ImageNet dataset shows that the resulting scheme
pareto dominates methods that learn a single efficient architecture, demonstrating 2− 3.5% accuracy
gains at any FLOP count when compared to prior efficient architecture designs such as MobileNetV3
and OFA ( Fig. 3, 4). Further, in settings where the global device has much higher compute capacity
(hence negligible inference cost), we show that whilst processing 70% of queries at the base, our
design can match the accuracy of these designs with up to 4.5× improvement in base FLOPs (Fig. 2).

RELATED WORK

Efficient Architectures. Previous works have designed low complexity DNNs for mobile applica-
tions (Iandola et al., 2016; Gholami et al., 2018; Sandler et al., 2018; Howard et al., 2019) using
low-rank decomposition, separable convolutions, and hand-crafted feature blocks. Tan & Le (2019)
study the effect of width, depth, channels, and input resolution on DNN memory and FLOP costs. In
parallel, neural architectures searches under constraints such as FLOP (Liu et al., 2017; Zoph & Le,
2016; Dong & Yang, 2019; Elsken et al., 2019), latency (Cai et al., 2020), memory (Fedorov et al.,
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2019), etc have been carried out. These efforts are complementary to our hybrid scheme since we can
leverage these improved architectures as base models and achieve similar gains in performance.

Low Compute Transformations. Researchers have explored methods to obtain low-capacity models
from SOTA DNNs, including compression and pruning (Han et al., 2016), quantization (Wu et al.,
2016a), hashing (Chen et al., 2015), and knowledge distillation(Hinton et al., 2015). Since these
transformations are orthogonal to our proposal and can be leveraged post-hoc, we do not pursue these
techniques in order to simplify our exposition.

Adaptive Neural Networks. Han et al. (2021) present a comprehensive survey on designing dynamic
neural networks that budget more computational resources for harder examples. These include (a)
cascade-based early exit networks (Park et al., 2015; Bolukbasi et al., 2017; Nan & Saligrama, 2017;
Wang et al., 2018), where the constituent networks are independently designed and do not share
intermediate features; (b) early exit networks (Teerapittayanon et al., 2017; Dai et al., 2020; Li et al.,
2019) where classifiers are introduced at intermediate layers; and (c) multi-scale networks with early
exits (Huang et al., 2018; Yang et al., 2020), which are allowed to operate at different input resolution,
width or depth. Kang et al. (2017) splits network execution between device and cloud, resulting in
higher communication as the features require more storage than input. Further, a high-performing
model can neither be stored nor executed on a constrained MCU due to low RAM and Flash.

In the context of our problem, much of the focus in these works is on scaling-up capacity without a
proportional increase in inference time. Although our proposed hybrid approach bears resemblance
to these works, we are focused on the opposite scenario, namely, how to overwhelmingly reduce
resource usage (FLOPs and communication latency) to allow for deployment on edge devices without
degrading accuracy achievable by a large model. As such, our perspective necessitates posing an
end-to-end system-wide hybrid objective and requires systematic integration and optimization of all
of the degrees of freedom (architectures, routing & coverage, base and global networks). In contrast,
prior works optimize these aspects in a decoupled and isolated manner. As a case in point, works
focusing on architectures and early exit networks utilize simple entropy thresholding for routing. As
we will show in our results, carefully designed routing schemes, which are jointly optimized along
with base and global models, can result in substantial gains over entropy thresholding. Li et al. (2021)
model a hybrid system with a similar design but missing crucial details, namely, (a) no coverage
penalty in the train loss, (b) router is entangled with the base and global network, while we decouple
it using the routing oracle, and (c) no evaluations on Imagenet (see Appendix §B.7 for details).

Learning with Abstention. Many researchers (Liu et al., 2019; Gangrade et al., 2021; Geifman &
El-Yaniv, 2019) have studied the problem of learning with a reject option, where a model can abstain
prediction on some examples with the goal of minimizing the number of errors and abstentions.
Although we get an abstaining classifier from the hybrid model by simply ignoring the global model,
our main objective is to improve the performance of the hybrid system that includes the global model.

2 METHOD

Let X be a feature space and Y a set of labels. A hybrid design is composed of three models:

• A base model b : X → Y, that can be deployed on an edge device.
• A global model g : X → Y , that is deployed in the cloud and typically has high accuracy.
• A routing model r : X → {0, 1}, that is a very low resource model deployed alongside the base
model, and routes hard queries to the global model.

We will treat these models as soft classifiers, outputting |Y|-dimensional scores {by} and {gy}, and
two scores r0(x) and r1(x) for the routing model. In this paper, r is realized by a 2-layer DNN with
input by(x). The default hard output for the base is the top entry b(x) = arg maxy by(x), and similarly
for g. By default r assigns x to the global model if r1(x) > r0(x), i.e., r(x) = 1{r1(x) > r0(x)},
but this can be relaxed to r(x; t) := 1{r1(x) > t + r0(x)}, where the hyper-parameter t allows a
routing model to trade-off accuracy and resource usage in order to avoid separately training for each
desired level. The decision produced by the system for an instance x ∈ X is

ŷ(x) := (1− r(x))b(x) + r(x)g(x). (1)

The coverage of the hybrid system is the fraction of instances that are processed by the base only, i.e.

C(r, b, g) := P(r(X) = 0),
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where P denotes the joint law over (X,Y ). The hybrid accuracy is

A(r, b, g) = P(ŷ(X) = Y ) = P(r(X) = 0, b(X) = Y ) + P(r(X) = 1, g(X) = Y ).

