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Abstract

Neurons with recurrent connectivity can store memory patterns as attractor states
in their dynamics [1], forming a plausible basis for associative memory in the
brain. Classic theoretical results on fully connected recurrent neural networks
(RNNs) with binary neurons and Hebbian learning rules state that they can store
at most O (N) memories [2, 3], where N is the number of neurons. However,
under the physiological constraint that neurons are sparsely connected, this capacity
is dramatically reduced to O(K) [4, 5, 6, 7], where K is the average degree of
connectivity (estimated to be O(103 ∼ 104) in the mammalian neocortex [8]). This
reduced capacity is orders-of-magnitude smaller than experimental estimates of
human memory capacity. In this work, we propose the error-correcting columnar
network (ECCN) as a plausible model of how the brain realizes high-capacity
memory storage despite sparse connectivity. In the ECCN, neurons are organized
into “columns”: in each memory, neurons from the same column encode the
same feature(s), similar to columns in primary sensory areas [9]. A column-
synchronizing mechanism utilizes the redundancy of columnar codes to perform
error correction. We analytically computed the memory capacity of the ECCN via
a dynamical mean-field theory. The results show that for a fixed column size M ,
the capacity grows linearly with network size N until it saturates at ∝ MK. For
optimal choice of M for each N , the capacity is ∝

√
NK.

1 Introduction

RNNs with binary neurons provide concrete and well-studied models of how the brain encodes
long-term memories in synaptic connectivity [1]. During memory retrieval, the network starts near
a memory state and converges to a fixed point corresponding to the (approximately) true memory.
An important quantity is the maximal number of memories that can be stored in the plastic synaptic
weights such that they are (approximate) fixed points of the dynamics. We will call this number the
network’s memory capacity, denoted Pc. In fully connected networks, this number depends on the
learning rule but generally scales linearly with the network size N . However, in sparsely connected
networks where each neuron is connected to only (random) K neighbors, previous studies have found
that Pc scales linearly with K instead [4, 5, 6, 7]. In human cortex, K is at most O

(
104

)
(on average,

each presynaptic neuron makes 30,000 synapses [8] and many of them likely connect to the same
postsynaptic target as well as to subcortical targets). Thus, these models would predict a human
memory capacity of O

(
103 ∼ 104

)
, substantially lower than experimental estimates. For example,

the English vocabulary of a college graduate can be of size O
(
105

)
[10] (The vocabulary size in

modern large language models is O(104 − 105) [11]). In vision, human recognition memory does
not show signs of saturation after learning 104 images [12, 13]. Altogether, it is reasonable to assume
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that the number of linguistic and non-linguistic tokens in human long-term memory (which we call
here the “cortical dictionary”) is at least O(105), which is apparently inconsistent with the sparseness
of connectivity.

This discrepancy could be resolved by splitting the dictionary into many parts, each stored in a
subnetwork. However, such schemes would require complex learning rules and retrieval mechanisms.
Here, we propose and analyze the error-correcting columnar network (ECCN), which contains
a simple and biologically plausible mechanism that recovers high memory capacity in sparsely
connected networks. Neurons in the ECCN are organized into groups (“columns”); each column of
neurons collectively acts as one computational unit representing one bit of memory. This organization,
inspired by columnar structures in cortex [9], is in itself insufficient for overcoming sparse connectivity
(further details below). To leverage the within-column redundancy, the ECCN performs within-
column error correction by a fast synchronization mechanism. We compute the memory capacity of
the resultant model by building a dynamical mean-field theory using the path-integral formulation
[14] and show that the ECCN has memory capacity that is much larger than the degree of connectivity
and is consistent with the connectivity and size of circuits in human cortex.

Related work RNNs where neurons are organized into columns have been studied before [15, 5].
Most relevantly, [5] studied an RNN of threshold-linear neurons with a columnar organization
for storing memories with a hierarchical structure (each global memory is a concatenation of sub-
memories, each of which is stored in a different column). Their model does not include any error-
correcting mechanism and achieves a memory capacity at most linear in the degree of connectivity.
[15] simulated an RNN of Hodgkin-Huxley neurons organized into columns and showed that it
exhibits biologically realistic physiological properties and did not study its capacity. Therefore, to
our best knowledge, our results provide the first computational basis for storing a large number of
memories (more than linear in K) under sparse connectivity.

