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ABSTRACT

Collaboration is a key challenge in distributed multi-agent reinforcement learning
(MARL) environments. Learning frameworks for these decentralized systems
must weigh the benefits of explicit player coordination against the communication
overhead and computational cost of sharing local observations and environmen-
tal data. Quantum computing has sparked a potential synergy between quantum
entanglement and cooperation in multi-agent environments, which could enable
more efficient distributed collaboration with minimal information sharing. This
relationship is largely unexplored, however, as current state-of-the-art quantum
MARL (QMARL) implementations rely on classical information sharing rather
than entanglement over a quantum channel as a coordination medium. In con-
trast, in this paper, a novel framework dubbed entangled QMARL (eQMARL)
is proposed. The proposed eQMARL is a distributed actor-critic framework that
facilitates cooperation over a quantum channel and eliminates local observation
sharing via a quantum entangled split critic. Introducing a quantum critic uniquely
spread across the agents allows coupling of local observation encoders through
entangled input qubits over a quantum channel, which requires no explicit sharing
of local observations and reduces classical communication overhead. Further, agent
policies are tuned through joint observation-value function estimation via joint
quantum measurements, thereby reducing the centralized computational burden.
Experimental results show that eQMARL with Ψ+ entanglement converges to a
cooperative strategy up to 17.8% faster and with a higher overall score compared
to split classical and fully centralized classical and quantum baselines. The re-
sults also show that eQMARL achieves this performance with a constant factor of
25-times fewer centralized parameters compared to the split classical baseline.

1 INTRODUCTION

Quantum reinforcement learning (QRL) is emerging as a relatively new class of quantum machine
learning (QML) for decision making. Exploiting the performance and data encoding enhancements
of quantum computing, QRL has many promising applications across diverse areas such as finance
(Herman et al., 2022), healthcare (Flöther, 2023), and even wireless networks (Narottama et al.,
2023). Its multi-agent variant, quantum multi-agent reinforcement learning (QMARL), is of specific
interest because of the potential synergies between decentralized agent cooperation and quantum
entanglement. Indeed, in quantum mechanics (Einstein et al., 1971), entanglement is a distinctly
quantum property that intrinsically links the behavior of one particle with another regardless of their
physical proximity. The use of entanglement in the broader field of QML is a recent notion. Few
core works like Mitarai et al. (2018) and Du et al. (2020) use entangled layers within variational
quantum circuit (VQC) designs to link the behavior of quantum bits (or qubits) within a single
hybrid quantum model. Even in the recently proposed quantum split learning (QSL) framework
(Yun et al., 2023a), entanglement is only used locally within each VQC branch of the quantum split
neural network (QSNN) model. What has not yet been explored, however, is using entanglement to
couple the behavior of multiple QML models. In QMARL, the use of entanglement can be further
extended to the implicit coordination amongst agents during training time. Historically, in both purely
classical and quantum multi-agent reinforcement learning (MARL), classical communication, shared
replay buffers, centralized global networks, and fully-observable environment assumptions have all
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proven to be viable methods for coordinating a group policy (Yun et al., 2022a; 2023b; 2022b; Chen,
2023; Park et al., 2023; Kölle et al., 2024). Even QSL, which is not exclusive to MARL, relies
fully on classical communication between branches of the QSNN (Yun et al., 2023a). None of these
approaches, however, take advantage of the available quantum channel and quantum entanglement as
coupling mediums across decentralized agents or model branches, and opt instead for more classical
methods of coordination. In short, entanglement is one such phenomenon of quantum mechanics that
has not yet been fully explored in the context of cooperation in QMARL settings.

In contrast to prior art, we propose a novel framework dubbed entangled QMARL (eQMARL). The
proposed eQMARL is a distributed actor-critic framework, intersecting canonical centralized training
with decentralized execution (CTDE) and fully decentralized learning, that facilitates collaboration
over a quantum channel using a quantum entangled split critic. Our design uniquely allows agents to
coordinate their policies by, for the first time, splitting the quantum critic architecture over a quantum
channel and coupling their localized observation encoders using entangled input qubits. This uniquely
allows agents to cooperate over a quantum channel, which eliminates the need for observation sharing
amongst the agents, and further reduces their classical communication overhead. Also, agent policies
are tuned via joint observation-value function estimation using joint quantum measurements across
all qubits in the system, which minimizes the computational burden of a central server. As will be
evident from our analysis, eQMARL will be shown to converge to a cooperative strategy faster, with
higher overall score on average, and with fewer centralized parameters compared to baselines.

1.1 RELATED WORKS AND THEIR LIMITATIONS

QMARL is a nascent field, with few works applying the quantum advantage to scenarios with multiple
agents (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023; Kölle et al., 2024). Further,
the application of quantum to split learning (SL) is even newer, with Yun et al. (2023a) being the only
prior work. In Yun et al. (2022a) and Yun et al. (2023b), the authors integrate CTDE into actor-critic
QMARL to train localized quantum actors with a centralized quantum critic. In Yun et al. (2022b),
the authors propose a quantum meta MARL framework which uses a central meta Q-learning agent
to train other local agents. The work in Chen (2023) proposes quantum asynchronous advantage
actor-critic as a framework for training decentralized QRL agents, which leverages jointly a global
shared memory and agent-specific memories to train parallel agents. The work in Park et al. (2023)
proposes a QMARL approach for autonomous mobility cooperation using actor-critic networks with
CTDE in noisy intermediate-scale quantum (NISQ) environments with a shared replay buffer. In
Kölle et al. (2024), the authors propose a QMARL approach using evolutionary optimization with a
VQC design based on quantum classification networks and agent policies implemented as independent
VQC models with shared local information. Finally, in Yun et al. (2023a), the authors propose an
extension of SL to QML for classification tasks; where local QNN branches send predictions via a
classical channel to a central server for cross-channel pooling aggregation.

The resounding theme in Yun et al. (2022a; 2023b; 2022b); Chen (2023); Park et al. (2023); Kölle
et al. (2024); Yun et al. (2023a) is the use of independent agents or branches that communicate
and learn through centralized classical means. No prior work, however, makes use of the quantum
channel as a medium for coupling system elements or for multi-agent collaboration. Indeed, the
quantum elements serve as drop-in replacements for classical neural network (NN) counterparts, and,
importantly, the quantum channel between agents and the potential for sharing entangled qubit states
go largely under-utilized. Simply put, entanglement and the quantum channel are potentially useful
untapped cooperative resources intrinsic to QMARL that have largely unknown benefits.

1.2 CONTRIBUTIONS

The contributions of this work are summarized as follows:

• We propose a novel eQMARL framework that trains decentralized policies via a split
quantum critic over a quantum channel with entangled input qubits and joint measurement.

• We propose a new QMARL algorithm for training distributed agents via optimizing a split
critic without sharing local environment observations amongst agents or a central server.

• We show that the split nature of eQMARL reduces the computational burden of a central
quantum server by distributing and tuning parameterized quantum gates across agents in the
system, and requiring a small number of parameters for joint measurement.
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Figure 1: General design of our eQMARL framework. Dashed (solid) arrows represent quantum
(classical) communication. A split quantum critic is deployed across the agents via local VQCs
(purple) coupled via input entanglement (orange) at a trusted central server (gray). Joint quantum
measurements across all qubits (white) estimate the joint value from the locally-encoded observations.

• We empirically demonstrate that eQMARL with Ψ+ entanglement exhibits a faster conver-
gence time that can reach up to 17.8% faster, and with higher overall score, compared to
split classical and fully centralized classical and quantum baselines in environments with
full and partial information. Further, the results also show that eQMARL achieves this
level of performance and cooperation with a constant factor of 25-times fewer centralized
parameters compared to the split classical baseline.

To the best of our knowledge, this is the first application of QMARL that exploits the quantum channel
and entanglement between agents to learn without sharing local observations, while also reducing the
classical communication overhead and central computation burden of leading approaches.

2 PROPOSED EQMARL FRAMEWORK

Our proposed eQMARL framework is a new approach for training multi-agent actor-critic archi-
tectures which lies at the intersection between CTDE and fully decentralized learning. Inspired
from CTDE, we deploy decentralized agent policies which learn using a joint value function at
training time. The key to our approach, however, is that we use quantum entanglement to deploy
the joint value function estimator as a critic network which is spread across the agents to operate
in mostly decentralized fashion. An overview of our framework design is shown in Fig. 1, and the
design of the system architecture from a purely quantum perspective is shown in Fig. 2. From Fig. 1,
the two main elements of eQMARL are a central quantum server and a set of N decentralized
quantum agents N = {n}Nn=1. The decentralized agents do not communicate with each other; only
communication with the server is necessary during training. During execution, the agents interact
with the environment independently and are fully decentralized. During training, our eQMARL
framework is divided into core stages: 1) Centralized quantum input state entanglement preparation,
2) Decentralized agent environment observation encoding and variational rotations, and 3) Joint value
estimation through joint quantum measurement. Fig. 2 shows how input states are prepared using
custom pairwise entanglement operators, followed by agent VQCs, and then joint measurements.
Physically, these operations occur at different locations, however, it is equivalent to consider these as
a single quantum system, from input state preparation to final measurement. For purposes of quantum
state transmission, we assume an ideal quantum channel environment with no losses.