Architectures and Costs. The resources required to evaluate a DNN are mainly a function of its
architecture - the number and arrangement of its layers and weights. We use α to denote a generic
architecture, and say that a model f ∈ α if it is realizable by this architecture. To quantify the
resource consumption, letR(α) denote the cost per inference for a model with architecture α. In our
design, the base is always executed, with the output fed into the routing model. Therefore, the hybrid
FLOP count of a hybrid model (r, b, g), such that b ∈ αb and g ∈ αg , is

R(r, b, g) := Rr +R(αb) + (1− C(r, b, g))R(αg) (2)
whereRr is a fixed, small quantity required to execute r. We can model many resources, including
the FLOPs required to execute the model, and the latency on edge devices like MCUs (Banbury
et al., 2021). Additionally, for settings where the global model is on the cloud with a compute-rich
environment, the resource costs are dominated by communication latency, modeled as R(αg) =
τ,R(αb) = 0 (where τ is the mean communication delay). We use coverage as a proxy metric for
communication latency as it measures the data split between the base and global. In the following,
we will focus on FLOP and coverage metrics, although we investigate inference latency in §3.4..

Overall Formulation Let Ab and Ag be sets of base and global architectures, which may incorporate
implementation restrictions, and % a target resource usage level. Our objective is

max
αb∈Ab,αg∈Ag

max
r,b∈αb,g∈αg

A(r, b, g) s.t. R(r, b, g) ≤ %. (3)

The outer maximisation over (αb, αg) in (3) amounts to an architecture search, while the maximisation
over (r, b, g) in a fixed architecture corresponds to learning a hybrid model. The following sections
describe our method for solving (3). Briefly, we propose to decouple the inner and outer optimization
problems in (3) for the sake of efficiency - hybrid models are trained by an empirical risk minimisation
(ERM) strategy, whilst the architecture search is carried out using fast proxies for the accuracy
attainable by a given pair of architectures without directly training hybrid models.

2.1 LEARNING HYBRID MODELS

This section focuses on training hybrid models for fixed architectures αb, αg, i.e., the inner problem
max

r,b∈αb,g∈αg

A(r, b, g) s.t. R(r, b, g) ≤ %. (4)

Since architectures are fixed in (4), the FLOP constraint amounts to a constraint on the hybrid
coverage. As is standard, we will approach (4) via an ERM over a Lagrangian of relaxed losses.
However, a number of design considerations and issues need to be addressed before such an approach
is viable, as discussed below. The overall scheme is summarised in Algorithm 3 in §A

Alternating optimisation. Problem (4) has a cyclical non-convexity. A given r affects the optimal b
and g (since these must adapt to the regions assigned by r), and vice-versa. We approach this issue
by alternating optimisation. First, we train global and base models according to standard methods.
Then, we learn a routing network r under a coverage penalty. The resulting r feeds back into the loss
functions of b and g, and these models get retrained. This cycle may be repeated many times.

Modularity of training. Resulting scheme allows training r with a fixed (b, g), as it helps learn a cheap
routing model with pre-trained cloud and mobile models. Similarly, by dropping the optimisation
over g, we can hybridise too expensive to re-train global models. Additionally, one can initially train
the global and freeze it after a few cycles to save compute. Finally, we can learn each component to
different degrees, e.g., we may take many more gradient steps on g than r or b in any training cycle.

Learning Routers via Proxy Supervision. Given a fixed pair of base and global model (b, g), the
problem (4) reduces to the following, where C% is the coverage needed to ensureR ≤ %.

max
r

E[(1− r(X))1{b(X) = Y }+ r(X)1{g(X) = Y }] s.t. E[r(X)] ≤ C%. (5)

While a naı̈ve approach is to relax r and pursue ERM, we instead reformulate the problem. Observe
that (5) demands that r(X) = 0 if b(X) = Y, g(X) 6= Y , and that r(X) = 1 if b(X) 6= Y, g(X) =
Y . Further, while case b(X) = g(X) = Y is not differentiated, the coverage constraint promotes
r(X) = 0 for such points. Thus, the program can be viewed as a supervised learning problem of
fitting the routing oracle, i.e.

o(x; b, g) = 1{b(x) 6= g(x) = y}. (6)
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Indeed, o is the ideal routing without the FLOP constraint. It can be evaluated on training data -
for any given (b, g) and training dataset D = {(xi, yi)}, we produce the oracle dataset Do;(b,g) :=

{(xi, o(xi; b, g))}. We use this dataset as supervision for the routing model r, which allows us to
utilise the entire gamut of tools of machine learning that are essential for practically learning good
binary functions, thus gaining over approaches that directly try to relax the objective of (5).

Note that the oracle o does not respect the FLOP constraint. We can satisfy such a constraint by
randomly assigning some points from g to b while incurring an error. The oracle is indifferent
to such an arrangement. From a learnability perspective, we would like the points flipped to the
base to promote regularity in the dataset. Although, such a goal is ill-specified (and unlikely to be
captured well by simple rules such as ordering points by a soft loss of g). Instead, we handle this
issue indirectly by imposing a coverage penalty whilst training the routing model and leave it to the
optimisation to discover the appropriate regularity by minimising error w.r.t. o under this penalty.

