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Abstract
We introduce a novel dataset tailored for code001
generation, aimed at aiding developers in com-002
mon tasks. Our dataset provides examples that003
include a clarified intent, code snippets associ-004
ated, and an average of three related unit tests.005
It encompasses a range of libraries such as006
Pandas, Numpy, and Regex, along with stan-007
dard Python code derived from Stack Overflow.008
Comprising 3,402 meticulously crafted exam-009
ples by Python experts, our dataset is designed010
for both model finetuning and standalone eval-011
uation. The examples have been carefully re-012
fined to reduce data contamination, a process013
confirmed by the performance of three lead-014
ing models: Mistral 7B, CodeLLAMA 13B,015
and Starcoder 15B. This dataset not only in-016
volves an average of three unit tests but also017
categorizes examples in order to get more fine018
grained analysis, enhancing the understanding019
of models’ strengths and weaknesses in specific020
coding tasks. The benchmark can be accessed021
at anonymized address.022

1 Introduction023

In the dynamic landscape of software engineering,024

developers frequently confront the challenge of025

translating conceptual ideas into functional code.026

While navigating this process, the gap between027

intention and implementation can often be a hur-028

dle, even for experienced programmers. Tradition-029

ally, developers have turned to online resources like030

Stack Overflow, searching for solutions in natural031

language to address their specific coding dilemmas.032

The emergence of large language models033

(LLMs) trained on code has heralded a new era034

in this domain. Innovations like Codex (Chen et al.,035

2021a) have revolutionized the field by providing036

real-time code suggestions in Integrated Develop-037

ment Environments (IDEs). Similarly, models such038

as ChatGPT and CodeLLAMA demonstrate the039

potential for integrating into IDEs, offering devel-040

opers context-aware assistance in initiating and re-041

fining code, thereby enhancing the efficiency of the 042

software development cycle. 043

However, the ascent of code generation through 044

LLMs underscores the heightened need for datasets 045

that emphasize precision, context-awareness, and 046

syntactic accuracy. While existing datasets have 047

propelled advancements in this arena, they are 048

not without limitations. The shift towards LLM- 049

focused datasets has led to a decreased emphasis on 050

traditional training sets, directing attention towards 051

evaluation sets. This shift challenges the training of 052

models from scratch or for specific task fine-tuning. 053

Moreover, while datasets like HumanEval (Chen 054

et al., 2021b) or APPS (Hendrycks et al., 2021) 055

provide valuable insights, they often fall short of 056

mirroring the real-world coding challenges devel- 057

opers encounter. 058

Addressing these gaps, this paper introduces the 059

CodeInsight dataset, a pioneering resource specif- 060

ically tailored for Python code generation. This 061

focus is anchored in Python’s widespread adoption 062

in key sectors like data science, machine learn- 063

ing, and web development. The dataset, compris- 064

ing 3,402 unique, expert-curated Python examples, 065

spans basic programming to complex data science 066

challenges, complete with unit tests for comprehen- 067

sive evaluation. The CodeInsight dataset stands out 068

in its ability to provide a nuanced balance between 069

breadth and depth, offering a finely-tuned resource 070

for training and evaluating LLMs in Python code 071

generation. By bridging the gap between natural 072

language and code, CodeInsight presents an in- 073

valuable tool for understanding and enhancing the 074

capabilities of LLMs in real-world programming 075

contexts. 076

Organized as follows, this paper first details the 077

dataset construction process in Section 2, includ- 078

ing our sources, selection criteria, and annotation 079

methods. Section 3 presents an in-depth statistical 080

analysis of the dataset, highlighting its diverse ap- 081

plications. In Section 4, the dataset’s efficacy is 082
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showcased through evaluations using various LLM083