2.1 JOINT INPUT ENTANGLEMENT

The first stage of eQMARL creates an entangled input state for the split quantum critic network,
which couples the critic VQCs spread across the agents. Each agent n ∈ N is assigned a set of D
qubits Q(n) = {q(n)d }Dd=1 chosen based upon the environment state dimension and desired quantum
state encoding method. The number of qubits isN×D, and is represented by the union of agent qubit
sets Q =

⋃N
n=1 Q(n). We couple the agents by preparing an input state which pairwise entangles

their qubits using a variation of Bell state entanglement (Nielsen & Chuang, 2012) such that

ENTBδ(1,d),...,δ(N,d) =



(⊗N
n=2 CNOTδ(1,d),δ(n,d)

)
Hδ(1,d), if B = Φ+,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)Xδ(1,d), if B = Φ−,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)

(⊗N
k=2Xδ(k,d)

)
, if B = Ψ+,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)

(⊗N
k=1Xδ(k,d)

)
, if B = Ψ−,

(1)
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Figure 2: Quantum system design with N agents and D qubits per agent. Input entanglement
operators (orange) couple the split critic VQCs (purple, with split point marked in red), which has
cascaded layers of variational (blue), circular entanglement (yellow), and encoding (green) operators.

is a coupling operator across qubits {q(n)d }Nn=1 ⊆ Q, where B ∈ {Φ+,Φ−,Ψ+,Ψ−} is the set of
Bell states, B ∈ B is the selected entanglement scheme, δ(n, d) = (n−1)D+d is an index mapping
within Q for agent n ∈ N at qubit index d ∈ [1, D], i.e., δ(n, d) ≡ q

(n)
d ∈ Q(n). Importantly, this

operator can be applied to entangle any arbitrary set of qubits within the circuit. Note that in this
work we assume the agents receive their entangled qubits in real-time via a trusted central source, i.e.,
a central server, however, they could be pre-generated and stored in quantum memory at the agent if
desired. The quantum circuits that generate each B ∈ B are given in Appendix B, Fig. B.1.

2.2 DECENTRALIZED SPLIT CRITIC VQC DESIGN

At its core, our joint quantum critic is a split neural network (SNN) (Vepakomma et al., 2018),
with each agent’s local VQC serving as a branch. After the input qubits are entangled, they are
partitioned back into N sets of D qubits, i.e., {Q(n)}n∈N , and transmitted to each agent respec-
tively. The agents collect and encode local observations from the environment into their assigned
qubits using a VQC. We use the VQC architectures of Jerbi et al. (2021); Skolik et al. (2021) for
our hybrid quantum network design. Each agent in our QMARL setting uses the same VQC ar-
chitecture for their branch of the critic, but tunes their own unique set of parameters. The same
architecture is a reasonable assumption since all agents are learning in the same environment,
and the uniqueness of parameters tailors each branch to local observations. From Fig. 2, the
VQC design consists of L cascaded layers of variational, circular entanglement, and encoding
operators, with an additional variational layer at the end of the circuit before measurement. The
trainable variational layer performs sequential parameterized Pauli X, Y, and Z-axis rotations, and
it can be expressed as the unitary operator Uvar(θ

(n)
l ) =

⊗D−1
d=0 Rz(θ

(n)
l,d,2)Ry(θ

(n)
l,d,1)Rx(θ

(n)
l,d,0),

where θ(n) ∈ [0, 2π](L+1)×D×3 is a matrix of rotation angle parameters for agent n. The non-
trainable circular entanglement layer binds neighboring qubits within a single agent using the
operator Ucirc = CZ0,D−1

(∏D−2
d=0 CZd,d+1

)
. The trainable encoding layer maps a matrix of clas-

sical features o(n) ∈ RD×3, i.e., an agent’s environment observation, into a quantum state via
the operator: Uenc(λ

(n)
l ,o(n)) =

⊗D−1
d=0 Rz

(
ϕ
(
λ
(n)
l,d,2o

(n)
d,2

))
Ry

(
ϕ
(
λ
(n)
l,d,1o

(n)
d,1

))
Rx

(
ϕ
(
λ
(n)
l,d,0o

(n)
d,0

))
,

where λ(n) ∈ RL×D×3 is a matrix of trainable scaling parameters, and ϕ : R 7→ R is an optional
squash activation function. The entire VQC can be expressed as a single operator, as follows:

Uvqc(θ
(n),λ(n),o(n)) = Uvar(θ

(n)
L )

L−1∏
l=0

Uenc(λ
(n)
L−l−1,o

(n)) Ucirc Uvar(θ
(n)
L−l−1), (2)

which is parameterized by variational angles θ(n) and encoding weights λ(n).

2.3 CENTRALIZED JOINT MEASUREMENT

The locally encoded qubits for each agent are subsequently forwarded to a central quantum server,
which could either be the entanglement source or a different location, for joint measurement. A
joint measurement across all qubits in the system is made in the Pauli Z basis using the observable
O =

⊗N×D
d=1 Zd. The joint value for the locally-encoded observations is then estimated as follows:

V (o) ≃ w

(
1 + ⟨O⟩ψ

2

)
, (3)

wherew ∈ R is a learned scaling parameter, ⟨O⟩ψ is the expected value of the joint observable w.r.t. an
arbitrary system state |ψ⟩ across all qubits, and o = (o(n))Nn=1 is a vector of joint observations.
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Algorithm 1: Summary of eQMARL training using MAA2C for a quantum entangled split critic.
The full algorithm is provided in Appendix C, Algorithm C.1
Require: Set ofN agents N , 1 quantum entanglement source, 1 quantum measurement server

1: InitializeN critic branches Uvqc withD qubits and parameters θ(n)
critic, λ(n), ∀n ∈ N ;

2: for all episodes do
3: for all time steps τ do ▷ eQMARL training, notation oτ =

(
o(n)
τ

)N
n=1

, oτ+1 =
(
o
(n)
τ+1

)N
n=1

,

aτ =
(
a(n)
τ

)N
n=1

.
4: Central quantum server generates 2N sets ofD entangled qubits and sends to agents via quantum channel;
5: for each agent n ∈ N do
6: Apply Uvqc(θ

(n)
critic,λ

(n),o(n)
τ ) and Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ+1) from (2) locally using assigned entangled input qubits;

7: Transmit resulting qubits via quantum channel, and reward r(n)
τ via classical channel to central quantum server;

8: end
9: Perform joint measurements on qubits across all agents to estimate V (oτ ) and V (oτ+1) using (3);

10: EstimateQ(oτ ,aτ ) =
∑N

n=1 r
(n)
τ + γV (oτ+1) using discount factor γ;

11: Compute ∇xsplitLcritic and transmit via classical channel to each agent to update θ
(n)
critic locally using partial gradient from (4);

12: end
13: end

This rescaling is necessary because the range of the measured observable is ⟨O⟩ψ ∈ [−1, 1] (i.e.,
proportional to the eigenvalues of the operator O), whereas V (o) ∈ R. The critic loss with respect to
the joint value and local agent rewards is then disseminated amongst the agents for tuning of their
localized portion of the split critic network and local policy networks.

2.4 SPLIT CRITIC LOSS

The loss of the split critic is derived in a way similar to Vepakomma et al. (2018). Since the input
entanglement stage of eQMARL has no trainable parameters, it does not exist for the purposes of
SL backpropagation. We denote the point of joint quantum measurement as the split point, which
is preceded by local agent VQC branches. Each branch can be individually tuned using the partial
gradient of the loss at the split point via partial gradient w.r.t. its own local parameters. If we define
xsplit as the split point, then the partial gradient of each branch’s parameters can be estimated using
the central loss, as follows:

∇
θ
(n)
critic

Lcritic =
∂Lcritic

∂θ
(n)
critic

=
∂Lcritic

∂xsplit

∂xsplit

∂θ
(n)
critic

=
(
∇xsplitLcritic

)
︸ ︷︷ ︸

Central server

(
∇

θ
(n)
critic
xsplit

)
︸ ︷︷ ︸

Local agent

, (4)

where ∇xsplitLcritic is the gradient of the loss at the split point, and ∇
θ
(n)
critic
xsplit is the gradient from the

split point back to the start of branch n ∈ N . The value of ∇xsplitLcritic is sent classically to the agents,
and since (3) only uses a single trainable parameter, w, the classical communication overhead needed
for split backpropagation is minimal. Here, we use the Huber loss for the critic (see Appendix D).

2.5 COUPLED AGENT LEARNING ALGORITHM

Our eQMARL uses a variation of the multi-agent advantage actor-critic (MAA2C) algorithm (Pa-
poudakis et al., 2021) to train local agent policies with a split quantum joint critic. Here, we
summarize the algorithm in Algorithm 1, which focuses on the elements for necessary for tuning
the critic. In eQMARL, there are N quantum agents that are physically separated from each other
(no cross-agent communication is assumed) and one central quantum server. Each agent n ∈ N
employs a VQC, given by (2), with unique parameters θ

(n)
critic and λ(n), that serves as one branch

in the split critic network. All agents interact with the environment independently and each has its
own local data buffer – local observations are neither shared amongst agents nor with the server.
The first stage of eQMARL is fundamentally similar to traditional MAA2C. The second stage is
where the uniqueness of eQMARL comes into play. The central quantum server prepares 2N sets
of D entangled qubits using (1) for each time step τ , which are then transmitted to the agents via a
quantum channel. Each agent then encodes their local observations o(n)

τ and o
(n)
τ+1 using (2) and their

assigned entangled input qubits, and transmits the resulting qubits via quantum channel back to the
server. The agents also share their corresponding reward r(n)τ via a classical channel with the server,
which will be used for downstream loss calculations. Access to the reward is necessary for the critic
to evaluate agent policy performance. This is a reasonable assumption in eQMARL as the reward
value contains no localized environment information, and is also used in Yun et al. (2022a; 2023b);
Park et al. (2023); regardless, the classical channel will also be used to transmit partial gradients of
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the critic loss. The server then performs a joint measurement on all the qubits associated with o
(n)
τ

and o
(n)
τ+t to obtain estimates for V (oτ ) and V (oτ+1) using (3). Subsequently, the server computes

the expected cumulative reward Q(oτ ,aτ ) for the joint observations and actions at τ using V (oτ+1),
discount factor γ, and the respective rewards. The joint critic loss Lcritic is then computed, its partial
gradient w.r.t. the split point ∇xsplitLcritic is estimated, and then sent via a classical channel to each
agent to update their local weights θ(n)

critic using (4).