Focusing competency and loss functions. To improve accuracy whilst controlling coverage, we
focus the capacity of each of the models on the regions relevant to it - so, b is biased towards
being more accurate on the region r−1({0}), and similarly g on r−1({1}). Similarly, for the routing
network r, it is more important to match o(x) on the regions where it is 1, since these regions are not
captured accurately by the base and thus need the global capacity. We realise this inductive bias by
introducing model-dependent weights in each loss function to emphasise the appropriate regions. The
Routing Loss consists of two terms, traded off by a hyperparameter λr - the first penalises deviation
of coverage from a given target (cov), and the second to promote alignment with o and is biased by
the weight Wr(x) = 1 + 2o(x) to preferentially fit o−1({1}). The symbol ` denotes a surrogate loss
(such as cross entropy), while (·)+ is the ReLU function, i.e., (z)+ = max(z, 0). All sums below are
over a dataset D = {(xi, yi)} of size N . Empirically, we find that λr = 1 produces effective results.

Lrouting(r; o) := λr

(
cov−

(
1− 1

N

∑
x

(r1(x)− r0(x))+

))
+

+
∑
x

Wr(x)`(o(x), r(x)). (7)

The Base Loss and the Global Loss are each a weighted variant of the standard classification loss,
which are biased by the appropriate weights to emphasise the regions assigned to either model by the
routing network - Wb(x) = 2− r(x) and Wg(x) = 1 + r(x).

Lbase(b; r, g) =
∑

Wb(x)`(y, b(x)), and Lglobal(b; r, g) =
∑

Wg(x)`(y, g(x)).

2.2 EVOLUTIONARY ARCHITECTURE SEARCH

This section describes the joint architecture search implicit in (3). We use an evolutionary
search(Elsken et al., 2019; Liu et al., 2021) due to its simplicity and effectiveness. It requires
a fast way to evaluate the fitness of a base-global pair (αb, αg), i.e. the value of the program (4) for a
given pair of architectures. While this can be obtained by carrying out hybrid training as previously
described it is impractical due to the time cost. The following describes a cheaper proxy for the same.

To quickly approximate the result of training over r, we use the agreement oracle routing ô. This
assigns all inputs for which the base and global agree to the base, and the remainder to the global
model. We choose the agreement oracle as opposed to the oracle in (6), as it is more realistic in that it
does not assume knowledge of the true classification label, while still being easy to compute.

What remains is the optimisation over b and g. We adopt a different solution for these, rooted in the
space of architectures itself. Recently, Cai et al. (2020) showed that it is possible to design spaces
of architectures such that each architecture α is associated with a canonical set of parameters θα
that are near-optimal in an accuracy objective, in the sense that a slight fine-tuning of these models
yields a good solution. This is realised via the use of a ‘super-net,’ the components of which can be
individually changed, leading to a combinatorially large set of architectures. Importantly, training
a super-net with such a property has comparable costs to training a standard network, and this cost
is further amortized over a large number of resulting architectures. We use OFA space of Cai et al.
(2020) as architectural search space, and incorporate the oracle proxy to avoid training r, yielding
the score A(ô, θαb

, θαg
) for the fitness of (αb, αg). The resulting architecture search scheme is

summarised in Alg. 4 in §A.
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3 EXPERIMENTS

In this section, we will first evaluate hybrid models with off-the-shelf base and global architectures.
Next, we will perform evolutionary search to find architectures under various resource constraints
and evaluate hybrid models with these newly found architectures. Finally, we infer that accuracy of
the hybrid model consistently increases with increasing differences between base and global FLOPs.

For a proof-of-concept, we limited the cloud model to 600M FLOPS, which has a SOTA accuracy
of ≈ 80% (Cai et al., 2020). While there are other models such as EfficientNet achieving higher
accuracy (84.3%), these require substantially more FLOPs (37B). Although our hybrid training could
leverage such models, our limited computing resources made this infeasible.

Highlights. We list a few salient observations from our empirical results.

• Pareto Dominance and Latency Reduction. Hybrid models consistently outperform high-capacity
models at lower Hybrid FLOPs (Fig. 3) and at a latency reduction of 70% (3 in 10 examples pass to
the cloud) our FLOP gains are substantial ( Fig. 2). Similarly, we improve accuracy at the same
FLOP level both in terms of base FLOPs and Hybrid FLOPs. For instance, 80% is SOTA accuracy
for a stand-alone 600M model. We achieve 79% accuracy in a Hybrid scheme with a base model of
143M (see Table. 1) and 78.5% with 350M hybrid FLOPs.

• Rapid Customization. Proposed approach allows for optimizing accuracy level to match any
intermediate FLOP count with little training, saving computation for training intermediate models.

• SOTA performance on Resource Constrained Base. Hybrid scheme allows the base model to be
deployable on a low-resource hardware. With 12M base FLOPs and only 3 in 10 examples passed
to a larger model we gain about 16% improvement in accuracy (see 3).

• Evolutionary Search yields better Hybrid Models. Given any single model, we can obtain a better
hybrid model using evolutionary architecture search with similar FLOP count.

• Routing outperforms Entropy Metric. Our routing method exploits base and global models charac-
teristics and dominates entropy-thresholding used in many adaptive neural networks.

Experimental Setup. For simple exposition, we focus on the classification task on the Imagenet
(Russakovsky et al., 2015) dataset, consisting of 1.28M train and 50K validation images. We follow
standard data augmentation (mirroring, resize and crop to shape 224× 224) for training and single
crop for testing. Similar to previous works, we report results on the validation set. We borrow the
pre-trained baselines from their public implementations as described in the appendix sec. B.2. For
evolutionary architecture search, we utilize the supernet from the OFA search space (Cai et al., 2020).
We describe our hyper-parameter settings in the appendix sec. B.1. Depending on the computational
budget, one can create hybrid models in three ways (a) ’Hybrid-(r)’ - only training routing while
using pre-trained base and global, (b) ’Hybrid-(rb)’ - training routing and base while using pre-trained
global, and (c) ’Hybrid-(rbg)’ - training all three components. We trained the hybrid model to achieve
a similar coverage level as the oracle. Post training, we vary the coverage level by adjusting the
threshold hyper-parameter in the routing to generate the performance at different hybrid FLOPs.

