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Abstract

Many recent machine learning tasks focus to de-
velop models that can generalize to unseen distri-
butions. Domain generalization (DG) has become
one of the key topics in various fields. Several
literatures show that DG can be arbitrarily hard
without exploiting target domain information. To
address this issue, test-time adaptive (TTA) meth-
ods are proposed. Existing TTA methods require
offline target data or extra sophisticated optimiza-
tion procedures during the inference stage. In
this work, we adopt Non-Parametric Classifier
to perform the test-time Adaptation (AdaNPC).
In particular, we construct a memory that con-
tains the feature and label pairs from training do-
mains. During inference, given a test instance,
AdaNPC first recalls k closed samples from the
memory to vote for the prediction, and then the
test feature and predicted label are added to the
memory. In this way, the sample distribution in
the memory can be gradually changed from the
training distribution towards the test distribution
with very little extra computation cost. We the-
oretically justify the rationality behind the pro-
posed method. Besides, we test our model on
extensive numerical experiments. AdaNPC sig-
nificantly outperforms competitive baselines on
various DG benchmarks. In particular, when the
adaptation target is a series of domains, the adap-
tation accuracy of AdaNPC is 50% higher than
advanced TTA methods. Code is available at
https://github.com/yfzhang114/AdaNPC.
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(a) AdaNPC memorizes features and labels of source domain
instances. During inference, each arrival target sample will be
classified by a KNN classifier, where the nearest neighbors are
searched in the memory. For test-time adaptation, the target
feature and prediction will be further stored in the memory bank.
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(b) Strong knowledge expandability of AdaNPC. When our
model is trained on a domain d0 and adapted to target domains
d1, ..., d5 successively, advanced TTA methods only bring
margin performance improvement, however, AdaNPC and its
variants boost the accuracy significantly.

Figure 1. An illustration example of AdaNPC that proposes to
utilize a non-parametric classifier for test-time adaptation.

1. Introduction
The classic machine learning models generally suffer from
degraded performance when the training and test data are
not from the same distribution. Many researchers con-
sider developing out-of-distribution (OOD) generalization
approaches (e.g., disentanglement (Zhang et al., 2022a),
causal invariance (Arjovsky et al., 2020; Zhang et al.,
2022c), and adversarial training (Ganin et al., 2016; Li et al.,
2018c).), in which models are trained on multiple source
domains/datasets and can be directly deployed on unseen
target domains.

In recent studies (Zhang et al., 2022d; Dubey et al., 2021),
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people show that robustifying a model to any unknown distri-
bution is almost impossible without utilizing target samples
during inference. The test-time adaptive (TTA) methods are
then proposed to utilize target samples with computation-
ally practical constraints. However, current TTA methods
suffer from several drawbacks. (1) Overhead computation:
existing TTA methods either need batches of target data
for gradient updates (Sun et al., 2020; Wang et al., 2020a;
Zhang et al., 2021b) and/or an additional model for fine-
tuning (Sun et al., 2020; Dubey et al., 2021; Zhang et al.,
2022d), which are prohibited when target sample arrives
one by one in the online manner. (2) Domain forgetting:
existing TTA methods require making changes in the trained
model. The model would gradually lose the prediction abil-
ity of the training domains, indicating that some knowledge
loss is inevitable. This issue is especially significant when
conducting inference for a series of domains. Let us con-
sider a simple test on Rotated MNIST dataset (Ghifary et al.,
2015), we perform test-time adaptation to d1, d2, ..., d5 seri-
ally using the latest TTA methods, T3A (Iwasawa & Matsuo,
2021) and Tent (Wang et al., 2020a). In Figure 1(b), we
observe that the generalization ability on d5 of all existing
methods is poor even after adaptation in the first four do-
mains. We also summarize the generalizability in the source
domain d0 in Figure 2 drops significantly. That is, current
TTA methods cannot adapt to a series of online domains
and easy to forget historical knowledge.

To this end, we propose a non-parametric adaptation ap-
proach, debuted AdaNPC. In particular, AdaNPC trains the
model with a K nearest neighbor (KNN) based loss instead
of the cross-entropy loss, which minimizes the influence of
outliers / irrelevant samples on the potentially noisy training
dataset. After training, AdaNPC constructs a memory bank
to maintain the trained feature and label pairs of the training
dataset. When switching to the inference stage, the feature
of a given test sample is first computed using a forward
procedure, and then, based on similarity, the top k closed
samples in the memory bank are collected to generate a
voting prediction. Finally, the new testing pair (feature and
predicted label) is added to the memory bank. We illus-
trate the whole procedure in Figure 1(a). As dense vectors’
searching can be efficiently implemented with logarithmic
dependence in total sample size (Johnson et al., 2019), the
computation cost of AdaNPC in the inference stage is al-
most the same as a single forward pass and is significantly
smaller than backward gradient updates. On the other hand,
our approach separates the feature extraction procedure and
individual sample memorization. It facilitates us to maintain
the information among source and target domains simulta-
neously. The main contributions of this paper are:

1. We investigate a non-parametric paradigm to perform test-
time adaptation by storing features and predicted pseudo-
labels of target instances. The proposed AdaNPC can be
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Figure 2. Re-evaluation on the source domain d0 after the
model is adapted to unseen target domain di. When adapted to
more target domains, the performance of existing TTA methods on
d0 drops drastically while AdaNPC always attains a high accuracy.

incorporated with any representation learning models.

2. We theoretically derive target domain error bounds under
both the covariate shift setting and the posterior shift setting.
Our theoretical results show that a non-parametric classifier
can explicitly reduce the domain divergence and makes
the target error bound tighter; Besides, AdaNPC, which
incorporates online target instances into the memory bank,
will further reduce the target risk.

3. We perform extensive experiments on 5 popular OOD
benchmarks with 3 different backbones, where the results
show that AdaNPC (1) achieves competitive generaliza-
tion performance in both target and source domains; (2)
beats most existing test-time adaptation methods by a large
margin; (3) using non-parametric classifier attains faster
convergence and performs well even without fine tuning,
which is promising for large pre-trained models.

4. AdaNPC has some unique benefits, such as interpretabil-
ity: by analyzing the neighborhood samples chosen by
AdaNPC, we can interpret how past knowledge is used for
inference results, and knowledge expandability: AdaNPC
stores all the data features that have been seen and avoid
catastrophic forgetting.

2. Related Work
Test-Time adaptive methods (Liang et al., 2023) are re-
cently proposed to utilize target samples. The taxonomy
of Test-Time adaptive methods is summarized in Appendix
Table 7, where Test-Time Training methods design proxy
tasks during tests such as self-consistence (Zhang et al.,
2021b), rotation prediction (Sun et al., 2020) and need extra
models; Test-Time Adaptation methods adjust model pa-
rameters based on unsupervised objectives such as entropy
minimization (Wang et al., 2020a; Zhang et al., 2022b)
or update a prototype for each class (Iwasawa & Matsuo,
2021). Domain adaptive method (Dubey et al., 2021) needs
additional models to adapt to target domains. Both the Test-
Time adaptation methods and the domain-adaptive methods
need batches of target samples. Single sample generaliza-
tion methods are recently proposed, which need to learn
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an adapt strategy from source domains, i.e., (Xiao et al.,
2022) formulates the adaptation to the single test sample as
a variational Bayesian inference problem and uses the meta-
learning pipeline to learn the adaptative strategy; (Zhang
et al., 2022d) introduces specific classifiers for different
domains and adapt the voting weight for test samples dy-
namically. All aforementioned approaches either require
accessing the batch of data or need gradient computation
to update the models, which is computationally inefficient
especially in the online setting with steaming data. Our pro-
posed AdaNPC performs Test-Time adaptation by storing
the test features and predicted labels and doesn’t have those
restrictions. See more related work in Appendix A.

3. Methods
Problem setting. In domain generalization (DG), we con-
sider a source domain dataset DS = {(xi

s, y
i
s)}

ns
i=1 is collect

from different environments or domains, where (xi
s, y

i
s) is

sampled i.i.d. from the distributionDS and ns is the total
sample size. The DG aims to train a predictor f̂ on source
domain dataset DS and to perform well on a testing unseen
dataset DU = {(xi

u)}
nu
i=1 that sampled from a distribution

DU , which is inaccessible during training. We formally de-
fine the classification error and its variants onDU , whereas
definitions for other domains are the same.
Definition 1. (Regression function.) In binary classifica-
tion settinga, given a distributionDU , the regression func-
tions are defined to represent the conditional distributions.

ηU (x) = Px∼DU
(Y = 1|X = x). (1)

(Classification error.) The error of hypothesis f̂ ∈ H :
X → {0, 1} under the distributionDU is defined as

ϵU (f̂) = E(x,y)∼DU
[|f̂(x)− y|] = PU ({(x, y) : f̂(x) ̸= y})

(2)
where PU (A) denotes the probability of an event A inDU .

aTheories and examples in this work consider binary classi-
fication for easy understanding and can be easily extended to
multi-class setting.

Definition 2. (excess error and its dual form.) Given the
Bayes classifier underDU : f∗

U (x) = I{ηU (x) ≥ 1/2}, the
excess error of f̂ is defined as

EU (f̂) = ϵU (f̂)− ϵU (f
∗
U )

= 2Ex∼DU

[∣∣∣∣ηU (x)− 1

2

∣∣∣∣ I{f̂(x) ̸= f∗
U (x)}

] (3)

We then introduce the proposed method using the following
pipelines: representation learning, making predictions, test-
time memory augmentation, and some useful tricks.

Learning representative features. Let hθ(·) be the encoder

parameterized by θ. We denote Bθ,DS
(x) := {a(i)}nS

i=1

as the ordered index set in the source domain dataset DS

for any x, formally as follows: satisfying ∥hθ(xa(1)) −
hθ(x)∥2 ≤ ∥hθ(xa(2)) − hθ(x)∥2 ≤ · · · ≤ ∥hθ(xa(ns)) −
hθ(x)∥2. We denote Bk,θ,DS

⊆ Bθ,DS
as the subset only

contains the first k elements in Bθ,DS
.

We consider optimizing the KNN loss function LKNN :

min
θ

−1

ns

∑
i

log

∑
j∈Bk,θ,DS

(xi)
exp (wij/τ) I{yi = yj}∑

j∈Bk,θ,DS
(xi)

exp (wij/τ)
,

(4)

where wij =
hθ(xi)

⊤hθ(xj)
∥hθ(xi)∥2∥hθ(xj)∥2

is the consine similarity
between hθ(xi) and hθ(xj) and τ > 0 is the temperature
parameter to scale the influence of wij .