3 EXPERIMENTS AND DEMONSTRATIONS

3.1 ENVIRONMENTS

We use the CoinGame environment first proposed in Lerer & Peysakhovich (2018), and as imple-
mented in Phan et al. (2022), which has been widely used (Foerster et al., 2018; Phan et al., 2022;
Kölle et al., 2024), and a multi-agent variant of the canonical CartPole environment (Barto et al.,
1983) as benchmarks for MARL scenarios. In particular, CoinGame’s nature as a zero-sum game
and the independent nature of multi-agent CartPole serve as intriguing case studies for learning
cooperative strategies using full, i.e., described by a Markov decision process (MDP), and partial, i.e.,
described by a partially observable MDP (POMDP), information. In CoinGame, we evaluate agents
using three metrics: 1) Score, which aggregates all agent undiscounted rewards over a single episode,
2) Total coins collected, which provides insight into how active the agents were during the game, and
3) Own coin rate, which sheds light on how the agents achieve cooperation, specifically by being
selective on which coins they procure. In multi-agent CartPole, we evaluate agents using the total
reward metric, which aggregates the number of time steps an agent is able to maintain pole balance
over a single episode. See Appendix E for environment details.

3.2 EXPERIMENT SETUP

We compare eQMARL against three baselines that considered the current state-of-the-art configura-
tions in actor-critic CTDE: 1) Fully centralized CTDE (fCTDE), a purely classical configuration
where the critic is a simple fully-connected NN located at a central server, like in Gupta et al.; Foerster
et al., and requires agents to transmit their local observations to the central server via a classical
channel; 2) Split CTDE (sCTDE), is another purely classical configuration where the critic is a
branching classical NN encoder spread across the agents, and the central server contains a classical
NN based on Rashid et al. (2018); and 3) Quantum fully centralized CTDE (qfCTDE), a quantum
variant of fCTDE where the critic is located at a central server, as in Yun et al. (2022a; 2023b);
Park et al. (2023), and requires agents to transmit their local observations via a classical channel.
These baselines were specifically chosen to convey how a quantum entangled split critic eliminates
the transfer of local environment observations, while reducing classical communication overhead
by leveraging the quantum channel, and minimizing centralized computational complexity. In our
experiments we simplify the setup by using policy sharing across the agents, as done in Yun et al.
(2023b) and Chen (2023). All classical models were built using tensorflow, the quantum models
using tensorflow-quantum, and cirq for quantum simulations. For CoinGame, all models
were trained for 3000 epochs, with T = 50 steps, γ = 0.99. For CartPole, all models were trained
for 1000 epochs, with a maximum of 500 steps per episode. All models use the Adam optimizer with
varying learning rates. The quantum models use D = 4 qubits, L = 5 layers, and ϕ = arctan
activation. The classical models use h = 12 hidden units. See Appendices F to H for further details.

3.3 COMPARING QUANTUM INPUT ENTANGLEMENT STYLES

The first set of experiments demonstrate the effectiveness of various input entanglement styles used
for our eQMARL approach. We run two separate experiments using the CoinGame-2 environment
with both full and partial information. The score metric results for both dynamics are shown in
Fig. 3. We specifically consider score thresholds of 20 and 25 which serve as markers to aid our
discussion. In the MDP setting of Fig. 3a, we can see see that Ψ+ entanglement achieves a score
value of 20 at epoch 568, which is 4.5% faster than Ψ−. Similarly, a score of 25 is achieved by
Φ+ at epoch 1883, which is 5.2% faster than Ψ−. At the end of training, all peak scores hover
slightly above 25. Looking at the shaded standard deviation regions, we get a sense for the stability
of each entanglement style. Specifically, we see that Ψ+, Ψ−, and Φ+ have similar tight ranges until
epoch 1500, whereas both Φ− and None have far lower minimum values until around epoch 1300.
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Figure 3: Comparison of CoinGame-2 score performance with (a) MDP, and (b) POMDP dynamics
for eQMARL using Ψ+ (blue), Ψ− (orange), Φ+ (green), Φ− (red), and None (cyan) entanglement
averaged over 10 runs, with ±1 std. dev. shown as shaded regions. These figures generally show that
Ψ+ outperforms other entanglement styles across both environment dynamics.

Moreover, Ψ− appears to have large downward spikes toward the end of training. Fig. 3a shows
that there is a gap in convergence between Φ− and None, and the other styles. Looking closer, we
observe that Φ+ plateaus at earlier epochs, and Ψ− is more unstable (dropping in score) at later
epochs. Hence, we see a clear advantage for applying Ψ+. In the POMDP setting of Fig. 3b, we see
that Ψ+ achieves a score of 20 at epoch 1049, which is about 2% faster than None. Interestingly, there
is a much larger gap in convergence between Φ− and the others. A score of 25 is achieved by Ψ+ at
epoch 1745, a 10.7% increase over None, whereas both Φ+ and Φ− never reach this threshold. The
final peak scores for Ψ+ and None hover slightly above 26. The shaded standard deviation regions
exhibit a cascade effect between the styles, and, in particular, we observe that Φ− has the lowest min,
followed by Φ+ which has a slightly higher floor. These groupings are interesting as both Φ+ and
Φ− are similar in composition, only differing by a phase. Hence, we again see a clear convergence
and score advantage for using Ψ+.

Comparing the performance of the entanglement styles with both dynamics paints a picture of the
generalizability of the system as a whole. Interestingly, the worse performance of Φ+ and Φ−

suggests that same-state entanglement, |00⟩ and |11⟩, regardless of phase, results in less coupling of
agents compared to opposite-state entanglement, |01⟩ and |10⟩. The consistently high performance
of Ψ+ in both dynamics suggests that it enhances the generalizability of the system, and, since input
entanglement does not increase classical computational overhead, we see that Ψ+ entanglement can
be used to couple the agents in both dynamics while achieving comparable or higher performance.
Thus, we select Ψ+ as the entanglement scheme to be used in all subsequent experiments.

3.4 COINGAME EXPERIMENTS

We next compare the performance of eQMARL-Ψ+ with baselines fCTDE, sCTDE, and qfCTDE
using the CoinGame-2 environment with MDP state dynamics, as shown in Figs. 4a and 4c.
Initially inspecting both score (Fig. 4a) and own coin rate (Fig. 4c) metrics, we can readily see that
eQMARL-Ψ+ achieves higher performance with short convergence time. Looking at the score metric
in Fig. 4a, we see that eQMARL-Ψ+ achieves a score of 20 at epoch 568, and it converges 16.2%
faster than the next closest qfCTDE. A score threshold of 25 is reached by eQMARL-Ψ+ at epoch
2332, and it clearly converges 10.8% faster than sCTDE. Overall, we observe a 1.4% increase in
max score for eQMARL-Ψ+ compared to the next highest sCTDE. Additionally, eQMARL-Ψ+ is
smoother than qfCTDE at later epochs; suggesting that input entanglement stabilizes convergence.
Fig. 4c shows the score in terms of own coin rate, which demonstrates how a cooperative strategy
is achieved. We use thresholds of 0.95 and 1.0 as markers to gauge performance. From Fig. 4c, we
observe that eQMARL-Ψ+ rapidly achieves a 0.95 rate at epoch 376, and converges to a rate of 1.0
at epoch 2136. In other words, nearly all the coins each agent collected in the games were of their
corresponding color. In contrast, sCTDE, fCTDE, and qfCTDE converge at a much slower pace,
never achieve a rate of 1.0, and exhibit greater fluctuation at the end of the training. From this, we
observe that eQMARL-Ψ+ converges to a 0.95 rate 5.3% faster than qfCTDE, and is the only one
to achieve a 1.0 rate. Additionally, we also see that the eQMARL-Ψ+ rate curve is smoother than all
of the other approaches at later epochs, similar to the score metric.
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(d) Own coin rate - POMDP
Figure 4: Comparison of CoinGame-2 MDP and POMDP environment (a,b) score, and (c,d) own
coin rate performance for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+

(blue) averaged over 10 runs, with ±1 std. dev. shown as shaded regions. These figures generally
show that eQMARL outperforms baselines across both environment dynamics.

From Figs. 4a and 4c, we conclude that our proposed eQMARL-Ψ+ configuration learns to play the
game significantly faster than the classical variants without sharing local observations, transmitting
intermediate activations, nor tuning large NNs at the central server. The higher performance and
shorter convergence time compared to qfCTDE and both classical fCTDE and sCTDE approaches
shows that splitting the critic amongst the agents results in no apparent loss in capability. In fact,
the smoothness of the curves suggests that the input entanglement stabilizes the network over time.
Further, the own coin rate performance shows that eQMARL-Ψ+ learns a cooperative strategy
significantly faster than the classical approaches, and with less fluctuation than qfCTDE.

Figs. 4b and 4d show the results of the CoinGame-2 environment with POMDP state dynamics.
Fig. 4b shows that eQMARL-Ψ+ achieves a score value of 20 at epoch 1049, which clearly converges
24% faster considering the noticeable gap between it and qfCTDE. This demonstrates that the
branching quantum network with input entanglement shortens convergence time compared to the
fully centralized variant Fig. 4b also shows that all models achieve a score of 25, however, in this
case, eQMARL-Ψ+ converges 17.8% faster and with slightly higher score than qfCTDE. Examining
smoothness, we see much greater fluctuation between all curves compared to the MDP case. Fig. 4d
shows that eQMARL-Ψ+ achieves a 0.95 rate rapidly at epoch 773, converging 25.5% faster than
qfCTDE as the next closest. Notice how qfCTDE specifically exhibits greater fluctuation until the
0.95 rate is achieved. This again suggests that the addition of input entanglement and splitting the
quantum critic contribute to smoother convergence. The convergence near threshold 1.0 paints an
interesting picture. We see that qfCTDE actually achieves a perfect 1.0 rate at epoch 2887, whereas
eQMARL-Ψ+, sCTDE, and fCTDE never reach this rate; with the highest max value being 0.9996
for eQMARL-Ψ+ at epoch 2533. This is interesting because, despite qfCTDE achieving a higher rate,
eQMARL-Ψ+ converges to nearly the same rate 12.3% faster. This demonstrates the convergence
advantages of incorporating input entanglement into the quantum models while simultaneously
splitting the critic amongst the agents over a quantum channel.