3.1 HYBRID MODELS USING OFF-THE-SHELF CLASSIFIERS

3.1.1 NO RESOURCE CONSTRAINTS
In this setting, we assume no constraints on the model deployment. We pick up an architecture family
and create a hybrid model using the smallest and largest architecture. For convenience, we perform
this experiment for two known families, namely MobileNetV3(Howard et al., 2019) and OFA(Cai
et al., 2020). From MobileNetV3, we pick the smallest model (48M FLOPs, 67.6% accuracy) as base
and largest model (215M FLOPs, 75.7% accuracy) as global to create Hybrid-MobileNetV3 model.
Similarly, from OFA, we pick the smallest model (67M FLOPs, 70.4% accuracy) as base and largest
model (595M FLOPs, 80% accuracy) as global to create Hybrid-OFA model.

Figure 3 (a) and (b) plot the FLOPs vs top1 accuracy, and compare the hybrid models with best-known
baseline models in the architecture space. We show hybrid FLOPs for the hybrid models (see Eq. 2).
These experiments provide evidence for the following properties of hybrid models:

• Hybrid models dominate any standalone model between base and global model. Hybrid models
outperform off-the-shelf classifiers at every intermediate FLOP count. For ex., a pre-trained model
in MobileNetV3 with 155M FLOP achieves 73.3% accuracy while our hybrid model ’Hybrid-(rbg)’
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(a) MobileNetV3 (b) Once-for-All
Figure 3: Plot for FLOPs vs accuracy under no resource constraints. Each intermediate point for the baseline
requires expensive training and fine-tuning. In addition, OFA requires an evolutionary search to find the model.
In contrast, the proposed scheme creates hybrid models using two extreme points and achieves better performance
than the best fine-tuned models in this region.
Table 1: Results for hybrid models with base at various coverage levels. OFA model achieving ≈ 80% Top1
accuracy is used as global model. Base model belongs to MobileNetV3 space.

Base
MACs

Base
Accuracy (%)

Coverage=90%
Accuracy (%)

Coverage=80%
Accuracy (%)

Coverage=70%
Accuracy (%)

Base Hybrid Base Hybrid Base Hybrid

48M 67.61 73.3 71.59 78.56 74.61 83.41 76.77
143M 73.3 79.01 75.94 83.88 77.81 88.39 79.01
215M 75.72 81.33 77.61 86.07 79.01 90.11 79.59

achieves 75.5% accuracy. Similarly, a model in OFA with 230M FLOP achieves 76.4% accuracy
while the hybrid model achieves 77.6% accuracy.

• Hybrid achieves SOTA w.r.t a global model at ≈ 20% lower FLOP count. Global model in
MobileNetV3 achieves 75.7% accuracy at 215M FLOPs, while hybrid model achieves same
accuracy at 177M FLOPs. Similarly, global model in OFA achieves 79.9% accuracy at 595M
FLOPs, while hybrid model achieves same accuracy at 483M FLOPs.

• Training a Hybrid model for intermediate FLOPs is inexpensive. To achieve a single model at
any FLOPs, we find an architecture with the FLOP constraint and train it to achieve non-trivial
performance. Hybrid model with smallest and largest model allows us to trade-off FLOPs for
accuracy and save compute for training models for an intermediate FLOP constraint.

• Outperform the entropy thresholding baseline used in dynamic neural networks.
• End-to-end training of all components lead to increasing gains. Hybrid models improve in

performance as additional components are trained in the alternative minimization (Algorithm 3),
i.e. Hybrid-rbg is the best performing model followed by Hybrid-rb and Hybrid-r.

3.1.2 RESOURCE CONSTRAINED BASE

In this setting, our base model operates at a fixed computational budget on an edge device and one
cannot deploy the global model on this device. For simplicity, we assume the latency between the
base and global models to be negligible. We create hybrid models using base models from the
MobileNetV3 family. Since in this setting, the goal is to save compute / battery on the device and
achieve near SOTA performance, we use a high performing OFA model as the global model and
operate the base model at a fixed coverage level. We report two metrics: (a) base accuracy achieved
by the base by predicting only on the coverage portion of the routing, (b) hybrid accuracy - accuracy
achieved by the hybrid model, where the examples abstained by the base are sent to the global model.
Table 1 shows the base and hybrid accuracy at three coverage levels, 90%, 80% and 70%. Hybrid
models operating at a fixed coverage level provide the following benefits:

• Hybrid models achieve near SoTA accuracy with ≈ 3x less FLOPs. Using base with 48M FLOPs
and 67.61% accuracy, the hybrid model achieves 71.59% accuracy at 90% coverage, improving
to 76.77% accuracy at 70% coverage. To achieve 76.77% accuracy with a single model would
require > 400M FLOPs, which is too large to be deployed on an MCU. Similarly, using a base
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Table 2: Results for the evolutionary search for hybrid architectures at different FLOP constraints

Hybrid NAS - 150M Hybrid NAS - 250M Hybrid NAS - 350M

Accuracy (%) MACs Accuracy (%) MACs Accuracy (%) MACs

Base Model 68.65 68M 71.68 145M 74.33 225M
Global Model 75.98 263M 78.4 466M 78.75 501M

OFA Search@Flops 73.71 150M 74.77 250M 74.93 400M

Entropy Thresholding 73.83 150M 76.05 252M 77.2 350M
Hybrid (r) 74.51 150M 76.63 252M 77.91 350M

Hybrid (rb) 74.72 150M 76.91 252M 78.07 350M
with 215M FLOPs and 75.7% accuracy, the hybrid model achieves 79.59% accuracy with 70%
coverage . Global with ≈ 600M FLOPs has 80% accuracy.