With this configuration, features with the same label are
zoomed closer and different labeled features are pushed
away. Compared to cross-entropy loss, the Eq.(4) training
paradigm leads to better representations, which is verified
in (Feng et al., 2022) and our experiments. The optimiza-
tion of Eq.(4) is highly nontrivial as Bk,θ,DS

changes with
model parameters θ in a non-differentiable manner. In this
paper, we adopt an EM algorithm to solve it approximately.
We only periodically update Bk,θ,DS

and keep them fixed
for the remaining time, in which we can easily apply the
standard optimization schemes in PyTorch or TensorFlow.
In practice, one may also consider ignoring this step and
directly using the pre-trained model with conventional meth-
ods (e.g., ERM (Vapnik, 1999), IRM (Arjovsky et al., 2020),
and CORAL (Sun & Saenko, 2016)). In the experimental
section, we show that we don’t even need to fine-tune the
pre-trained model in the source domain, and AdaNPC can
still achieve good generalization performance.

Making prediction by non-parametric classifier. Given an
unseen sample xu, we denote the prediction from AdaNPC
as follows:

ηk(xu) = softmax(
∑

j∈Bk,θ,M(xu)

wuj1{yj}), (5)

where 1{yj} is the one-hot class label of xj for j ≥ 1, wuj

is the cosine similarity between hθ(xu) and hθ(xj), andM
is the memory bank and will be specified later. Intuitively,
the predictor from Eq.(5) can be viewed as a voting proce-
dure among the memorized samples similar to xu. We first
collect the k closest samples to xu in the memory bank. The
cosine similarity wuk is then computed between k selected
samples and xu. The final decision is the label with the
largest summed weights. In this predictor, we explicitly
use the samples in the memory bank. It gives us better
interpretability than conventional approaches.

Non-parametric test-time adaptation by memory aug-
mentation. At the beginning of the evaluation procedure,
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all source domain images are embedded to make up the
Memory bankM = {(hθ(xi), yi)}ns

i=1. During inference,
assume each xu arrives one by one online and we must
report the classification result once xu arrives. After classifi-
cation, if the prediction confidence of ηk(xu) is greater than
a predefined margin, then the memory set will be augmented
byM =M + (hθ(xu), ηk(xu)). The overall pipeline of
AdaNPC is shown in Figure 1(a).

Some useful tricks. 1. BN retraining. The performance
of a non-parametric classifier highly depends on the model
representation, to attain more powerful representations and
maintain the simplicity of AdaNPC, we optionally add one
BN layer before the classifier. Then during the evaluation,
only the BN layer parameter will be re-trained by minimiz-
ing the prediction entropy of ηk(xu). 2. Efficient memory
bank constructionM. Although there are many advanced
techniques for memory construction, such as momentum
update in MoCo (He et al., 2020) or Faiss (Johnson et al.,
2019), for presentation simplicity consideration, we only
adopt the simplest method via computation all pair-wise
distance here and hold the usage of advance KNN searching
algorithm for the future work. Moreover, to facilitate the
training efficiency on the large source dataset, we consider
to constructM with a relatively small size for faster train-
ing, where |M| ≪ ns.M during training will be updated
by the first-in-first-out (FIFO) strategy by each minibatch
representation.

4. Theoretical Analysis
In this section, we theoretically verify that using KNN as our
classifier can explicitly reduce domain divergence. Besides,
incorporating target instances, namely the non-parametric
Test-Time adaptation, will further reduce the unseen tar-
get error. Before we discuss the major results, we first
state some necessary assumptions and notions. Refer to
Appendix B for missing proofs and detailed explanations.

Assumption 1. (Strong Density Condition) Given pa-
rameter µ−, µ+, cµ, c

∗
µ, rµ > 0, we assumeDS ,DU are

absolutely continuous with respect to the Lebesgue mea-
sure in Rd, and B(x, r) = {x′ :∥ x′− x ∥≤ r} is the ball
centered on x with radius r. We assume that ∀xu ∈ DU

and r ∈ (0, rµ] we have

λ[DS ∩ B(xu, r)] ≥ cµλ[B(xu, r)]

λ[DU ∩ B(xu, r)] ≥ c∗µλ[B(xu, r)]

µ− <
dDS

dλ
< µ+;µ− <

dDU

dλ
< µ+,

where λ is the Lebesgue measure in Euclidean space.

Strong Density Condition is a commonly assumed con-
dition when analyzing KNN classifier (e.g., (Audibert &

Tsybakov, 2007; Cai & Wei, 2021)). Intuitively, Assump-
tion 1 requires the divergence between supports ofDS and
DU being bounded. When cµ = 1, for each x ∈ DU , its
neighbor ball B(x, r) is completely withinDS . In contrast,
when cµ ≈ 0, B(x, r) andDS are nearly disjoint. We then
consider two common assumptions that parameterize the
behavior of ηU (x).
Assumption 2. (Smoothness) Let ηU be the classification
function and C be a positive constant. For all feasible
x, x′ we have |ηU (x)− ηU (x

′)| ≤ C ∥ x− x′ ∥.

Assumption 2 describes that ηU is Lipschitz continuous. Our
analysis is capable with weaker condition, such as (α,Cα)-
Hölder condition (Cai & Wei, 2021) for some α ∈ (0, 1]
and Cα > 0. For notation simplicity, we hold it for future
work.
Assumption 3. (Low Noise Condition). Let β,Cβ

be positive constants and we assume DU satisfies
Px∼DU

(∣∣ηU (x)− 1
2

∣∣ < t
)
≤ Cβt

β for all t > 0.

The low noise condition is first proposed in (Tsybakov,
2004), which is also named margin assumption (Cai & Wei,
2021). The assumption places a constraint on ηU around
ηU (x) ≈ 1/2. A larger β pushes ηU far from 1/2 and then
the classification task will be easier.

4.1. KNN classifier reduces domain divergence

We characterize domain divergence reduction of KNN clas-
sifier in the following proposition 1.
Proposition 1. LetDS andDU be the source and target
domain respectively. Per Assumptions 1 and 2, the risk of
hypothesis f̂ on the unseen target domain is bounded by

ϵU (f̂) ≤ κs + ϵs(f̂) +O (W(DS ,DU )) , (6)

where W(·, ·) is the Wasserstein 1-distance , κS =
minf ϵU (f)+ϵS(f), and we useO(·) to hide the constant
dependence.

Furthermore, if we switch from DS to a sampled distri-
bution Ω of DS around the neighborhood of DU , i.e.,
Ω :=

⋃
x∈DU

B(x, rx) with rx ≤ rµ such that each
B(x, rx) contains exact k elements, and assume that the
unseen distributionDU is finite with cordiality nDu . The
risk of hypothesis f̂ onDU is then improved to

ϵU (f̂) ≤ κΩ + ϵΩ(f̂) +O

((
2k

cµµ−πdns

)1/d
)
, (7)

with probability at least 1− exp(−k
4 + log nDu

), where
κΩ = minf ϵU (f) + ϵΩ(f) and d is the feature represen-
tation dimension.

Inequality Eq.(6) is adopted from (Shen et al., 2018), which
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indicates the error of a given hypothesis f̂ bounded by three
terms, the minimized combined error κS , the error in the
source domain ϵS(f̂) and a term on the order of a constant
term W(DS ,DU ). When source domain DS is far away
from the target domain DU , the O(W(DS ,DU )) becomes
the dominating quantity and leads to loose upper bound.

When switching to the non-parametric classifier, in Eq.(7)
we replace O(W(DS ,DU )) by a quantity explicitly decay-
ing in ns. Intuitively, by constructing Ω, we only keep the
samples in the source domain with enough similarity to the
target domain and it would naturally short the distance from
W(DS ,DU ) toW(Ω,DS). We also want to highlight that
Proposition 1 should imply the non-parametric classifier
may be able to take more benefits from the large pretraining
source dataset (Figure 5(c)). See the Appendix for a detailed
discussion of the influence of k and cµ.

4.2. AdaNPC further reduces the target risk

In this section, we develop the target excess error bounds un-
der the covariate-shift and the posterior-shift settings, which
further articulate all factors that affect the performance of
our algorithm (Proposition 2) and the benefits of using on-
line target data (Proposition 3).

Proposition 2. We consider ηU and ηS to be the KNN
predictor in form of Eq.(5) with all wi fixed as 1

k . Per
assumptions 1-3, the following results hold with high-
probability when choosing k = O(log ns).

Under the covariate-shift setting, we have ηU = ηS = η
for the source and target domains, and

EU (f̂) ≤ O

((
1

k

)1/4

+

(
k

cµns

)1/d
)1+β

= O

((
1

log ns

)1/4

+

(
log ns

cµns

)1/d
)1+β

.

(8)
Under the posterior-shift setting, the regression functions
ηU and ηS are different and

EU (f̂) ≤ O

((
1

logns

)1/4

+

(
logns

cµns

)1/d

+ Cada

)1+β

,

(9)
where supxu∈DU

|ηS − ηU | ≤ Cada.

We make a few remarks on the excess risk upper bound.

1. The upper bound is affected by k, cµ, ns, which is sim-
ilar to the discussion of Proposition 1. Differently, when
setting k = O(log ns), the excess error bound reduces to 0
under the covariate-shift setting when ns → ∞ in a high
probability manner.

2. Proposition 2 shows a trade-off on the choice of k. Al-

though a small k reduces the domain divergence or repre-
senting similarity (k/cµns)

1/d, it is well known that the
model will become too specific and fails to generalize well.

3. When regression functions are different, an additional
term is introduced in the bound, namely the adaptivity gap
supxu∈DU

|ηS(xu) − ηU (xu)|, which measure the differ-
ence of two regression functions. The gap can be estimated
and reduced by existing methods (Zhang et al., 2022d).

4. For presentation simplification, we use the equal weighted
wuj instead of cosine similarity between feature represen-
tations. In fact by choosing proper k, all cosine similarity
values can be safely assumed lower bounded onO(k−δ) for
some δ > 0. Therefore one may introduce extra assumption
on the lower bound of wuj to obtain a extended version of
Proposition 2 with adaptive wuj .