The difference in performance between the baselines in Figs. 4b and 4d demonstrates a clear quantum
advantage for learning in the presence of partial information. Specifically, the faster convergence to
peak score and own coin rate thresholds in eQMARL-Ψ+ demonstrates that splitting the quantum
critic across the quantum channel with entangled input qubits allows the agents to learn a more
cooperative strategy without direct access to local observations. This is interesting because qfCTDE
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(a) Average Reward - MDP
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(b) Average Reward - POMDP
Figure 5: Comparison of CartPole MDP and POMDP environment average reward performance
for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 5
runs of 1000 epochs, with ±1 std. dev. shown as shaded regions. These figures generally show that
eQMARL outperforms classical baselines and is more stable than qfCTDE across both dynamics.

is centralized and has all local observations at its disposal. This additional information would initially
suggest better performance compared to approaches with only local information. However, from
Figs. 4b and 4d, we observe a clear benefit for not only splitting the quantum critic as branches across
the agents, but also introducing an entangled input state that couples their encoding behavior.

3.5 CARTPOLE EXPERIMENTS

The next set of experiments compare the performance of eQMARL with baselines using a multi-agent
variant of the CartPole environment with both MDP and POMDP state dynamics. The average
reward metric across all agents in the environment for both dynamics is shown in Fig. 5. We use
reward thresholds of the mean and max values to draw comparisons. From Fig. 5 we see that the
classical models do not perform well overall in either setting, and qfCTDE experiences high variance
in the MDP case. For MDP, qfCTDE achieves the highest mean (121.35 at epoch 189) and max
(262.43 at epoch 810) rewards overall, but does so with an extremely high standard deviation of
110.13. In contrast, eQMARL-Ψ+ achieves its mean reward of 79.11 at epoch 166, and max reward
of 134.16 at epoch 555, which are 12.2% and 31.5% faster than qfCTDE respectively. For POMDP,
we see that sCTDE achieves the highest overall max reward of 172.16 at epoch 998, but with a very
low mean of 47.59 at epoch 669. In contrast, qfCTDE achieves a max value 137.66 at epoch 648,
compared to eQMARL-Ψ+ with max 127.60 at epoch 770. eQMARL-Ψ+ achieves the highest mean
reward 82.28 at epoch 251, which is 9.1% faster than qfCTDE (mean 79.03 at epoch 276) with a
similarly low standard deviation to the MDP setting.

The key observation from the CartPole experiments is that eQMARL-Ψ+ more rapidly learns a
strategy with higher average reward than the classical variants in both MDP and POMDP settings.
Further, eQMARL-Ψ+ slightly outperforms qfCTDE in the POMDP setting with a higher average
reward, and is much more stable with a significantly lower variance in the MDP setting – all achieved
via implicit collaboration though entanglement. These results show that, without observation sharing,
eQMARL-Ψ+ can learn a similarly performant, and dramatically more stable, strategy compared to a
fully centralized quantum approach that has access to all agent observations.

3.6 ABLATION STUDY

The last set of experiments we consider is an ablation study to examine the relationship between NN
layer depth and performance, and to facilitate fair model size comparisons. In particular, we trained
fCTDE and sCTDE with hidden layer units h ∈ {3, 6, 12, 24}, and qfCTDE and eQMARL with VQC
layers L ∈ {2, 5, 10} on the CoinGame-2 environment with MDP and POMDP state dynamics
for 10 experiments of 3000 epochs each. An excerpt of the score metrics results for eQMARL and
sCTDE in the MDP setting are shown in Fig. 6, and a comparison of the critic model sizes used in
each framework is shown in Table 1. The full results are provided in Appendix H.4.

In Fig. 6 we see that eQMARL-Ψ+ with L = 5 achieves a mean score 3-times higher than L = 2, and
nearly identical to L = 10. This trend is similar for qfCTDE. Both sCTDE and fCTDE also exhibit
similar behavior for hidden units; that is the performance of h = 12 is nearly 2-times that of h = 6,
and only marginally less than h = 24. Considering the significant performance drops and increased
variation incurred by reducing, and the limited gains by increasing, both h and L, the selection of
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Figure 6: Ablation study score performance on MDP CoinGame-2 for (a) sCTDE, and (b)
eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24} and VQC layers L ∈ {2, 5, 10}, aver-
aged over 10 runs of 3000 epochs, with ±1 std. dev. shown as shaded regions. These figures generally
show that selecting parameters h = 12 and L = 5 results in optimal performance.

Table 1: Comparison of the best critic model size in number of trainable parameters for each
framework used on the CoinGame-2 environment with MDP and POMDP dynamics.

Framework Ablation Selection Number of critic parameters: MDP Number of critic parameters: POMDP

eQMARL L = 5 265 (132 per agent, 1 central) 817 (408 per agent, 1 central)
qfCTDE L = 5 265 817
fCTDE h = 12 889 673
sCTDE h = 12 913 (444 per agent, 25 central) 697 (336 per agent, 25 central)

h = 12 and L = 5 results in the most comparable performance across all baselines. Looking at
Table 1, the critic sizes reported are for the entire system. This distinction is important since both
eQMARL and sCTDE split the critic network across the agents the total size of the agent-specific
network is a fraction of the total size. For MDP dynamics, we observe that the quantum models
are smaller than the classical variants by about a factor of 4. For POMDP, we observe that the
quantum models are slightly larger overall than their classical counterparts. This is because, in
POMDP, the quantum models require a classical NN for dimensionality reduction at the input of
each encoder. While the overall system size is larger, however, the number of central parameters
is significantly reduced in the quantum cases – requiring only 1 parameter instead of 25. This is
important for scaleability because the classical cases implement a full NN at the central server and its
size scales with N . In contrast, the quantum network only has a single trainable parameter tied to the
measurement observable, which will remain fixed regardless of N .

4 CONCLUSION

In this paper we have proposed eQMARL, a novel quantum actor-critic framework for training
decentralized policies using a split quantum critic with entangled input qubits and joint measurement.
Spreading the critic across the agents via a quantum channel eliminates sharing local observations,
minimizes the classical communication overhead from sending model parameters or intermediate
NN activations, and reduces the centralized classical computational burden through optimization of
a single quantum measurement observable parameter. We have shown that Ψ+ input entanglement
improves agent cooperation and system generalizability across both MDP and POMDP environments.
For MDP, we have shown that eQMARL converges to a cooperative strategy 10.8% faster and
with a higher score compared to sCTDE. Likewise, for POMDP, we have shown that eQMARL
converges to a cooperative strategy 17.8% faster and with slightly higher score compared to qfCTDE.
Further, we have also shown that eQMARL outperforms classical baselines and exhibits more stable
performance than qfCTDE in completely independent environments. Lastly, we have shown that
eQMARL requires 25-times fewer centralized parameters compared to sCTDE. One limitation of
this work is the computational complexity of quantum simulations on classical hardware, which
is an ongoing topic of research for NISQ systems of many qubits. Indeed, many recent works on
QMARL (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023; Kölle et al., 2024) have
similar hardware requirements to ours. Further, many recent works on quantum networks (Van Meter
et al., 2022; Pettit et al., 2023; Lei et al., 2023; Azuma et al., 2023) propose methods for generating
and storing entangled qubits, which can be used to support the type of entanglement required in our
system.
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A MORE COMPREHENSIVE PRELIMINARIES

A.1 QUANTUM MUTLI-AGENT REINFORCEMENT LEARNING

We consider a reinforcement learning (RL) setting with multiple agents in environments with both
full and partial information. The dynamics of a system with full information is described by a Markov
game with an underlying MDP with tuple MMDP = ⟨N ,S,A,P,R⟩ where N is a set of N agents,
S = {Sn}n∈N is the set of joint states across all agents, A = {A(n)}n∈N is the set of joint actions,
S(n) and A(n) are the set of states and actions for agent n, P(st+1|st, at) is the state transition
probability, and R(st, at) = {r(n)t }n∈N ∈ RN is the joint reward ∀st ∈ S, at ∈ A. The dynamics
of a system with partial information is described by a Markov game with an underlying POMDP
with tuple MPOMDP = ⟨N ,S,A,P,R,Ω,O⟩ where N ,S,A,P are the same as in MMDP, however
the full state of the environment st at time t is kept hidden from the players. Instead, at time t the
agents receive a local observation from the set of joint observations Ω = {Ω(n)}n∈N , where Ω(n)

is the set of observations for agent n, with transition probability O(ot|st+1, at), ∀ot ∈ Ω, which is
dependent on the hidden environment state after taking a joint action. We treat MMDP as a special
case of MPOMDP where o(n)t = s

(n)
t , that is the observations represent the full environment state

information. Hereinafter, all notations will use o(n)t in place of the local environment state for brevity
to encompass all cases.

QMARL is the application of quantum computing to MARL. A popular approach in MARL is
through actor-critic architectures, which tune policies, called actors, via an estimator for how good
or bad the policy is at any given state of an environment, called a critic. To do this, the critic needs
access to the local agent environment observations to estimate the value for a particular environment
state. Current state of the art approaches follow the CTDE framework which deploys the critic on
a central server and the actors across decentralized agents. Because the critic and the agents are
physically separated, CTDE requires the agents to transmit their local observations to the server
for the critic to estimate the joint value, thereby publicizing potentially private local observations.
Quantum is often integrated as a drop-in replacement for classical NNs, called VQCs, within many
MARL systems. These trainable quantum circuits tune the state of qubits, the quantum analog of
classical bits, using unitary gate operations.

