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Abstract

Many recent machine learning tasks focus to de-
velop models that can generalize to unseen distri-
butions. Domain generalization (DG) has become
one of the key topics in various fields. Several
literatures show that DG can be arbitrarily hard
without exploiting target domain information. To
address this issue, test-time adaptive (TTA) meth-
ods are proposed. Existing TTA methods require
offline target data or extra sophisticated optimiza-
tion procedures during the inference stage. In
this work, we adopt Non-Parametric Classifier
to perform the test-time Adaptation (AdaNPC).
In particular, we construct a memory that con-
tains the feature and label pairs from training do-
mains. During inference, given a test instance,
AdaNPC first recalls k closed samples from the
memory to vote for the prediction, and then the
test feature and predicted label are added to the
memory. In this way, the sample distribution in
the memory can be gradually changed from the
training distribution towards the test distribution
with very little extra computation cost. We the-
oretically justify the rationality behind the pro-
posed method. Besides, we test our model on
extensive numerical experiments. AdaNPC sig-
nificantly outperforms competitive baselines on
various DG benchmarks. In particular, when the
adaptation target is a series of domains, the adap-
tation accuracy of AdaNPC is 50% higher than
advanced TTA methods. Code is available at
https://github.com/yfzhang114/AdaNPC.
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(a) AdaNPC memorizes features and labels of source domain
instances. During inference, each arrival target sample will be
classified by a KNN classifier, where the nearest neighbors are
searched in the memory. For test-time adaptation, the target
feature and prediction will be further stored in the memory bank.
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(b) Strong knowledge expandability of AdaNPC. When our
model is trained on a domain dy and adapted to target domains
di,...,ds successively, advanced TTA methods only bring
margin performance improvement, however, AdaNPC and its
variants boost the accuracy significantly.

Figure 1. An illustration example of AdaNPC that proposes to
utilize a non-parametric classifier for test-time adaptation.

1. Introduction

The classic machine learning models generally suffer from
degraded performance when the training and test data are
not from the same distribution. Many researchers con-
sider developing out-of-distribution (OOD) generalization
approaches (e.g., disentanglement (Zhang et al., 2022a),
causal invariance (Arjovsky et al., 2020; Zhang et al.,
2022c), and adversarial training (Ganin et al., 2016; Li et al.,
2018c).), in which models are trained on multiple source
domains/datasets and can be directly deployed on unseen
target domains.

In recent studies (Zhang et al., 2022d; Dubey et al., 2021),
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people show that robustifying a model to any unknown distri-
bution is almost impossible without utilizing target samples
during inference. The test-time adaptive (TTA) methods are
then proposed to utilize target samples with computation-
ally practical constraints. However, current TTA methods
suffer from several drawbacks. (1) Overhead computation:
existing TTA methods either need batches of target data
for gradient updates (Sun et al., 2020; Wang et al., 2020a;
Zhang et al., 2021b) and/or an additional model for fine-
tuning (Sun et al., 2020; Dubey et al., 2021; Zhang et al.,
2022d), which are prohibited when target sample arrives
one by one in the online manner. (2) Domain forgetting:
existing TTA methods require making changes in the trained
model. The model would gradually lose the prediction abil-
ity of the training domains, indicating that some knowledge
loss is inevitable. This issue is especially significant when
conducting inference for a series of domains. Let us con-
sider a simple test on Rotated MNIST dataset (Ghifary et al.,
2015), we perform test-time adaptation to dy, ds, ..., ds seri-
ally using the latest TTA methods, T3A (Iwasawa & Matsuo,
2021) and Tent (Wang et al., 2020a). In Figure 1(b), we
observe that the generalization ability on d5 of all existing
methods is poor even after adaptation in the first four do-
mains. We also summarize the generalizability in the source
domain dy in Figure 2 drops significantly. That is, current
TTA methods cannot adapt to a series of online domains
and easy to forget historical knowledge.

To this end, we propose a non-parametric adaptation ap-
proach, debuted AdaNPC. In particular, AdaNPC trains the
model with a K nearest neighbor (KNN) based loss instead
of the cross-entropy loss, which minimizes the influence of
outliers / irrelevant samples on the potentially noisy training
dataset. After training, AdaNPC constructs a memory bank
to maintain the trained feature and label pairs of the training
dataset. When switching to the inference stage, the feature
of a given test sample is first computed using a forward
procedure, and then, based on similarity, the top k closed
samples in the memory bank are collected to generate a
voting prediction. Finally, the new testing pair (feature and
predicted label) is added to the memory bank. We illus-
trate the whole procedure in Figure 1(a). As dense vectors’
searching can be efficiently implemented with logarithmic
dependence in total sample size (Johnson et al., 2019), the
computation cost of AdaNPC in the inference stage is al-
most the same as a single forward pass and is significantly
smaller than backward gradient updates. On the other hand,
our approach separates the feature extraction procedure and
individual sample memorization. It facilitates us to maintain
the information among source and target domains simulta-
neously. The main contributions of this paper are:

1. We investigate a non-parametric paradigm to perform test-
time adaptation by storing features and predicted pseudo-
labels of target instances. The proposed AdaNPC can be
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Figure 2. Re-evaluation on the source domain d, after the
model is adapted to unseen target domain d;. When adapted to

more target domains, the performance of existing TTA methods on
do drops drastically while AdaNPC always attains a high accuracy.

incorporated with any representation learning models.

2. We theoretically derive target domain error bounds under
both the covariate shift setting and the posterior shift setting.
Our theoretical results show that a non-parametric classifier
can explicitly reduce the domain divergence and makes
the target error bound tighter; Besides, AdaNPC, which
incorporates online target instances into the memory bank,
will further reduce the target risk.

3. We perform extensive experiments on 5 popular OOD
benchmarks with 3 different backbones, where the results
show that AdaNPC (1) achieves competitive generaliza-
tion performance in both target and source domains; (2)
beats most existing test-time adaptation methods by a large
margin; (3) using non-parametric classifier attains faster
convergence and performs well even without fine tuning,
which is promising for large pre-trained models.

4. AdaNPC has some unique benefits, such as interpretabil-
ity: by analyzing the neighborhood samples chosen by
AdaNPC, we can interpret how past knowledge is used for
inference results, and knowledge expandability: AdaNPC
stores all the data features that have been seen and avoid
catastrophic forgetting.

2. Related Work

Test-Time adaptive methods (Liang et al., 2023) are re-
cently proposed to utilize target samples. The taxonomy
of Test-Time adaptive methods is summarized in Appendix
Table 7, where Test-Time Training methods design proxy
tasks during tests such as self-consistence (Zhang et al.,
2021b), rotation prediction (Sun et al., 2020) and need extra
models; Test-Time Adaptation methods adjust model pa-
rameters based on unsupervised objectives such as entropy
minimization (Wang et al., 2020a; Zhang et al., 2022b)
or update a prototype for each class (Iwasawa & Matsuo,
2021). Domain adaptive method (Dubey et al., 2021) needs
additional models to adapt to target domains. Both the Test-
Time adaptation methods and the domain-adaptive methods
need batches of target samples. Single sample generaliza-
tion methods are recently proposed, which need to learn
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an adapt strategy from source domains, i.e., (Xiao et al.,
2022) formulates the adaptation to the single test sample as
a variational Bayesian inference problem and uses the meta-
learning pipeline to learn the adaptative strategy; (Zhang
et al., 2022d) introduces specific classifiers for different
domains and adapt the voting weight for test samples dy-
namically. All aforementioned approaches either require
accessing the batch of data or need gradient computation
to update the models, which is computationally inefficient
especially in the online setting with steaming data. Our pro-
posed AdaNPC performs Test-Time adaptation by storing
the test features and predicted labels and doesn’t have those
restrictions. See more related work in Appendix A.

3. Methods

Problem setting. In domain generalization (DG), we con-
sider a source domain dataset Dg = { (%, y%)}"2, is collect
from different environments or domains, where (z%,y¢) is
sampled i.i.d. from the distribution Dg and n; is the total
sample size. The DG aims to train a predictor f on source
domain dataset Dg and to perform well on a testing unseen
dataset Dy = {(z%)}!*, that sampled from a distribution
Dy, which is inaccessible during training. We formally de-
fine the classification error and its variants on D7, whereas
definitions for other domains are the same.

Definition 1. (Regression function.) In binary classifica-
tion setting®, given a distribution Dy, the regression func-
tions are defined to represent the conditional distributions.

(Classification error.) The error of hypothesis f S
X — {0, 1} under the distribution Dy is defined as

ev(f) = E@y~ny [If (@) =yl = Pu({(z,y) : f(z) # y})(z)

where Py (A) denotes the probability of an event A in Dy.

“Theories and examples in this work consider binary classi-
fication for easy understanding and can be easily extended to
multi-class setting.

Definition 2. (excess error and its dual form.) Given the
Bayes classifier under Dy : f;(x) = {nu(z) > 1/2}, the
excess error of f is defined as

Eu(f) = ev(f) —ev(ft)

3)
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We then introduce the proposed method using the following
pipelines: representation learning, making predictions, test-
time memory augmentation, and some useful tricks.

Learning representative features. Let hy(-) be the encoder

parameterized by 6. We denote By p.(z) := {a®}I's,
as the ordered index set in the source domain dataset Dg
for any x, formally as follows: satisfying ||hg(z,1)) —
ho(@)ll2 < ho(@a@) — ho(@)[2 < -+ < [lho(Tame ) —
ho(z)||2. We denote By g ps € Bg ps as the subset only
contains the first k elements in By p.
We consider optimizing the KNN loss function £y nyn:
1 ey o pg (e P (Wi /T) Hyi = y;}
min - Zlog

ZJEBk,e,DS(ﬂfi) exp (wi; /7)

)

C)

ho(wi) " he(x;)
ko (zi)ll2]lhe (@)l
between hg(x;) and hy(z;) and 7 > 0 is the temperature

parameter to scale the influence of w;;.

where w;; = is the consine similarity

With this configuration, features with the same label are
zoomed closer and different labeled features are pushed
away. Compared to cross-entropy loss, the Eq.(4) training
paradigm leads to better representations, which is verified
in (Feng et al., 2022) and our experiments. The optimiza-
tion of Eq.(4) is highly nontrivial as By, g, p, changes with
model parameters 6 in a non-differentiable manner. In this
paper, we adopt an EM algorithm to solve it approximately.
We only periodically update By, 9. py and keep them fixed
for the remaining time, in which we can easily apply the
standard optimization schemes in PyTorch or TensorFlow.
In practice, one may also consider ignoring this step and
directly using the pre-trained model with conventional meth-
ods (e.g., ERM (Vapnik, 1999), IRM (Arjovsky et al., 2020),
and CORAL (Sun & Saenko, 2016)). In the experimental
section, we show that we don’t even need to fine-tune the
pre-trained model in the source domain, and AdaNPC can
still achieve good generalization performance.