• Abstaining base model achieves significantly better performance than the base at full coverage.
Hybrid scheme allows the system to operate without a global model. In this case. the result is
an abstaining classifier operating on the device, i.e. it rejects few input examples and provides
predictions on the rest. For ex., a base model with 48M FLOP achieves an accuracy of 83.41%
when it only covers 70% examples. Similarly, a base model of 215M achieves 90.11% accuracy
with 70% coverage. In both cases, there is a gain of at least 15 points in the accuracy.

3.2 HYBRID MODELS WITH EVOLUTIONARY ARCHITECTURE SEARCH
So far we have been generating hybrid models using off-the-shelf classifiers that are not tuned
to maximize hybrid performance. In this experiment, we search for base and global pairs using
evolutionary search in the OFA space. We constrain the search to operate at fixed hybrid FLOPs.
After finding base and global pairs from the evolutionary search, we create hybrid models with the
newly found architectures. We perform this experiment for three hybrid FLOP constraints: 150M,
250M, and 350M. We draw baseline architecture samples from the OFA space using their optimized
architecture search. For fair comparison, we do not fine tune models found by the architecture
searches for both OFA and hybrid models. Figure 4 plots the operating curves for the hybrid models
found using different FLOP constraints. Table 2 shows the hybrid model performance at the constraint
points used in the search. Evolutionary search based hybrid models provide the following benefits

• Hybrid Models with evolutionary search yields higher accuracy at any target FLOP. As illustrated
in Table 2, evolutionary search finds hybrid models that outperform the models found from the
optimized OFA search. For ex., at target 350M FLOP, OFA finds an architecture with 74.93%
accuracy while evolutionary search finds a hybrid model that achieves 77.91% accuracy.

• Hybrid models pareto dominate single models at any target FLOP. In figure 4(a), hybrid model
for 150M FLOP outperforms the OFA search baseline beyond the target 150M FLOP. Similar
observation can be made for 250M and 350M FLOPs.

• Hybrid model achieves near SoTA accuracy with ≈ 3X less FLOPs. For ex., using a base with
146M FLOPs and 71.68% accuracy, the hybrid model achieves 76.1% accuracy at 80% coverage.
To achieve 76.1% accuracy, a single model requires > 450M FLOPs.

Base
MACs R / RB Cov.=90

Acc. (%)
Cov.=80
Acc. (%)

Cov.=70
Acc. (%)

Base Hybrid Base Hybrid Base Hybrid

68M R 74.2 71.1 79.2 73.1 84.1 74.4
68M RB 74.4 71.2 80.3 73.4 84.6 74.7

146M R 77.1 74.2 82.1 76.1 86.5 77.1
146M RB 77.6 74.4 82.9 76.4 87.3 77.4

225M R 79.7 76.1 84.7 77.4 88.9 78.2
225M RB 79.9 76.3 84.8 77.7 89.1 78.5

Figure 4: Evolutionary search based hybrid OFA-models with hybrid FLOP constraints: 150M, 250M, & 350M.
Figure plots intermediate FLOPs achievable by three different hybrid models. Table shows hybrid accuracy and
base accuracy at different coverage levels.
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• Abstaining base model achieves significantly better performance than the base at full coverage.
For ex., a base model with 225M FLOPs achieves an accuracy of 79.86% when it only covers 90%
examples. This performance increases to 88.94% accuracy with 70% coverage.

3.3 HYBRID MODELS UNDER OVERWHELMING RESOURCE CONSTRAINTS
In this experiment, we explore hybrid models where base is severely resource constrained. Concretely,
we consider ImageNet classification on a tiny MCU (STM32F746 MCU with 320KB SRAM and 1MB
Flash), the same seting as MCUNets Lin et al. (2020). Using MCUNet TFLite model (12.79M FLOPs,
51.51% accuracy) as base, we create a hybrid model by adding various OFA global models. The
resulting hybrid model performance is given in Table 3, with the energy comparison Appendix. B.4.
Below we summarize the benefits of deploying hybrid models:

• SOTA Accuracy and Pareto Dominance. Hybrid model with deployable base achieves near SoTA
accuracy with ≈ 3X fewer FLOPs. In addition, hybrid models consistently dominate stand-alone
designs across different target accuracy levels.

• Micro-controller Implementation. Successfully deployed base and routing models on a micro-
controller with negligible (∼ 2%) slowdown.

Table 3: Hybrid models with MCUNet as base (12.79M FLOP, 51.51% accuracy, deployable on STM32F746
controller with 320KB SRAM & 1MB Flash), operating at various coverage levels.

