Under review as a conference paper at ICLR 2024

LAYERNAS: NEURAL ARCHITECTURE SEARCH IN
PoOoLYNOMIAL COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) has become a popular method for discovering
effective model architectures, especially for target hardware. As such, NAS meth-
ods that find optimal architectures under constraints are essential. In our paper,
we propose LayerNAS to address the challenge of multi-objective NAS by trans-
forming it into a combinatorial optimization problem, which effectively constrains
the search complexity to be polynomial. LayerNAS rigorously derives its method
from the fundamental assumption that modifications to previous layers have no
impact on the subsequent layers. When dealing with search spaces containing
L layers that meet this requirement, the method performs layerwise-search for
each layer, selecting from a set of search options S. LayerNAS groups model
candidates based on one objective, such as model size or latency, and searches for
the optimal model based on another objective, thereby splitting the cost and reward
elements of the search. This approach limits the search complexity to O(H -|S|- L),
where H is a constant set in LayerNAS. Our experiments show that LayerNAS is
able to consistently discover superior models across a variety of search spaces in
comparison to strong baselines, including search spaces derived from NATS-Bench,
MobileNetV2 and MobileNetV3.

1 INTRODUCTION

With the surge of ever-growing neural models used across all ML-based disciplines, the efficiency
of neural networks is becoming a fundamental factor in their success and applicability. A carefully
crafted architecture can achieve good quality while maintaining efficiency during inference. However,
designing optimized architectures is a complex and time-consuming process — this is especially
true when multiple objectives are involved, including the model’s performance and one or more
cost factors reflecting the model’s size, Multiply-Adds (MAdds) and inference latency. Neural
Architecture Search (NAS), is a highly effective paradigm for dealing with such complexities. NAS
automates the task and discovers more intricate and complex architectures than those that can be
found by humans. Additionally, recent literature shows that NAS allows to search for optimal models
under specific constraints (e.g., latency), with remarkable applications on architectures such as
MobileNetV3 (Howard et al.,[2019)), EfficientNet (Tan & Lel, [2019) and FBNet (Wu et al., 2019).

Most NAS algorithms encode model architectures using a list of integers, where each integer
represents a selected search option for the corresponding layer. In particular, notice that for a
given model with L layers, where each layer is selected from a set of search options S, the search
space contains O(|S|*) candidates with different architectures. This exponential complexity presents
a significant efficiency challenge for NAS algorithms.

In this paper, we present LayerNAS, an algorithm that addresses the problem of Neural Architecture
Search (NAS) through the framework of combinatorial optimization. The proposed approach decou-
ples the constraints of the model and the evaluation of its quality, and explores the factorized search
space more effectively in a layerwise manner, reducing the search complexity from exponential to
polynomial.

LayerNAS rigorously derives the method from the fundamental assumption: high-performing models
when searching for layer, can be constructed from one of the models in layer, ;. For search spaces
that satisfy this assumption, LayerNAS enforces a directional search process from the first layer to

Under review as a conference paper at ICLR 2024

78.6 1
:\g 78.0
@
= 77.5 1
Q 77.1
o .
£ 7704 B e < EfficientNet Magic-AT
s % FairNAS o
 76.5 /
e ‘ ShapleyNAB
3 « GreedyNAS

o
< 76.0 1
=
o 7 %6
© 75,5 - L
%

200 250 300 350 400 450 500 550 600
Million of MAdds

Figure 1: Comparison with baseline models and NAS methods.

the last layer. The directional layerwise search makes the search complexity O(C' - |S| - L), where C
is the number of candidates to search per layer.

For multi-objective NAS problems, LayerNAS treats model constraints and model quality as separate
metrics. Rather than utilizing a single objective function that combines multi-objectives, LayerNAS
stores model candidates by their constraint metric value. Let M; , be the best model candidate for
layer, with cost = h. LayerNAS searches for high-performing models under different constraints in
the next layer by adding the cost of the selected search option for next layer to the current layer, i.e.,
M, 1. This transforms the problem into the following combinatorial optimization problem: for a
model with L layers, what is the optimal combination of options for all layers needed to achieve the
best quality under the cost constraint? If we bucketize the potential model candidates by their cost,
the search space is limited to O(H - |S| - L), where H is number of buckets per layer. In practice,
capping the search at 100 buckets achieves reasonable performance. Since this holds H constant, it
makes the search complexity polynomial.