A.2 QUANTUM COMPUTATION

A.2.1 QUBIT STATES

A qubit is the quantum mechanical analog to the classical bit. The state of a qubit is represented as a 2-
dimensional unit vector in complex Hilbert space H ∈ C2. The computational basis is the set of states{
|0⟩ = [1 0]

T
, |1⟩ = [0 1]

T
}

which forms a complete and orthonormal basis in H (meaning
⟨0|1⟩ = ⟨1|0⟩ = 0 and ⟨0|0⟩ = ⟨1|1⟩ = 1). All qubit states can be expressed as a linear combination
of any complete and orthonormal basis, such as the computational basis, which is called superposition.
We adopt Dirac notation to describe arbitrary qubit states |ψ⟩ = [α β]

T
= α |0⟩+β |1⟩ ∈ H (called

“ket psi”) where |α|2+ |β|2 = 1, their conjugate transpose ⟨ψ| = |ψ⟩† = [α∗ β∗] = α∗ ⟨0|+β∗ ⟨1|
(called “bra psi”), the inner product ⟨ψ1|ψ2⟩ = α∗

1α2 + β∗
1β2, and the outer product |ψ1⟩⟨ψ2| =
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[
α1α

∗
2 α1β

∗
2

β1α
∗
2 β1β

∗
2

]
. Quantum systems with D qubits can also be represented by extending the above

notation using the Kronecker (tensor) product where H =
⊗D−1

d=0 Hd = (C2)⊗D is the complex
space of the system state |ψ⟩ =

⊗D−1
d=0 |ψd⟩ for all |ψD⟩ ∈ HD. States that can be represented as

either a single ket vector, or a sum of basis states are called pure states. For example, |0⟩, |1⟩, and
1√
2
(|0⟩+ |1⟩) are all pure states in H.

A.2.2 QUANTUM GATES

A quantum gate is an unitary operator (or matrix) U , such that UU† = I, where I is the identity
matrix, acting on the space H which maps between qubit states. Here, we use the single-qubit Pauli
gates

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (A.1)

with their parameterized rotations

RX(θ) = e−i
θ
2X , RY (θ) = e−i

θ
2Y , RZ(θ) = e−i

θ
2Z , (A.2)

where θ ∈ R[0, 2π], the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
, (A.3)

the 2-qubit controlled-X (CX , also called CNOT) gate

CX1,2 = CNOT1,2 =

[
I 0
0 X

]
, (A.4)

and the controlled-Z (CZ) gate
CZ1,2 =

[
I 0
0 Z

]
, (A.5)

which are both controlled by qubit 1 and target qubit 2, where 0 is a 2× 2 square matrix of zeros.

A.2.3 ENTANGLEMENT

Consider two arbitrary quantum systemsA andB, represented by Hilbert spaces HA and HB . We can
represent the Hilbert space of the combined system using the tensor product HA⊗HB . If the quantum
states of the two systems are |ψ⟩A and |ψ⟩B , then the state of the combined system can be represented
as |ψ⟩A ⊗ |ψ⟩B . Quantum states that can be cleanly represented in this form, i.e., separated by tensor
product, are said to be separable. Not all quantum states, however, are separable. For example,
if we fix a set of basis states {|0⟩A , |1⟩A} ∈ HA and {|0⟩B , |1⟩B} ∈ HB , then a general state in
the space of HA ⊗HB can be represented as |ψ⟩ =

∑
a∈{0,1}

∑
b∈{0,1} ca,b |a⟩A ⊗ |b⟩B , which is

separable if there ca,c = cacb, ∀a, b ∈ {0, 1}, producing the isolated states |ψ⟩A =
∑
a∈{0,1} ca |a⟩A

and |ψ⟩B =
∑
b∈{0,1} cb |b⟩B . If, however, there exists one ca,c ̸= cacb, then the combined state is

inseparable. In such cases, if a state is inseparable, it is said to be entangled.

The four Bell states B = {|Φ+⟩AB , |Φ−⟩AB , |Ψ+⟩AB , |Ψ−⟩AB} form a complete basis for two-
qubit systems HA ⊗HB , and have the form:∣∣Φ+

〉
AB

=
1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B) , (A.6)∣∣Φ−〉

AB
=

1√
2
(|0⟩A |0⟩B − |1⟩A |1⟩B) , (A.7)∣∣Ψ+

〉
AB

=
1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B) , (A.8)∣∣Ψ−〉

AB
=

1√
2
(|0⟩A |1⟩B − |1⟩A |0⟩B) . (A.9)

Since it is impossible to separate the states of B into individual systems HA and HB , the four Bell
states are entangled. In particular, the Bell states are pure entangled states of the combined system
HA ⊗HB , but cannot be separated into pure states of systems HA and HB . Additionally, the four
Bell states can be generated by quantum circuits using a combination of Pauli operators with a
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constant |0⟩A |0⟩B input state as follows:∣∣Φ+
〉
AB

= CNOT1,2 (H ⊗ I) |0⟩A |0⟩B , (A.10)∣∣Φ−〉
AB

= CNOT1,2 (H ⊗ I) (X ⊗ I) |0⟩A |0⟩B , (A.11)∣∣Ψ+
〉
AB

= CNOT1,2 (H ⊗ I) (I⊗X) |0⟩A |0⟩B , (A.12)∣∣Ψ−〉
AB

= CNOT1,2 (H ⊗ I) (X ⊗X) |0⟩A |0⟩B (A.13)

A.2.4 PROJECTIVE MEASUREMENTS AND OBSERVABLES

A projective measurement is a Hermitian and unitary operator O, such that O = O† and OO† = I,
called an observable. The outcomes of a measurement are defined by an observable’s spectral
decomposition

O =

M−1∑
m=0

λmPm, (A.14)

where M = 2n represents the number of measurement outcomes for n qubits, and m is a specific
measurement outcome in terms of eigenvalues λm and orthogonal projectors Pm in the respective
eigenspace. According to the Born rule Born (1926); Logiurato & Smerzi (2012); Masanes et al.
(2019), the outcome of measuring an arbitrary state |ψ⟩ will be one of the eigenvalues λm, and the
state will be projected using the operator Pm/

√
p(m) with probability:

p(m) = ⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ (A.15)
The expected value of the observable with respect to the arbitrary state |ψ⟩ is given by:

Eψ[O] =

M−1∑
m=0

λmp(m) = ⟨O⟩ψ (A.16)

A.2.5 COMMUTING OBSERVABLES

A set of observables {O1, . . . , OK} share a common eigenbasis (i.e., a common set of eigenvectors
with unique eigenvalues) if

[Oi, Oj ] = OiOj −OjOi = 0 ∀i, j ∈ [1,K] (A.17)
i.e., their pair-wise commutator is zero. In such cases the observables in the set are said to be pair-wise
commuting, which in practice means that all observables in the set can be measured at the same time.

B JOINT INPUT ENTANGLEMENT CIRCUITS

We use a variation of Bell state entanglement to couple the input qubits of the agent VQC branches.
Specifically, we entangle based on the set of four Bell states B ∈ {Φ+,Φ−,Ψ+,Ψ−}, as outlined in
(A.10–A.13), using the circuits as shown in Fig. B.1. The circuits in Fig. B.1 generate a quantum state
across D qubits, which has the combined Hilbert space H⊗D. In each of the entangled operators, we
select one qubit, q1, to serve as the master control, and all others, q2, . . . , qD, serve as targets. The
control qubit functions identically to canonical Bell state entanglement. Here, we extend the gate
operations that normally apply to the second qubit, in an H⊗H system, to all qubits in H⊗D−1. The
resulting state is an entangled pure state in H⊗D.

C FULL ALGORITHM

The following algorithm is an expanded version of Algorithm 1, as shown in Algorithm C.1. In
Algorithm C.1, we include all operations necessary for training both the agents and the split critic.
In eQMARL, there is a set of N quantum agents N that are physically separated from each other
(no cross-agent communication is assumed) and one central quantum server. Each agent n ∈ N
employs an actor policy network π

θ
(n)
actor

(a|o(n)
t ) (which can either classical or quantum in nature)

with parameters θ(n)
actor, and a VQC given by (2) with unique parameters θ(n)

critic and λ(n) that serves
as one branch in the split critic network. In our experiments we simplify the setup by using policy
sharing across the agents, as done in Yun et al. (2023b) and Chen (2023); in other words, θ(n)

actor =

θ
(k)
actor ∀n, k ∈ N . All agents interact with the environment independently and each has its own

local data buffer D(n) populated with local observations, actions, rewards, and next observations

15
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(a) Φ+

(b) Φ−

(c) Ψ+

(d) Ψ−

Figure B.1: Diagrams of joint entanglement operators based on the the four Bell states (a) Φ+, (b)
Φ−, (c) Ψ+, (d) Ψ−.

represented by the 4-tuple
(
o
(n)
t , a

(n)
t , r

(n)
t ,o

(n)
t+1

)
for any instant in time t. These local data are

not shared amongst agents, with only the reward and action being communicated classically to
the central quantum server (the action only being necessary for policy sharing). Since we employ
policy sharing, the final step in eQMARL with this in place is to also estimate the advantage value
A(oτ ,aτ ) = Q(oτ ,aτ )− V (oτ ) using the existing value and expected reward estimates, compute
actor loss Lactor, compute the gradient of the loss w.r.t the shared actor parameters ∇θactorLactor, and
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update θactor. Note that here we use Huber loss for the critic, and for the actors we use entropy-
regularized advantage loss. The loss functions are described in detail in Appendix D.

Algorithm C.1: Full eQMARL training using MAA2C for a quantum entangled split critic.
Require: Set of N agents N , 1 quantum entanglement source, and 1 quantum measurement server

1: Initialize N agent actor networks with shared parameters θactor and local replay buffer D(n) = {}, ∀n ∈ N ;
2: Initialize N critic branches Uvqc with D qubits and parameters θ(n)

critic, λ
(n), ∀n ∈ N ;

3: for episode=1, MaxEpisode do
▷ Localized environment interaction.