baselines. Lastly, Section 5 situates CodeInsight084

within the broader landscape of code generation085

datasets, underscoring its unique contributions to086

aiding software development.087

2 Dataset Construction088

Our pipeline for building CodeInsight consists of089

three pivotal steps. Initially, we identified the most090

pertinent sources for examples. Subsequently, from091

these sources, we extracted and meticulously fil-092

tered the most relevant natural language-code pairs.093

The final phase involved annotating these pairs and094

crafting associated unit tests. This section pro-095

vides a comprehensive breakdown of each of these096

stages.097

2.1 Data Sources098

To cultivate a high-quality dataset conducive to099

the task of code generation, it is critical to source100

from platforms that mirror the nuanced challenges101

faced by developers in real-world scenarios and102

guarantee an effective alignment between descrip-103

tive language and functional code. Stack Overflow104

stands out as a cornerstone platform for such an105

undertaking.106

Veritable Developer Queries The platform op-107

erates as a dynamic repository of queries authenti-108

cally posed by developers, mirroring the real-time109

conundrums encountered in modern software de-110

velopment. This feature ensures that the collected111

dataset is a genuine reflection of the typical in-112

quiries and solutions sought by developers, offer-113

ing invaluable insights into their problem-solving114

processes.115

Language-Code Alignment Stack Overflow’s116

model, rooted in community engagement, inher-117

ently promotes precision and clarity. This commu-118

nal scrutiny is pivotal in curating language-code119

pairs that are not only syntactically correct but se-120

mantically coherent, forming the bedrock for train-121

ing advanced code generation models.122

Balanced Code Complexity The structured na-123

ture of Stack Overflow allows for a strategic cu-124

ration of code snippets, maintaining a consistent125

degree of complexity. Such deliberate selection is126

instrumental in creating a dataset that represents127

a spectrum of programming tasks, devoid of bias128

towards either trivial or overly complex samples.129

Despite Stack Overflow’s comprehensive repos- 130

itory of developer questions, not all contributions 131

align with the ’how-to’ structure crucial for our 132

dataset. A ’how-to’ question typically presents 133

a clear, task-oriented query where the developer 134

seeks a step-by-step solution or a method to accom- 135

plish a specific programming task. These questions 136

are distinctly actionable and contain a direct re- 137

quest for code that achieves a particular objective. 138

Following the analysis in Yin et al. (2018), only 139

36% of Python-tagged inquiries exhibit this ’how- 140

to’ format, rendering them suitable for our dataset’s 141

intention to support practical code generation. 142

To surmount the challenge of sourcing appli- 143

cable examples, we have leveraged the CoNaLa 144

dataset (Yin et al., 2018), which constitutes a re- 145

fined compilation of potential "how-to" examples 146

from Stack Overflow, filtered through a probabilis- 147

tic methodology. The CoNaLa corpus predomi- 148

nantly contains Python code snippets that are di- 149

rectly representative of the tasks at hand and con- 150

tain minimal external dependencies. 151

To broaden the scope and applicability of our 152

dataset, we have deliberately incorporated an addi- 153

tional 600 samples from Stack Overflow, emphasiz- 154

ing the use of packages like Pandas, Numpy, and 155

Regex. The integration of these packages is a strate- 156

gic decision to align the dataset with the emergent 157

code generation demands in data science, both in 158

academic research and industry applications. More- 159

over, Regex’s inclusion enhances the dataset’s com- 160

prehensiveness to accommodate a wider range of 161

computational operations. 162

The procedure for enriching our dataset began 163

with the elimination of redundancies and the filtra- 164

tion of issues based on a baseline of community 165

engagement—measured by votes and views—and 166

the presence of accepted answers. We then priori- 167

tized the problems using a weighted ranking system 168

that accounts for the temporal dimension, recog- 169

nizing that older issues may naturally garner more 170

attention over time. 171

Finally, from our selection process, we gathered 172

a total of 7,301 raw examples to serve as the foun- 173

dation for our dataset. 174

2.2 Data Filtering 175

In the critical juncture between sourcing and prepar- 176

ing data, meticulous filtering is essential. The tran- 177

sition into the data preparation phase necessitates 178

a discerning approach to select examples from the 179

source, acknowledging that not all contributions 180
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Figure 1: Curation Workflow from Stack Overflow to Dataset - The filtering phase (left) screens questions based on
usefulness, code extractability, alignment, and testability, with one example advancing. The labeling phase (right)
details the annotation of this example: extracting and standardizing code, refining the question for clarity with
normalized terms, and developing unit tests to validate the function.

Source Initial number of examples Number of examples after filtering
Total 7237 2707
SO_conala 5437 1993
SO_pandas 600 294
SO_numpy 600 242
SO_regex 600 178

Table 1: Exploitability of examples

from the Stack Overflow community are directly181

amenable to our goals, as underscored by Yin et al.182

(2018); Lai et al. (2023). To illustrate, the most183

upvoted question on pandas is ’How to iterate over184

rows in a DataFrame in Pandas’, yet the consensus185

answer advises against iteration, highlighting the186

complexity inherent in the selection process.187

To navigate these intricacies, we established188

stringent criteria for inclusion:189

Authenticity of Developer Inquiries Only those190

questions that present realistic programming sce-191

narios are considered, ensuring the dataset’s rele-192

vance to the actual needs of developers.193

Direct Extractability of Code We require that194

the code snippet can be unambiguously identified195

and extracted from the accompanying explanatory196

text.197

Natural Language and Code Alignment A ro-198

bust correspondence between the problem state-199

ment and the code solution is necessary for main- 200

taining semantic integrity. 201

Executable Code Samples The code must be 202

functionally valid, capable of running in a desig- 203

nated environment, which is essential for both veri- 204

fying its effectiveness and constructing unit tests. 205

We decide to exclude code where we need to open 206

or save a file. 207

These standards are meticulously upheld to re- 208

fine the dataset and are instrumental in achieving 209

our ambition to forge a dependable tool for code 210

generation assistance. 211

During our filtering process, as detailed in Table 212

1, we distilled the initial compilation down to 2,707 213

distinct problems, which equates to merely 37% of 214

the original volume meeting our criteria. This low 215

rate can be attributed to several factors. 216

Predominantly, a portion of the CoNaLa dataset 217

did not satisfy our criteria for testability or was ex- 218

cessively specialized, requiring extensive rework- 219

ing for practical application. Additionally, some 220

entries sourced from CoNaLa did not consist of 221

Python code, as the collection methodology in- 222

cluded automated systems with a broader capture 223

net. The nuanced complexity of specific queries, 224

especially those involving sophisticated libraries 225
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such as pandas, numpy, and regex, added another226