Making prediction by non-parametric classifier. Given an
unseen sample x,,, we denote the prediction from AdaNPC
as follows:

Nk (2,,) = softmax( Z

JEBk, 0, M(Tw)

wy;1{y;}), ()

where 1{y; } is the one-hot class label of ; for j > 1, w,,;
is the cosine similarity between hg(x,,) and hg(z;), and M
is the memory bank and will be specified later. Intuitively,
the predictor from Eq.(5) can be viewed as a voting proce-
dure among the memorized samples similar to x,,. We first
collect the k closest samples to x,, in the memory bank. The
cosine similarity w,y, is then computed between k£ selected
samples and z,. The final decision is the label with the
largest summed weights. In this predictor, we explicitly
use the samples in the memory bank. It gives us better
interpretability than conventional approaches.

Non-parametric test-time adaptation by memory aug-
mentation. At the beginning of the evaluation procedure,
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all source domain images are embedded to make up the
Memory bank M = {(hg(x;),y;)};=,. During inference,
assume each z, arrives one by one online and we must
report the classification result once z,, arrives. After classifi-
cation, if the prediction confidence of n(x,,) is greater than
a predefined margin, then the memory set will be augmented
by M = M + (ho(zy), Mk (zy)). The overall pipeline of
AdaNPC is shown in Figure 1(a).

Some useful tricks. 1. BN retraining. The performance
of a non-parametric classifier highly depends on the model
representation, to attain more powerful representations and
maintain the simplicity of AdaNPC, we optionally add one
BN layer before the classifier. Then during the evaluation,
only the BN layer parameter will be re-trained by minimiz-
ing the prediction entropy of ny (z,,). 2. Efficient memory
bank construction M. Although there are many advanced
techniques for memory construction, such as momentum
update in MoCo (He et al., 2020) or Faiss (Johnson et al.,
2019), for presentation simplicity consideration, we only
adopt the simplest method via computation all pair-wise
distance here and hold the usage of advance KNN searching
algorithm for the future work. Moreover, to facilitate the
training efficiency on the large source dataset, we consider
to construct M with a relatively small size for faster train-
ing, where | M| < ns. M during training will be updated
by the first-in-first-out (FIFO) strategy by each minibatch
representation.

4. Theoretical Analysis

In this section, we theoretically verify that using KNN as our
classifier can explicitly reduce domain divergence. Besides,
incorporating target instances, namely the non-parametric
Test-Time adaptation, will further reduce the unseen tar-
get error. Before we discuss the major results, we first
state some necessary assumptions and notions. Refer to
Appendix B for missing proofs and detailed explanations.

Assumption 1. (Strong Density Condition) Given pa-
rameter f_, iy, ¢y, Cp,, Ty > 0, we assume D, Dy are
absolutely continuous with respect to the Lebesgue mea-
sure in RY, and B(x,r) = {a' :|| 2’ — z ||< 7} is the ball
centered on x with radius v. We assume that Vz,, € Dy
and r € (0,7,] we have

ADg N B(zy, )] > cpA[B(2y, )]
A[Dy N B(xu,7)] > ¢ AB(Ty, )]

<—d1DS < phy; <—d]DU <
H— d\ M5 f— N s

where ) is the Lebesgue measure in Euclidean space.

Strong Density Condition is a commonly assumed con-
dition when analyzing KNN classifier (e.g., (Audibert &

Tsybakov, 2007; Cai & Wei, 2021)). Intuitively, Assump-
tion 1 requires the divergence between supports of ID g and
DDy being bounded. When ¢, = 1, for each x € Dy, its
neighbor ball B(x, ) is completely within Dg. In contrast,
when ¢, ~ 0, B(z,r) and Dg are nearly disjoint. We then
consider two common assumptions that parameterize the
behavior of ny ().

Assumption 2. (Smoothness) Let ny be the classification
function and C' be a positive constant. For all feasible
x, 2’ we have |ny(x) —ny (') < C || x — 2’ ||.

Assumption 2 describes that 7 is Lipschitz continuous. Our
analysis is capable with weaker condition, such as (a, C,, )-
Holder condition (Cai & Wei, 2021) for some o € (0, 1]
and C,, > 0. For notation simplicity, we hold it for future
work.
Assumption 3. (Low Noise Condition). Let [3,C3
be positive constants and we assume Dy satisfies
P.py (’nU(x) = %‘ < t) < Cﬁtﬁforallt > 0.

The low noise condition is first proposed in (Tsybakov,
2004), which is also named margin assumption (Cai & Wei,
2021). The assumption places a constraint on 7y around
nu(x) ~ 1/2. A larger 8 pushes ny far from 1/2 and then
the classification task will be easier.

4.1. KNN classifier reduces domain divergence

We characterize domain divergence reduction of KNN clas-
sifier in the following proposition 1.
Proposition 1. Let Dg and Dy be the source and target
domain respectively. Per Assumptions 1 and 2, the risk of
hypothesis f on the unseen target domain is bounded by

ev(f) < ks + e(f) + O (W(Ds, Dy)),  (6)

where W(-,-) is the Wasserstein 1-distance , kg =
ming ey (f)+es(f), and we use O(-) to hide the constant
dependence.

Furthermore, if we switch from Dg to a sampled distri-
bution Q) of Dg around the neighborhood of Dy, i.e.,
Q = Upep, B(x,r2) with v, < 1, such that each
B(x,r,) contains exact k elements, and assume that the
unseen distribution Dy; is finite with cordiality np,,. The
risk of hypothesis f on Dy is then improved to

) ) ok 1/d
GU(f)SHQ+€Q(f)+O<<) >, @)
Cpll—Teams

with probability at least 1 — exp(—% + lognp,, ), where
ko = ming ey (f) + eq(f) and d is the feature represen-
tation dimension.

Inequality Eq.(6) is adopted from (Shen et al., 2018), which
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indicates the error of a given hypothesis f bounded by three
terms, the minimized combined error g, the error in the
source domain eg ( f ) and a term on the order of a constant
term W(Dg,Dy). When source domain Dy is far away
from the target domain Dy, the O(W(Dg, Dy )) becomes

the dominating quantity and leads to loose upper bound.

When switching to the non-parametric classifier, in Eq.(7)

we replace O(W (D, Dy )) by a quantity explicitly decay-

ing in ns. Intuitively, by constructing €2, we only keep the
samples in the source domain with enough similarity to the
target domain and it would naturally short the distance from
W(Dg,Dy) to W(2, Dg). We also want to highlight that
Proposition 1 should imply the non-parametric classifier
may be able to take more benefits from the large pretraining
source dataset (Figure 5(c)). See the Appendix for a detailed
discussion of the influence of k and c,,.

4.2. AdaNPC further reduces the target risk

In this section, we develop the target excess error bounds un-

der the covariate-shift and the posterior-shift settings, which
further articulate all factors that affect the performance of

our algorithm (Proposition 2) and the benefits of using on-

line target data (Proposition 3).

Proposition 2. We consider ny and ng to be the KNN

predictor in form of Eq.(5) with all w; fixed as % Per
assumptions 1-3, the following results hold with high-

probability when choosing k = O(logny).

Under the covariate-shift setting, we have ny = ng =1
for the source and target domains, and

R 1\ /4 B\ /4 1+6
< —
an<o((3) (o))
1/4 1/d\ 1+5
o<< 1 > +(bgnS) ) |
logng CuMls

®)

Under the posterior-shift setting, the regression functions
nu and ng are different and

1+8

. 1 1/4 loig 1/d
Eu(f) L0 ( ) F <75> + Cada g
log ns CuNs

C)]

where SUPz, eDy |775 - 77U| < Cada-

We make a few remarks on the excess risk upper bound.

1. The upper bound is affected by %, ¢,,, n,, which is sim-

ilar to the discussion of Proposition 1. Differently, when
setting k = O(log ns), the excess error bound reduces to 0
under the covariate-shift setting when n; — oo in a high
probability manner.

2. Proposition 2 shows a trade-off on the choice of k. Al-

though a small k reduces the domain divergence or repre-
senting similarity (k/ c#ns)l/ ¢ it is well known that the
model will become too specific and fails to generalize well.

3. When regression functions are different, an additional
term is introduced in the bound, namely the adaptivity gap
SUp,, ey, 115 (7w) — Nu ()|, which measure the differ-
ence of two regression functions. The gap can be estimated
and reduced by existing methods (Zhang et al., 2022d).

4. For presentation simplification, we use the equal weighted
w,; instead of cosine similarity between feature represen-
tations. In fact by choosing proper k, all cosine similarity
values can be safely assumed lower bounded on O(k~°) for
some 0 > 0. Therefore one may introduce extra assumption
on the lower bound of w,,; to obtain a extended version of
Proposition 2 with adaptive w,;.

As discussed in Section 3, the proposed AdaNPC is a special
kind of Test-Time adaptation method that can utilize the
online target samples to improve prediction generalization.
We next theoretically verify that, by incorporating the online
target samples into the KNN memory bank, the excess error
bound is further reduced.
Proposition 3. Denote n,, as the number of target in-
stances in the KNN memory bank and the KNN classi-
fier finds the ks nearest neighbors in Dg and k,, nearest
neighbors in Dy during inference with ks + k, = k. Per
Assumptions 1-3, under the posterior-shift setting,

R 1\ /4 k. B, 1/d
gU<f)go<(k> +k<cws) 4

- - 1/d s kSC 1+
k \c'n, g eda

“w

(10)

where sup,, cp,, s — Mu| < Cada and similar results
also hold under the covariate-shift setting.

We want to highlight that the above error bound is tighter
than the case without updating the memory bank. The de-
tailed discussion is deferred to section B.4 in Appendix.

S. Experiments

In our experiments, BN retraining and KNN loss are not
used by default for fair comparisons. The model name will
be AdaNPC +BN when BN retraining is used and the effect
of the KNN loss is verified in the ablation study.