2 ECCNs: architecture, learning and dynamics

2.1 Columnar organization of neurons
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Figure 1: A Schematics of the ECCN. N sparsely connected neurons are divided into G columns of size
M . Neurons from each column are all on or all off in each memory. B Schematics of network dynamics. In
each iteration, the network first performs a recurrent update before doing an error-correction step. C Memory
capacity of the fully connected model (black), the sparsely connected model without synchronization (gray),
and the sparsely connected model with synchronization (ECCN; red). In all three, G is being varied while
M = 500, f = 0.1 stay fixed. K = 1000 for sparsely connected models and K = N in the fully connected
model. D Same as C, but for every value of N , a different column size M that maximizes the capacity is used
(for models without sync., optimal M is 1; for the model with sync. (ECCN) it is O(

√
N/K)).

We consider an RNN with N binary neurons divided into G columns of size M (GM = N ) and
denote the activity of the i-th neuron in the g-th column at time t as sgi (t) ∈ {0, 1} [3], i = 1, ...,M
and g = 1, ..., G (Fig. 1A) 1. The network stores P memories with a corresponding columnar
structure: Each memory pattern, indexed by µ = 1, .., P , is a G−dim binary vector,x⃗µ, where xµ

g
denotes the activity of neurons in the g-th column in the µ-th memory (Fig. 1A). Importantly, all
neurons in a given memory and column share the same activity. The memories have a low level of
activity [3]: {xµ

g}µ=1,...,P ;g=1,...,G are i.i.d. Bernoulli variables with p(xµ
g = 1) = f and f ≪ 1.

1While not discussed further here, our analysis and qualitative conclusions also apply in the case of ±1
neurons [1].
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The synaptic connection between neuron i from column g and neuron j from column g′, Jg,g′

ij , is
given by the Hebb rule with random dilution [6]

Jg,g′

ij =
1

f(1− f)K
Cg,g′

ij

P∑
µ

δxµ
g δx

µ
g′ , g ̸= g′ (1)

where δxµ
g ≡ xµ

g − f and {Cg,g′

ij }i,j=1,...,M ;g,g′=1,...,G are i.i.d. Bernoulli variables with p(Cg,g′

ij =

1) = K/N such that, on average, every neuron is connected to K others.

The columnar organization by itself is insufficient for raising the capacity beyond O(K). To see this,
consider now a network state where all neurons are in memory pattern 1. The local field for the i-th
neuron in column g is given by

hi
g =

M∑
j=1

G∑
g′ ̸=g

Jg,g′

ij x1
g′ − θ (2)

=δx1
g +

1

f (1− f)G

∑
g′ ̸=g,µ>1

δxµ
g δx

µ
g′x

1
g′ +

1

f (1− f)K

∑
j,g′ ̸=g

δCg,g′

ij

∑
µ

δxµ
g δx

µ
g′x

1
g′ − θ, (3)

where δCg,g′

ij ≡ Cg,g′

ij − K/N . The first term constitutes the O(1) signal; the second term is the
noise coming from interference from the other µ− 1 patterns; the last term is the noise coming from
connectivity dilution. At the sparse connectivity limit (K ≪ N ), interference noise has variance
Pf/G and dilution noise has variance Pf/K. These expressions show that, regardless of M , the
dilution noise overpowers the signal when P ≫ K/f , destabilizing the memory state and causing
retrieval failure. Thus, the capacity still scales with K and additional dynamics are needed to
take advantage of the columnar redundancy. In particular, we note that while the signal and the
interference noise are identical across neurons in each column, the dilution noise depends on index
i and is uncorrelated among neurons (as δCg,g′

ij is i.i.d.). Thus, in sparsely connected networks
where the dilution noise dominates, it is possible to improve the signal-to-noise via within-column
averaging, as done in the ECCN.

2.2 Error-correcting dynamics

In the ECCN, each iteration in the discrete-time dynamics consists of two steps,

recurrent update: sgi (t+ 1/2) = Θ

 M∑
j=1

G∑
g′ ̸=g

Jg,g′

ij sg
′

j (t)− θ

 (4)

error-correcting synchronization: sgi (t+ 1) = Θ

M−1
M∑
j=1

sgj (t+ 1/2)− T

 (5)

where Θ is the Heaviside step function, and θ and T are global thresholds (see below regarding their
choice). The first step is the standard recurrent update (which can be asynchronous); the second
step is an error-correcting synchronization mechanism that updates all neurons within each column
(Fig. 1B) by a “majority” vote. Biologically, this could be implemented by thalamo-cortical loops
that realize fast synchrony among neurons in cortex [16]. Note that after the synchronization step,
∀i : sgi (t+ 1) = sg(t+ 1).