layer of challenge. These high-caliber queries,227

while esteemed within the Stack Overflow ecosys-228

tem for their specialized advice, often do not lend229

themselves to generalization without significant230

developer intervention, as in cases like ’Apply pan-231

das function to column A to create multiple new232

columns’.233

Our approach deliberately sidesteps narrowly234

scoped inquiries to concentrate on those with a po-235

tential for broader application. The comprehensive236

filtering process is visually encapsulated on the237

left side of Figure 1, demonstrating the stringent238

yet necessary measures we employ to cultivate our239

source.240

2.3 Data Labeling241

Our data labeling workflow is carefully designed242

to preclude model memorization and instead cul-243

tivate genuine problem-solving skills within the244

generated dataset. Through a structured multi-245

stage annotation process, we transform selected246

examples from the filtering phase into clearly delin-247

eated, context-rich, and varied learning instances.248

This systematic refinement and evaluation of each249

example diminish the likelihood of models learn-250

ing by rote and enhance their ability to generalize251

across diverse programming challenges. To main-252

tain focus and efficiency, annotators are allocated a253

strict twenty-minute window per example to ensure254

timely progression and a broad coverage of exam-255

ples. The ensuing steps outline our comprehensive256

annotation strategy:257

Task 1 - Code Extraction from Stack Overflow258

This initial phase of annotation entailed the extrac-259

tion of code solutions from Stack Overflow in re-260

sponse to developers’ inquiries. When the question261

admits more than one valid response, annotators are262

expected to capture alternate solutions as well, cre-263

ating a supplementary example for the same intent.264

Upon extraction, annotators construct a Python265

function named test, transforming the snippet266

into a standardized format with arguments named267

systematically (e.g., vari for variables, arri for268

arrays, etc. See Appendix B for all normalized269

names) to maintain consistency across the dataset.270

Task 2 - Refinement for Natural Language and271

Code Consistency During this stage, annotators272

refined the natural language descriptions to pre-273

cisely correspond with the ’test’ function forged in274

Task 1. The challenge lay in harmonizing the lan- 275

guage descriptions with the Python code’s logic and 276

argument structure. Annotators were also tasked 277

with incorporating normalized argument names 278

into these descriptions to bolster the dataset’s inter- 279

nal coherence and force the alignment. 280

Task 3 - Development of Function Test Cases 281

The concluding annotation task involved the gener- 282

ation of unique test cases for each test function, 283

designed to rigorously assess the function’s oper- 284

ational integrity and accuracy. These test cases 285

are instrumental in ascertaining the practical utility 286

of the code and establishing the dataset’s veracity. 287

Once the test cases have been passed, annotator can 288

proceed the next example. 289

As illustrated on the right-hand side of Figure 1, 290

each task forms an integral component of our com- 291

prehensive annotation procedure. A team of five 292

data science professionals, each boasting a mini- 293

mum of four years of experience, contributed to 294

the labeling of the filtered examples. They man- 295

aged to complete the annotation in an average time 296

of twelve minutes per example, amounting to a 297

collective annotation effort of over 540 hours. 298

This extensive process yielded a compendium of 299

3,402 examples derived from 2,702 distinct prob- 300

lem statements formulated by seasoned developers. 301

These examples, meticulously revised and recon- 302

textualized from their origins on StackOverflow, 303

preventing complete memorization, offer a repos- 304

itory of unique and rigorously testable instances 305

suitable for advancing code generation models. 306

3 Dataset Statistics 307

This section outlines the statistical framework of 308

our dataset, highlighting the diversity of program- 309

ming tasks and the complexity of the included code 310

samples. We approach the analysis from two an- 311

gles: the representation of code libraries and differ- 312

ent labels representing the characteristics of code. 313

Key metrics such as item count, average words per 314

natural language problem, and lines per code sam- 315

ple, alongside the number of unit tests per label, are 316

presented to demonstrate the dataset’s depth and 317

the rigor of its composition. 318

3.1 Packages Statistics 319

In Table 2, our analysis presents a thorough com- 320

parative study of the CodeInsight dataset, under- 321

scoring its distinctive features and contributions, 322
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Item Count Avg. Prob Words Avg. Code Lines Avg. Unit Tests
Package CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000