5.1. Experimental settings

Domain generalization benchmarks and baselines. We
use five popular OOD generalization benchmark datasets:
Rotated MNIST (Ghifary et al., 2015), PACS (Li et al.,
2017), VLCS (Torralba & Efros, 2011), Terralncog-
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Method RMNIST VLCS PACS DomainNet  Terralncognita  Avg
ERM (Vapnik, 1999) 97.8+£0.1 77.6+03 86.7+0.3 41.3 +£0.1 53.0+03 71.3
IRM (Arjovsky et al., 2020) 97.5+02 769+0.6 845+1.1 28.0 £ 5.1 50.5 +£0.7 67.5
GDRO (Sagawa et al., 2020) 979+0.1 7744+05 87.1+0.1 334+03 524 +0.1 69.6
CORAL (Sun & Saenko, 2016) 98.0+£0.0 77.7+0.2 87.1+0.5 41.8 £0.1 52.8+0.2 71.5
DANN (Ganin et al., 2016) 979+0.1 79.7+0.5 852+4+0.2 383 +0.1 50.6 + 0.4 70.3
MTL (Blanchard et al., 2021) 979+0.1 777405 86.7+0.2 40.8 £ 0.1 522+04 71.1
SagNet (Nam et al., 2021) 979+£00 77.6+0.1 864+04 40.8 £ 0.2 525+04 71.1
ARM (Zhang et al., 2021a) 98.1£0.1 77.84+03 858+0.2 36.0 0.2 51.2+0.5 69.8
VREXx (Krueger et al., 2021) 979+0.1 78.1+02 87.24+0.6 30.1 +3.7 514+0.5 68.9
Fish (Shi et al., 2022) 979+0.1 77.84+0.6 858+0.6 434 + 0.3 50.8 £04 71.1
Fishr (Rame et al., 2022) 97.8£0.1 782402 869402 41.8 £0.2 536 +04 T1.7
AdaNPC 985 +0.1 795+24 888+0.1 42.9 +£0.5 53.9 +£0.3 72.7
AdaNPC +BN 984+0.1 80.2+0.2 88.9+0.1 43.1 £0.8 54.0 +£ 0.1 72.9
Table 1. Out-of-distribution generalization performance.
L adapted to a series of domains. Specifically, model ¢ will
Method .

— z«y : be adapted and evaluated on a domain d;;. The results
o - of successive adaptation results on the Rotated MNIST
s e and Terralncognita are shown in Figure 1(b) and Fig-

0 II I II I I o ure 3(a). Results show that the latest TTA method, namely

Il ) T3A (Iwasawa & Matsuo, 2021) and Tent (Wang et al.,

ponan pomain 2020a) perform marginally above or even worse than the
(a) (b) ERM baseline where no test-time adaptation is performed.

Figure 3. Successive adaptation results on the Terralncognita
dataset. (a) Adaptation results on d1, d2, d3. (b) Re-evaluation of
the adapted model on the source domain dp.

nita (Beery et al., 2018) and DomainNet (Peng et al., 2019).
We compare our model with ERM (Vapnik, 1999), IRM (Ar-
jovsky et al., 2020), Mixup (Yan et al., 2020), CORAL (Sun
& Saenko, 2016), DANN (Ganin et al., 2016), CDANN (Li
et al., 2018¢c), MTL (Blanchard et al., 2021), SagNet (Nam
et al., 2021), ARM (Zhang et al., 2021a), VREx (Krueger
et al., 2021), RSC (Huang et al., 2020), Fish (Shi et al.,
2022), Fishr (Rame et al., 2022). All experimental settings
and baselines follow the Domainbed codebase (Gulrajani &
Lopez-Paz, 2021). The comparison of AdaNPC with other
TTA methods is detailed in the appendix.

See Appendix D for more information, including datasets
information, model selection, licensing information, hyper-
parameter search, and the total amount of computing. See
Appendix E for more experimental results and analysis.

5.2. Experimental Results

AdaNPC has strong knowledge expandability. For practi-
cal usage, a deployed model should be adapted to a series
of domains, where domain partition is unknown and we
should guarantee that the model performs well on both any
unseen target sample and samples from the training do-
mains. In this case, we propose a setting named Successive
adaptation that is more practical. As shown in Figure 4,
a model (model 0) that is trained on domain dy will be

In contrast, the proposed

AdaNPC is superior to &)
these methods, especially o
in the Rotated MNIST vty
dataset ds, where the per- $ & 3 a3 29
Model 0 Model 1 Model n

formance gains brought by
AdaNPC compared to ERM
are greater than 50%. The
reason will be that the do-
main indexes in the Ro-
tated MNIST are continu-
ously changed, namely, the rotation angles are changed
from 0° to 75°, which makes the knowledge transfer eas-
ier. The continuously changed domain index is also general
in real world tasks (Wang et al., 2020b), for example, in
medical applications, one needs to adapt disease diagnosis
and prognosis across patients of different ages, where the
age is continuously changed between domains, verifying
the practical utility of AdaNPC.

fe3e 8%

Figure 4. An illustration of suc-
cessive adaptation setting.

AdaNPC overcomes catastrophic forgetting and reserves
superior source performance that is even better than
ERM. Figure 2 and Figure 3(b) visualize the source ac-
curacy of model ¢, where the x-coordinate d; means the
model 7 is evaluated on the source dy. Both T3A (Iwasawa
& Matsuo, 2021) and Tent (Wang et al., 2020a) forget the
knowledge of the source domains as they adapt to more
target domains. That is, if these TTA methods are used for a
deployed model after a series of adaptations, we cannot ex-
pect that the model will still give a correct prediction on the
source domain instances. The tradeoff between adaptivity
and source domain accuracy is nonexistent for the proposed
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Method A C P S Avg
ResNet18 79.5 73.0 90.1 773 80.0
AdaNPC 827 768 928 777 825
AdaNPC +BN 83.6 77.7 93.1 779 83.1
ResNet50 81.7 823 943 77.6 84.0
AdaNPC 86.0 81.0 964 79.8 85.8
AdaNPC +BN 85.6 80.8 96.5 79.7 85.7
ViT-B16 883 824 979 798 87.1
AdaNPC 89.8 86.0 979 80.5 88.6

AdaNPC +BN 89.8 86.1 983 80.5 88.7

Table 2. OOD accuracy with different backbones on PACS.

AdaNPC, which performs both tasks well. Dur to space
limit, we leave the performance over other dataset in the
appendix E.2.

AdaNPC achieves a new State-Of-The-Arts on domain
generalization benchmarks. The average OOD results
on all benchmarks are shown in Table 1. We observe con-
sistent improvements achieved by AdaNPC compared to
existing algorithms and BN retraining can further boost
the generalization capability with few parameter updating.
Compared to the advanced DG method Fishr (Rame et al.,
2022), which achieves 0.4 higher average accuracy than
ERM, the proposed AdaNPC attains a much larger margin
(1.4). The results indicate the superiority of AdaNPC in
real-world diversity shift datasets.

AdaNPC improves different backbones by a large mar-
gin. We conduct experiments with various backbones
in Table 2, including ResNet50, ResNetl8, and Vision
Transformers (ViT-B16). AdaNPC achieves consistent per-
formance improvements compared to ERM. Specifically,
AdaNPC improves 2.5%, 1.8%, 2.6%, and 1.5% for ResNet-
18, ResNet50, ResNet50-BN, and ViT-B16, respectively.

Without any model fine-tuning on source domains,
AdaNPC can perform well. Figure 5(a) shows the re-
sults where the pre-trained model is directly evaluated on
the target domain and without any fine-tuning on the source
domains. The average generalization performance of us-
ing an MLP classifier is below 25% even with a strong
backbone (ViT-L16). On the contrary, the use of a KNN
classifier achieves average generalization accuracy 71.4%.
Nowadays, fine-tuning is usually computationally expen-
sive due to the ever-growing size of pre-trained models.
The requirement of AdaNPC is not a gradient-based update
but external high capacity storage to store knowledge for
image classification, such as image feature maps, which
provides a new promising direction to utilize pre-trained
knowledge. Furthermore, as the number of source instances
increases, Figure 5(c) shows that AdaNPC achieves better
performance, which validates our theoretical result.

AdaNPC reduces generalization error across various cor-

Defoc Glass Motion Zoom
R-50 (GN)+JT  88.9 91.7 86.7 81.6
R-50 (BN) 82.1 90.2 85.2 717.5
AdaNPC 83.1 83.0 72.3 60.6
TTT 71.9 92.2 66.8 63.2
TTA 87.5 91.8 87.1 74.2
BN adaptation 80.0 80.0 71.5 60.0
MEMO 80.3 87.0 79.3 72.4
Tent 71.8 72.7 58.6 50.5
Tent (episodic)  85.5 85.4 74.6 62.2
AdaNPC+Tent  71.1 72.0 58.2 49.2
ETA 66.1 67.1 52.2 47.5
EATA 66.3 66.6 52.9 47.2
AdaNPC+ETA  65.2 65.2 51.1 46.5

Table 3. Comparison with state-of-the-art methods on
ImageNet-C with the highest severity level 5 regarding corruption
Error.

ruption types. To verify robustness to corruptions, we eval-
uate AdaNPC on the CIFAR-10-C benchmark (Hendrycks
& Dietterich, 2018) with a 40-2 Wide ResNet back-
bone (Zagoruyko & Komodakis, 2016) pre-trained on
CIFAR-10. We implement two baselines, where Linear
denotes that the trained classifier is used directly, and BN
Adapt will update the batch normalization parameters of
the backbone in the target data (Schneider et al., 2020). The
results with the highest severity (five) are shown in Fig-
ure 6, where AdaNPC is shown to be more robust than
Linear and updating the BN statistic of the backbone with
AdaNPC brings more benefits than that with a linear clas-
sifier. Results with the lowest severity (one), other back-
bones. Considering large-scale corruption benchmarks,
we compared the method with Tent and EATA (Niu et al.,
2022) on the ImageNet-C dataset. Experimentally, we com-
pared the effectiveness of AdaNPC and EATA separately in
Table. 3, where the experimental and baselines are all follow-
ing EATA (Niu et al., 2022). As we can see, we only need
to simply replace the Linear layer with KNN and remem-
ber the trustworthy samples during testing, and AdaNPC
can achieve much better performance than ResNet50 with
a linear head. In addition, AdaNPC can be combined with
existing TTA methods such as Tent, ETA, etc., and the fi-
nal performance surpasses these methods individually. See
more analysis in the Appendix E.3.

5.3. Comparison of AdaNPC with other TTA methods.

Comparison with test-time adaptation methods. For
fair comparisons, following (Iwasawa & Matsuo, 2021),
the base models (ERM and AdaNPC) are trained only on
the default hyperparameters and without the fine-grained
parametric search. Because (Gulrajani & Lopez-Paz, 2021)
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Figure 5. Generalization performance without fine-tuning with various backbones on the (a) PACS and RotatedMNIST (b) dataset. (c)
shows the results wo/ fine-tuning on Rotated MNIST with different ratios of source instances amounts. (d) Convergence comparison.

omits the BN layer from pre-trained ResNet when fine-
tuning on source domains, we cannot simply use BN-based
methods on the ERM baseline. For these methods, their
baselines are additionally trained on ResNet-50 with BN.
Models with the highest IID accuracy are selected and all
test-time adaptation methods are applied to improve the gen-
eralization performance. The baselines include Tent (Wang
et al., 2020a), T3A (Iwasawa & Matsuo, 2021), pseudo la-
beling (PL) (Lee et al., 2013), SHOT (Liang et al., 2020),
and SHOT-IM (Liang et al., 2020). For methods that use
gradient backpropagation, we implement both update the
prediction head (CIf) and full model (Full). Results in Ta-
ble 4 show that: Different from Tent (Wang et al., 2020a),
which is sensitive to batch size, the proposed AdaNPC is
not; (ii) The performance of AdaNPC without BN retraining
attains comparable results compared to existing methods.
(iv) Additionally, when the batch size is very small, updating
the model parameters often has a negative impact, whereas
the results of AdaNPC are not affected by the batch size.