As discussed in Section 3, the proposed AdaNPC is a special
kind of Test-Time adaptation method that can utilize the
online target samples to improve prediction generalization.
We next theoretically verify that, by incorporating the online
target samples into the KNN memory bank, the excess error
bound is further reduced.
Proposition 3. Denote nu as the number of target in-
stances in the KNN memory bank and the KNN classi-
fier finds the ks nearest neighbors in DS and ku nearest
neighbors in DU during inference with ks + ku = k. Per
Assumptions 1-3, under the posterior-shift setting,

EU (f̂) ≤ O

((
1

k

)1/4

+
ks
k

(
ks

cµns

)1/d

+

ku
k

(
ku

c∗µnu

)1/d

+
ks
k
Cada

)1+β (10)

where supxu∈DU
|ηS − ηU | ≤ Cada and similar results

also hold under the covariate-shift setting.

We want to highlight that the above error bound is tighter
than the case without updating the memory bank. The de-
tailed discussion is deferred to section B.4 in Appendix.

5. Experiments
In our experiments, BN retraining and KNN loss are not
used by default for fair comparisons. The model name will
be AdaNPC +BN when BN retraining is used and the effect
of the KNN loss is verified in the ablation study.

5.1. Experimental settings

Domain generalization benchmarks and baselines. We
use five popular OOD generalization benchmark datasets:
Rotated MNIST (Ghifary et al., 2015), PACS (Li et al.,
2017), VLCS (Torralba & Efros, 2011), TerraIncog-
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Method RMNIST VLCS PACS DomainNet TerraIncognita Avg

ERM (Vapnik, 1999) 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 41.3 ± 0.1 53.0 ± 0.3 71.3
IRM (Arjovsky et al., 2020) 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 28.0 ± 5.1 50.5 ± 0.7 67.5
GDRO (Sagawa et al., 2020) 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 33.4 ± 0.3 52.4 ± 0.1 69.6
CORAL (Sun & Saenko, 2016) 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 41.8 ± 0.1 52.8 ± 0.2 71.5
DANN (Ganin et al., 2016) 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 38.3 ± 0.1 50.6 ± 0.4 70.3
MTL (Blanchard et al., 2021) 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 40.8 ± 0.1 52.2 ± 0.4 71.1
SagNet (Nam et al., 2021) 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 40.8 ± 0.2 52.5 ± 0.4 71.1
ARM (Zhang et al., 2021a) 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 36.0 ± 0.2 51.2 ± 0.5 69.8
VREx (Krueger et al., 2021) 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 30.1 ± 3.7 51.4 ± 0.5 68.9
Fish (Shi et al., 2022) 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 43.4 ± 0.3 50.8 ± 0.4 71.1
Fishr (Rame et al., 2022) 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 41.8 ± 0.2 53.6 ± 0.4 71.7
AdaNPC 98.5 ± 0.1 79.5 ± 2.4 88.8 ± 0.1 42.9 ± 0.5 53.9 ± 0.3 72.7
AdaNPC +BN 98.4 ± 0.1 80.2 ± 0.2 88.9 ± 0.1 43.1 ± 0.8 54.0 ± 0.1 72.9

Table 1. Out-of-distribution generalization performance.
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Figure 3. Successive adaptation results on the TerraIncognita
dataset. (a) Adaptation results on d1, d2, d3. (b) Re-evaluation of
the adapted model on the source domain d0.

nita (Beery et al., 2018) and DomainNet (Peng et al., 2019).
We compare our model with ERM (Vapnik, 1999), IRM (Ar-
jovsky et al., 2020), Mixup (Yan et al., 2020), CORAL (Sun
& Saenko, 2016), DANN (Ganin et al., 2016), CDANN (Li
et al., 2018c), MTL (Blanchard et al., 2021), SagNet (Nam
et al., 2021), ARM (Zhang et al., 2021a), VREx (Krueger
et al., 2021), RSC (Huang et al., 2020), Fish (Shi et al.,
2022), Fishr (Rame et al., 2022). All experimental settings
and baselines follow the Domainbed codebase (Gulrajani &
Lopez-Paz, 2021). The comparison of AdaNPC with other
TTA methods is detailed in the appendix.

See Appendix D for more information, including datasets
information, model selection, licensing information, hyper-
parameter search, and the total amount of computing. See
Appendix E for more experimental results and analysis.

5.2. Experimental Results

AdaNPC has strong knowledge expandability. For practi-
cal usage, a deployed model should be adapted to a series
of domains, where domain partition is unknown and we
should guarantee that the model performs well on both any
unseen target sample and samples from the training do-
mains. In this case, we propose a setting named Successive
adaptation that is more practical. As shown in Figure 4,
a model (model 0) that is trained on domain d0 will be

adapted to a series of domains. Specifically, model i will
be adapted and evaluated on a domain di+1. The results
of successive adaptation results on the Rotated MNIST
and TerraIncognita are shown in Figure 1(b) and Fig-
ure 3(a). Results show that the latest TTA method, namely
T3A (Iwasawa & Matsuo, 2021) and Tent (Wang et al.,
2020a) perform marginally above or even worse than the
ERM baseline where no test-time adaptation is performed.

…

…

Figure 4. An illustration of suc-
cessive adaptation setting.

In contrast, the proposed
AdaNPC is superior to
these methods, especially
in the Rotated MNIST
dataset d5, where the per-
formance gains brought by
AdaNPC compared to ERM
are greater than 50%. The
reason will be that the do-
main indexes in the Ro-
tated MNIST are continu-
ously changed, namely, the rotation angles are changed
from 0◦ to 75◦, which makes the knowledge transfer eas-
ier. The continuously changed domain index is also general
in real world tasks (Wang et al., 2020b), for example, in
medical applications, one needs to adapt disease diagnosis
and prognosis across patients of different ages, where the
age is continuously changed between domains, verifying
the practical utility of AdaNPC.

AdaNPC overcomes catastrophic forgetting and reserves
superior source performance that is even better than
ERM. Figure 2 and Figure 3(b) visualize the source ac-
curacy of model i, where the x-coordinate di means the
model i is evaluated on the source d0. Both T3A (Iwasawa
& Matsuo, 2021) and Tent (Wang et al., 2020a) forget the
knowledge of the source domains as they adapt to more
target domains. That is, if these TTA methods are used for a
deployed model after a series of adaptations, we cannot ex-
pect that the model will still give a correct prediction on the
source domain instances. The tradeoff between adaptivity
and source domain accuracy is nonexistent for the proposed
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Method A C P S Avg

ResNet18 79.5 73.0 90.1 77.3 80.0
AdaNPC 82.7 76.8 92.8 77.7 82.5
AdaNPC +BN 83.6 77.7 93.1 77.9 83.1
ResNet50 81.7 82.3 94.3 77.6 84.0
AdaNPC 86.0 81.0 96.4 79.8 85.8
AdaNPC +BN 85.6 80.8 96.5 79.7 85.7
ViT-B16 88.3 82.4 97.9 79.8 87.1
AdaNPC 89.8 86.0 97.9 80.5 88.6
AdaNPC +BN 89.8 86.1 98.3 80.5 88.7

Table 2. OOD accuracy with different backbones on PACS.

AdaNPC, which performs both tasks well. Dur to space
limit, we leave the performance over other dataset in the
appendix E.2.

AdaNPC achieves a new State-Of-The-Arts on domain
generalization benchmarks. The average OOD results
on all benchmarks are shown in Table 1. We observe con-
sistent improvements achieved by AdaNPC compared to
existing algorithms and BN retraining can further boost
the generalization capability with few parameter updating.
Compared to the advanced DG method Fishr (Rame et al.,
2022), which achieves 0.4 higher average accuracy than
ERM, the proposed AdaNPC attains a much larger margin
(1.4). The results indicate the superiority of AdaNPC in
real-world diversity shift datasets.

AdaNPC improves different backbones by a large mar-
gin. We conduct experiments with various backbones
in Table 2, including ResNet50, ResNet18, and Vision
Transformers (ViT-B16). AdaNPC achieves consistent per-
formance improvements compared to ERM. Specifically,
AdaNPC improves 2.5%, 1.8%, 2.6%, and 1.5% for ResNet-
18, ResNet50, ResNet50-BN, and ViT-B16, respectively.

Without any model fine-tuning on source domains,
AdaNPC can perform well. Figure 5(a) shows the re-
sults where the pre-trained model is directly evaluated on
the target domain and without any fine-tuning on the source
domains. The average generalization performance of us-
ing an MLP classifier is below 25% even with a strong
backbone (ViT-L16). On the contrary, the use of a KNN
classifier achieves average generalization accuracy 71.4%.
Nowadays, fine-tuning is usually computationally expen-
sive due to the ever-growing size of pre-trained models.
The requirement of AdaNPC is not a gradient-based update
but external high capacity storage to store knowledge for
image classification, such as image feature maps, which
provides a new promising direction to utilize pre-trained
knowledge. Furthermore, as the number of source instances
increases, Figure 5(c) shows that AdaNPC achieves better
performance, which validates our theoretical result.

AdaNPC reduces generalization error across various cor-

Defoc Glass Motion Zoom

R-50 (GN)+JT 88.9 91.7 86.7 81.6
R-50 (BN) 82.1 90.2 85.2 77.5
AdaNPC 83.1 83.0 72.3 60.6

TTT 71.9 92.2 66.8 63.2
TTA 87.5 91.8 87.1 74.2
BN adaptation 80.0 80.0 71.5 60.0
MEMO 80.3 87.0 79.3 72.4
Tent 71.8 72.7 58.6 50.5
Tent (episodic) 85.5 85.4 74.6 62.2
AdaNPC+Tent 71.1 72.0 58.2 49.2

ETA 66.1 67.1 52.2 47.5
EATA 66.3 66.6 52.9 47.2
AdaNPC+ETA 65.2 65.2 51.1 46.5

Table 3. Comparison with state-of-the-art methods on
ImageNet-C with the highest severity level 5 regarding corruption
Error.

ruption types. To verify robustness to corruptions, we eval-
uate AdaNPC on the CIFAR-10-C benchmark (Hendrycks
& Dietterich, 2018) with a 40-2 Wide ResNet back-
bone (Zagoruyko & Komodakis, 2016) pre-trained on
CIFAR-10. We implement two baselines, where Linear
denotes that the trained classifier is used directly, and BN
Adapt will update the batch normalization parameters of
the backbone in the target data (Schneider et al., 2020). The
results with the highest severity (five) are shown in Fig-
ure 6, where AdaNPC is shown to be more robust than
Linear and updating the BN statistic of the backbone with
AdaNPC brings more benefits than that with a linear clas-
sifier. Results with the lowest severity (one), other back-
bones. Considering large-scale corruption benchmarks,
we compared the method with Tent and EATA (Niu et al.,
2022) on the ImageNet-C dataset. Experimentally, we com-
pared the effectiveness of AdaNPC and EATA separately in
Table. 3, where the experimental and baselines are all follow-
ing EATA (Niu et al., 2022). As we can see, we only need
to simply replace the Linear layer with KNN and remem-
ber the trustworthy samples during testing, and AdaNPC
can achieve much better performance than ResNet50 with
a linear head. In addition, AdaNPC can be combined with
existing TTA methods such as Tent, ETA, etc., and the fi-
nal performance surpasses these methods individually. See
more analysis in the Appendix E.3.