Full dataset 3,402 1,000 12.57 ± 4.25 140.0 4.58 ± 2.31 3.6 2.89 ± 0.54 1.6

Pandas 819 291 14.08 ± 4.15 184.8 3.59 ± 1.87 5.4 3.04 ± 0.35 1.7
Numpy 591 220 12.19 ± 3.25 137.5 5.25 ± 1.99 2.5 2.99 ± 0.20 2.0
Scikit-learn 19 115 13.79 ± 5.51 147.3 8.11 ± 7.41 3.3 3.00 ± 0.00 1.5
Scipy 8 106 13.00 ± 4.42 192.4 5.50 ± 1.32 3.1 3.00 ± 0.00 1.6

NoImport 1,557 - 12.10 ± 4.03 - 3.59 ± 1.87 - 3.04 ± 0.35 -
Re 241 - 12.20 ± 2.10 - 5.53 ± 0.77 - 3.01 ± 0.19 -
Other 167 - 12.46 ± 3.20 - 6.07 ± 2.80 - 3.03 ± 0.10 -

Matplotlib - 155 - 21.1 - 3.0 - 1.0
TensorFlow - 45 - 192.4 - 3.1 - 1.6
Pytorch - 68 - 133.4 - 2.1 - 1.7

Table 2: Comparative Analysis of Package Statistics in CodeInsight and DS-1000 Datasets. Standard deviations are
reported where applicable. "-" indicates the package is not included in the dataset. Other contains different packages
like Itertools, Collections, Operator, etc.

particularly in the area of developmental aid and323

coding challenges. This table illustrates the expan-324

sive scope of CodeInsight, which encompasses a325

wide variety of packages, notably Pandas, Numpy,326

Regex, among others, culminating in a total of327

3,402 examples. This extensive collection is in-328

dicative of CodeInsight’s diverse problem types329

and coding methodologies.330

A key aspect of CodeInsight is its focus on con-331

cise and precise problem descriptions, a departure332

from datasets that retain extensive problem con-333

texts. This approach is aimed at reducing the word334

count in problem descriptions without sacrificing335

clarity and specificity, a crucial factor for effective336

code generation.337

The dataset’s diversity is further evident in the338

range of code complexity it presents. This is re-339

flected in the average number of code lines and the340

standard deviations associated with them, demon-341

strating the broad spectrum of complexity within342

CodeInsight.343

Towards the end of the analysis, we draw a344

comparison with the DS-1000 dataset, comprising345

1,000 examples and featuring advanced data sci-346

ence packages like TensorFlow and Pytorch, which347

are not included in CodeInsight. Unlike CodeIn-348

sight, DS-1000 maintains the full context of Stack349

Overflow queries, which is reflected in its larger350

average problem word count. Despite these differ-351

ences, there is a noticeable alignment in the average352

number of code lines and their standard deviations353

between the two datasets, suggesting a comparable354

level of complexity.355

A striking observation from our study is the356

higher average number of unit tests in CodeInsight,357

Figure 2: Ratios in CodeInsight Categories (listed in
Appendix C). This figure presents the ratio of positive
(belonging to a specific category) to negative (not be-
longing to the category) examples for each of the 10
distinct categories focusing on item count and average
code lines. Detailed statistical data supporting this anal-
ysis can be found in Appendix D.

indicating a more robust testing methodology. This 358

feature is vital for training models that require a 359

deep understanding of code functionality and cor- 360

rectness. 361

In summary, this comparative analysis highlights 362

the complementary nature of the CodeInsight and 363

DS-1000 datasets in the field of code generation. 364

Both datasets contribute uniquely to the develop- 365

ment in this area, bringing their own strengths and 366

focal points, thereby enriching the domain of com- 367

putational linguistics and code generation research. 368

3.2 Labels Statistics 369

In our study, we identified 10 distinct CodeInsight 370

Categories to enhance our analysis and gain a bet- 371
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ter understanding of our dataset. These predefined372