Global Coverage=90
Top1 Accuracy (%)

Coverage=80
Top1 Accuracy (%)

Coverage=70
Top1 Accuracy (%)

Coverage=60
Top1 Accuracy (%)

Base Hybrid Base Hybrid Base Hybrid Base Hybrid

OFA-125M55.89 56.11 60.52 60.37 65.71 64.52 71.01 67.99
OFA-595M55.91 57.01 60.83 62.01 65.68 66.69 71.01 70.77

3.4 HYBRID MODELS UNDER LATENCY METRIC

For simplicity, we used the coverage (i.e., data kept on the base) as a proxy for the communication
latency since it is the major contributor to inference cost in a hybrid system. In this section, we
explicitly define the communication device and measure the three latency components in this hybrid
system: (a) inference latency spent on-device, (b) communication latency for examples sent to cloud,
(c) inference latency on the cloud. Table 4 benchmarks the latency ( a+b+c ) of the hybrid approach
against various baselines. It shows that the hybrid model operates at nearly half the latency and power
consumption compared to the global only solution and provides 8% improvements over the best
available model on the device. We provide details and other configurations in the Appendix §B.6.
Table 4: Latency and power consumption: Base device communicates via LoRAWAN (1kbps transmission
speed) and operates at 215MHz with 2.5V power supply and active-mode consumption of 100mA per second.

Base + Global Method Params Top-1 MACs Latency Energy

MCU
STM32F746

+
GPU Tesla V100

Global only 9.1M 79.93 595M 1200ms 300mJ
On-Device 0.6M 51.5 12.8M 197ms 49mJ
On-Device 0.74M 62.6 82M 1075ms 269mJ

Hybrid@70Cov - 66.69 191M 557ms 139mJ
Hybrid@60Cov - 70.77 250M 677ms 169mJ

4 CONCLUSION
We proposed a novel hybrid edge-cloud network to handle the majority of the workload of large-scale
prediction on edge devices. Currently, large-scale prediction tasks are exclusively handled at the
cloud with high-capacity DNNs, and although recent works propose methods for compression of
high-capacity models, the resulting models when required to achieve SOTA accuracy are still too
large. Our proposed solution is based on leveraging a low-capacity network that can be deployed on
an edge device, along with a high-capacity network deployed in the cloud. When the edge device
encounters challenging inputs, these inputs are transmitted and processed on the cloud. We proposed
a novel end-to-end framework for optimizing network architectures, network models, as well as the
routing protocol in a systematic manner. Our proposed method demonstrates substantial decrease
in the number of overall floating point operations (FLOPs) on ImageNet dataset compared to a
well-designed high-capacity network, while suffering no excess classification loss. Furthermore,
when communication latency to the cloud is the dominant issue, we show that across different target
accuracy regimes, we realize 4× FLOP gains on the low-capacity model with 70% coverage.
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APPENDIX

A ALGORITHMS

We summarise the methodological proposals as algorithms. The overall method is to begin with
training a super-net in the sense of Cai et al. (2020), for which the methods of their paper can be
utilised. This produces a set of architectures A , with associated canonical models for each α ∈ A.
The overall procedure then is summarised as Algorithm 1. This uses the two main procedures of
architecture search (Algorithm 4) and hybrid training (Algorithm 3) as subroutines, which in turn
may be executed in a modular way as discussed at length in the main text.

In addition, we frequently tune a given router r and base and global models to locally trade-off
resource usage levels and accuracy (which saves on retraining on each different value of % that one
may be interested in. This is realised by finding a value t adjusted to the constraint, and using the
routing function r(x; t) = 1{ro(x) ≥ r1(x) + t}. Such a t may be found as in Algorithm 2.

Algorithm 1 End-to-end Hybrid Procedure
1: Input: Training dataB = {(xi, yi)}Ni=1,Validation data V = {(xj , yj)}Mj=1, resource constraint
%.

2: Train supernet using the method of Cai et al. (2020). (Architecture Search)
3: A ← resulting set of algorithms.
4: (αb, αg)← output of Algorithm 4 with V, %,A .
5: Train initial models b0 ∈ αb, g0 ∈ αg using B (Hybrid Training)
6: (r, b, g)← output of Algorithm 3 instantiated with B, b0, g0, and with appropriate hyperparame-

ters.
7: Return: (r, b, g)

Algorithm 2 Tuning Routing Model
1: Input: Validation data V = {(xj , yj)}Mj=1, target resource level %, Hybrid model (r, b, g).
2: T ← {r0(x)− r1(x) : x ∈ V }.
3: c∗ ← min c : Rr +R(αb) + (1− c)Rg ≤ %.
4: t∗ ← c∗th quantile of T .
5: Return: t∗.

Algorithm 3 Training Hybrid Models
1: Input: Training data B = {(xi, yi)}Ni=1
2: Hyper-parameters: λr, # Epochs E
3: Initialize: random r0, pre-trained b0, g0.
4: for e = 1 to E do
5: Randomly Shuffle B
6: re = arg minr Lrouting(r, be−1, ge−1)
7: ge = arg ming Lglobal(r

e, be−1, g)
8: be = arg minb Lbase(r

e, b, ge)
9: Return : (rE , bE , gE)
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Algorithm 4 Evolutionary Joint Architecture Search
1: Input: Validation data B = {(xi, yi)}Ni=1, resource constraint ϕ, set of architectures A .
2: Hyper-parameters: G,Npop, Npar

3: Initialize: Ωpop = {(αib, αig) : R(ô, θαi
b
, θαi

g
) ≤ ϕ}Npop

i=1 by random sampling
4: for g = 1 to G do
5: Ωpar ← Npar highest (oracle) accuracy configurations from Ωpop
6: Ωchild ← ∅
7: for n = 1 to Npop do
8: Randomly pick (αib, α

i
g) from Ωpar

9: (αmb , α
m
g )← Mutate(αib, α

i
g)

10: Compute the agreement oracle ô for θαm
b
, θαm

g
.