4: t = 0;
5: done = False;
6: while done ̸= True and t < max steps do
7: for each agent n ∈ N do
8: Get local observation o

(n)
t from environment;

9: Compute π
θ
(n)
actor

(a|o(n)
t ) and sample a

(n)
t ;

10: Apply action a
(n)
t and get reward r

(n)
t and next observation o

(n)
t+1;

11: Update local replay buffer D(n) = D(n) ∪
{(

o
(n)
t , a

(n)
t , r

(n)
t ,o

(n)
t+1

)}
;

12: If o(n)
t+1 is terminal then communicate done = True;

13: end
14: t = t+ 1;
15: end

▷ eQMARL framework for training.
16: for τ ∈ [0, t− 2] do
17: Central quantum server generates 2N sets of D entangled qubits and transmits to agents via

quantum channel (could be prepared a priori and stored in quantum memory);
18: for each agent n ∈ N do
19: Apply Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ ) and Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ+1) from (2) locally using assigned

entangled input qubits;
20: Transmit via quantum channel the qubits after applying Uvqc to central quantum server;
21: Transmit via classical channel the reward r

(n)
τ and action a

(n)
τ at the current time step to

central quantum server (only reward if policy sharing is not used);
22: end

▷ Using notation oτ =
(
o
(n)
τ

)N
n=1

, oτ+1 =
(
o
(n)
τ+1

)N
n=1

, aτ =
(
a
(n)
τ

)N
n=1

.
23: Perform joint measurements on qubits across all agents to estimate V (oτ ) and V (oτ+1) using (3);
24: Estimate Q(oτ ,aτ ) =

∑N
n=1 r

(n)
τ + γV (oτ+1) using discount factor γ;

25: Estimate A(oτ ,aτ ) = Q(oτ ,aτ )− V (oτ ) for policy sharing;
26: Compute ∇θactorLactor and update θactor for policy sharing;
27: Compute ∇xsplitLcritic and transmit via classical channel to each agent to update θ(n)

critic locally using
partial gradient from (4);

28: end
29: end

D LOSS FUNCTIONS

All of our actors and critics are trained using the same loss functions for each experiment. For the
critics, we train using Huber loss

Lcritic =
1

T − 1

T−1∑
τ=0

{
1
2 (V (oτ )−Q(oτ ,aτ ))

2 if V (oτ )−Q(oτ ,aτ ) ≤ δ,

δ|V (oτ )−Q(oτ ,aτ )| − 1
2δ

2 otherwise,
(D.1)

where δ controls the point in which the loss function turns from quadratic to linear. In this work we
use δ = 1. For the actors, we deploy policy sharing amongst the agents. As such, all agents us the
same policy parameters, and thus the loss must aggregate the individual losses of each agent. We
train using the entropy-regularized advantage function

Lactor =
1

n(T − 1)

N∑
n=1

T−1∑
τ=0

[
−A(o(n)τ , a(n)τ ) loge p(a

(n)
τ ) + αH(a(n)τ )

]
, (D.2)
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where H(a(n)τ ) = −p(a(n)τ ) loge p(a
(n)
τ ), (D.3)

is the entropy of selecting an action, α controls the influence of entropy, n ∈ N is the agent index,
and p(a(n)τ ) is the probability of chosen action at time step τ .

E ENVIRONMENT SPECIFICATIONS

E.1 COINGAME

(a) Diagram of CoinGame-2 environment.

(b) MDP observation dynamics for blue player.

(c) POMDP observation dynamics for blue player.

Figure E.1: Example of (a) CoinGame-2 environment with two players, colored red and blue, and
a single coin colored blue, with visualization of observation matrix for the blue player with (b) MDP
dynamics, and (c) POMDP dynamics. Grid squares in (b) and (c) colored grey denote a 0 value, and
colored blue/red squares denote a 1 value.

In eQMARL, we train decentralized agents using the CoinGame-2 environment first proposed
in Lerer & Peysakhovich (2018), and as implemented in Phan et al. (2022). The CoinGame-2
environment pits two agents of different colors (red and blue) on a 3× 3 tile grid to collect coins with
corresponding color. An example of CoinGame-2 is shown in Fig. E.1a. Agent observations are a
sparse matrix o(n) ∈ {0, 1}4×3×3 ∀n ∈ N with 4 features each with a 3 × 3 grid world as shown
in Fig. E.1b. The features specifically are: 1) A grid with a 1 indicating the agent’s location, 2) A
grid with a 1 to indicate other agent locations, 3) A grid with a 1 for the location of coins that match
the current agent’s color, and 4) A grid with a 1 for all other coins (different colors). Since these
observations include all information about the game world, the game is considered fully observable
and is described by an MDP. We also experiment with a partially observable variant of this game
which removes the second feature from agent observations (i.e., the location of other agents), which is
a space matrix o(n) ∈ {0, 1}3×3×3 ∀n ∈ N . In this partially observed setting, the game is described
by a POMDP since agents cannot see each other and thus the full state of the game board is unknown.
An example of this observation space is shown in Fig. E.1c. The agents can move along the grid by
taking actions in the space A(n) = {north, south, east,west} ∀n ∈ N . Each time an agent collects a
coin of their corresponding color their episode reward is increased by +1, whereas a different color
reduces their episode reward by −2. The goal for all agents is to maximize their discounted episode
reward. The details of the environment are summarized in Table E.1.

We evaluate agents using three metrics: score, total coins collected, and own coin rate. The score
metric aggregates all agent undiscounted rewards over a single episode

S =

N∑
n=1

T−1∑
t=0

r
(n)
t (E.1)

where n ∈ N is the agent index, t ∈ [0, T − 1] is the episode time index, T is the episode time limit,
and r(n)t is the undiscounted agent reward at time t. The total coins collected metric gives insight
into how active the agents were during the game

TC =

N∑
n=1

T−1∑
t=0

c
(n)
t (E.2)

where c(n)t is the total number of coins collected by agent n at time t. Finally, the own coin rate
metric gives insight into how the agents achieve cooperation, specifically by being selective on which
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Table E.1: Specifications for CoinGame-2 environment with MDP and POMDP dynamics.

Parameter Value

Observation for agent n at time t • MDP: o
(n)
t ∈ {0, 1}4×3×3 (dimension is 36)

• POMDP: o
(n)
t ∈ {0, 1}3×3×3 (dimension is 27)

Number of players (N ) 2
Time limit (T ) 50
Action for agent n at time t a

(n)
t ∈ {north, south, east,west}

Reward for agent n at time t r
(n)
t =


+1, if agent n collects coin of same color,
−2, if agent n collects coin of different color,
0, otherwise

Discount factor (γ) 0.99
Entropy coefficient (α) 0.001

coins they procure
OCR =

N∑
n=1

T−1∑
t=0

k
(n)
t /c

(n)
t (E.3)

where k(n)t is the number of coins collected of the corresponding agent’s color.

E.2 CARTPOLE

Figure E.2: Example of an N -agent CartPole environment colored red, blue, and green.

We also train eQMARL using a multi-agent variant of the CartPole environment as proposed in
Barto et al. (1983). The multi-agent CartPole environment runs multiple independent instances of
the single-agent variant in parallel. This environment setup is an interesting case study for multi-agent
learning because the observations of each agent are completely independent from one another; that
is, observations from sibling environments are not strictly necessary to develop a strategy for a
specific environment instance. This allows us to examine the impacts of both explicit and implicit
cooperation between independent agents. An example of CartPole with N agents is shown in
Fig. E.2. Agent observations are a matrix o(n) ∈ R4×1 ∀n ∈ N with 4 real-valued features. The
features are: 1) Cart position with range [−4.8, 4.8], 2) Cart velocity with range (−∞,∞), 3) Pole
angle in radians with range [−0.418, 0.418], and 4) Pole angular velocity with range (−∞,∞).
The pole is considered balanced if the pole angle feature stays within the range [−.2095, .2095]
radians, and the cart position feature stays within the range [−2.4, 2.4]. These observations include
all information about the environment, and thus the environment under these conditions is considered
fully observable and described by an MDP. We also consider a partially observed variant of the
environment which removes the second feature from agent observations (i.e., the cart velocity), which
is a matrix o(n) ∈ R3×1 ∀n ∈ N . The environment is described by a POMDP in this setting since
agents are unaware of their cart’s velocity, and thus the full state of the environment is unknown.
Notably, in this multi-agent variant of the environment the agent observations in both settings are
independent from each other. The agents interact with the environment by taking actions in the space
A(n) = {left, right} ∀n ∈ N , which correspond to pushing their cart to the left and right respectively.
Similar to the observations, the agent actions are also independent and do not affect neighboring
environments. Each time step an agent is successful in keeping their pole balanced they receive a +1
episode reward. The episode terminates when an observation falls outside of the balanced range. The
goal for all agents is to maximize their expected total episode reward (i.e., the number of time steps
they are able to keep the pole balanced). The details of the environment are summarized in Table E.2.
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Table E.2: Specifications for multi-agent CartPole environment with MDP and POMDP dynamics.

Parameter Value

Observation for agent n at time t • MDP: o
(n)
t ∈ R4×1

• POMDP: o
(n)
t ∈ R3×1

Number of players (N ) 2
Time limit (T ) 500
Action for agent n at time t a

(n)
t ∈ {left, right}

Reward for agent n at time t r
(n)
t =

{
+1, if pole for agent n is balanced,
0, otherwise

We evaluate the agents using the average reward metric, which aggregates all agent rewards over a
single episode

AR =
1

N

N∑
n=1

T−1∑
t=0

r
(n)
t (E.4)

where n ∈ N is the agent index, t ∈ [0, T − 1] is the episode time index, T is the episode time limit,
and r(n)t is the agent reward at time t.

F QUANTUM ENCODING TRANSFORMATIONS

To encode environment observations into our quantum models we first apply a transformation on the
observation matrix. This allows us to reduce its dimensions, thereby making it usable for the limited
number of qubits available to NISQ systems, while also changing the range of matrix values to be
suitable for input into one of the Pauli rotation gates.

F.1 COINGAME-2 ENVIRONMENT

MDP dynamics For the CoinGame-2 environment with fully observed state dynamics we use
the transformation fMDP(oi×j×k) =

∑
k

oi×j,k2
−k (F.1)

which sums over the last dimension of the observation matrix oi×j×k with shape i×j×k. In the case
of CoinGame-2 with MDP dynamics the observations have shape 4× 3× 3. This transformation
reduces the dimensions to 4× 3× 1, which can be directly fed into the encoder architecture outlined
in Section 2.2.