categories not only facilitated a nuanced analysis373

but also will provide insights into the conditions374

under which models were successful or not. These375

categories vary from basic indicators like BUILTIN376

denoting the use of Python’s built-in functions, to377

ASSIGN marking variable assignments. More com-378

plex categories include COMPLEXTASK for codes379

with multiple imports, and >THREEVARS for func-380

tions with over three arguments. Each example in381

the dataset is binary annotated—marked as positive382

if it falls under a category and negative otherwise.383

For a comprehensive definition of all CodeInsight384

categories, refer to Appendix C.385

Figure 2 illustrates the ratio of positive to neg-386

ative examples for each category to highlight the387

impact of each category. For example, we compare388

the ASSIGN category against all examples that do389

not include variable assignments. Our analysis pri-390

marily focuses on the most striking ratios, namely391

the item count and average code lines, as we found392

that the unit tests and average problem words ex-393

hibit minimal variation across the dataset. Detailed394

statistical data is provided in Appendix D.395

The blue bars in the chart, representing item396

count ratios, significantly highlight the volume and397

distribution of data in each category. This show-398

cases the prevalence of certain coding practices; for399

instance, the BUILTIN category, with nearly twice400

as many instances as its counterpart, suggests fre-401

quent utilization of built-in functions, indicative402

of a Pythonic approach in our dataset. In contrast,403

labels like COND and LOOP exhibit more balanced404

distributions, reflecting a diverse representation of405

these elements. Notably, categories such as COM-406

PLEXTASK and >THREEVARS are less represented,407

aligning with the expectation of their complexity.408

Regarding the average code lines, depicted by409

green bars, categories like COMPLEXTASK, MUL-410

TIPLETASK, and >THREEVARS demonstrate sig-411

nificantly higher ratios, underscoring the complex-412

ity and extensive nature of the code in these tasks.413

Contrary to expectations, the LOOP category does414

not exhibit a greater number of lines. A closer ex-415

amination reveals that this is due to the prevalent416

use of Python list comprehensions within this cat-417

egory, which accounts for the fewer lines of code418

than initially anticipated.419

This multifaceted analysis offers an understand-420

ing of the CodeInsight dataset, revealing a har-421

monious blend of linguistic diversity and compu-422

tational intricacy. These findings are crucial for423

developing computational models tailored to the 424

dataset’s unique properties, ensuring their effective- 425

ness in various linguistic and programming scenar- 426

ios. 427

In summary, the detailed metrics analysis under- 428

scores the intricate composition of the CodeInsight 429

dataset. The CodeInsight dataset, with its diverse 430

and well-structured composition, emerges as a valu- 431

able resource for advancing the frontiers of com- 432

putational linguistics, particularly in the realm of 433

code-related natural language processing. 434

4 Baselines 435

In this section, we test our dataset using state-of- 436

the-art LLMs for code generation. Considering 437

the volume and unique nature of our dataset as a 438

tool for development, we explore various model 439

evaluation methodologies. Initially, we employ 440

a zero-shot evaluation framework, augmenting it 441

with tailored pre-prompts to align closely with our 442

specialized task. Subsequently, we experiment with 443

diverse partitioning strategies of the dataset for 444

model fine-tuning, followed by assessments on the 445

remaining data. This allows us to critically ana- 446

lyze and contrast the effectiveness of fine-tuning 447

and strategic prompting in enhancing model perfor- 448

mance. 449

4.1 Experimental Setup 450

Models We evaluate the following pre-trained 451

language models: Mistral 7B (Jiang et al., 2023) ; 452

CodeLLAMA 13B (Rozière et al., 2023) and Star- 453

coder 15B (Li et al., 2023). These models have 454

been selected to provide a broad perspective on the 455

scalability of model performance in relation to their 456

size and the intricacies of code understanding and 457

generation. 458

Evaluation Metrics We follow Lai et al. (2023) 459

and measure the execution accuracy using the 460

pass@1 metric i.e. we generate one code and test 461

it agains all unit tests. We also use the BLEU score 462

(Papineni et al., 2002) and the codeBLEU score 463

(Ren et al., 2020) to complete our evaluation. 464

Model input For evaluation, we give to the 465

model the intent in natural language and its as- 466

sociated function header with its arguments. Once 467

the generation is finished, we automatically detect 468

the end of the function -when it exists- to get the 469

whole code and test it. 470
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Mistral CodeLLAMA Starcoder

Without Prompt 4.7% 44.7% 45.1%
First Prompt 4.9% 40.3% 45.1%
Second Prompt 10.1% 48.1% 46.8%

Table 3: Baselines result varying prompt method. We
report the percentage of all unit tests passed (pass@1
score).

4.2 Prompting Evaluation471

Without prompt Initially, the models were eval-472

uated using the entire dataset without any addi-473

tional context added to the natural language intent.474

The results, as presented in the Table 3, indicate a475

stark contrast in performance. Mistral showed no-476

tably lower efficiency compared to CodeLLAMA477

and Starcoder, which both passed nearly 45% of478

the unit tests. A key observation was the absence of479

a return statement in a significant proportion of the480

generated code. While Python allows for scenarios481

where not returning an explicit value is acceptable,482

such as actions or modifications without a return483

value, our dataset did not align with these scenarios.484

Mistral particularly exhibited a tendency -25% of485

the cases- to end functions with print statements486

instead of return statements, affecting its accuracy.487

First prompt In an attempt to steer the models488

towards generating return statements for develop-489

ment aid tasks, a pre-emptive text was introduced:490

“You are a powerful code generation model. Your491

job is to convert a given natural language prompt492

into Python function code and return the result.”493

Surprisingly, this prompt only marginally improved494

Mistral’s performance, with a slight increase in re-495

turn statement generation. However, it did not sig-496

nificantly affect the performance of CodeLLAMA497

and Starcoder. Notably, CodeLLAMA’s perfor-498

mance even dropped to 40%, indicating that this499

prompting method might not be optimal.500

Second prompt Aiming to further encourage the501

generation of return statements, a different prompt,502

“Return the Result.” was added to the end of the503

natural language intent. This change led to an over-504

all improvement in performance across all mod-505

els, with CodeLLAMA outperforming Starcoder.506

Mistral, although still lagging, showed an improve-507

ment, successfully passing 10.1% of the unit tests.508

4.3 Fine-Tuning Evaluation509

This segment delves into various fine-tuning config-510

urations to discern their impact on model efficacy.511

Split Pass@1 BLEU codeBLEU

20-80 48.93± 0.58% 50.03± 0.15 42.54± 0.07
40-60 52.62± 0.77% 58.14± 0.41 48.83± 0.40
60-40 53.43± 1.03% 57.93± 0.81 48.75± 0.66
80-20 53.12± 1.67% 57.94± 1.35 48.55± 1.16

Table 4: Scores for Different Splits of CodeLLaMA over
five different seed. We report the mean and standard
deviation for each metric.