5.3. Comparison of AdaNPC with other TTA methods.

Comparison with test-time adaptation methods. For
fair comparisons, following (Iwasawa & Matsuo, 2021),
the base models (ERM and AdaNPC) are trained only on
the default hyperparameters and without the fine-grained
parametric search. Because (Gulrajani & Lopez-Paz, 2021)
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Figure 5. Generalization performance without fine-tuning with various backbones on the (a) PACS and RotatedMNIST (b) dataset. (c)
shows the results wo/ fine-tuning on Rotated MNIST with different ratios of source instances amounts. (d) Convergence comparison.

omits the BN layer from pre-trained ResNet when fine-
tuning on source domains, we cannot simply use BN-based
methods on the ERM baseline. For these methods, their
baselines are additionally trained on ResNet-50 with BN.
Models with the highest IID accuracy are selected and all
test-time adaptation methods are applied to improve the gen-
eralization performance. The baselines include Tent (Wang
et al., 2020a), T3A (Iwasawa & Matsuo, 2021), pseudo la-
beling (PL) (Lee et al., 2013), SHOT (Liang et al., 2020),
and SHOT-IM (Liang et al., 2020). For methods that use
gradient backpropagation, we implement both update the
prediction head (Clf) and full model (Full). Results in Ta-
ble 4 show that: Different from Tent (Wang et al., 2020a),
which is sensitive to batch size, the proposed AdaNPC is
not; (ii) The performance of AdaNPC without BN retraining
attains comparable results compared to existing methods.
(iv) Additionally, when the batch size is very small, updating
the model parameters often has a negative impact, whereas
the results of AdaNPC are not affected by the batch size.

5.4. Analysis
AdaNPC attains better performance with fewer itera-
tions. We investigate the accuracy dynamics of ERM, which
is evaluated by using either a KNN classifier or a Multi-
Layer Perception (MLP) classifier on the Rotated MNIST
dataset, where the target domain is d0. The learning curves
in Fig. 5(d) show that with the same training process and
iteration, using a KNN classifier can attain superior perfor-
mance on the source and target domains both.

Ablation studies of training loss (Eq.(4)) and the choice
of k. Results are shown in Table. 12, where ERM means that
the model will be trained by cross-entropy loss and only use
KNN with parameter k for inference and adaptation. The
results show that with LKNN , the representation will be
better and the generalization results will be improved. The
choice of |M| depends on the dataset size, a large dataset
with more classes generally needs a large memory bank.
However, if |M| ≥ batch size,M contains many out-of-
date features and leads to poor performance. The choice
of k depends both on the domain divergence and instances
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Figure 6. Corruption benchmark on CIFAR-10-C with severity 5.
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Figure 7. Visualization of classified results attained by AdaNPC.
(a) A successfully classified instance and (b) a failure case.

numbers of datasets. For example, the best k is around 10
for RMNIST and 50 for PACS (PACS has a greater domain
divergence), where PACS has 9, 991 images, which is less
than 60, 000 images of RMNIST.

Interpretability and human-model interaction. Figure 7
shows how the source knowledge is used by the KNN classi-
fier. The decision-making process will no longer be a black
box. For example, the giraffe in Figure 7(b) is classified
with low confidence because its nearest neighbors are most
persons or dogs that have similar poses. However, some
important characteristics are ignored by the backbone rep-
resentations, such as the shape of the face. However, these
characteristics can be easily identified by humans; therefore,
when we get a low confidence prediction, AdaNPC allows
us to manually remove some obvious wrong neighbors. In
this case, our classification results will be more accurate and
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Method BSZ=32 BSZ=2

RMNIST PACS VLCS DomainNet RMNIST PACS VLCS DomainNet
ResNet50 97.27 86.68 77.75 40.50 97.27 86.68 77.75 40.50

PLClf 98.13 87.73 80.75 40.80 69.78 87.73 80.50 40.67
PLFull 98.30 87.13 77.23 33.80 65.37 73.35 58.55 21.80
SHOT 98.30 88.16 67.83 41.21 92.12 83.55 58.45 36.76

SHOTIM 98.40 88.03 67.68 37.62 92.33 83.20 58.20 35.43
T3A 97.65 87.90 81.38 41.50 97.10 87.90 81.38 41.50

Tent-clf 96.82 87.05 77.78 40.97 96.18 87.03 77.50 40.16
AdaNPC 98.85 88.93 82.45 42.60 98.85 88.93 82.45 42.60

Table 4. Comparison of our method and existing test-time adaptation methods on OOD benchmarks. The reported number is the average
generalization performance over all domains.

PACS, ‘Test-domain’ validation

Training Loss k |M| A C P S Avg

ERM

Linear / 82.7 82.3 93.1 78.6 84.2
50 / 83.1 82.1 93.6 78.9 84.4
75 / 83.2 82.1 93.5 78.8 84.4
100 / 83.2 81.9 93.5 78.7 84.3
125 / 84.6 82.3 93.7 81.0 85.4
150 / 85.2 82.6 94.2 80.4 85.6

LKNN

10 500 84.0 82.6 93.5 80.8 85.2
50 500 85.2 81.7 92.6 80.8 85.1
50 1000 85.8 81.5 93.8 83.4 86.1
50 1500 82.9 83.0 91.4 80.5 84.5
100 1000 85.0 82.5 94.6 80.7 85.7

Table 5. Ablation studies of training loss on PACS.

confident, which is promising for high-risk tasks to incorpo-
rate expert knowledge for better classification results.

Inference time and Memory usage. During testing, we
store all samples from the source domain and do not delete
any samples from the memory bank, thus preserving all
information from the source domain. This may raise con-
cerns about memory usage and inference time, but our ex-
periments show that the K-nearest neighbor search is very
fast. Furthermore, we provide a comparison of inference
times for various TTA algorithms on different datasets in
Table 6, measured as the average inference time per image
in milliseconds. For memory usage. Even for a dataset
like ImageNet with 1281167 images, the additional memory
cost is only 2.44GB (1281167*2048 B), which can be easily
accommodated by current CPUs or memory. It is important
to note that the memory bank does not have to be stored on
the GPU, and all reported inference times in this paper are
based on a CPU-stored memory bank.

6. Concluding Remarks
The paper proposes a new Test-Time adaption method
for domain generalization, AdaNPC, which revisits a non-
parametric classifier, namely KNN classifier, for prediction
and adaptation. Unlike current domain generalization or
Test-Time adaptive methods that need model updating and
are easy to forget previous knowledge, the proposed method
is parameter-free and can memorize all the knowledge, mak-

Inference time (ms)
Method RMNIST PACS VLCS DomainNet ImageNet
PLClf 0.49 5.38 5.57 6.17 5.55
PLFull 123.44 281.90 266.00 267.17 270.68
SHOT 0.66 7.34 7.12 6.96 7.45
SHOTIM 1.58 10.14 10.16 7.86 10.23
T3A 0.21 1.67 1.51 8.11 18.46
Tent-clf 11.24 41.63 27.60 92.37 32.34
AdaNPC 0.13 1.57 1.57 3.16 22.23

Table 6. Inference time of different TTA methods, where the
AdaNPC is implemented by Faiss (Johnson et al., 2019).

ing AdaNPC suitable for practical settings, especially for
adapting to a series of domains.

We derive error bounds under both the covariate-shift and
the posterior-shift settings, where AdaNPC is theoretically
shown able to reduce unseen target error. We empiri-
cally show that AdaNPC reduces generalization error on
both unseen target domains and corrupted data. Besides,
AdaNPC attains faster convergence, better interpretability,
and strong knowledge expandability. More importantly,
AdaNPC achieves high generalization accuracy without any
fine-tuning on source domains, which provides a promising
direction for utilizing pretrained models with growing sizes.

Discussion and Limitations. One potential limitation of
AdaNPC will be the computation time of dense vectors’
searching (finding the k-nearest neighbors). However, with
efficient nearest neighbor search technique (Johnson et al.,
2019), even when the memory bank contains more than 1
million samples, the inference time will around 10ms (Sun
et al., 2022), which is significantly faster than backward
gradient updates. In the future, we will consider updating
the memory bank with advanced methods and try to further
reduce the memory cost and inference time.
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Test-Time Adaptation

————Appendix————
The structure of Appendix is as follows

• Appendix A contains the extended related work.

• Appendix B contains all missing proofs in the main manuscript.

• Appendix C details the optimization algorithm of the proposed AdaNPC.

• Appendix D details the dataset and implementation Details.

• Appendix E contains additional experimental results.

A. Extended Related work
Transfer learning theory. The first line of work that considers bounding the error on target domains by the source domain
classification error and a divergence measure, such as dA divergence (Ben-David et al., 2006; David et al., 2010) and Y
divergence (Mansour et al., 2009; Mohri & Muñoz Medina, 2012). However, the symmetric differences carry the wrong
intuition and most of these bounds depend on the choice of hypothesis (Kpotufe & Martinet, 2018; Zhang et al., 2022d).
There are also some studies consider the density ratio between the source and target domain (Quinonero-Candela et al., 2008;
Sugiyama et al., 2012; Zhang et al., 2022d), and transfer-exponent for non-parametric transfer learning (Kpotufe & Martinet,
2018; Cai & Wei, 2021; Hanneke & Kpotufe, 2019; Reeve et al., 2021). In this work, we conduct error bounds considering a
setting that consists of two different components, namely, the non-parametric classifier and online arrival target samples.

Domain generalization. Previous DG methods mostly focus on representation learning, namely learning domain-invariant
representations or only task-relevant representations. However, empirical risk minimization (ERM) has been shown to
be able to beat most existing domain generalization methods in average performance (Gulrajani & Lopez-Paz, 2021).
Recent work finds that ERM has learned a high-quality representation on datasets with spurious correlations, even when
the model relies primarily on spurious features to make predictions (Kirichenko et al., 2022). The current bottleneck to
out-of-distribution generalization primarily lies in learning simple and reliable classifiers (Rosenfeld et al., 2022). However,
most existing methods have an over-confidence hypothesis space (Zhang et al., 2022d), namely, they assume that the
hypothesis performs well on source domains can also perform well on the target domain (Arjovsky et al., 2020; Krueger
et al., 2021; Rame et al., 2022; Zhang et al., 2023; 2022e), which cannot hold on any unseen target domains. Our method
is orthogonal to most existing DG methods since it replaces the linear classifier with a KNN classifier. AdaNPC retains
all information seen in training and has a complex hypothesis space controlled by the parameter k. During inference, the
hypothesis space complicity can be flexibly controlled compared to existing methods that use a frozen classifier.