2.3 Dynamical mean-field theory

We next compute the memory capacity of the model. Memory µ is considered successfully recalled if
one initializes the network near this memory state and the network converges to a state highly similar
to the memory state, with similarity measured by the overlap

mµ(t) = N−1
∑
i,g

1

f(1− f)
sgi (t)δx

µ
g , (6)

which is 1 if s is identical to the µ-th memory and zero if it is uncorrelated with it. Unlike classic
RNN models of associative memory, our model does not have an obvious energy function due to the
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error-correcting dynamics. We thus analyzed the capacity with a dynamical mean-field theory, exact
in the limits of large N,P,Kf . The mean-field equations read

sgi (t+ 1/2) = Θ
(
mµ(t)δxµ

g + ηg(t) + zgi (t)− θ
)

(7)

mµ(t+ 1) =
1

f(1− f)
⟨δxµ

g s
g(t+ 1)⟩ηg(t),{zg

i (t)},x
µ
g
. (8)

where ηg(t), zgi (t) are zero-mean Gaussian noise with variance Pf/G and Pf/K, respectively. ηg(t)
represents the interference noise; zgi (t) is uncorrelated among neurons, representing the dilution
noise. Substituting in Eq. 5 and computing mµ(t+ 1) involve averaging sg(t+ 1) over both ηg(t)
as well as the residual noise induced by zgi (t) after within-column averaging. The second averaging
can be performed analytically if we assume that the network is sparse enough (K ≪ G) such that
zgi (t) is the dominating fluctuation, resulting in

∀i : sgi (t+ 1) = Θ(mµ(t)δxµ
g + ϵg(t)− Teff) (9)

where Teff depends on θ, T (for convenience, we choose T = 0.5 in which case Teff = θ). ϵg(t) is
zero-mean Gaussian noise with variance

⟨(ϵg(t))2⟩ = Pf

G

(
1 +

πG

2KM

)
. (10)

The first term is the contribution from ηg(t). The second is the residual noise from zgi (t); compared
to the variance of zgi (t), it has been reduced by a factor M because of the synchronization.

3 Results

Figure 2: Theoretical capacity is
validated by simulations. Here, N
is increased as M is adjusted to be
at the optimal size (∝

√
N/K)

for each N . The theory predicts
that Pc increases as

√
N in this

case, which we observe. To make
simulations feasible, we take f =
0.02 in this figure.

Computing the capacity from Eqs 9 10 is analogous to the analysis
for the fully connected model [3, 17]. The ECCN capacity is given
by the condition (ϵg(t))2 = θ2/(2| log f |), resulting in

Pc =
θ2G

2f |log f |
(
1 + πG

2KM

) . (11)

This result implies that (1) for a fixed column size M , capacity
first grows linearly with the number of neurons N but saturates at
a value ∝ MK/f (Fig. 1C, red line); (2) for a given N larger
than K , the optimal size of a column is M ∝

√
N/K , which

results in a capacity growing as Pc ∝
√
NK/f (Fig. 1D, red

line; simulations in Fig. 2). The capacity can be several orders of
magnitude greater than a standard sparse model (gray lines in Fig.
1C, D). As a concrete example, to achieve memory capacity of 105
with connectivity sparsity K = 103, activity level f = 10−1, and
threshold θ = 0.5, N should be approximately 2×108 or larger (Fig.
1D), not unreasonable for the human brain (with more than 1010

cortical neurons [18]). Each of these patterns consists of ∼ 104 bits.
Under these parameters, the standard model with sparse connectivity
would have a capacity of at most ≈ 543 regardless of N .

4 Discussion

We show that high-capacity memory can be realized in sparsely
connected networks by taking advantage of redundancy in neural codes using a local error-correcting
mechanism. Our model provides a possible explanation of the high memory capacity of the human
brain, particularly in language, despite the sparseness of connectivity. The theory also suggests that
the grouping of neurons into different feature encoders in a given neural memory system could be
quantitatively linked to this system’s memory demand and connectivity sparseness.
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