11: ifR(ô, θαm
b
, θαm

g
) > ϕ then

12: GOTO 9.
13: Add (αmb , α

m
g ) to Ωchild

14: Ωpop = Ωpar
⋃

Ωchild
15: Return : Ωpop

B IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETER SETTINGS.

We use SGD with momentum as the default optimizer in all our experiments. We initialize our hybrid
models from the corresponding pre-trained models and use a learning rate of 1e− 4 for learning base
and global models. We use a learning rate of 1e− 2 for learning the routing network. We decay the
learning rate using a cosine learning rate scheduler. As recommended in the earlier works, we use a
weight decay of 1e − 5. We set the number of epochs to be 50. We use a batch size of 256 in our
experiments.

B.2 MODEL DETAILS

Entropy Thresholding Baseline. As per recommendation in the literature (Teerapittayanon et al.,
2017; Gangrade et al., 2021) we compute the entropy H of the base prediction probability distribution
by(x). This baseline allows access to a tunable threshold t. Predictions with entropy below this
threshold are kept with the base model while the predictions with entropy above this threshold are
sent to the cloud model. We use similar tuning as Algorithm 2 to trade-off resource usage.

Routing Model. Our routing model uses predictions from the base model and creates a 2-layer
neural network from these predictions. We create meta features from these predictions to reduce the
complexity of the network, by (a) adding entropy as a feature, (b) and adding correlations between
top 10 predictions, resulting in a 101 dimensional input feature vector. The feed-forward network has
256 neurons in the first and 64 neurons in the second layer. The final layer outputs a two dimensional
score leading to binary prediction for the routing r. Note that the routing network described in this
manner contributes to less than 2% compute budget of the base model and hence its compute cost is
negligible in comparison to the base and global models.

MobileNetV3. We have used the small and large configurations as base and global models in our
experiments (see Sec. 3.1 ). We borrowed pre-trained models from publicly available implementation
1. Table 5 lists the performance and compute characteristics of these borrowed models.

Once-for-All. We borrowed the pre-trained OFA models from the official public repository 2. Table 6
lists the accuracy, number of parameters and FLOPs for these models. We note that these models
have been specialized by the authors with fine-tuning to achieve the reported performance.

1https://github.com/rwightman/pytorch-image-models
2https://github.com/mit-han-lab/once-for-all
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Table 5: MobileNetV3 Models in our setup.
Top1 Accuracy #Params #MACs

MobileNetV3-Small 67.613 2.54M 48.3M
MobileNetV3 73.3 3.99M 143.4M
MobileNetV3 71.7 - 112M
MobileNetV3 70.4 - 91M

MobileNetV3-Large 75.721 5.48M 215.3M

Table 6: Once-for-All Pre-trained models in our setup.
Top1 Accuracy #Params #MACs

OFA-600 (’flops@595M top1@80.0 finetune@75’) 79.9 9.1M 595M
OFA-482 (’flops@482M top1@79.6 finetune@75’) 79.6 9.1M 482M
OFA-389 (’flops@389M top1@79.1 finetune@75’) 79.1 8.4M 389M

OFA-230 (’LG-G8 lat@24ms top1@76.4 finetune@25’) 76.4 5.8M 230M
OFA-151 (’LG-G8 lat@16ms top1@74.7 finetune@25’) 74.6 5.8M 151M
OFA-101 (’note8 lat@31ms top1@72.8 finetune@25’) 72.8 4.6M 101M
OFA-67 (’note8 lat@22ms top1@70.4 finetune@25’) 70.4 4.3M 67M

B.3 ONCE-FOR-ALL SEARCH EXPERIMENTS.

In our evolutionary search experiments (see Sec. 3.2), we have used the OFA search to create the
baseline models that eliminate the effect of fine-tuning available in the pre-trained models from
their official repository. We created the baseline by using their optimized search to find models at
different FLOPs, namely {70M, 100M, 150M, 200M, 250M, 300M, 400M, 500M}. We report the
performance of these models in the Table 7. Note that as per recommendation, we tune the batch
norm statistics of these models to get the correct accuracy.

For our evolutionary search experiments, we used the OFA search space. In OFA codebase, there
are two search spaces with MobileNetV3 backbone: (a) with width multiplier 1 and (b) with width
multipler 1.2. For our joint architecture search with target FLOPs 150M, we used the smaller
backbone with width= 1 as this space allows smaller base models in the < 100M FLOPs region.
While we used the backbone with width= 1.2 for our search for target flops 250M and 350M, as
these hybrid FLOPs allow larger base models. OFA space allows searching over expansion factor
options [3,4,6], kernel sizes [3,5,7], block depths [2,3,4], and resolutions [144, 160, 176, 192, 208,
224]. To perform a mutation, each optimization variable is modified with probability 0.1, where
modification entails re-sampling the variable from a uniform distribution over all of the options. The
population size is set to 100, and the parent set size is set to 25.

Table 2 shows the characteristics of the base and global models found using this search.

Table 7: Once-for-All models found using the optimized OFA search (used as baseline in Sec. 3.2).
Top1 Accuracy #MACs

OFA-500 78.71 500M
OFA-400 74.93 500M
OFA-300 74.92 300M
OFA-250 74.77 250M
OFA-200 74.42 200M
OFA-150 73.71 150M
OFA-100 73.19 100M
OFA-70 70.64 70M

B.4 MCUNET EXPERIMENTS

We deploy both MCUNet and our base with routing model on the MCU using the TensorFlow Lite
for Microcontrollers (TFLM) runtime. Due to lack of operator support for reductions and sorting
in TFLM, we replace the relevant operators with supported operations whose compute and memory
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complexity upperbounds the un-supported operations. Table 9 compares the performance energy
profile of the hybrid model and the baseline when deployed on the micro-controller (STM32F746)
with 320KB SRAM & 1MB Flash. It clearly shows that there is a negligible cost of deploying the
proposed routing scheme and only results in < 2% slowdown. Table 8 shows the performance of the
hybrid model against the baseline model at various hybrid flops. It can be seen that the hybrid model
dominates the baseline model at intermediate FLOPs.