5.4. Analysis

AdaNPC attains better performance with fewer itera-
tions. We investigate the accuracy dynamics of ERM, which
is evaluated by using either a KNN classifier or a Multi-
Layer Perception (MLP) classifier on the Rotated MNIST
dataset, where the target domain is dy. The learning curves
in Fig. 5(d) show that with the same training process and
iteration, using a KNN classifier can attain superior perfor-
mance on the source and target domains both.

Ablation studies of training loss (Eq.(4)) and the choice
of k. Results are shown in Table. 12, where ERM means that
the model will be trained by cross-entropy loss and only use
KNN with parameter k for inference and adaptation. The
results show that with Ly v, the representation will be
better and the generalization results will be improved. The
choice of | M| depends on the dataset size, a large dataset
with more classes generally needs a large memory bank.
However, if |[M| > batch size, M contains many out-of-
date features and leads to poor performance. The choice
of k depends both on the domain divergence and instances
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Figure 7. Visualization of classified results attained by AdaNPC.
(a) A successfully classified instance and (b) a failure case.

numbers of datasets. For example, the best k is around 10
for RMNIST and 50 for PACS (PACS has a greater domain
divergence), where PACS has 9, 991 images, which is less
than 60, 000 images of RMNIST.

Interpretability and human-model interaction. Figure 7
shows how the source knowledge is used by the KNN classi-
fier. The decision-making process will no longer be a black
box. For example, the giraffe in Figure 7(b) is classified
with low confidence because its nearest neighbors are most
persons or dogs that have similar poses. However, some
important characteristics are ignored by the backbone rep-
resentations, such as the shape of the face. However, these
characteristics can be easily identified by humans; therefore,
when we get a low confidence prediction, AdaNPC allows
us to manually remove some obvious wrong neighbors. In
this case, our classification results will be more accurate and
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Table 4. Comparison of our method and existing test-time adaptation methods on OOD benchmarks. The reported number is the average

BSZ=32 BSZ=2
Method
RMNIST PACS VLCS DomainNet RMNIST PACS VLCS DomainNet

ResNet50 97.27 86.68 77.75 40.50 97.27 86.68  77.75 40.50
PLCIf 98.13 87.73  80.75 40.80 69.78 87.73  80.50 40.67
PLFull 98.30 87.13 7723 33.80 65.37 73.35 58.55 21.80
SHOT 98.30 88.16 67.83 41.21 92.12 83.55 58.45 36.76
SHOTIM 98.40 88.03 67.68 37.62 92.33 83.20 58.20 3543
T3A 97.65 8790 81.38 41.50 97.10 87.90 81.38 41.50
Tent-clf 96.82 87.05 77.78 40.97 96.18 87.03 77.50 40.16
AdaNPC 98.85 88.93 82.45 42.60 98.85 88.93 82.45 42.60

generalization performance over all domains.

PACS, ‘Test-domain’ validation

Inference time (ms)

Training Loss k M| A C P S Avg Method RMNIST PACS VLCS DomainNet ImageNet
- PLCIf 0.49 538 557 6.17 5.55
Linear /= 827 823 93.1 786 84.2 PLFull 12344 28190 26600  267.17 270.68
50 /831 821 936 789 844
75 /832 821 935 788 844 SHOT 0.66 734 712 6.9 745
ERM Y SR e o SHOTIM 1.58 10.14  10.16 7.86 10.23
125/ 846 823 937 810 854 T3A 0.21 167 1.51 8.11 18.46
150/ 852 826 942 804 856 Tent-clf 1124 4163  27.60 92.37 32.34
AdaNPC 0.13 157 157 3.16 2223
10 500 840 826 935 808 852
50 500 852 817 926 80.8 85.1
Lxnn 50 1000 858 815 938 834 86.1 Table 6. Inference time of different TTA methods, where the
50 1500 829 83.0 914 805 845 o :
100 1000 850 $25 946 807 857 AdaNPC is implemented by Faiss (Johnson et al., 2019).

Table 5. Ablation studies of training loss on PACS.

confident, which is promising for high-risk tasks to incorpo-
rate expert knowledge for better classification results.

Inference time and Memory usage. During testing, we
store all samples from the source domain and do not delete
any samples from the memory bank, thus preserving all
information from the source domain. This may raise con-
cerns about memory usage and inference time, but our ex-
periments show that the K-nearest neighbor search is very
fast. Furthermore, we provide a comparison of inference
times for various TTA algorithms on different datasets in
Table 6, measured as the average inference time per image
in milliseconds. For memory usage. Even for a dataset
like ImageNet with 1281167 images, the additional memory
cost is only 2.44GB (1281167%2048 B), which can be easily
accommodated by current CPUs or memory. It is important
to note that the memory bank does not have to be stored on
the GPU, and all reported inference times in this paper are
based on a CPU-stored memory bank.

6. Concluding Remarks

The paper proposes a new Test-Time adaption method
for domain generalization, AdaNPC, which revisits a non-
parametric classifier, namely KNN classifier, for prediction
and adaptation. Unlike current domain generalization or
Test-Time adaptive methods that need model updating and
are easy to forget previous knowledge, the proposed method
is parameter-free and can memorize all the knowledge, mak-

ing AdaNPC suitable for practical settings, especially for
adapting to a series of domains.

We derive error bounds under both the covariate-shift and
the posterior-shift settings, where AdaNPC is theoretically
shown able to reduce unseen target error. We empiri-
cally show that AdaNPC reduces generalization error on
both unseen target domains and corrupted data. Besides,
AdaNPC attains faster convergence, better interpretability,
and strong knowledge expandability. More importantly,
AdaNPC achieves high generalization accuracy without any
fine-tuning on source domains, which provides a promising
direction for utilizing pretrained models with growing sizes.

Discussion and Limitations. One potential limitation of
AdaNPC will be the computation time of dense vectors’
searching (finding the k-nearest neighbors). However, with
efficient nearest neighbor search technique (Johnson et al.,
2019), even when the memory bank contains more than 1
million samples, the inference time will around 10ms (Sun
et al., 2022), which is significantly faster than backward
gradient updates. In the future, we will consider updating
the memory bank with advanced methods and try to further
reduce the memory cost and inference time.
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——Appendix————

The structure of Appendix is as follows

» Appendix A contains the extended related work.

* Appendix B contains all missing proofs in the main manuscript.

» Appendix C details the optimization algorithm of the proposed AdaNPC.
* Appendix D details the dataset and implementation Details.

* Appendix E contains additional experimental results.

A. Extended Related work

Transfer learning theory. The first line of work that considers bounding the error on target domains by the source domain
classification error and a divergence measure, such as d 4 divergence (Ben-David et al., 2006; David et al., 2010) and Y
divergence (Mansour et al., 2009; Mohri & Mufioz Medina, 2012). However, the symmetric differences carry the wrong
intuition and most of these bounds depend on the choice of hypothesis (Kpotufe & Martinet, 2018; Zhang et al., 2022d).
There are also some studies consider the density ratio between the source and target domain (Quinonero-Candela et al., 2008;
Sugiyama et al., 2012; Zhang et al., 2022d), and transfer-exponent for non-parametric transfer learning (Kpotufe & Martinet,
2018; Cai & Wei, 2021; Hanneke & Kpotufe, 2019; Reeve et al., 2021). In this work, we conduct error bounds considering a
setting that consists of two different components, namely, the non-parametric classifier and online arrival target samples.

Domain generalization. Previous DG methods mostly focus on representation learning, namely learning domain-invariant
representations or only task-relevant representations. However, empirical risk minimization (ERM) has been shown to
be able to beat most existing domain generalization methods in average performance (Gulrajani & Lopez-Paz, 2021).
Recent work finds that ERM has learned a high-quality representation on datasets with spurious correlations, even when
the model relies primarily on spurious features to make predictions (Kirichenko et al., 2022). The current bottleneck to
out-of-distribution generalization primarily lies in learning simple and reliable classifiers (Rosenfeld et al., 2022). However,
most existing methods have an over-confidence hypothesis space (Zhang et al., 2022d), namely, they assume that the
hypothesis performs well on source domains can also perform well on the target domain (Arjovsky et al., 2020; Krueger
etal., 2021; Rame et al., 2022; Zhang et al., 2023; 2022¢), which cannot hold on any unseen target domains. Our method
is orthogonal to most existing DG methods since it replaces the linear classifier with a KNN classifier. AdaNPC retains
all information seen in training and has a complex hypothesis space controlled by the parameter k. During inference, the
hypothesis space complicity can be flexibly controlled compared to existing methods that use a frozen classifier.

Test-Time Adaptative Methods

Target Batch ~ Source Training Fine-tune Extra Model Adaptive

Native DG (Arjovsky et al., 2020) X X

Test-Time Training (Sun et al., 2020; Zhang et al., 2021b; 2022b) X
Test-Time Adaptation (Wang et al., 2020a) v
Domain-adaptative method (Dubey et al., 2021; Zhang et al., 2022d) v
Single sample generalization (Xiao et al., 2022) X
Non-Parametric Adaptation X

X N X X X
X X X NN X
X X N X N X
LN A X

Table 7. Test-Time adaptive methods. The target batch means that the methods need batches of target samples for adaptation. Compared
to existing test-time adaptative methods, the proposed AdaNPC imposes no additional parameter (Sun et al., 2020; Dubey et al., 2021;
Zhang et al., 2022d), no extra tunning steps (Sun et al., 2020; Wang et al., 2020a; Iwasawa & Matsuo, 2021; Zhang et al., 2021b), and
does not need to use source data to learn adaptive strategies (Xiao et al., 2022).
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B. Proof of Theoretical Statement
B.1. Non-parametric reduce target-source domain divergence (Proof of Proposition 1)

To complete the proofs, we begin by introducing some necessary definitions and assumptions.

Definition 3. (Wasserstein-distance and the dual form (Arjovsky et al., 2017)). The p-th Wasserstein distance between two
distributions Dg, Dy is defined as

1/p
W,(Dg,Dy) = < inf // d(zs,xu)pd’y(xs,xu)> (11)

Y€I[Ds,Dy]

where II[Dg, Dy | is the set of all joint distribution on X x X with marginals Dg and Dy and d(xs, z,,) is a distance
function for two instances x s, x,.

Wasserstein distance can get intuition from the optimal transport problem, where d(x, ©,,)? is the unit cost for transporting
a unit of material from x5 € Dg to x,, € Dy and (x5, xy,) is the transport policy which satisfies the marginal constraint.
According to the Kantorovich-Rubinstein theorem, the dual representation of the first Wasserstein distance (Earth-Mover
distance) can be written as

Wi(Ds, Dy) = |\fS||up<1EwSEDS[f(xSH - ]Ewue]DU[f(xu)]a (12)

where || f ||L=sup |f(zs) — f(zu)|/d(xs, zy) is the Lipschitz semi-norm.