Splitting Method For the assembly of our test 512

subset, we meticulously curated a collection of 513

3,094 unique problems, each bolstered by at least 514

three unit tests to ensure a thorough assessment 515

of model performance. This selection criterion 516

is grounded in the necessity for extensive test 517

case coverage, which is instrumental in evaluating 518

model robustness across a wide array of scenarios. 519

Moreover, the exclusivity of problems in the test 520

set serves to prevent potential memorization biases 521

that could arise if models were exposed to these 522

problems during training. Out of this repository, 523

we allocated different subset to evaluate the need 524

of a train set to perform on test set. 525

Fine-Tuning Details We finetuned using Lora 526

with r = 16 and α = 16. The LoRA layer incor- 527

porated a dropout rate of 0.05 and was configured 528

without bias adjustments. The batch size was estab- 529

lished at 128, encompassing a warmup phase of 100 530

steps and an overall training regimen of 400 steps. 531

The learning rate was set at 3× 10−5, with the op- 532

timization executed using the AdamW algorithm. 533

To optimize computational efficiency, training was 534

conducted using half-precision computation (FP16) 535

on an a100 GPU with 40GB memory. 536

We crafted four distinct training/test splits - 20- 537

80, 40-60, 60-40, and 80-20 - to fine-tune the 538

CodeLLaMa model.Each split was evaluated over 539

five different seeds, and the results are depicted in 540

the following table. 541

In our analysis, we noticed that the performance 542

scores for CodeLLaMa exhibit minimal variation 543

when the training set ranges between 40% to 80%. 544

Interestingly, these scores surpass those achieved 545

through prompting alone. It appears that fine- 546

tuning with just 20% of the dataset approaches 547

the performance levels seen with prompting meth- 548

ods, yet it falls short by approximately 4 percentage 549

points in the pass@1 metric and at least 6 points in 550

both BLEU and codeBLEU scores. Given our ob- 551

jective to maximize the utilization of unit tests, we 552

7



Dataset Problems Evaluation Avg. Test Cases Avg. P Words Avg. Lines of Code Solution Data Source

HumanEval 164 Test Cases 7.7 23.0 6.3 Hand-Written
MBPP 974 Test Cases 3.0 15.7 6.7 Hand-Written
APPS 5000 Test Cases 13.2 293.2 18.0 Competitions

JulCe 1981 Exact Match + BLEU – 57.2 3.3 Notebooks
DSP 1119 Test Cases 2.1 71.9 4.5 Notebooks
CoNaLa 500 BLEU – 13.8 1.1 StackOverflow
Odex 945 Test Cases 1.8 14.5 3.9 Stack Overflow + Hand-Written
DS-1000 1000 Test Cases + Surface-Form Constraints 1.6 140.0 3.6 StackOverflow

CodeInsight 1860 Test Cases 3.0 12.6 4.7 StackOverflow

Table 5: Comparison of Test Set Statistics for CodeInsight with Classic Code Generation Datasets

have determined that a 40-60 split represents the553

most optimal division for the final configuration of554

the CodeInsight dataset. This decision is grounded555

in achieving a balanced approach between training556

efficacy and test coverage.557

4.4 Results558

Category Total Starcoder CodeLLAMA Mistral
Full Dataset 1860 52.5% 53.1% 38.4%

Labels
MULTILINE 1258 51.8% 50.2% 42.0%
ASSIGN 703 47.0% 48.2% 40.5%
MULTIPLETASK 692 44.5% 42.2% 39.8%
BUILTIN 1292 51.2% 49.8% 41.9%
COND 260 46.7% 47.6% 38.3%
LOOP 573 48.9% 47.8% 40.4%
LIST 408 49.0% 49.5% 41.2%
>THREEVARS 47 53.5% 53.1% 42.3%
COMPLEXTASK 90 35.6% 34.5% 23.1%

Packages
Pandas 458 56.0% 55.2% 44.8%
Numpy 335 53.6% 52.8% 43.2%
NoImport 775 54.1% 53.9% 44.0%
Regex 133 37.5% 38.3% 26.2%

Table 6: Baselines Result on final Test Set split 40-60.
We report the pass@1 for all models.