Test-Time Adaptative Methods

Target Batch Source Training Fine-tune Extra Model Adaptive
Native DG (Arjovsky et al., 2020) × × × × ×

Test-Time Training (Sun et al., 2020; Zhang et al., 2021b; 2022b) × × ✓ ✓ ✓
Test-Time Adaptation (Wang et al., 2020a) ✓ × ✓ × ✓

Domain-adaptative method (Dubey et al., 2021; Zhang et al., 2022d) ✓ × × ✓ ✓
Single sample generalization (Xiao et al., 2022) × ✓ × × ✓

Non-Parametric Adaptation × × × × ✓

Table 7. Test-Time adaptive methods. The target batch means that the methods need batches of target samples for adaptation. Compared
to existing test-time adaptative methods, the proposed AdaNPC imposes no additional parameter (Sun et al., 2020; Dubey et al., 2021;
Zhang et al., 2022d), no extra tunning steps (Sun et al., 2020; Wang et al., 2020a; Iwasawa & Matsuo, 2021; Zhang et al., 2021b), and
does not need to use source data to learn adaptive strategies (Xiao et al., 2022).
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B. Proof of Theoretical Statement
B.1. Non-parametric reduce target-source domain divergence (Proof of Proposition 1)

To complete the proofs, we begin by introducing some necessary definitions and assumptions.

Definition 3. (Wasserstein-distance and the dual form (Arjovsky et al., 2017)). The ρ-th Wasserstein distance between two
distributionsDS ,DU is defined as

Wρ(DS ,DU ) =

(
inf

γ∈Π[DS ,DU ]

∫∫
d(xs, xu)

ρdγ(xs, xu)

)1/ρ

(11)

where Π[DS ,DU ] is the set of all joint distribution on X × X with marginals DS and DU and d(xs, xu) is a distance
function for two instances xs, xu.

Wasserstein distance can get intuition from the optimal transport problem, where d(xs, xu)
ρ is the unit cost for transporting

a unit of material from xs ∈ DS to xu ∈ DU and γ(xs, xu) is the transport policy which satisfies the marginal constraint.
According to the Kantorovich-Rubinstein theorem, the dual representation of the first Wasserstein distance (Earth-Mover
distance) can be written as

W1(DS ,DU ) = sup
∥f∥L≤1

Exs∈DS
[f(xs)]− Exu∈DU

[f(xu)], (12)

where ∥ f ∥L= sup |f(xs)− f(xu)|/d(xs, xu) is the Lipschitz semi-norm.

We first use the domain adaptation result, Theorem 1 in (Shen et al., 2018) that considers the Wasserstein distance. On this
basis, we can clearly show the effect of AdaNPC on the domain divergence. In this paper, we useW1(DS ,DU ) as default
and ignore subscript 1. For completeness, we present the Theorem 1 in (Shen et al., 2018) as follow:

Proposition 4. (Theorem 1 in (Shen et al., 2018)) Given two domain distributions DS ,DU , denote f∗ =
argminf∈H(ϵU (f) + ϵS(f)) and κ = ϵU (f

∗) + ϵS(f
∗). Assume all hypotheses h are L-Lipschitz continuous, the

risk of hypothesis f̂ on the unseen target domain is then bounded by

ϵU (f̂) ≤ κ+ ϵS(f̂) + 2LW(DS ,DU ). (13)

Intuitively, by using the non-parametric classifier, during inference, a large number of samples in source domains that are not
similar to the target samples are ignored, and thus the domain divergence will be reduced. That is, the source distributionDS

is replaced by Ω :=
⋃

x∈DU
B(x, r), where B(x, r) = {x′ :∥ x′ − x ∥≤ r} denotes a ball centered on x with radius r, and

With a small r, Ω is intuitively close toDU because these dissimilar data points are ignored and the selected source data are all
close to the target data. Informally, according to Eq.(11), we haveW(Ω,DU ) = infγ∈Π[Ω,DU ]

∫∫
∥ xs − xu ∥ dγ(xs, xu),

where for each xs ∈ Ω, we can find at least one xu ∈ DU such that ∥ xs − xu ∥≤ r, the overall distance will then be
bounded by r. If r is small enough,W(DS ,DU ) in Proposition 4 is largely reduced. Specifically, we can choose a density
function γ∗ where γ∗(xs, xu) > 0 only if xs ∈ B(xu, r) otherwise 0, then we have

W(Ω,DU ) = inf
γ∈Π[Ω,DU ]

∫∫
∥ xs − xu ∥ dγ(xs, xu) ≤

∫∫
∥ xs − xu ∥ γ∗(xs, xu)dxsxu ≤ r (14)

Although a small r will reduce the generalization bound, there is no guarantee that each data xu ∈ DU can find a neighbor
B(x, r) with |B(x, r)| > 0. To this end, we theoretically discuss the choice of r and show given a choice radius r, what
probability that the set of neighbors B(x, r) of each x ∈ DU is not measuring zero?

We denote k is the number of neighbors that we prefer to choose, namely the parameter for the KNN classifier, ns is the total
number of data in DS . With the strong density assumption, for any xu ∈ DU , r < rµ, according to Assumption 1, we have

DS(xs ∈ B(xu, r)) =

∫
B(xu,r)∩DS

dDS

dλ
(xs)dxs ≥ µ−λ(B(xu, r) ∩DS) ≥ cµµ−πdr

d, (15)
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where πd = λ(B(0, 1)) is the volume of the d dimension unit ball and λ is the Lebesgue measure of a set in a Euclidean

space. Set r0 = ( 2k
cµµ−πdns

)1/d, with a additional assumption that k
ns

<
cµµ−πdr

d
µ

2
1, we have r0 < rµ. Then for any

xu ∈ DU , according to Eq.(15), we have

DS(xs ∈ B(xu, r0)) ≥ cµµ−πdr
d
0 >

2k

ns
(16)

Denote I an indicator function and then I(xs ∈ B(xu, r0)) are independent and identically Bernuoli variables, which
mean is DS(xs ∈ B(xu, r0)). Let Sn(xu) =

∑ns

i=1 I(xs ∈ B(xu, r0)) denote the number of data xs ∈ DS that fall
into B(x, r0), then Sn(xu) follows the Binomial distribution. Let W ∼ Binomial(ns,

2k
ns
), according to the Chernoff

inequality (Chernoff, 1981; Chung & Lu, 2006),

P (Sn(xu) < k) ≤ P (W < k) = P (W − E[W ] < −k) ≤ exp(−k2/2E[W ]) = exp(−k/4), (17)

where the second inequality is because Sn(x) has a larger mean than W . We can see the probability that Sn(x) < k is small
for any xu ∈ DU , especially when k is large. Denoting x

(i)
s the i−th nearest data to xu among B(xu, r0), we have for any

xu ∈ DU

P (∥ x(k)
s − xu ∥≤ r0) = P (Sn(x) ≥ k) ≥ 1− exp(−k/4) (18)

Combine Eq.(18) with the assumption that the distributionDU is finite with cardinality nDU
and the desired probability

part is shown by union bound.

⋂
xu∈DU

P (∥ x(k)
s − xu ∥≤ r0) =

⋂
xu∈DU

P (Sn(x) ≥ k)

= 1−
⋃

xu∈DU

P (Sn(x) < k)

≥ 1− nDU
exp

(
−k

4

)
= 1− exp

(
−k

4
+ log nDU

)
. (19)

Finally, the following proposition is derived.

Proposition 5. Given two domain distributionsDS ,DU , and Ω :=
⋃

x∈DU
B(x, r), where B(x, r) = {x′ :∥ x′−x ∥≤ r}

denotes a ball centered on x with radius r. Denote f∗ = argminf∈H(ϵU (f)+ϵΩ(f)) and κ = ϵU (f
∗)+ϵΩ(f

∗). Assume
all hypotheses h are L-Lipschitz continuous, the risk of hypothesis f̂ on the unseen target domain is then bounded by

ϵU (f̂) ≤ κ+ ϵΩ(f̂) + 2L

(
2k

cµµ−πdns

)1/d

. (20)

with probability 1− exp(−k
4 + log nDU

)

Remarks. We make the following conclusions (i) with a larger number of source data, the error will be lower; (ii) a large
cµ will reduce the error bound, which is intuitive because xu ∈ DU will not be so far fromDS when cµ is large and the

adaptation will be easier; (iii) a smaller parameter k will reduce the domain divergence
(

2k
cµµ−πdns

)1/d
. For example, when

k = 1, we only choose the closest source data with respect to xu and the divergence will be the minimum.

Although Proposition 5 provides a nice intuition for using a non-parametric classifier, it highly depends on the risk of
the optimal hypothesis κ, that is, the hypothesis space should contain an optimal classifier that performs well on both the

1The assumption is rational because, ns ≫ k in general.
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source and the target domains. This assumption cannot be guaranteed to hold true under all scenarios, making the bound
conservative and loose. Furthermore, the KNN classifier in Proposition 5 can only affect domain divergence, and how KNN
affects the prediction results is unknown. To further aid the study of the proposed algorithm, we conduct the following
bounds to fully explore the theoretical properties.

B.2. Analysis of the excess error upper-bound under covariate-shift (Proof of Proposition 2)

Per the statement of the Proposition 2, we assume k being of order log ns. It is quite small number. For example, in the
RotatedMNIST dataset, the optimal k is around 10 and the number of total instances from the source domain ns ≈ 50, 000.