We first use the domain adaptation result, Theorem 1 in (Shen et al., 2018) that considers the Wasserstein distance. On this
basis, we can clearly show the effect of AdaNPC on the domain divergence. In this paper, we use W; (D g, D) as default
and ignore subscript 1. For completeness, we present the Theorem 1 in (Shen et al., 2018) as follow:

Proposition 4. (Theorem 1 in (Shen et al., 2018)) Given two domain distributions Dg,Dy, denote f* =
argmingey (ev(f) + es(f)) and & = ey (f*) + es(f*). Assume all hypotheses h are L-Lipschitz continuous, the

risk of hypothesis f on the unseen target domain is then bounded by

ev(f) < k+es(f) + 2LW(Ds, Dy). (13)

Intuitively, by using the non-parametric classifier, during inference, a large number of samples in source domains that are not
similar to the target samples are ignored, and thus the domain divergence will be reduced. That is, the source distribution D g
is replaced by Q := |, cp,, B(w,7), where B(z,7) = {2’ :|| 2’ — z ||< r} denotes a ball centered on x with radius r, and
With a small r, Q is intuitively close to Dy because these dissimilar data points are ignored and the selected source data are all
close to the target data. Informally, according to Eq.(11), we have W(Q, Dy) = inf e n,] [/ || s — 2w || dy(2s, 2u),
where for each x5 € 2, we can find at least one x,, € Dy such that || ;s — x,, ||< 7, the overall distance will then be
bounded by r. If r is small enough, W(ID g, D) in Proposition 4 is largely reduced. Specifically, we can choose a density
function v* where v* (s, x,,) > 0 only if zs € B(x,, ) otherwise 0, then we have

W(Q,Dy) = inf / | s — @y || dy(xs, 2y) < / | s — @0 || ¥ (25, Ty )da sy <1 (14)
~€eI[Q,Dy]

Although a small r will reduce the generalization bound, there is no guarantee that each data x,, € Dy can find a neighbor
B(z,r) with |B(z, )| > 0. To this end, we theoretically discuss the choice of r and show given a choice radius r, what
probability that the set of neighbors B(x,r) of each x € Dy is not measuring zero?

We denote £ is the number of neighbors that we prefer to choose, namely the parameter for the KNN classifier, n is the total
number of data in Dg. With the strong density assumption, for any z,, € Dy, r < r,, according to Assumption 1, we have

dD
Dg(zs € B(xy,r)) = / —S(ajs)dxs > pu_AB(xy,m)NDg) > CM/,L_ﬂ'de, (15)
B(zy,r)NDg dX
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where 74 = A\(B(0, 1)) is the volume of the d dimension unit ball and ) is the Lebesgue measure of a set in a Euclidean
. d
space. Set 1o = (;—2a——)"/%, with a additional assumption that ;- < bl
L TaT .

x, € Dy, according to Eq.(15), we have

, we have 79 < r,. Then for any

2k
Dg(zs € B(xy,m0)) > cu/,t_ﬂ'drg > - (16)
Denote I an indicator function and then I(z, € B(z,,70)) are independent and identically Bernuoli variables, which
mean is Dg(zs € B(xy,r0)). Let Sp(xy) = > oy I(zs € B(xy,70)) denote the number of data z;, € Dy that fall
into B(z,r), then Sy, (z,,) follows the Binomial distribution. Let W ~ Binomial(ns, 2£), according to the Chernoff
inequality (Chernoff, 1981; Chung & Lu, 2006),

P(Sp(zy) < k) < P(W < k) = P(W —E[W] < —k) < exp(—k*/2E[W]) = exp(—k/4), (17)

where the second inequality is because S, (x) has a larger mean than W. We can see the probability that S,, (z) < k is small

for any x,, € Dy, especially when k is large. Denoting xgi) the i—th nearest data to x,, among B(x,,, ro), we have for any

z, € Dy
P([| &) — 2y ||< o) = P(Sp(x) > k) > 1 — exp(—k/4) (18)

Combine Eq.(18) with the assumption that the distribution D¢, is finite with cardinality np,, and the desired probability
part is shown by union bound.

M P2 —zull<ro)= () P(Salz) > k)

z, €Dy z, €Dy
=1- |J P(Su(z) <k)
z, €Dy
>1—np, exp (—k>
4
k
=1—exp (—4 + logn]DU) . (19)

Finally, the following proposition is derived.

Proposition 5. Given two domain distributions D5, Dy, and Q@ := ., B(z,7), where B(x,r) = {z" :|| '~z ||< r}
denotes a ball centered on x with radius . Denote f* = argmin ey (ev (f) +ea(f)) and k = ey (f*) +ea(f*). Assume

all hypotheses h are L-Lipschitz continuous, the risk of hypothesis f on the unseen target domain is then bounded by

- 5 2k \V/*
eo(F) < 5+ ealf) + 2L () . (20)
Cufb—TTqMs

with probability 1 — exp(—% +lognp,,)

Remarks. We make the following conclusions (i) with a larger number of source data, the error will be lower; (ii) a large
¢, will reduce the error bound, which is intuitive because z,, € Dy will not be so far from IDg when ¢, is large and the

2k

1/d
7) . For example, when
Cup—Tans

adaptation will be easier; (iii) a smaller parameter k£ will reduce the domain divergence (

k = 1, we only choose the closest source data with respect to x,, and the divergence will be the minimum.

Although Proposition 5 provides a nice intuition for using a non-parametric classifier, it highly depends on the risk of
the optimal hypothesis «, that is, the hypothesis space should contain an optimal classifier that performs well on both the

!The assumption is rational because, n, > k in general.
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source and the target domains. This assumption cannot be guaranteed to hold true under all scenarios, making the bound
conservative and loose. Furthermore, the KNN classifier in Proposition 5 can only affect domain divergence, and how KNN
affects the prediction results is unknown. To further aid the study of the proposed algorithm, we conduct the following
bounds to fully explore the theoretical properties.

B.2. Analysis of the excess error upper-bound under covariate-shift (Proof of Proposition 2)

Per the statement of the Proposition 2, we assume k being of order log ns. It is quite small number. For example, in the
RotatedMNIST dataset, the optimal k is around 10 and the number of total instances from the source domain ng =~ 50, 000.

Under the covariate-shift setting, we have ny = 1g = 7 for source and target domains. We denote the KNN classifier
with % nearest neighbors as f;, = {7 > 2} Because we focus on the binary classification setting, then fj, (xy) # [ (zy)
implies that |A) (2,) — n(xu)| > |n(zw) — 1|. In this way, we can build the connection between the excess error and the
regress error:

EU(f) = QExuN]DU |:

o) = 5| 1]l = )l |ote) - 5} @n

Let Z = ‘77(%) =51
the fact that

ik (Tw) — n(2y)| < t, then by the marginal assumption in Assumption 3 and

E[Z-1{Z <t}] <tP(Z <t), (22)

(() (4)

we have & (f) < CptP+L. Tobound |7 (z,) — (4|, xs ,Ys ) asthe i—th nearest data and the corresponding

labels to x,, in B(x,, 7). The KNN classification result will be 7j(z,,) = Ele wiygi), where w; is the weight for the 7 -th

nearest neighbor and Zle w; = 1. In this work, we use the cosine similarity as the weight, where the distance-weighted
KNN is shown able to reduce the misclassification error (Dudani, 1976). However, for brevity of the proof, we assume
w; = %7 Vi € [1, ..., k], namely all nearest data labels are uniformly mixed. Based on the assumptions and notions above,
we have for any z,, € Dy

e o) = [ 3380 ko)
1 1
< - - eP) |+ 2D n (a) = ()
Z SRICHIRIPRICY o
k
i i 1 A
<= Zy —Zn( §)) +%Z‘n(ﬂc()) — ()|,
i=1 i=1
) @
where (2) is easy to bound. According to the assumption that 7 is C-Smoothness, we have
1 i
> (2) =) Z 2O 2 — 2 |I< O [l 29—, | 24)
=1

d ,
According to Eq.(18), with probability at least 1 — exp(—k/4), @ < C ( . Note that Ey|x [ys ¢ )] 77(1'&1)),

Cpfh— 7Td’l’L )
then we use the Hoeffding inequality to obtain the upper bound of (1)

1
nyy <]<} >€>:EX Py|X<
i=1

k k k
S-S (o)
‘ i=1
1/d
Set e = (1/k)'/4, we have, with probability, at least 1 — 2exp(—2vk), O < (1/k)V/4, @ <C (r TR ) , and
i

Zys -> (”)

i=1

> eﬂ < 2exp(—2ke?)  (25)

1/d
then |7 () — n(xy,)| < (1/k)Y/* 4+ C (L) . According to Eq.(18) and Eq.(22), the excess error is bounded by

Cufh— TN
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B 1+
X 1\ /4 ok 1/d\ 1t 1\ /4 E o\ V4
< — _ S —
Eulf) =20 ((k) e <Cu,u—7"'dns> (k> o (Cuns) ’ (20

where (1 is a newly introduced constant. There is a clear tradeoff between the upper bound of (1) and (2) with respect to

the value of k. A small k will reduce the representation difference in (2) , extremely when k& = 1, only the nearest sample
to z,, will be chosen. However, when k is small, there is no guarantee that the nearest selected data will have a confident
prediction. Specifically, a smaller (1) indicates that the selected k nearest data samples are representative enough and have
confidence in the prediction results. Finally, using k = O(log n;), we have

min{1 — 2exp(—2Vk), 1 — exp(—k/4)}
> 1—2exp(—2Vk) — exp(—k/4)
> 1 —3exp(—2Vk) =1 — 3exp(—21/O(logny))

=1—3exp(—0(1)y/logns)

where the third line is because k/4 > 2+/k for large enough k. Namely, with probability at least 1 — 3 exp(—+/Togn5)°™),

the following bound holds true.
1/4 1/a\ 18
. 1 log n
5U<f>s0<( ) +(°g”) ) : (28)
log ng CuMs

B.3. Analysis of the excess error upper-bound under posterior-shift settings

27

Under the posterior-shift setting, the support of Dg and Dy, are the same, i.e., Supp(Ds) = Supp(Dy) = 2. The
regression functions 7y and ng are different. Then we have the following.

Z y(z) —nu(x ’

mk(mu) 77U xu

+ ;éns (mg")) —nu(za)

1 i

Il
_

k k
= % Zy) -> (m)) + %Z ns (é“) —nu () (29)
=1 =1 1=1
Ll k , Lk 4
= 12w =3 (20) |+ 2 X s (28) = ms (@) + ms(an) = (@)
=1 =1 =1
1 zk | zk | 1 zk |
<=2 (=) |+ = |ns (29) = ns(@a)| + s (@a) = o)
=1

i Adaptivity gap

Compared to Eq.(23), Eq.(29) has an additional term |ns(x,,) — nu (z.,)| (the adaptivity gap (Zhang et al., 2022d)), which
measure the difference of two regression functions directly. Although previous work has similar definition, for example, the
regression functions difference defined in (Zhao et al., 2019): min{Ep[|ns — nuv|], Ep, [|ns — nul]}, which care about
“how ny performs on source data”. In comparison, our definition is more similar to (Zhang et al., 2022d), which only
focuses on the regression difference when evaluated on examples from the target domain and shown to be more practical
and intuitive (Kpotufe & Martinet, 2018; Zhang et al., 2022d).