1. Select M, , and apply search
option to generate children

2. h=p(M,,), store M, on . 3. If M, , performs better
bucket / . Filter out models : than current model in bucket
if /1 is out of cost range h, update the bucket

] [o]e]e] |

Figure 2: Illustration of the LayerNAS Algorithm described in Algorithm[T] For each layer: (1) select
a model candidate from current layer and generate children candidates; (2) store the candidate in
corresponding bucket, and filter out candidates not in the target objective range; (3) update the model
in the bucket if there’s a candidate with better quality; and finally, move to the next layer.

Our contributions can be summarized as follows:

* We propose LayerNAS, an algorithm that transforms the multi-objective NAS problem to a
combinatorial optimization problem. This is a novel formulation of NAS.

» LayerNAS is directly designed to tackle the search complexity of NAS, and reduce the
search complexity from O(|S|%) to O(H - |S| - L), where H is a constant defined in the
algorithm.

Under review as a conference paper at ICLR 2024

* We demonstrate the effectiveness of LayerNAS by identifying high-performing model
architectures under various Multiply-Adds (MAdds) constraints, by searching through
search spaces derived from MobileNetV2 (Sandler et al.,2018) and MobileNetV3 (Howard
et al.,[2019).

2 RELATED WORK

The survey by [Elsken et al.| (2019) categorizes methods for Neural Architecture Search into three
dimensions: search space, search strategy, and performance estimation strategy. The formulation
of NAS as different problems has led to the development of a diverse array of search algorithms.
Bayesian Optimization is first adopted for hyper-parameter tuning (Bergstra et al.| 2013} [Domhan
et al.| 2015} |[Falkner et al., 2018; [Kandasamy et al.,|2018). Reinforcement Learning is utilized for
training an agent to interact with a search space (Zoph & Lel |2017;[Pham et al., 2018;Zoph et al.,[2018;;
Jaafra et al.l 2019). Evolutionary algorithms (Liu et al., 2021} Real et al.l 2019) have been employed
by encoding model architectures to DNA and evolving the candidate pool. ProgressiveNAS (Liu
et al.,[2018a)) uses heuristic search to gradually build models by starting from simple and shallow
model architectures and incrementally adding more operations to arrive at deep and complex final
architectures. This is in contrast to LayerNAS, which iterates over changes in the layers of a full
complex model.

Recent advancements in mobile image models, such as MobileNetV3 (Howard et al.| [2019), Effi-
cientNet (Tan & Lel 2019), FBNet (Wu et al.,[2019), are optimized by NAS. The search for these
models is often constrained by metrics such as FLOPs, model size, latency, and others. To solve
this multi-objective problem, most NAS algorithms (Tan et al.| [2019; |Cai et al., [2018) design an
objective function that combines these metrics into a single objective. LEMONADE (Elsken et al.,
2018)) proposes a method to split two metrics, and searches for a Pareto front of a family of models.
Once-for-All (Cai et al., 2020) proposes progressive shrinking algorithm to efficiently find optimal
model architectures under different constraints.

Larger models tend to have better performance compared to smaller models. However, the increased
size of models also means increased computational resource requirement. As a result, the optimization
of neural architectures within constrained resources is an important and meaningful aspect of NAS
problems, which can be solved as multi-objective optimization (Hsu et al.,|2018)). There is increasing
interest in treating NAS as a compression problem (Zhou et al., 2019; |Yu & Huang|, [2019) from an
over-sized model. These works indicate that compressing with different configurations on each layer
leads to a model better than uniform compression. Here, NAS can be used to search for optimal
configurations (He et al.| 2018} |Liu et al.} 2019; Wang et al., [2019).

The applicability of NAS is significantly influenced by the efficiency of its search process. One-shot
algorithms (Liu et al.||2018b; |Cai et al.,[2018} Bender et al.,2018;[2020) provide a novel approach
by constructing a supernet from the search space to perform more efficient NAS. However, this
approach has limit on number of branches in supernet due to the constraints of supernet size. The
search cost is not only bounded by the complexity of search space, but also the cost of training under
"train-and-eval" paradigm. Training-free NAS (Mellor et al.| 2021} [Chen et al., 2021} [Zhu et al.,
2022; Shu et al., 2021) breaks this paradigm by estimating the model quality with other metrics that
are fast to compute. However, the search quality heavily relies on the effectiveness of the metrics.