Under the covariate-shift setting, we have ηU = ηS = η for source and target domains. We denote the KNN classifier
with k nearest neighbors as f̂k = I{η̂k ≥ 1

2}. Because we focus on the binary classification setting, then f̂k(xu) ̸= f∗
U (xu)

implies that |η̂k(xu)− η(xu)| ≥
∣∣η(xu)− 1

2

∣∣. In this way, we can build the connection between the excess error and the
regress error:

EU (f̂) = 2Exu∼DU

[∣∣∣∣η(xu)−
1

2

∣∣∣∣ I{|η̂k(xu)− η(xu)| ≥
∣∣∣∣η(xu)−

1

2

∣∣∣∣}] (21)

Let Z =
∣∣η(xu)− 1

2

∣∣, if we can bound supxu
|η̂k(xu)− η(xu)| ≤ t, then by the marginal assumption in Assumption 3 and

the fact that
E [Z · I{Z ≤ t}] ≤ tP (Z ≤ t), (22)

we have EU (f̂) ≤ Cβt
β+1. To bound |η̂k(xu)− η(xu)|, we denote (x(i)

s , y
(i)
s ) as the i−th nearest data and the corresponding

labels to xu in B(xu, r0). The KNN classification result will be η̂(xu) =
∑k

i=1 wiy
(i)
s , where wi is the weight for the i -th

nearest neighbor and
∑k

i=1 wi = 1. In this work, we use the cosine similarity as the weight, where the distance-weighted
KNN is shown able to reduce the misclassification error (Dudani, 1976). However, for brevity of the proof, we assume
wi =

1
k ,∀i ∈ [1, ..., k], namely all nearest data labels are uniformly mixed. Based on the assumptions and notions above,

we have for any xu ∈ DU

|η̂k(xu)− η(xu)| =

∣∣∣∣∣1k
k∑

i=1

y(i)s − η(xu)

∣∣∣∣∣
≤

∣∣∣∣∣1k
k∑

i=1

y(i)s −
1

k

k∑
i=1

η
(
x(i)
s

)∣∣∣∣∣+
∣∣∣∣∣1k

k∑
i=1

η
(
x(i)
s

)
− η(xu)

∣∣∣∣∣
≤ 1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣︸ ︷︷ ︸
1

+
1

k

k∑
i=1

∣∣∣η (x(i)
s

)
− η(xu)

∣∣∣︸ ︷︷ ︸
2

,

(23)

where 2 is easy to bound. According to the assumption that ηU is C-Smoothness, we have

k∑
i=1

1

k

∣∣∣η (x(i)
s

)
− η(xu)

∣∣∣ ≤ k∑
i=1

1

k
C· ∥ x(i)

s − xu ∥≤ C· ∥ x(k)
s − xu ∥ (24)

According to Eq.(18), with probability at least 1− exp(−k/4), 2 ≤ C
(

2k
cµµ−πdns

)1/d
. Note that EY |X [y

(i)
s ] = η(x

(i)
s ),

then we use the Hoeffding inequality to obtain the upper bound of 1

PX,Y

(
1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣ > ϵ

)
= EX

[
PY |X

(
1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣ > ϵ

)]
≤ 2 exp(−2kϵ2) (25)

Set ϵ = (1/k)1/4, we have, with probability, at least 1− 2 exp(−2
√
k), 1 ≤ (1/k)1/4, 2 ≤ C

(
2k

cµµ−πdns

)1/d
, and

then |η̂k(xu)− η(xu)| ≤ (1/k)1/4 + C
(

2k
cµµ−πdns

)1/d
. According to Eq.(18) and Eq.(22), the excess error is bounded by
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EU (f̂) ≤ 2Cβ

((
1

k

)1/4

+ C

(
2k

cµµ−πdns

)1/d
)1+β

≈

((
1

k

)1/4

+ C1

(
k

cµns

)1/d
)1+β

, (26)

where C1 is a newly introduced constant. There is a clear tradeoff between the upper bound of 1 and 2 with respect to
the value of k. A small k will reduce the representation difference in 2 , extremely when k = 1, only the nearest sample
to xu will be chosen. However, when k is small, there is no guarantee that the nearest selected data will have a confident
prediction. Specifically, a smaller 1 indicates that the selected k nearest data samples are representative enough and have
confidence in the prediction results. Finally, using k = O(log ns), we have

min{1− 2 exp(−2
√
k), 1− exp(−k/4)}

≥ 1− 2 exp(−2
√
k)− exp(−k/4)

≥ 1− 3 exp(−2
√
k) = 1− 3 exp(−2

√
O(log ns))

= 1− 3 exp(−O(1)
√
log ns)

(27)

where the third line is because k/4 > 2
√
k for large enough k. Namely, with probability at least 1− 3 exp(−

√
log ns)

O(1),
the following bound holds true.

EU (f̂) ≤ O

((
1

log ns

)1/4

+

(
log ns

cµns

)1/d
)1+β

, (28)

B.3. Analysis of the excess error upper-bound under posterior-shift settings

Under the posterior-shift setting, the support of DS and DU are the same, i.e., Supp(DS) = Supp(DU ) = Ω. The
regression functions ηU and ηS are different. Then we have the following.

|η̂k(xu)− ηU (xu)| =

∣∣∣∣∣1k
k∑

i=1

y(i)s − ηU (xu)

∣∣∣∣∣
≤

∣∣∣∣∣1k
k∑

i=1

y(i)s −
1

k

k∑
i=1

ηS

(
x(i)
s

)∣∣∣∣∣+
∣∣∣∣∣1k

k∑
i=1

ηS

(
x(i)
s

)
− ηU (xu)

∣∣∣∣∣
=

1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣+ 1

k

k∑
i=1

∣∣∣ηS (x(i)
s

)
− ηU (xu)

∣∣∣
=

1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣+ 1

k

k∑
i=1

∣∣∣ηS (x(i)
s

)
− ηS(xu) + ηS(xu)− ηU (xu)

∣∣∣
≤ 1

k

∣∣∣∣∣
k∑

i=1

y(i)s −
k∑

i=1

η
(
x(i)
s

)∣∣∣∣∣+ 1

k

k∑
i=1

∣∣∣ηS (x(i)
s

)
− ηS(xu)

∣∣∣+ |ηS(xu)− ηU (xu)|︸ ︷︷ ︸
Adaptivity gap

(29)

Compared to Eq.(23), Eq.(29) has an additional term |ηS(xu)− ηU (xu)| (the adaptivity gap (Zhang et al., 2022d)), which
measure the difference of two regression functions directly. Although previous work has similar definition, for example, the
regression functions difference defined in (Zhao et al., 2019): min{EDS

[|ηS − ηU |],EDU
[|ηS − ηU |]}, which care about

“how ηU performs on source data”. In comparison, our definition is more similar to (Zhang et al., 2022d), which only
focuses on the regression difference when evaluated on examples from the target domain and shown to be more practical
and intuitive (Kpotufe & Martinet, 2018; Zhang et al., 2022d).

We assume that |ηS − ηU | is upper bounded by some constant Cada, namely supxu∈DU
|ηS(xu)− ηU (xu)| ≤ Cada, under

the posterior-shift setting, we have

EU (f̂) ≤

((
1

k

)1/4

+ C1

(
k

cµns

)1/d

+ Cada

)1+β

(30)
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Via the similar duration of inequality Eq.(28), with at least 1− 3 exp(−
√
log ns)

O(1) probability we have,

EU (f̂) ≤ O

((
1

log ns

)1/4

+ C1

(
log ns

cµns

)1/d

+ Cada

)1+β

. (31)

B.4. Effect of utilizing online target samples (Proof of Proposition 3)

Despite the assumptions and notions mentioned above, to study the effect of target data, we denote {x(i)
s , y

(i)
s }ks

i=1 +

{x(i)
u , y

(i)
u }ku

i=1 as the nearest data and the corresponding labels to xu in B(xu, r0), where ks+ku = k and y
(i)
u is the pseudo-

label of x(i)
u , that is, y(i)u = I{η̂k(x(i)

u ) ≥ 1/2}. The KNN classification result will be η̂k(xu) =
1
k

∑ks

i=1 y
(i)
s + 1

k

∑ku

i=1 y
(i)
u .

We have the following.

|η̂k(xu)− η(xu)| =

∣∣∣∣∣1k
ks∑
i=1

y(i)s −
1

k

ks∑
i=1

η(xu) +
1

k

ku∑
i=1

y(i)u −
1

k

ku∑
i=1

η(xu)

∣∣∣∣∣
≤

∣∣∣∣∣1k
ks∑
i=1

y(i)s −
1

k

ks∑
i=1

η
(
x(i)
s

)∣∣∣∣∣+
∣∣∣∣∣1k

ks∑
i=1

η
(
x(i)
s

)
− ks

k
η(xu)

∣∣∣∣∣
+

∣∣∣∣∣1k
ku∑
i=1

y(i)u −
1

k

ku∑
i=1

η
(
x(i)
u

)∣∣∣∣∣+
∣∣∣∣∣1k

ku∑
i=1

η
(
x(i)
u

)
− ku

k
η(xu)

∣∣∣∣∣
≤ 1

k

∣∣∣∣∣
ks∑
i=1

y(i)s +

ku∑
i=1

y(i)u −
ks∑
i=1

η
(
x(i)
s

)
−

ku∑
i=1

η
(
x(i)
u

)∣∣∣∣∣︸ ︷︷ ︸
1

+
1

k

ks∑
i=1

∣∣∣η (x(i)
s

)
− η(xu)

∣∣∣︸ ︷︷ ︸
2

+
1

k

ku∑
i=1

∣∣∣η (x(i)
u

)
− η(xu)

∣∣∣︸ ︷︷ ︸
3

(32)

Although the true labels of target samples are unknown, we store the target sample into the KNN query set only when its
prediction confidence is large enough. Therefore, it is natural to assume that EY |X [y

(i)
u ] = η(x

(i)
u ). According to Eq.(25),

we have
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(33)

Set ϵ = (1/k)1/4, we have, with probability, at least 1− 2 exp(−2
√
k), 1 ≤ (1/k)1/4. Then, according to Eq.(24), we

have

2 ≤ ks
k
C

(
2ks
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)1/d

; 3 ≤ ku
k
C

(
2ku
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)1/d

(34)

Finally, the excess error under the covariate shift setting can be bounded by

EU (f̂) ≤ 2Cβ

(
(1/k)1/4 +

ks
k
C

(
2ks
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+
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(
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(
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(
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(35)
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Compared Eq.(35) to Eq.(26), it is easy to verify that

k
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(36)

Because in general, we have c∗µ > cu, the difference is then larger than 0, namely incorporating target samples into the KNN
memory bank, the excess error can be further reduced. WhenDS is very close toDU , that is, c∗µ ≈ cµ, the two bounds will
be similar.