We assume that |s — ny| is upper bounded by some constant C 44, namely sup, cp,, [7s(zu) — 10 (74)| < Cada, under
the posterior-shift setting, we have

) 1\ /4 p o\ L/ 45
gU(f) S ((k) + C’1 (C n ) + Cada) (30)
nlls
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Via the similar duration of inequality Eq.(28), with at least 1 — 3 exp(—+/log ns)o(l) probability we have,

1+8

R 1 1/4 log 14 1/d
Eu(f) <0 (1 ) +C ( é) + Cada . (31)
0g Ns CuMs

B.4. Effect of utilizing online target samples (Proof of Proposition 3)

Despite the assumptions and notions mentioned above, to study the effect of target data, we denote {xgi), ygi)}fil +
{xSf ), yl(f) }f;l as the nearest data and the corresponding labels to z,, in B(xz.,, ro), where ks + k,, = k and yff) is the pseudo-
label of 2, that is, y{) = ]I{f]k(ng)) > 1/2}. The KNN classification result will be 7y, (z,) = + Zf;l i ¢ 3 Zf;l .
We have the following.

e (20) — n(@0)| =

IN

IN
\

Although the true labels of target samples are unknown, we store the target sample into the KNN query set only when its

prediction confidence is large enough. Therefore, it is natural to assume that Ey| x [yq(f)] = n(gcq(f )). According to Eq.(25),

we have
1 ks ku ks u
el (4) (i) _ @Y _ @)
e (3o + o= Yo () - 350 (o)
=1 i=1 i=1 i=1
k k k (33)
1| & u s u
— Z i) (i) _ () _ i) _9ke2
=Ex | Py|x <k ;yé —|—;y ;T](a: ) ;n<xu>>]§2exp( 2ke”)
Set € = (1/k)'/*, we have, with probability, at least 1 — 2 exp(—2v'k), (D < (1/k)'/%. Then, according to Eq.(24), we
have
ks 2%k, \/* ke 2%, \"*
@ <-=C () ; ® <=0 *> (34
k Cpulb—TaMNs k ClL TNy
Finally, the excess error under the covariate shift setting can be bounded by
144
. ks 2%, \'* k 2k 1/d
Eu(f) <205 [ (k)Y + 220 ——— e
u(f) <205 (( it ee () e (e
(35)

1/4 1/d 1/d\ 1A
Q<C> +a@<ks) +am(k“) )
k CuMs chny
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Compared Eq.(35) to Eq.(26), it is easy to verify that

k 2k Vg, 2%, \Y? k. 2%, \'*
() o) el
k Culb—Tr M k Culb—T M k Cl =Tt qMy

e 2%, \"* K, 2%, \'*
el) e ()
k Cufb—TqMNs k ChH—TtdMy

Because in general, we have ¢}, > ¢y, the difference is then larger than 0, namely incorporating target samples into the KNN
memory bank, the excess error can be further reduced. When D is very close to Dy, that is, cz ~ ¢y, the two bounds will
be similar.

(36)

Similar results can be derived under the posterior-shift setting. Under the assumption that Ey| x [yq(f)] =nu (ng )) and
SUPg, eDy N5 (2u) — MU (Tu)| < Cada, We have

k k k k
~ S ; 1 S 1 u s 1 u
e (2u) — nu(zu)| = %Zyg) EZWU(mu)"‘%ZYJu)_% nu (@)
i=1 i=1 i=1 i=1
k k k
1S 1S ) 1 & ) k
<= 6 _ = ( @) - ( (z)) s
— k lz_;ys k ;775 xa + k Pt 775 335 k UU(Iu)
k k k
1 & 1 & 1 & Nk
Z (i) _ = i) 2 ( (i) _ Fu
+z ;yu A ;UU (CUu ) +r 2 ny | ) . N () 37
1] & ku ks Eu 1 ke
- (@) (1) _ @Y _ (4) - @Y _
<z ;ys +;yu ;ns (ﬂﬂs ) ;?w (% ) +o 2 ns (9% ) ns(Tu)
1 o k
23 | (20) = o @] + 22 Ins (@) = nu (@)l
i=1
and the conclusion will be
1+8
A k 2k, v p 2%k vd g
£ <205 | (/)4 + 20 | ———=— So| ——2— 2 Clada 38
u(f) <2Cs <( /R k Cpulb—TgMNs + k Cl =Tt dMy + gl (38)

C. Online Optimization Algorithm for Optimizing the KNN Loss Function £ vy

Algorithm 1 Online optimization algorithm for optimizing the KNN loss function Lx n .

Input:training data Dg, batch size N, learning rate 7, training iterations 7', Adam hyperparameters 31, 35.
Initial: model parameters 6 and memory bank M = {hg(x;),y;}}%, with a predefined size M, where (z;,y;) are
randomly sampled from Dg.
fort=1,...,T do
(i, ), ~ Ds //Data sampling
. exp(wqj /7){yi=y;
Lxkny =—%>;log ZJE%;:BM]::L(:)(eXpiw)U{/i) - }, //Calculate the loss
M — M {ho(z:),y: }, //Update the memory bank by the first-in-first-out (FIFO) strategy
0 + Adam (Lxnn, 0,1, 51, 52) //Update model parameters
end for

D. Dataset and Implementation Details
D.1. Dataset details

Rotated MNIST (Ghifary et al., 2015) consists of 10,000 digits in MNIST with different rotated angles where the domain is
determined by the degrees d € {0, 15, 30,45, 60, 75}.
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Layer

Conv2D (in=d, out=64)
ReLU

GroupNorm (groups=8)
Conv2D (in=64, out=128, stride=2)
ReLU

GroupNorm (8 groups)
Conv2D (in=128, out=128)
ReLU

GroupNorm (8 groups)

10  Conv2D (in=128, out=128)
11 ReLU

12 GroupNorm (8 groups)

13 Global average-pooling

O 0NN A~ W~ | H

Table 8. Details of our MNIST ConvNet architecture. All convolutions use 3x3 kernels and “same” padding

PACS (Li et al., 2017) includes 9, 991 images with 7 classes y € { dog, elephant, giraffe, guitar, horse, house, person }
from 4 domains d € {art, cartoons, photos, sketches}.

VLCS (Torralba & Efros, 2011) is composed of 10,729 images, 5 classes y € { bird, car, chair, dog, person } from domains
d € {Caltech101, LabelMe, SUN09, VOC2007}.

Terralncognita (Beery et al., 2018) contains photographs of wild animals taken by camera traps at locations d €
{L100, L38, L43, L46}, with 24, 788 examples of dimension (3, 224, 224) and 10 classes.

DomainNet (Peng et al., 2019) has six domains d € {clipart, infograph, painting, quickdraw, real, sketch}. This dataset
contains 586, 575 examples of sizes (3,224, 224) and 345 classes.

D.2. Implementation and hyper-parameter details

Hyperparameter search. Following the experimental settings in (Gulrajani & Lopez-Paz, 2021), we conduct a random
search of 20 trials over the hyperparameter distribution for each algorithm and test domain. Specifically, we split the data
from each domain into 80% and 20% proportions, where the larger split is used for training and evaluation, and the smaller
ones are used for select hyperparameters. We repeat the entire experiment twice using three different seeds to reduce the
randomness. Finally, we report the mean over these repetitions as well as their estimated standard error.

Model selection. The model selection in domain generalization is intrinsically a learning problem, and we use both the
test-domain validation and training domain validation, two of the three selection methods in (Gulrajani & Lopez-Paz, 2021).
Test-domain validation chooses the model maximizing the accuracy on a validation set that follows the distribution of the
test domain. Training domain validation chooses the model with the highest average source domain accuracy. In the main
paper, test domain validation results are presented by default.

Model architectures. Following (Gulrajani & Lopez-Paz, 2021), we use ConvNet (Table.8) as the encoder for RotatedM-
NIST (detailed in Appendix D.1 in (Gulrajani & Lopez-Paz, 2021)) with MIT License. For other datasets, torch-vision for
ResNet18 and ResNet50 (Apache-2.0), timm for Vision Transformer (Apache-2.0), and the official repository of T3A (MIT
License) are used. We run our experiments mainly on Tesla-V100 (32G)x4 instances.

E. Additional Experimental Results
E.1. Detailed generalization results

Tables 13, 14, 15, 16 contain detailed results for each dataset with *Test-domain’ and *Training-domain’ model selection
methods.
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PACS Terr

A C P S Avg L100 L38 143 L46 Avg

T3A 945 942 937 91 934 89.6 86.7 855 838 864
Tent 945 942 931 922 935 896 89.1 88.6 823 874
PLFull 945 941 933 902 93.0 89.6 8122 658 551 729
AdaNPC 945 945 945 945 945 896 89.6 89.6 89.6 89.6

Method

Table 9. Successive adaptation results on the PACS and Terralncognita datasets. The metric is the re-evaluation accuracy of the
adapted model on the source domain do.

DomainNet clip info paint quick real sketch Avg

T3A 634 377 457 457  50.0 51.1 48.9
Tent 63.4 504 212 8.2 6.9 53 25.9
PLFull 634 613 555 16.5 10.0 7.0 35.6
AdaNPC 634 634 634 634 634 63.4 63.4
RMNIST 0.0 150 30.0 450 60.0 75.0 Avg
T3A 100.0  96.1  96.1 932 903 89.9 94.3
Tent 1000 995 965 925 89.3 89.4 94.5
PLFull 1000 983 875 792 679 63.5 82.7

AdaNPC 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 10. Successive adaptation results on the DomainNet and RMNIST datasets. The metric is the re-evaluation accuracy of the
adapted model on the source domain dj.

E.2. AdaNPC can mitigate the issue of domain forgetting

At first, recall our experimental setting is: we first trained our model on dj of the dataset as shown in Figure 4. Then, we
utilized the TTA algorithm to adapt the model to d, ..., d,, one by one. To illustrate this problem more vividly, we conducted
experiments on several datasets, and their results are presented in Table 9 and Table 10. These results demonstrate that as the
TTA progresses, the model’s performance on the source domain declines, indicating that TTA causes the model to forget the
knowledge learned from the source domain. In practical scenarios, the model is required to perform for an extended period
and may encounter numerous novel data. Under such circumstances, the model’s performance on the source domain may
suffer greatly, leading to inaccurate predictions on the source domain samples. As can be seen, for most existing baselines,
the model forgets the knowledge in the source domain with the progress of TTA on all datasets, while AdaNPC can avoid
this situation.