POMDP dynamics For the CoinGame-2 environment with partially observed state dynamics our
quantum models employ a small classical NN at the input of the encoder for dimensionality reduction,
as done in Chen (2023). In particular, we use the transformation

fPOMDP(oi×j×k) = wijk×3d · flatten(oi×j×k)T + b (F.2)
which flattens the observation matrix oi×j×k with shape i × j × k and passes it through a single
fully-connected NN layer with parameters wijk×3d and b, and d is the number of qubits. Note that,
in POMDP, the trainable quantum encoding parameters λ(n) are no longer necessary. In this case,
we set λ(n) = 1, where 1 is a matrix of ones.

F.2 CARTPOLE ENVIRONMENT

Observation scaling For the CartPole environment we apply a constant observation scaling to
both MDP and POMDP dynamics to normalize their values. In particular, we use the transformation

f(oi×j) = oi×j/vi (F.3)
where v = [2.4, 2.5, 0.21, 2.5]⊺ (F.4)
is a constant scaling vector.

POMDP dynamics For the CartPole environment with partially observed state dynamics we
apply an additional transformation similar to the CoinGame-2 POMDP case to reduce input feature
dimensions. In particular, we apply the transformation,

fPOMDP(oi×j) = wij×3d · flatten(oi×j)T + b (F.5)
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which flattens the observation matrix oi×j with shape i × j and passes it through a single fully-
connected NN layer with parameters wij×3d and b, and d is the number of qubits.

G MODEL HYPERPARAMETERS

The hyperparameters for each of the models trained in our experiments, as discussed in Section 3.2,
are shown in Tables G.1 and G.2. Table G.1 shows the parameters for the quantum models, as used in
qfCTDE and eQMARL. Table G.2 shows the paramters for the classical models, as used in fCTDE
and sCTDE.

Table G.1: Hyperparameters for both qfCTDE and eQMARL, actor and critic, used on both the
CoinGame-2 and multi-agent CartPole environments with MDP and POMDP dynamics.

Parameter Value

NN encoder transform activation • MDP: N/A
• POMDP: linear

Flag λ(n) as trainable
• MDP: True
• POMDP: False

Number of qubits per agent (D) 4
(eQMARL only) Input entanglement type (B) for critic Ψ+

Number of layers (L) in Uvqc 5
Squash activation (ϕ) arctan
Inverse temperature (β) 1
Optimizer Adam
Learning rate [0.01, 0.1, 0.1]

Table G.2: Hyperparameters for both fCTDE and sCTDE, actor and critic, used on both the
CoinGame-2 and multi-agent CartPole environments with MDP and POMDP dynamics.

Parameter Value

NN hidden units (h) [12]
Optimizer Adam
Learning rate 0.001
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H EXPERIMENT RESULTS

H.1 ENTANGLEMENT STYLE COMPARISON

The empirical results for the entanglement comparison experiment, as discussed in Section 3.3, are
shown in Tables H.1 and H.2. Table H.1 shows the score metric statistics mean, standard deviation,
and 95% confidence interval for each of the entanglement styles Ψ+, Ψ−, Φ+, Φ−, and None.
Table H.2 shows the convergence time, in epochs, to each of the score thresholds 20, 25, and also to
the maximum score value (reported parenthetically in italics) for each of the entanglement styles.
The best values in each column are highlighted in bold.

Fig. H.1 shows the training results for the entanglement styles as discussed in Section 3.3. In
particular, we provide the full set of performance metrics of score, total coins collected, own coins
collected, and own coin rate, as outlined in Appendix E, (E.1–E.3). Fig. H.1 shows the results for
the entanglement styles Ψ+, Ψ−, Φ+, Φ−, and None, as discussed in Section 3.3. The left column,
Figs. H.1a, H.1c, H.1e, and H.1g, shows the performance for MDP environment dynamics. Similarly,
the right column, Figs. H.1b, H.1d, H.1f, and H.1h, shows the performance for POMDP environment
dynamics.

Table H.1: Comparison of entanglement style score performance for MDP and POMDP
CoinGame-2 environment dynamics using mean, standard deviation, and 95% confidence interval
statistics. Best values are highlighted in bold.

Score

Dynamics Entanglement Mean SD 95% CI

MDP

Ψ+ 21.11 2.65 (20.92, 21.29)
Ψ− 20.85 2.70 (20.61, 21.07)
Φ+ 21.02 2.54 (20.77, 21.30)
Φ− 20.43 3.85 (20.20, 20.59)
None 20.00 3.80 (19.75, 20.20)

POMDP

Ψ+ 18.49 3.91 (18.15, 18.74)
Ψ− 17.77 4.05 (17.40, 18.09)
Φ+ 17.01 6.28 (16.74, 17.25)
Φ− 14.73 7.63 (14.45, 15.01)
None 18.57 4.26 (18.28, 18.82)

Table H.2: Comparison of entanglement style score convergence (in number of epochs) for MDP and
POMDP CoinGame-2 environment dynamics. Best values are highlighted in bold.

Epochs to Score Threshold

Dynamics Entanglement 20 25 Max (value)

MDP

Ψ+ 568 2332 2942 (25.67)
Ψ− 595 1987 2849 (25.45)
Φ+ 612 1883 2851 (25.51)
Φ− 691 2378 2984 (25.23)
None 839 2337 2495 (25.12)

POMDP

Ψ+ 1049 1745 2950 (26.28)
Ψ− 1206 2114 2999 (25.95)
Φ+ 1269 - 2992 (24.1)
Φ− 1838 - 2727 (22.8)
None 1069 1955 2841 (26.39)
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(d) Total coins collected - POMDP
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Figure H.1: Comparison of CoinGame-2 MDP and POMDP environment performance metrics
(a,b) score, (c,d) total coins collected, (e,f) own coins collected, and (g,h) own coin rate for eQMARL
with varying input quantum entanglement styles Ψ+ (blue), Ψ− (orange), Φ+ (green), Φ− (red), and
None (cyan) averaged over 10 runs, with ±1 std. dev. shown as shaded regions.
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H.2 COINGAME BASELINES COMPARISON

The empirical results for eQMARL-Ψ+, qfCTDE, fCTDE, and sCTDE, as discussed in Section 3.4,
are shown in Tables H.2 and H.4 and Fig. H.2. The performance for MDP dynamics is shown in
Figs. H.2a, H.2c, H.2e, and H.2g, and for POMDP dynamics is shown in Figs. H.2b, H.2d, H.2f,
and H.2h. Importantly, Fig. H.2 shed light on when, and how, a cooperative strategy is achieved by
each framework. Further, through Fig. H.2 we also observe the relationship between the metrics
outlined in Appendix E.1. This connection is important, as a single metric in isolation only paints
part of the performance picture. A full comparison can be achieved by considering the metrics as as
group, and, particularly, the relationship between agent score, i.e., the sum of rewards, and own coin
rate, i.e., the priority given to coins of matching color.

Table H.3: Comparison of model score and own coin rate performance for MDP and POMDP
CoinGame-2 environment dynamics using mean, standard deviation, and 95% confidence interval
statistics. Best values are highlighted in bold.

Score Own Coin Rate

Dynamics Framework Mean SD 95% CI Mean SD 95% CI

MDP

eQMARL-Ψ+ 21.11 2.65 (20.91, 21.37) 0.9640 0.0347 (0.9606, 0.9667)
qfCTDE 19.41 6.23 (19.22, 19.60) 0.9398 0.1020 (0.9367, 0.9423)
sCTDE 14.18 2.69 (13.87, 14.53) 0.8504 0.0928 (0.8436, 0.8558)
fCTDE 12.36 4.41 (12.01, 12.66) 0.8202 0.1379 (0.8153, 0.8255)

POMDP

eQMARL-Ψ+ 18.49 3.91 (18.24, 18.75) 0.9226 0.0831 (0.9173, 0.9281)
qfCTDE 16.79 4.66 (16.43, 17.19) 0.9040 0.1135 (0.8991, 0.9094)
sCTDE 13.70 2.79 (13.33, 14.07) 0.8466 0.0985 (0.8407, 0.8525)
fCTDE 13.46 3.24 (13.08, 13.75) 0.8443 0.1026 (0.8389, 0.8495)

Table H.4: Comparison of model score and own coin rate convergence (in number of epochs) for
MDP and POMDP CoinGame-2 environment dynamics. Best values are highlighted in bold.

Epochs to Score Threshold Epochs to Own Coin Rate Threshold

Dynamics Framework 20 25 Max (value) 0.95 1.0 Max (value)

MDP

eQMARL-Ψ+ 568 2332 2942 (25.67) 376 2136 2136 (1.0)
qfCTDE 678 - 2378 (23.38) 397 - 2832 (0.9972)
sCTDE 1640 2615 2631 (25.3) 1511 - 2637 (0.9864)
fCTDE 1917 - 2925 (23.67) 1700 - 2909 (0.9857)

POMDP

eQMARL-Ψ+ 1049 1745 2950 (26.28) 773 - 2533 (0.9997)
qfCTDE 1382 2124 2871 (26.09) 1038 2887 2887 (1.0)
sCTDE 1738 2750 2999 (25.33) 1588 - 2956 (0.9894)
fCTDE 1798 2658 2824 (25.49) 1574 - 2963 (0.9894)
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(d) Total coins collected - POMDP
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(e) Own coins collected - MDP
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(f) Own coins collected - POMDP
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(g) Own coin rate - MDP
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(h) Own coin rate - POMDP

Figure H.2: Comparison of CoinGame-2 MDP and POMDP environment performance metrics
(a,b) score, (c,d) total coins collected, (e,f) own coins collected, and (g,h) own coin rate for fCTDE
(orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 10 runs, with
±1 std. dev. shown as shaded regions.
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H.3 CARTPOLE BASELINES COMPARISON

The empirical results for eQMARL-Ψ+, qfCTDE, fCTDE, and sCTDE, as discussed in Section 3.5,
are shown in Tables H.5 and H.6 and Fig. H.3. The performance for MDP dynamics is shown in
Fig. H.3a, and for POMDP dynamics is shown in Fig. H.3b. Importantly, from this we see that the
classical models do not perform well overall in either setting, and qfCTDE experiences high variance
in the MDP case. Even though sCTDE has a higher reward at the end of training in the POMDP case,
it converges considerably more slowly, experiencing high variance at the end, and requires over 400
more epochs achieve a mean value less than half of eQMARL. In contrast, eQMARL is more stable
than qfCTDE, and more rapidly converges to a higher mean reward than fCTDE and sCTDE across
both settings.