Similar results can be derived under the posterior-shift setting. Under the assumption that EY |X [y
(i)
u ] = ηU (x

(i)
u ) and

supxu∈DU
|ηS(xu)− ηU (xu)| ≤ Cada, we have
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and the conclusion will be

EU (f̂) ≤ 2Cβ

(
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(38)

C. Online Optimization Algorithm for Optimizing the KNN Loss Function LKNN

Algorithm 1 Online optimization algorithm for optimizing the KNN loss function LKNN .
Input:training data DS , batch size N , learning rate η, training iterations T , Adam hyperparameters β1, β2.
Initial: model parameters θ and memory bank M = {hθ(xi), yi}Mi=1 with a predefined size M , where (xi, yi) are
randomly sampled from DS .
for t = 1, . . . , T do

(xi, yi)
N
i=1 ∼ DS //Data sampling

LKNN = − 1
N

∑
i log

∑
j∈Bk,θ,M(xi)

exp(wij/τ)I{yi=yj}∑
j∈Bk,θ,M(xi)

exp(wij/τ)
, //Calculate the loss

M←M
⋃
{hθ(xi), yi}Ni=1 //Update the memory bank by the first-in-first-out (FIFO) strategy

θ ← Adam (LKNN , θ, η, β1, β2) //Update model parameters
end for

D. Dataset and Implementation Details
D.1. Dataset details

Rotated MNIST (Ghifary et al., 2015) consists of 10,000 digits in MNIST with different rotated angles where the domain is
determined by the degrees d ∈ {0, 15, 30, 45, 60, 75}.
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# Layer

1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (8 groups)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (8 groups)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling

Table 8. Details of our MNIST ConvNet architecture. All convolutions use 3×3 kernels and “same” padding

PACS (Li et al., 2017) includes 9, 991 images with 7 classes y ∈ { dog, elephant, giraffe, guitar, horse, house, person }
from 4 domains d ∈ {art, cartoons, photos, sketches}.

VLCS (Torralba & Efros, 2011) is composed of 10,729 images, 5 classes y ∈ { bird, car, chair, dog, person } from domains
d ∈ {Caltech101, LabelMe, SUN09, VOC2007}.

TerraIncognita (Beery et al., 2018) contains photographs of wild animals taken by camera traps at locations d ∈
{L100, L38, L43, L46}, with 24, 788 examples of dimension (3, 224, 224) and 10 classes.

DomainNet (Peng et al., 2019) has six domains d ∈ {clipart, infograph, painting, quickdraw, real, sketch}. This dataset
contains 586, 575 examples of sizes (3, 224, 224) and 345 classes.

D.2. Implementation and hyper-parameter details

Hyperparameter search. Following the experimental settings in (Gulrajani & Lopez-Paz, 2021), we conduct a random
search of 20 trials over the hyperparameter distribution for each algorithm and test domain. Specifically, we split the data
from each domain into 80% and 20% proportions, where the larger split is used for training and evaluation, and the smaller
ones are used for select hyperparameters. We repeat the entire experiment twice using three different seeds to reduce the
randomness. Finally, we report the mean over these repetitions as well as their estimated standard error.

Model selection. The model selection in domain generalization is intrinsically a learning problem, and we use both the
test-domain validation and training domain validation, two of the three selection methods in (Gulrajani & Lopez-Paz, 2021).
Test-domain validation chooses the model maximizing the accuracy on a validation set that follows the distribution of the
test domain. Training domain validation chooses the model with the highest average source domain accuracy. In the main
paper, test domain validation results are presented by default.

Model architectures. Following (Gulrajani & Lopez-Paz, 2021), we use ConvNet (Table.8) as the encoder for RotatedM-
NIST (detailed in Appendix D.1 in (Gulrajani & Lopez-Paz, 2021)) with MIT License. For other datasets, torch-vision for
ResNet18 and ResNet50 (Apache-2.0), timm for Vision Transformer (Apache-2.0), and the official repository of T3A (MIT
License) are used. We run our experiments mainly on Tesla-V100 (32G)x4 instances.

E. Additional Experimental Results
E.1. Detailed generalization results

Tables 13, 14, 15, 16 contain detailed results for each dataset with ’Test-domain’ and ’Training-domain’ model selection
methods.
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Method PACS Terr

A C P S Avg L100 L38 L43 L46 Avg
T3A 94.5 94.2 93.7 91 93.4 89.6 86.7 85.5 83.8 86.4
Tent 94.5 94.2 93.1 92.2 93.5 89.6 89.1 88.6 82.3 87.4

PLFull 94.5 94.1 93.3 90.2 93.0 89.6 81.22 65.8 55.1 72.9
AdaNPC 94.5 94.5 94.5 94.5 94.5 89.6 89.6 89.6 89.6 89.6

Table 9. Successive adaptation results on the PACS and TerraIncognita datasets. The metric is the re-evaluation accuracy of the
adapted model on the source domain d0.

DomainNet clip info paint quick real sketch Avg
T3A 63.4 37.7 45.7 45.7 50.0 51.1 48.9
Tent 63.4 50.4 21.2 8.2 6.9 5.3 25.9
PLFull 63.4 61.3 55.5 16.5 10.0 7.0 35.6
AdaNPC 63.4 63.4 63.4 63.4 63.4 63.4 63.4
RMNIST 0.0 15.0 30.0 45.0 60.0 75.0 Avg
T3A 100.0 96.1 96.1 93.2 90.3 89.9 94.3
Tent 100.0 99.5 96.5 92.5 89.3 89.4 94.5
PLFull 100.0 98.3 87.5 79.2 67.9 63.5 82.7
AdaNPC 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 10. Successive adaptation results on the DomainNet and RMNIST datasets. The metric is the re-evaluation accuracy of the
adapted model on the source domain d0.

E.2. AdaNPC can mitigate the issue of domain forgetting

At first, recall our experimental setting is: we first trained our model on d0 of the dataset as shown in Figure 4. Then, we
utilized the TTA algorithm to adapt the model to d1, ..., dn one by one. To illustrate this problem more vividly, we conducted
experiments on several datasets, and their results are presented in Table 9 and Table 10. These results demonstrate that as the
TTA progresses, the model’s performance on the source domain declines, indicating that TTA causes the model to forget the
knowledge learned from the source domain. In practical scenarios, the model is required to perform for an extended period
and may encounter numerous novel data. Under such circumstances, the model’s performance on the source domain may
suffer greatly, leading to inaccurate predictions on the source domain samples. As can be seen, for most existing baselines,
the model forgets the knowledge in the source domain with the progress of TTA on all datasets, while AdaNPC can avoid
this situation.

E.3. Extended experiments on Cifar-10-C and ImageNet-C

This paper focus on domain generalization (DG), where TTA is considered as one of the DG methods. Therefore, we
emphasized the comparison with existing DG methods in the main text. However, we also conduct additional experiments
on corruption datasets to verify the effectiveness of the proposed AdaNPC. Figure 8 shows the results with the lowest
severity (one), where AdaNPC performs the best and retraining the BN statistic will not be beneficial. For WRN-28-10
Wide ResNet Backbone, the results are shown in Figure 9 and Figure 10, where the same pattern as results with 40-2 Wide
ResNet Backbone are observed.

Considering large-scale corruption benchmarks, we compared the method with Tent and EATA (Niu et al., 2022) on the
ImageNet-C dataset. Experimentally, we compared the effectiveness of AdaNPC and EATA separately in Table. 3, where
the experimental and baselines are all following EATA (Niu et al., 2022). As we can see, we only need to simply replace
the Linear layer with KNN and remember the trustworthy samples during testing, and AdaNPC can achieve much better
performance than ResNet50 with a linear head. In addition, AdaNPC can be combined with existing TTA methods such as
Tent, ETA, etc., and the final performance surpasses these methods individually.

Existing baselines will be highly affected by the batch size. As can be seen in Table 11 (left), existing methods tend to
have very poor performance when the batch size is set to 1, as the gradient noise for individual samples is very high, which
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Method BN Retraining Clf Retraining

Defoc Glass Motion Zoom Defoc Glass Motion Zoom

R-50 (BN) 82.10 90.20 85.20 77.50 82.10 90.20 85.20 77.50
Tent 99.10 99.10 99.11 99.10 0.90 0.90 0.89 0.90
ETA 99.14 99.14 99.14 99.16 0.86 0.86 0.86 0.84
EATA 99.14 99.14 99.14 99.16 0.86 0.86 0.86 0.84
AdaNPC 83.10 83.00 72.30 60.57 83.10 83.00 72.30 60.57

Table 11. Comparison with state-of-the-art methods on ImageNet-C with the highest severity level 5 regarding corruption Error, where the
TTA batch size is set to 1.
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Figure 8. Corruption benchmark on CIFAR-10-C with the lowest severity (one). AdaNPC +BN means that the KNN classifier and
BN retraining are both used.

is detrimental to model optimization. However, it should be emphasized that batch data does not align with the setting
of online learning, where inference is required on-demand instead of waiting for an incoming batch or when inference is
happening on an edge device (such as a mobile phone) where there is no opportunity for batching. Therefore, AdaNPC,
a TTA method that is insensitive to batch size, is valuable for the current research field. In addition, the three baselines
in the above experiments all suffered from severe collapse due to the influence of the BN layer, which may not be a fair
comparison to AdaNPC. We additionally considered a setting where all BN layer parameters were frozen during testing, and
the final linear layer was updated using the objective functions of each algorithm (Clf Retraining). The final results are
shown in Table 11(right). It can be seen that even if the influence of the BN layer is excluded, high-noisy gradients can still
make the models perform very poorly. Although ETA and EATA, as strong baselines, perform much better than using Tent
alone, they are still heavily affected by the batch size.

E.4. Extended ablation studies of training algorithms

Results in Table. 12 shows that on the Rotated MNIST dataset, with LKNN , the representation will be better and the
generalization results will be improved.
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Figure 9. Corruption benchmark on CIFAR-10-C with the highest severity (five) and a 40-2 Wide ResNet backbone (Zagoruyko &
Komodakis, 2016) pre-trained on CIFAR-10. AdaNPC +BN means that the KNN classifier and BN retraining are both used.
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Figure 10. Corruption benchmark on CIFAR-10-C with the lowest severity (one) and a 40-2 Wide ResNet backbone (Zagoruyko &
Komodakis, 2016) pre-trained on CIFAR-10. AdaNPC +BN means that the KNN classifier and BN retraining are both used.
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d0 d1 d2 d3 d4 d5 Avg

ERM 94.0 ± 0.2 98.1 ± 0.1 98.8 ± 0.4 99.1 ± 0.1 98.9 ± 0.1 96.4 ± 0.1 97.6
ERM+AdaNPC 96.6 ± 0.4 98.7 ± 0.1 98.9 ± 0.3 99.1 ± 0.1 98.7 ± 0.1 96.7 ± 0.3 98.1
LKNN 96.1 ± 0.9 98.6 ± 0.3 98.9 ± 0.0 99.1 ± 0.2 98.8 ± 0.2 97.0 ± 0.5 98.1
LKNN + AdaNPC 96.9 ± 0.3 98.8 ± 0.1 99.1 ± 0.2 99.2 ± 0.1 98.9 ± 0.1 98.0 ± 0.1 98.5

Table 12. Ablation studies of training loss on Rotated MNIST.