E.3. Extended experiments on Cifar-10-C and ImageNet-C

This paper focus on domain generalization (DG), where TTA is considered as one of the DG methods. Therefore, we
emphasized the comparison with existing DG methods in the main text. However, we also conduct additional experiments
on corruption datasets to verify the effectiveness of the proposed AdaNPC. Figure 8 shows the results with the lowest
severity (one), where AdaNPC performs the best and retraining the BN statistic will not be beneficial. For WRN-28-10
Wide ResNet Backbone, the results are shown in Figure 9 and Figure 10, where the same pattern as results with 40-2 Wide
ResNet Backbone are observed.

Considering large-scale corruption benchmarks, we compared the method with Tent and EATA (Niu et al., 2022) on the
ImageNet-C dataset. Experimentally, we compared the effectiveness of AdaNPC and EATA separately in Table. 3, where
the experimental and baselines are all following EATA (Niu et al., 2022). As we can see, we only need to simply replace
the Linear layer with KNN and remember the trustworthy samples during testing, and AdaNPC can achieve much better
performance than ResNet50 with a linear head. In addition, AdaNPC can be combined with existing TTA methods such as
Tent, ETA, etc., and the final performance surpasses these methods individually.

Existing baselines will be highly affected by the batch size. As can be seen in Table 11 (left), existing methods tend to
have very poor performance when the batch size is set to 1, as the gradient noise for individual samples is very high, which
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Method BN Retraining CIf Retraining

Defoc Glass Motion Zoom Defoc Glass Motion Zoom

R-50 (BN) 82.10 90.20 8520 7750 82.10 90.20 8520 77.50

Tent 99.10 99.10 99.11 99.10 090 0.90 0.89 0.90
ETA 99.14 99.14 99.14 99.16 0.86 0.86 0.86 0.84
EATA 99.14 99.14 99.14 99.16 0.86 0.86 0.86 0.84

AdaNPC 83.10 83.00 7230 60.57 83.10 83.00 7230 60.57

Table 11. Comparison with state-of-the-art methods on ImageNet-C with the highest severity level 5 regarding corruption Error, where the
TTA batch size is set to 1.
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Figure 8. Corruption benchmark on CIFAR-10-C with the lowest severity (one). AdaNPC +BN means that the KNN classifier and
BN retraining are both used.

is detrimental to model optimization. However, it should be emphasized that batch data does not align with the setting
of online learning, where inference is required on-demand instead of waiting for an incoming batch or when inference is
happening on an edge device (such as a mobile phone) where there is no opportunity for batching. Therefore, AdaNPC,
a TTA method that is insensitive to batch size, is valuable for the current research field. In addition, the three baselines
in the above experiments all suffered from severe collapse due to the influence of the BN layer, which may not be a fair
comparison to AdaNPC. We additionally considered a setting where all BN layer parameters were frozen during testing, and
the final linear layer was updated using the objective functions of each algorithm (CIf Retraining). The final results are
shown in Table 11(right). It can be seen that even if the influence of the BN layer is excluded, high-noisy gradients can still
make the models perform very poorly. Although ETA and EATA, as strong baselines, perform much better than using Tent
alone, they are still heavily affected by the batch size.

E.4. Extended ablation studies of training algorithms

Results in Table. 12 shows that on the Rotated MNIST dataset, with Ly vy, the representation will be better and the
generalization results will be improved.
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Figure 9. Corruption benchmark on CIFAR-10-C with the highest severity (five) and a 40-2 Wide ResNet backbone (Zagoruyko &
Komodakis, 2016) pre-trained on CIFAR-10. AdaNPC +BN means that the KNN classifier and BN retraining are both used.

Method
40 = Linear
AdaNPC
m BN Adapt
30 mmm  AdaNPC+BN

Error

20

|| | || || | || |
N HERNENEEEY N
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(o Y (<o \S \Y \Y \8 " o \Y Gl & )3
O OF IF O 0 0 ot ot o (oo oS e o

X PR DN A 9% o™ < .
%%\)efv/ o Q\)\se /&500 A &oxxo 100 W c e\,ﬁ\\ ) S
3

Corruptions Types

Figure 10. Corruption benchmark on CIFAR-10-C with the lowest severity (one) and a 40-2 Wide ResNet backbone (Zagoruyko &
Komodakis, 2016) pre-trained on CIFAR-10. AdaNPC +BN means that the KNN classifier and BN retraining are both used.
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do d1 d2 d3 d4 d5 AVg
ERM 940+£02 98.1+0.1 988+04 99.1+0.1 989+01 964+01 97.6
ERM-+AdaNPC 96.6 £04 987+0.1 989+£03 99.1£0.1 987+0.1 96.7+£03 098.1
LKNN 96.1+£09 986+03 989+£00 99.1+£02 988+02 97.0+£05 098.1

Lrxnn +AdaNPC 969 +03 988+01 991+02 992101 989+0.1 98.0+0.1 985

Table 12. Ablation studies of training loss on Rotated MNIST.

E.5. Extended visualization of classification results.

Figure 11 provide more evaluation instances that be prediction correctly and Figure 12 supplies more failure cases.
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Figure 11. Visualization of successfully classified results attained by AdaNPC.
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Figure 12. Visualization of misclassified results attained by AdaNPC.
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Rotated MNIST, Model selection: ‘Test-domain’ validation set

Algorithm 0 15 30 45 60 75 Avg
ERM (Vapnik, 1999) 953+02 987+£0.1 989+0.1 987+02 989+00 962+02 978
IRM (Arjovsky et al., 2020) 949 +£06 987+£02 986+0.1 98.6+£02 987401 9524+£03 975
GDRO (Sagawa et al., 2020) 959+0.1 990£0.1 989+0.1 988+0.1 98.6+0.1 963+04 979
Mixup (Yan et al., 2020) 958+03 987+£0.0 99.0+0.1 988+0.1 988401 96.6=+£0.2 98.0
MLDG (Li et al., 2018a) 957+02 989+0.1 988+0.1 989+0.1 98.6+0.1 958+04 978
CORAL (Sun & Saenko, 2016) 96.2+0.2 98.8+0.1 988+0.1 988+0.1 989+£0.1 964+£02 98.0
MMD (Li et al., 2018b) 96.1+02 989+£0.0 99.0+00 988+00 989+00 964=+£0.2 98.0
DANN (Ganin et al., 2016) 959+0.1 989+0.1 98.6+02 987+01 989+00 963+03 979
CDANN (Li et al., 2018c) 959+£02 988+£00 987+0.1 989+0.1 988£0.1 96.1£03 979
MTL (Blanchard et al., 2021) 96.1£02 989+£00 99.0+0.0 98.7+0.1 99.0£00 958+03 979
SagNet (Nam et al., 2021) 959+0.1 990£0.1 989+0.1 98.6+01 988+0.1 963+01 979
ARM (Zhang et al., 2021a) 959+04 990+£0.1 988401 989+0.1 99.1+£0.1 967+£02 98.1
VREX (Krueger et al., 2021) 955+£02 99.0£0.0 987+02 988+0.1 988+£00 964+00 979
RSC (Huang et al., 2020) 954+01 986=£0.1 98.6+01 989+00 988+0.1 954£03 97.6
Fish (Shi et al., 2022) 97.9
Fisher (Rame et al., 2022) 958+0.1 983+0.1 988+0.1 98.6+03 987+0.1 965+01 978
AdaNPC 972 £01 992+0.0 991+0.0 99.0+01 992+0.0 97.6+0.1 98.5
AdaNPC +NP 974+01 990£0.0 988+00 988+0.1 99.0+0.1 973£0.1 984
Rotated MNIST, Model selection: ‘Training-domain’ validation set
Algorithm 0 15 30 45 60 75 Avg
ERM (Vapnik, 1999) 959+0.1 989+0.0 988+00 989+00 989+00 964+0.0 98.0
IRM (Arjovsky et al., 2020) 955+0.1 988+02 987+0.1 98.6+0.1 98.7+00 959+02 977
GDRO (Sagawa et al., 2020) 95.6£01 989+£0.1 989+0.1 99.0+0.0 989+00 965+02 98.0
Mixup (Yan et al., 2020) 958+03 989+£0.0 989+00 989+00 988+0.1 965+£03 98.0
MLDG (Li et al., 2018a) 958+0.1 989+0.1 99.0+00 989+0.1 99.0+00 958+03 979
CORAL (Sun & Saenko, 2016) 95.8 £0.3 98.8+0.0 989+00 99.0+£0.0 989+£0.1 964+£02 98.0
MMD (Li et al., 2018b) 95.6+0.1 989=£0.1 99.0+00 99.0+£00 989+00 96.0+02 979
DANN (Ganin et al., 2016) 95.0+05 989£0.1 99.0+00 99.0+0.1 989+00 963+02 978
CDANN (Li et al., 2018c) 957+02 988+0.0 989+0.1 989+0.1 989+0.1 96.1+03 979
MTL (Blanchard et al., 2021) 95.6£0.1 99.0£0.1 99.0+00 989+0.1 99.0£0.1 958+02 979
SagNet (Nam et al., 2021) 959+03 989+£0.1 99.0+0.1 991+0.0 990+0.1 963=£0.1 98.0
ARM (Zhang et al., 2021a) 96.7+02 99.1£0.0 99.0+00 99.0+0.1 99.1+£0.1 965+04 982
VREX (Krueger et al., 2021) 959+£02 99.0£0.1 989+0.1 989+0.1 987£01 962+02 979
RSC (Huang et al., 2020) 948 +£05 987+£01 988+0.1 988+0.0 989+0.1 959+02 976
Fish (Shi et al., 2022) 98.0
Fisher (Rame et al., 2022) 95.0+03 985+£0.0 992+01 989+00 989+0.1 965+01 978
AdaNPC 97.7£04 991+£00 99.1+0.1 991+01 992+0.0 975+02 98.6
AdaNPC +BN 979+03 991+£01 992+00 991+01 992+0.0 98.0L04 9838

Table 13. Domain generalization accuracy (%) on Rotated MNIST.
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VLCS, Model selection: ‘Test-domain’ validation set