Finally, we chose the 40-60 split to perform our559

final evaluation on our baselines. We report the560

result in Table 6. The Table highlights that fine-561

tuning has a varied impact on different models.562

Fine-tuning yields comparable outcomes for Star-563

coder and CodeLLaMa, each passing slightly over564

half of the problems. Notably, Starcoder excels in565

complex tasks like COMPLEXTASK and >THREE-566

VARS, though it drops to 30% in logical complex567

tasks. Regex, being a distinct language, poses chal-568

lenges for all models. Interestingly, Mistral shows569

significant improvement post-finetuning, adapting570

well to the task with 38.4% test pass rate. However,571

Mistral struggles with complex tasks and Regex,572

likely due to its non-code-specific pre-training, un-573

like the other two models.574

5 Related Works 575

We present a comparative analysis highlighting 576

how our evaluation set is designed to benchmark 577

against existing code generation datasets in Table 578

5, many of which focus predominantly on evalua- 579

tion data and may lack a specialized training set. 580

Notably, the average number of unit tests in CodeIn- 581

sight is much larger than other data science related 582

datasets like DSP (Chandel et al., 2022), DS-1000 583

(Lai et al., 2023) and ODEX (Wang et al., 2022). 584

More importantly, the problems in CodeInsight 585

represent unique diverse and naturalistic intent and 586

context formats that cannot be seen in any other 587

datasets as we reformate the intent but also the 588

code to create a function. Unlike generic Python 589

code generation benchmarks (MBPP (Austin et al., 590

2021) and HumanEval (Chen et al., 2021b)), we 591

note that other data science code generation bench- 592

marks have fewer test cases in general since the 593

annotators need to define program inputs with com- 594

plex objects such as square matrices, classifiers, or 595

dataframes rather than simple primitives, such as 596

floats or lists. Our dataset contains 3 test cases for 597

each test set problem which show the importance 598

of our work to test all type of possibilities. 599

6 Conclusion 600

In conclusion, CodeInsight proposes a new frame- 601

work for testing code generation, specialized in 602

assisting developers. It adeptly links natural lan- 603

guage and code in more than 3,400 problems, pro- 604

viding a robust platform for model training and 605

evaluation. The dataset’s strength lies in its di- 606

versity, expert annotation, and focus on practical 607

coding scenarios, making it a valuable asset in the 608

intersection of computational linguistics and code 609

generation research. Thanks to its categories, it 610

allows a more precise comprehension of best code 611

generation model on this task and is completely 612

compatible with other datasets for development 613

aid. 614
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Limitations615

The CodeInsight dataset, while innovative, presents616

several limitations. Firstly, its specialized nature617

in development aid may not fully represent the618

broader spectrum of coding challenges. Expert an-619

notations, while valuable, could introduce biases620

and may not capture diverse coding methodolo-621

gies. Additionally, the dataset’s current scope may622

limit its adaptability to evolving programming lan-623

guages and practices. Furthermore, its reliance on624

Python restricts its applicability across different625

programming environments. These limitations sug-626

gest areas for future expansion and improvement627

to enhance the dataset’s comprehensiveness and628

applicability in diverse coding contexts.629
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A Example of final exploitability from the762

CoNaLa dataset for filtering phase763

we include two tables that analyze the exploitability764

of examples from the CoNaLa dataset. The Table765

7)presents the 10 examples with the highest prob-766

ability of exploitability, highlighting their votes,767

titles, and whether they are exploitable. The Table768

8 displays a random selection of 10 examples from769

the same dataset, also detailing their exploitability770

probability, votes, and titles.771

P(expl) Vote Title Exploitability
0.87 +8 Sort a nested list by two elements Yes
0.85 +61 Converting integer to list in python Yes
0.85 +37 Converting byte string in unicode string Yes
0.85 +7 List of arguments with argparse Non
0.84 +20 How to convert a Date string to a DateTime object? No
0.82 +64 Converting html to text with Python Yes
0.81 +8 Ordering a list of dictionaries in python Yes
0.81 +4 Two Combination Lists from One List No
0.80 +4 Creating a list of dictionaries in python No

Table 7: Exploitability of the 10th examples with high-
est P(exploitability) from CoNaLa dataset

P(expl) Vote Title Exploitability
0.75 +11 How can I plot hysteresis in matplotlib? No
0.67 +499 How can I get list of values from dict? Yes
0.71 +7 How do I stack two DataFrames next to each other in Pandas? Yes
0.56 +16 get index of character in python list No
0.10 +7 Set x-axis intervals(ticks) for graph of Pandas DataFrame No
0.26 +6 pandas binning a list based on qcut of another list No
0.05 +1989 Determine the type of an object? Yes
0.03 +11 Saving an animated GIF in Pillow No
0.02 +5 Quiver or Barb with a date axis No
0.018 +6 Can’t pretty print json from python No
0.008 +31 For loop - like Python range function No

Table 8: Exploitability of 10th random from CoNaLa
dataset

B Normalized variable names 772

LABEL CONDITION

vari Variable
dicti Dictionary
arri Array
dfi Dataframe
stri String
lsti List
mati Matrix
inti Int