E.5. Extended visualization of classification results.

Figure 11 provide more evaluation instances that be prediction correctly and Figure 12 supplies more failure cases.
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Figure 11. Visualization of successfully classified results attained by AdaNPC.
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Figure 12. Visualization of misclassified results attained by AdaNPC.
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Rotated MNIST, Model selection: ‘Test-domain’ validation set
Algorithm 0 15 30 45 60 75 Avg

ERM (Vapnik, 1999) 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IRM (Arjovsky et al., 2020) 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5
GDRO (Sagawa et al., 2020) 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9
Mixup (Yan et al., 2020) 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0
MLDG (Li et al., 2018a) 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8
CORAL (Sun & Saenko, 2016) 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD (Li et al., 2018b) 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0
DANN (Ganin et al., 2016) 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9
CDANN (Li et al., 2018c) 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9
MTL (Blanchard et al., 2021) 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
SagNet (Nam et al., 2021) 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9
ARM (Zhang et al., 2021a) 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1
VREx (Krueger et al., 2021) 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9
RSC (Huang et al., 2020) 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6
Fish (Shi et al., 2022) 97.9
Fisher (Rame et al., 2022) 95.8 ± 0.1 98.3 ± 0.1 98.8 ± 0.1 98.6 ± 0.3 98.7 ± 0.1 96.5 ± 0.1 97.8
AdaNPC 97.2 ± 0.1 99.2 ± 0.0 99.1 ± 0.0 99.0 ± 0.1 99.2 ± 0.0 97.6 ± 0.1 98.5
AdaNPC +NP 97.4 ± 0.1 99.0 ± 0.0 98.8 ± 0.0 98.8 ± 0.1 99.0 ± 0.1 97.3 ± 0.1 98.4

Rotated MNIST, Model selection: ‘Training-domain’ validation set
Algorithm 0 15 30 45 60 75 Avg

ERM (Vapnik, 1999) 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0
IRM (Arjovsky et al., 2020) 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7
GDRO (Sagawa et al., 2020) 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0
Mixup (Yan et al., 2020) 95.8 ± 0.3 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.1 96.5 ± 0.3 98.0
MLDG (Li et al., 2018a) 95.8 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
CORAL (Sun & Saenko, 2016) 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD (Li et al., 2018b) 95.6 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 98.9 ± 0.0 96.0 ± 0.2 97.9
DANN (Ganin et al., 2016) 95.0 ± 0.5 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 98.9 ± 0.0 96.3 ± 0.2 97.8
CDANN (Li et al., 2018c) 95.7 ± 0.2 98.8 ± 0.0 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.1 ± 0.3 97.9
MTL (Blanchard et al., 2021) 95.6 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 95.8 ± 0.2 97.9
SagNet (Nam et al., 2021) 95.9 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.1 ± 0.0 99.0 ± 0.1 96.3 ± 0.1 98.0
ARM (Zhang et al., 2021a) 96.7 ± 0.2 99.1 ± 0.0 99.0 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 96.5 ± 0.4 98.2
VREx (Krueger et al., 2021) 95.9 ± 0.2 99.0 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.7 ± 0.1 96.2 ± 0.2 97.9
RSC (Huang et al., 2020) 94.8 ± 0.5 98.7 ± 0.1 98.8 ± 0.1 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.2 97.6
Fish (Shi et al., 2022) 98.0
Fisher (Rame et al., 2022) 95.0 ± 0.3 98.5 ± 0.0 99.2 ± 0.1 98.9 ± 0.0 98.9 ± 0.1 96.5 ± 0.1 97.8
AdaNPC 97.7 ± 0.4 99.1 ± 0.0 99.1 ± 0.1 99.1 ± 0.1 99.2 ± 0.0 97.5 ± 0.2 98.6
AdaNPC +BN 97.9 ± 0.3 99.1 ± 0.1 99.2 ± 0.0 99.1 ± 0.1 99.2 ± 0.0 98.0 ± 0.4 98.8

Table 13. Domain generalization accuracy (%) on Rotated MNIST.

27



AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation

VLCS, Model selection: ‘Test-domain’ validation set
Algorithm C L S V Avg

ERM (Vapnik, 1999) 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM (Arjovsky et al., 2020) 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GDRO (Sagawa et al., 2020) 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup (Yan et al., 2020) 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG (Li et al., 2018a) 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL (Sun & Saenko, 2016) 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD (Li et al., 2018b) 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN (Ganin et al., 2016) 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN (Li et al., 2018c) 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL (Blanchard et al., 2021) 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet (Nam et al., 2021) 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM (Zhang et al., 2021a) 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
VREx (Krueger et al., 2021) 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC (Huang et al., 2020) 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8
Fish (Shi et al., 2022) 77.8
Fisher (Rame et al., 2022) 97.6 ± 0.7 67.3 ± 0.5 72.2 ± 0.9 75.7 ± 0.3 78.2
AdaNPC 98.7 ± 0.2 66.6 ± 0.2 74.6 ± 0.3 79.6 ± 0.5 79.9
+BN retraining 98.7 ± 0.2 67.4 ± 0.3 74.9 ± 0.5 79.7 ± 0.5 80.2

VLCS, Model selection: ‘Training-domain’ validation set
Algorithm C L S V Avg

ERM (Vapnik, 1999) 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM (Arjovsky et al., 2020) 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GDRO (Sagawa et al., 2020) 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup (Yan et al., 2020) 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG (Li et al., 2018a) 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL (Sun & Saenko, 2016) 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD (Li et al., 2018b) 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN (Ganin et al., 2016) 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN (Li et al., 2018c) 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL (Blanchard et al., 2021) 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet (Nam et al., 2021) 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM (Zhang et al., 2021a) 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx (Krueger et al., 2021) 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC (Huang et al., 2020) 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
Fish (Shi et al., 2022) 77.8
Fisher (Rame et al., 2022) 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8
AdaNPC 98.9 ± 0.3 64.5 ± 1.0 73.5 ± 0.7 75.6 ± 0.8 78.1
+BN retraining 98.4 ± 0.6 65.2 ± 1.2 74.4 ± 0.3 77.4 ± 1.1 78.9

Table 14. Domain generalization accuracy (%) on VLCS.
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PACS, Model selection: ‘Test-domain’ validation set
Algorithm A C P S Avg

ERM (Vapnik, 1999) 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM (Arjovsky et al., 2020) 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GDRO (Sagawa et al., 2020) 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup (Yan et al., 2020) 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG (Li et al., 2018a) 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL (Sun & Saenko, 2016) 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD (Li et al., 2018b) 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN (Ganin et al., 2016) 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN (Li et al., 2018c) 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL (Blanchard et al., 2021) 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet (Nam et al., 2021) 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM (Zhang et al., 2021a) 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx (Krueger et al., 2021) 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC (Huang et al., 2020) 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
Fish (Shi et al., 2022) 85.8
Fisher (Rame et al., 2022) 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9
AdaNPC 89.1 ± 0.3 84.3 ± 0.1 98.1 ± 0.4 83.7 ± 0.5 88.8
AdaNPC +NP 89.2 ± 0.3 84.3 ± 0.1 98.0 ± 0.4 83.8 ± 0.4 88.9

PACS, Model selection: ‘Training-domain’ validation set
Algorithm A C P S Avg

ERM (Vapnik, 1999) 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM (Arjovsky et al., 2020) 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GDRO (Sagawa et al., 2020) 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup (Yan et al., 2020) 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG (Li et al., 2018a) 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL (Sun & Saenko, 2016) 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD (Li et al., 2018b) 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN (Ganin et al., 2016) 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN (Li et al., 2018c) 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL (Blanchard et al., 2021) 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet (Nam et al., 2021) 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM (Zhang et al., 2021a) 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx (Krueger et al., 2021) 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC (Huang et al., 2020) 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Fish (Shi et al., 2022) 85.5
Fisher (Rame et al., 2022) 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5
AdaNPC 87.1 ± 1.3 82.2 ± 0.6 97.5 ± 0.4 81.5 ± 0.8 87.1
AdaNPC +NP 86.2 ± 1.2 82.2 ± 0.6 98.1 ± 0.1 80.2 ± 1.0 86.7

Table 15. Domain generalization accuracy (%) on PACS.
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DomainNet, Model selection: ‘Test-domain’ validation set
Algorithm clip info paint quick real sketch Avg

ERM (Vapnik, 1999) 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM (Arjovsky et al., 2020) 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GDRO (Sagawa et al., 2020) 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup (Yan et al., 2020) 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG (Li et al., 2018a) 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL (Sun & Saenko, 2016) 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD (Li et al., 2018b) 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN (Ganin et al., 2016) 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN (Li et al., 2018c) 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL (Blanchard et al., 2021) 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet (Nam et al., 2021) 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM (Zhang et al., 2021a) 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx (Krueger et al., 2021) 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC (Huang et al., 2020) 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
Fish (Shi et al., 2022) 43.4
Fisher (Rame et al., 2022) 58.3 ± 0.5 20.2 ± 0.2 47.9 ± 0.2 13.6 ± 0.3 60.5 ± 0.3 50.5 ± 0.3 41.8
AdaNPC 59.5 ± 0.1 22.2 ± 0.9 48.2 ± 0.9 15.3 ± 0.2 61.2 ± 0.0 51.1 ± 0.1 42.9

DomainNet, Model selection: ‘Training-domain’ validation set
Algorithm clip info paint quick real sketch Avg

ERM (Vapnik, 1999) 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM (Arjovsky et al., 2020) 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GDRO (Sagawa et al., 2020) 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup (Yan et al., 2020) 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG (Li et al., 2018a) 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL (Sun & Saenko, 2016) 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD (Li et al., 2018b) 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN (Ganin et al., 2016) 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN (Li et al., 2018c) 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL (Blanchard et al., 2021) 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet (Nam et al., 2021) 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM (Zhang et al., 2021a) 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
VREx (Krueger et al., 2021) 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC (Huang et al., 2020) 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9
Fish (Shi et al., 2022) 42.7
Fisher (Rame et al., 2022) 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7
AdaNPC 59.3 ± 0.0 22.2 ± 0.9 48.3 ± 0.0 14.3 ± 0.0 61.0 ± 0.1 51.4 ± 0.0 42.8

Table 16. Domain generalization accuracy (%) on DomainNet.
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