Algorithm C L S \% Avg
ERM (Vapnik, 1999) 976 +03 679+07 709+02 740+06 776
IRM (Arjovsky et al., 2020) 973+02 667+01 71.0+23 728+04 769
GDRO (Sagawa et al., 2020) 97.7+02 659+02 728+08 734+13 774
Mixup (Yan et al., 2020) 97.8+£04 672404 715+02 757£06 78.1
MLDG (Li et al., 2018a) 971+05 666+05 71.5+01 750+£09 775
CORAL (Sun & Saenko, 2016) 97.3+02 675+06 71.6+06 745+£00 777
MMD (Li et al., 2018b) 98.8+00 664+04 708+05 756+04 779
DANN (Ganin et al., 2016) 99.0+02 663+12 7344+14 80.14+05 79.7
CDANN (Li et al., 2018c) 982+0.1 688+05 7434+06 7814+05 799
MTL (Blanchard et al., 2021) 979+07 66.1+07 720+04 749+1.1 777
SagNet (Nam et al., 2021) 97.4+03 664+04 71.6+0.1 75.0+£08 77.6
ARM (Zhang et al., 2021a) 976 +06 665+03 7274+06 7444+07 778
VREX (Krueger et al., 2021) 984+02 6644+07 728+01 750+14 78.1
RSC (Huang et al., 2020) 98.0+04 672403 703+13 756+04 778
Fish (Shi et al., 2022) 77.8
Fisher (Rame et al., 2022) 97.6+07 673+£05 722+09 757+£03 782
AdaNPC 98.7+0.2 666+02 746+03 79.6+05 799
+BN retraining 98.7+02 674+03 749+05 79.7+0.5 80.2
VLCS, Model selection: ‘Training-domain’ validation set
Algorithm C L S A\ Avg
ERM (Vapnik, 1999) 97.7+04 6434+£09 734405 746+13 7715
IRM (Arjovsky et al., 2020) 98.6+0.1 649+09 734406 7734+09 785
GDRO (Sagawa et al., 2020) 973+03 6344+09 6954+08 767+07 76.7
Mixup (Yan et al., 2020) 983+06 648+10 721+05 743+£08 774
MLDG (Li et al., 2018a) 97.4+02 652+07 71.0+14 753+£10 772
CORAL (Sun & Saenko, 2016) 983 +0.1 66.1+12 734+03 775+12 788
MMD (Li et al., 2018b) 97.7+0.1 640+11 728+02 753+33 775
DANN (Ganin et al., 2016) 99.0+03 651+14 731403 7724+06 78.6
CDANN (Li et al., 2018c) 971+£03 651+12 707+08 77115 775
MTL (Blanchard et al., 2021) 97.8+£04 643+03 715+07 75317 772
SagNet (Nam et al., 2021) 979+04 645+05 714+13 775+£05 778
ARM (Zhang et al., 2021a) 98.7+02 636+07 713+12 767+06 77.6
VREX (Krueger et al., 2021) 984+03 644+14 741404 762+13 783
RSC (Huang et al., 2020) 979+0.1 625+07 723+12 756+08 77.1
Fish (Shi et al., 2022) 77.8
Fisher (Rame et al., 2022) 989+03 640+05 715+02 768+07 778
AdaNPC 989+03 645+10 735+07 756+08 78.1
+BN retraining 984+06 652+12 744+03 774+t11 789

Table 14. Domain generalization accuracy (%) on VLCS.
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PACS, Model selection: ‘Test-domain’ validation set

Algorithm A C P S Avg
ERM (Vapnik, 1999) 86.5+1.0 8134+06 962+03 827+1.1 86.7
IRM (Arjovsky et al., 2020) 8424+09 797+15 959+04 783421 845
GDRO (Sagawa et al., 2020) 875+05 829+06 97.1+03 8l.1+12 87.1
Mixup (Yan et al., 2020) 875+04 81607 974+02 80.8+09 86.8
MLDG (Li et al., 2018a) 87.0+12 8254+09 967+03 81.2+0.6 86.8
CORAL (Sun & Saenko, 2016) 86.6+0.8 81.84+09 97.1+0.5 827+0.6 87.1
MMD (Li et al., 2018b) 88.1+08 826+07 97.1+05 812+12 872
DANN (Ganin et al., 2016) 87.0+04 803+06 96.8+03 769+1.1 852
CDANN (Li et al., 2018c) 87.7+06 80.7+12 973+04 776+15 858
MTL (Blanchard et al., 2021) 87.0+02 827+08 965+0.7 805+0.8 86.7
SagNet (Nam et al., 2021) 874+05 812+12 963+08 80.7+1.1 864
ARM (Zhang et al., 2021a) 85.0+12 814402 959+03 809+0.5 858
VREX (Krueger et al., 2021) 87.8+12 81.8+07 974+02 821407 872
RSC (Huang et al., 2020) 86.0+0.7 81.84+09 96.8+07 804+05 86.2
Fish (Shi et al., 2022) 85.8
Fisher (Rame et al., 2022) 879+06 808+05 979+04 81.1+0.8 869
AdaNPC 89.1+£03 843+0.1 981+04 837+05 88.8
AdaNPC +NP 89.2+03 843+01 98.0+04 83.8+04 889
PACS, Model selection: ‘Training-domain’ validation set
Algorithm A C P S Avg
ERM (Vapnik, 1999) 84.7+04 808+0.6 972+03 793+1.0 855
IRM (Arjovsky et al., 2020) 848+13 764+11 967+06 761+1.0 835
GDRO (Sagawa et al., 2020) 8354+09 79.1+06 96.7+03 783+20 844
Mixup (Yan et al., 2020) 86.1+£05 789+08 97.6+0.1 758+1.8 84.6
MLDG (Li et al., 2018a) 855+14 801+17 974+03 766+1.1 849
CORAL (Sun & Saenko, 2016) 88.3+0.2 80.0+05 975+03 788+13 862
MMD (Li et al., 2018b) 86.1 14 7944+09 966+02 765+05 84.6
DANN (Ganin et al., 2016) 864 +08 774+08 97.3+04 735+23 83.6
CDANN (Li et al., 2018c) 84.6 18 755+09 968+03 735+0.6 826
MTL (Blanchard et al., 2021) 875+08 77.1+£05 964+08 773+1.8 84.6
SagNet (Nam et al., 2021) 874+10 8074+06 97.1+£0.1 80.0+04 86.3
ARM (Zhang et al., 2021a) 86.8+ 06 768+05 974+03 793+12 851
VREX (Krueger et al., 2021) 86.0+16 79.1+06 969+05 77.7+17 849
RSC (Huang et al., 2020) 854+08 79.7+18 97.6+03 782+12 852
Fish (Shi et al., 2022) 85.5
Fisher (Rame et al., 2022) 884+02 787+0.7 97.0+01 77.8+£20 855
AdaNPC 87.1+13 822+06 975+04 81.5+0.8 87.1
AdaNPC +NP 862 +12 822+0.6 981+01 802+10 86.7

Table 15. Domain generalization accuracy (%) on PACS.
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DomainNet, Model selection: ‘Test-domain’ validation set

Algorithm clip info paint quick real sketch Avg
ERM (Vapnik, 1999) 58.1+£0.3 18.8+£03 46.7+£03 122+04  59.6 £0.1 498+ 04 409
IRM (Arjovsky et al., 2020) 485+ 2.8 150+ 1.5 383443 109+0.5 482+52 423+ 3.1 339
GDRO (Sagawa et al., 2020) 472+05 175+ 04 33.8+0.5 93+03 51.6 £ 04 40.1+06 333
Mixup (Yan et al., 2020) 55.7+0.3 185+05 443405 1254+ 04 558+0.3 482+05 392
MLDG (Li et al., 2018a) 59.1£0.2 191 £03 458407 134+03 59602 502+04 412
CORAL (Sun & Saenko, 2016) 592 £0.1 19.7+02 46.6 0.3 134+04 59.8+02 50.1+0.6 415
MMD (Li et al., 2018b) 3214+133 11.0+x46 268+113 87x21 327+138 289+£119 234
DANN (Ganin et al., 2016) 53.14+£0.2 183+0.1 4424+0.7 11.8+0.1 555+04 46.8 +0.6 383
CDANN (Li et al., 2018c) 54.6 £ 0.4 17.3 £0.1 43.7+ 09 121+£0.7 562+04 459+05 383
MTL (Blanchard et al., 2021) 579 +£0.5 185+04  46.0+0.1 12.5+0.1 59.5+0.3 49.2 + 0.1 40.6
SagNet (Nam et al., 2021) 57.7+0.3 19.0+02 453+0.3 127+05 58.1£0.5 488 +02 403
ARM (Zhang et al., 2021a) 49.7+0.3 163+05 409+1.1 94 +0.1 534+04 435+04 355
VREXx (Krueger et al., 2021) 473+35 16015 358+46 109+03 49649 420+30 336
RSC (Huang et al., 2020) 550+1.2 183+05 444+0.6 1224+02 557=+0.7 478+09 389
Fish (Shi et al., 2022) 43.4
Fisher (Rame et al., 2022) 583+05 202+£02 479+£02 136 £03 60.5+0.3 50.5+03 418
AdaNPC 595+01 2224+09 482+09 153+0.2 61.2+0.0 511+01 429
DomainNet, Model selection: ‘Training-domain’ validation set
Algorithm clip info paint quick real sketch Avg
ERM (Vapnik, 1999) 58.6 £0.3 192+02 47.0+£0.3 1324+02 599+03 498+ 04 413
IRM (Arjovsky et al., 2020) 40.4 £ 6.6 121 +£27 314+£57 9.8+1.2 37.7+9.0 36.7+53 280
GDRO (Sagawa et al., 2020) 472+05 175+ 04 342403 92+04 51.9+0.5 40.1+06 334
Mixup (Yan et al., 2020) 55.6 £0.1 187+ 04 451405 1284+03 57.6+0.5 482+04  39.6
MLDG (Li et al., 2018a) 59.34+0.1 196+ 02 46.8+0.2 134+02 60.1+£04 504+03 416
CORAL (Sun & Saenko, 2016)  59.2 £0.1 199+02 474402 140+04 59.8+02 504+04 418
MMD (Li et al., 2018b) 3224133 11.2+45 268+£113 88+22 327+138 29.0x+11.8 235
DANN (Ganin et al., 2016) 53.1+0.2 183+0.1 442407 119+0.1 555+04 46.8 +0.6 383
CDANN (Li et al., 2018c) 54.6 £ 0.4 17.3 £0.1 442 + 0.7 128 £0.2 562+04 459+05 385
MTL (Blanchard et al., 2021) 58.0+ 0.4 192+02 46.2+0.1 127+£02 599 +0.1 49.0+ 0.0 408
SagNet (Nam et al., 2021) 57.7+0.3 19.1+0.1 463 +0.5 135+04 589404 495+02 408
ARM (Zhang et al., 2021a) 49.6 + 04 165+03 415408 10.8 £0.1 535+03 439+04 360
VREXx (Krueger et al., 2021) 433 +4.5 141+£18 325450 98 £1.1 435+5.6 37.7+£45  30.1
RSC (Huang et al., 2020) 55.0+1.2 183+05 444+0.6 125+0.1 557=£0.7 478 +09 389
Fish (Shi et al., 2022) 42.7
Fisher (Rame et al., 2022) 5824+05 202+£02 477+£03 127+02 603+0.2 50.8+£0.1 417
AdaNPC 593+00 222+09 483+0.0 143+£0.0 61.0+0.1 514+0.0 428

Table 16. Domain generalization accuracy (%) on DomainNet.
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