Table H.5: Comparison of model average reward performance for MDP and POMDP CartPole
environment dynamics using mean, standard deviation, and 95% confidence interval statistics.

Reward

Dynamics Framework Mean SD 95% CI

MDP

eQMARL-Ψ+ 79.11 50.62 (77.26, 81.01)
qfCTDE 121.35 110.13 (117.95, 124.59)
sCTDE 16.07 22.15 (15.90, 16.21)
fCTDE 15.14 17.43 (15.06, 15.22)

POMDP

eQMARL-Ψ+ 82.28 44.24 (80.80, 83.91)
qfCTDE 79.03 44.06 (76.27, 81.02)
sCTDE 47.59 29.71 (44.71, 50.86)
fCTDE 11.62 32.02 (11.45, 11.82)

Table H.6: Comparison of model average reward convergence (in number of epochs) for MDP and
POMDP CartPole environment dynamics.

Epochs to Average Reward Threshold

Dynamics Framework Mean (value) Max (value)

MDP

eQMARL-Ψ+ 166 (79.11) 555 (134.16)
qfCTDE 189 (121.35) 810 (262.43)
sCTDE 23 (16.07) 978 (24.64)
fCTDE 9 (15.14) 44 (19.43)

POMDP

eQMARL-Ψ+ 251 (82.28) 770 (127.60)
qfCTDE 276 (79.03) 648 (137.66)
sCTDE 669 (47.59) 998 (172.16)
fCTDE 9 (11.62) 999 (28.83)
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(a) Average Reward - MDP
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Figure H.3: Comparison of CartPole MDP and POMDP environment average reward performance
for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 5
runs of 1000 epochs, with ±1 std. dev. shown as shaded regions.
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H.4 ABLATION STUDY

The empirical results for the ablation study as discussed in Section 3.6 are shown in Table H.7 and
Figs. H.4 and H.5. Looking at the statistics in Table H.7 and the convergence in Figs. H.4 and H.5, we
can see that our selection of h = 12 hidden units for the baselines and L = 5 for the quantum models
is fair because of the significant performance drops and increased variation incurred by reducing, and
the limited gains by increasing, the number of units and layers. This choice for architecture results in
the most comparable performance across all baselines. From the results of this ablation study, we can
more concretely represent a comparison of the final sizes of the actor and critic models, in number of
trainable parameters, for eQMARL, qfCTDE, fCTDE, and sCTDE. The final selected model sizes, in
number of trainable parameters, are shown in Table H.8.

Table H.7: Ablation study with classical model hidden layer units h ∈ {3, 6, 12, 24} and quantum
VQC layers L ∈ {2, 5, 10}. Compares model size in number of trainable critic parameters with score
and own coin rate performance for MDP and POMDP CoinGame-2 environment dynamics using
mean, standard deviation, and 95% confidence interval statistics.

Score Own Coin Rate

Dynamics Framework Params Mean SD 95% CI Mean SD 95% CI

MDP

fCTDE-3 223 2.42 2.35 (2.35, 2.49) 0.6720 0.2024 (0.6685, 0.6769)
fCTDE-6 445 7.41 3.46 (7.19, 7.65) 0.7658 0.1414 (0.7610, 0.7712)
fCTDE-12 889 12.36 4.41 (12.09, 12.67) 0.8202 0.1379 (0.8139, 0.8262)
fCTDE-24 1777 17.63 2.58 (17.25, 17.91) 0.8823 0.0751 (0.8770, 0.8875)

sCTDE-3 229 3.24 3.09 (3.16, 3.33) 0.6852 0.1991 (0.6821, 0.6897)
sCTDE-6 457 8.54 3.67 (8.29, 8.78) 0.7857 0.1327 (0.7804, 0.7924)
sCTDE-12 913 14.18 2.69 (13.90, 14.60) 0.8504 0.0928 (0.8454, 0.8553)
sCTDE-24 1825 18.18 2.41 (17.84, 18.53) 0.8936 0.0673 (0.8896, 0.8979)

qfCTDE-L2 121 6.58 3.92 (6.47, 6.66) 0.8482 0.1921 (0.8435, 0.8518)
qfCTDE-L5 265 19.41 6.23 (19.23, 19.59) 0.9398 0.1020 (0.9366, 0.9426)
qfCTDE-L10 505 22.08 2.22 (21.91, 22.26) 0.9691 0.0247 (0.9665, 0.9723)

eQMARL-Ψ+-L2 121 5.38 3.74 (5.30, 5.46) 0.8271 0.2213 (0.8234, 0.8300)
eQMARL-Ψ+-L5 265 21.11 2.65 (20.92, 21.35) 0.9640 0.0347 (0.9601, 0.9667)
eQMARL-Ψ+-L10 505 22.45 2.23 (22.28, 22.62) 0.9719 0.0219 (0.9685, 0.9745)

POMDP

fCTDE-3 169 2.98 2.47 (2.91, 3.05) 0.7082 0.1890 (0.7039, 0.7123)
fCTDE-6 337 7.15 3.06 (6.95, 7.37) 0.7711 0.1388 (0.7658, 0.7781)
fCTDE-12 673 13.46 3.24 (13.09, 13.76) 0.8443 0.1026 (0.8396, 0.8506)
fCTDE-24 1345 17.38 2.65 (17.06, 17.73) 0.8889 0.0752 (0.8840, 0.8945)

sCTDE-3 175 2.68 2.60 (2.61, 2.74) 0.6834 0.1942 (0.6792, 0.6866)
sCTDE-6 349 6.35 3.53 (6.18, 6.54) 0.7677 0.1488 (0.7633, 0.7725)
sCTDE-12 697 13.70 2.79 (13.44, 13.99) 0.8466 0.0985 (0.8411, 0.8515)
sCTDE-24 1393 17.97 2.60 (17.67, 18.25) 0.8948 0.0723 (0.8898, 0.9004)

qfCTDE-L2 745 12.34 7.56 (12.09, 12.60) 0.8335 0.2058 (0.8277, 0.8386)
qfCTDE-L5 817 16.79 4.66 (16.45, 17.04) 0.9040 0.1135 (0.8994, 0.9091)
qfCTDE-L10 937 18.14 4.28 (17.83, 18.31) 0.9476 0.0660 (0.9443, 0.9508)

eQMARL-Ψ+-L2 745 17.14 3.98 (16.77, 17.47) 0.8834 0.1106 (0.8769, 0.8896)
eQMARL-Ψ+-L5 817 18.49 3.91 (18.23, 18.80) 0.9226 0.0831 (0.9172, 0.9272)
eQMARL-Ψ+-L10 937 19.09 3.44 (18.86, 19.46) 0.9485 0.0603 (0.9458, 0.9523)

Table H.8: Comparison of the best model size in number of trainable parameters for each framework
used on CoinGame-2 environment with MDP and POMDP dynamics.

Number of Trainable Parameters

Framework Ablation Selection Model MDP dynamics POMDP dynamics

eQMARL
L = 5 Actor 136 412
L = 5 Critic 265 (132 per agent, 1 central) 817 (408 per agent, 1 central)

qfCTDE
L = 5 Actor 136 412
L = 5 Critic 265 817

fCTDE
h = 12 Actor 496 388
h = 12 Critic 889 673

sCTDE
h = 12 Actor 496 388
h = 12 Critic 913 (444 per agent, 25 central) 697 (336 per agent, 25 central)
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(g) eQMARL-Ψ+ - MDP - Score
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(h) eQMARL-Ψ+ - POMDP - Score
Figure H.4: Score performance for ablation study using CoinGame-2 for (a,b) fCTDE, and (c,d)
sCTDE, and (e,f) qfCTDE, and (g,h) eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24} and
VQC layers L ∈ {2, 5, 10}, averaged over 10 runs of 3000 epochs, with ±1 std. dev. shown as shaded
regions.
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(g) eQMARL-Ψ+ - MDP - Own Coin Rate
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(h) eQMARL-Ψ+ - POMDP - Own Coin Rate
Figure H.5: Own Coin Rate performance for ablation study using CoinGame-2 for (a,b) fCTDE, and
(c,d) sCTDE, and (e,f) qfCTDE, and (g,h) eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24}
and VQC layers L ∈ {2, 5, 10}, averaged over 10 runs of 3000 epochs, with ±1 std. dev. shown as
shaded regions.

29


	Introduction
	Related works and their limitations
	Contributions

	Proposed ours framework
	Joint input entanglement
	Decentralized split critic vqc design
	Centralized joint measurement
	Split critic loss
	Coupled agent learning algorithm

	Experiments and demonstrations
	Environments
	Experiment setup
	Comparing quantum input entanglement styles
	CoinGame experiments
	CartPole Experiments
	Ablation Study

	Conclusion
	More comprehensive preliminaries
	Quantum mutli-agent reinforcement learning
	Quantum computation
	Qubit states
	Quantum gates
	Entanglement
	Projective measurements and observables
	Commuting Observables


	Joint input entanglement circuits
	Full algorithm
	Loss functions
	Environment specifications
	CoinGame
	CartPole

	Quantum encoding transformations
	CoinGame-2 Environment
	CartPole Environment

	Model hyperparameters
	Experiment results
	Entanglement style comparison
	CoinGame baselines comparison
	CartPole baselines comparison
	Ablation Study