Table 9: List of normalized variable names used in our
dataset

773

The Table 9 lists normalized variable names used 774

in the dataset. These names, like vari for ’Vari- 775

able’, dicti for ’Dictionary’, and others, standard- 776

ize the naming convention across the dataset. Note 777

that vari can be used everytime, even when al- 778

ternative names could also be used and it will not 779

affect test case outcomes. However, this might in- 780

troduce a slight increase in difficulty for models to 781

correctly interpret and process the code, given the 782

variability in naming conventions. 783

C CodeInsight Categories 784

Label Condition Description
ASSIGN Includes variable assignment.
BUILTIN Uses a built-in function.
COND Has conditional statement(s).
LOOP Contains ‘for‘ or ‘while‘ loops.
STR Performs string operation(s).
LIST Uses list method(s).
MULTILINE Code exceeds two lines.
MULTIPLETASK Has ≥3 other Labels.
>THREEVARS Function with >3 parameters.
COMPLEXTASK Has ≥2 imports

Table 10: Detailed Labels for Automated Annotation

785
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D CodeInsight Statistics786

The two tables provide a detailed statistical analy-787

sis of the CodeInsight dataset, breaking down by788

Packages and Labels. The Table 11 covers various789

Python packages like Pandas, Numpy, and Regex,790

detailing the item count, average problem words,791

code lines, and unit tests. The second Table 12 ana-792

lyzes different labels such as Builtin, Assign, Cond,793

and others, also including their item count and794

average metrics. Both tables reveal the dataset’s795

complexity and diversity, offering insights into the796

typical problem structure and testing framework797

associated with different programming constructs798

and packages.799

Item Count Avg. Prob Words Avg. Code Lines Avg. Unit Tests

Full dataset 3,402 12.57± 4.25 4.58± 2.31 2.89± 0.54

NoImport 1557 12.10± 4.03 3.59± 1.87 3.04± 0.35
Pandas 819 14.08± 4.15 5.40± 1.81 3.00± 0.22
Numpy 591 12.19± 3.25 5.25± 1.99 2.99± 0.20
Re 241 12.20± 2.10 5.53± 0.77 3.01± 0.19
Scikit-learn 19 13.79± 5.51 8.11± 7.41 3.00± 0.00
Scipy 8 13.00± 4.42 5.50± 1.32 3.00± 0.00
Itertools 55 11.80± 3.46 6.40± 3.13 3.00± 0.38
Collections 39 13.05± 3.46 6.79± 2.55 3.03± 0.16
Operator 43 13.37± 2.99 5.02± 1.41 3.16± 0.48
String 8 9.00± 1.80 5.75± 1.09 3.00± 0.00
Random 14 12.00± 1.96 5.36± 2.41 2.86± 0.52
Math 8 13.13± 4.70 6.00± 1.94 2.88± 0.33

Table 11: Statistical analysis of Packages in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and Unit Tests with Standard
Deviations.

Item Count Avg. Prob Words Avg. Code Lines Avg. Unit Tests

Full dataset 3402 12.57± 4.25 4.58± 2.31 2.89± 0.54

BUILTIN 2261 12.70± 3.83 4.73± 2.20 3.02± 0.28
NOBUILTIN 1141 12.42± 3.62 4.59± 1.43 3.01± 0.29
ASSIGN 1269 13.16± 3.93 5.77± 2.35 3.00± 0.22
NOASSIGN 2133 12.26± 3.64 3.96± 1.40 3.03± 0.31
COND 471 13.39± 3.81 5.76± 2.85 3.05± 0.34
NOCOND 2931 12.49± 3.75 4.50± 1.80 3.01± 0.27
STR 885 12.80± 3.53 5.06± 2.03 3.02± 0.26
NOSTR 2517 12.55± 3.87 4.54± 2.01 3.02± 0.29
LIST 685 12.75± 3.76 4.83± 3.00 3.04± 0.30
NOLIST 2717 12.59± 3.78 4.65± 1.63 3.01± 0.27
LOOP 981 12.82± 3.83 4.78± 2.80 3.03± 0.28
NOLOOP 2421 12.53± 3.75 4.64± 1.53 3.01± 0.28

MULTILINE 2232 12.80± 3.73 5.51± 1.91 3.00± 0.24
NOMULTILINE 1170 12.20± 3.86 2.69± 0.46 3.06± 0.35
MULTIPLETASK 1236 13.16± 3.77 5.61± 2.52 3.01± 0.25
NOMULTIPLETASK 2166 12.27± 3.74 4.09± 1.39 3.02± 0.29
COMPLEXTASK 169 13.15± 3.76 6.98± 2.80 2.96± 0.27
NOCOMPLEXTASK 3233 12.59± 3.78 4.56± 1.88 3.02± 0.28
>THREEVARS 82 16.91± 4.17 5.52± 1.20 2.95± 0.38
<=THREEVARS 3320 12.51± 3.70 4.67± 2.02 3.02± 0.28

Table 12: Statistical analysis of Labels in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and Unit Tests with Standard
Deviations.
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