Table 8: Comparing MCUNet models with hybrid models (hybrid accuracy and hybrid flops are
shown for hybrid models).

Target MACs MCUNet Model Hybrid Model

Top1 (%) MACs Top1 (%) MACs

13M 51.5 12.79M 51.5 12.79M
38M 57.0 38.3M 56.3 36.32M
68M 60.9 67.3M 62.01 67.41M
80M 62.2 81M 64.52 83M

125M 68.4 126M 71.1 127M

Table 9: Comparing the energy profile for MCUNet and Hybrid model when deployed on a
micro-controller.

Model Latency SRAM Energy

MCUNet 0.25368s 156708 bytes 0.1112 joules
Hybrid-MCUNet 0.25951s 158036 bytes 0.1134 joules

B.5 COMPARISON AT 70% COVERAGE : HYBRID MODEL VS BASELINES

Fig 2 collates the performance of the hybrid and baseline models from the Experiments section (see
Tables 1 and 3, 70% coverage column). Baseline corresponds to the best baseline models at various
MACs. Hybrid numbers correspond to the hybrid model where base operates at 70% coverage level.
We list the baseline and hybrid performance metrics in Table 10 for completeness.

Table 10: Baseline and Hybrid Metrics used in the Figure 2. Hybrid model is operating at 70%
coverage and MACs shown are the Base MACs.

Model MACs

12.8M 48M 143M 215M 595M

Baseline 51.5% 67.6% 73.3% 75.5% 79.93%
Hybrid 66.69% 76.77% 79.01% 79.59% -

B.6 LATENCY EXPERIMENTS

When we use MCU as the base device, we use the LoRAWAN communication protocol that enables
such a low capacity device to operate at a transmission rate of 1kbps. Thus, it takes nearly 1200ms to
transfer an image of size 150KB (typical image in the Imagenet dataset). Similarly, for base devices
capable of operating with 3G, LTE or Wi-Fi communication devices, we borrow the transmission
numbers from Kang et al. (2017). Specifically, to transfer an image with 152KB size, (a) 3G network
takes 870ms, (b) LTE takes 180ms, and (c) WiFi takes 95ms. Note that for a micro-controller even a
3G network would not be available, instead a much slower communication device is used. We use the
on-device and on-cloud inference latency from the MCUNet and OFA repositories.

For any method, we compute the latency as the inference time taken for an example, i.e., inference
time on device + communication time + inference time on cloud. To compute energy usage, we use
the active-mode operating characteristics of the base device and voltage supply to compute the power
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and multiply it by the amount of time the device spends doing these operations. Table 11 benchmarks
the inference latency ( inference cost on device + communication cost + inference cost on the cloud )
of the hybrid approach against various baselines.

Table 11: Deploying a hybrid model vs a standalone model on device. Latency comparison.
Base + Global Method Params Top-1 MACs Latency Energy

MCU
STM32F746

+ LoRAWANN
GPU Tesla V100

Global-only 9.1M 79.93 595M 1200ms 300mJ
On-Device 0.6M 51.5 12.8M 197ms 49mJ
On-Device 0.74M 62.6 82M 1075ms 269mJ

Hybrid@70Cov - 66.69 191M 557ms 139mJ
Hybrid@60Cov - 70.77 250M 677ms 169mJ

Mobile
Samsung Note8

+LTE
GPU Tesla V100

Global-only 9.1M 79.93 595M 205ms
On-Device 5.3M 75.7 215M 65ms

Hybrid@70Cov 79.59 393M 119ms

B.7 DIFFERENCE BETWEEN APPEALNET AND OUR HYBRID DESIGN.

Below we highlight main difference between AppealNet (Li et al. (2021)) and our proposal.

• AppealNet formulation does not explicitly model any coverage constraint that enables the
base model to operate at a tunable coverage level. In contrast, we explicitly model a coverage
penalty.

• Jointly learning the routing without any supervision is a hard problem. Instead, we relax
this formulation by introducing the routing oracle that specializes in a routing network for a
given base and global pair. With this oracle, the task of learning routing reduces to a binary
classification problem with the routing labels obtained from the oracle. This also decouples
the routing task from the base and global entanglement.

• In addition, we propose a neural architecture search that finds a pair of base and global
architectures that optimise the hybrid accuracy at any given combined resource usage.

• Empirically, AppealNet does not have any evaluations for the Imagenet scale dataset. The
closest comparison we can find is with the Tiny-Imagenet dataset (one-tenth of the size of
the Imagenet). While we cannot compare the two directly, since we solve a much harder
problem than Tiny-Imagenet, we can make the following observations. At 70% coverage
level, for AppealNet, the minimum performance difference between the hybrid model and
the global model is ≈ 1.2% (see AppealNet, Fig. 5(d)), while our closest to the global in
case of the MobileNet baseline is 0.3% (see our paper Table 1, row 3). Note that AppealNet
performance will go down on Imagenet in comparison to Tiny-Imagenet due to the hardness
of the problem.
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