Several prior works, such as|Liu et al.| (2018a)),|Li et al.| (2020), Qian et al.[(2022), have introduced
progressive search mechanisms on layerwise search spaces. LayerNAS stands apart by explicitly
articulating the underlying assumptions of the layerwise search space, rigorously deriving the method
from these assumptions, and effectively constraining the polynomial search space complexity.

3 PROBLEM DEFINITION

Most NAS algorithms do not differentiate the various types of NAS problems. Rather, they employ
a single encoding of the search space with a general solution for the search process. However, the
unique characteristics of NAS problems can be leveraged to design a tailored approach. We categorize
NAS problems into three major types:

Under review as a conference paper at ICLR 2024

» Topology search: the search space defines a graph with multiple nodes. The objective is
to identify an optimal topology for connecting nodes with different operations. This task
allows for the exploration of novel architectures.

* Size search or compression search: the search occurs on a predefined model architecture
with multiple layers. Each layer can be selected from as a set of search options. Empiri-
cally, the best-performing model is normally the one with the most parameters per layer.
Therefore, in practice, we aim to search for the optimal model under certain constraints.
NATSBench size search (Dong et al.,2021) provides a public dataset for this type of task.
MobilNetV3 (Howard et al., 2019)), EfficientNet (Tan & Le, [2019), FBNet (Wu et al.l [2019)
also establish the search space in this manner. This problem can also be viewed as a compres-
sion problem He et al.| (2018)), as reducing the layer size serves as a means of compression
by decreasing the model size, FLOPs and latency.

 Scale search: model architectures are uniformly configured by hyper-parameters, such
as number of layers or size of fully-connected layers. This task views the model as a
holistic entity and uniformly scales it up or down, rather than adjusting individual layers or
components.

This taxonomy illustrates the significant variation among NAS problems. Rather than proposing
a general solution to address all of them, we propose to tackle with search spaces in a layerwise
manner. Specifically, we aim to find a model with L layers. For each layer,, we select from a set of
search options S;. A model candidate M can be represented as a tuple with size L: (s1, s2, ..., S1.).
s; € S; is a selected search option on layer,. The objective is to find an optimal model architecture
M = (81, 82, ..., s,) with the highest accuracy:

argmax Accuracy(M) (1

(51,52,..-,5L)

4 METHOD

We propose LayerNAS as an algorithm that leverages layerwise attributes. When searching models
M, on layer,, we are searching for architectures in the form of (s1.;—1,%;,0i+1..L). S1.i—1 are
the selected options for layer; ,_;, and 0;1. r, are the default, predefined options. x; is the search
option selected for layer,, which is the current layer in the search. In this formulation, only layer;,
can be changed, all preceding layers are fixed, and all succeeding layers are using the default option.
In topology search, the default option is usually no-op; in size search, the default option can be the
option with most computation.

LayerNAS operates on a search space that meets the following assumption, which has been implicitly
utilized by past chain-structured NAS techniques (Liu et al.,2018a;; [Tan et al., 2019; |[Howard et al.|
2019).

Assumption 4.1. The optimal model M; on layer; can be constructed from a model m € M;_1,
where M;_; is a set of model candidates on layer, ;.

This assumption implies:

* Enforcing a sequential search process is possible when exploring layer; because improve-
ments to the model cannot be achieved by modifying layer;_;.

* The information for finding an optimal model architecture on layer; was collected when
searching for model architectures on layer; ;.

» Search spaces that are constructed in a layerwise manner, such as those in size search
problems discussed in Section [3] can usually meet this assumption. Each search option can
completely define how to construct a succeeding layer, and does not depend on the search
options in previous layers.

* It’s worth noting that not all search spaces can meet the assumption. Succeeding layers
may be coupled with or affect preceding layers in some cases. In practice, we transform the
search space in Section[5to ensure that it meets the assumption.

Under review as a conference paper at ICLR 2024

Algorithm 1 LayerNAS algorithm

Inputs: L (num layers), R (num searches per layer), 7' (num models to generate in next layer)
=1
M; = {VM;}
repeat
fori=1to Rdo
M = select(M)
for j=1to7T do
M1 = apply_search_option(M,, S;11)
h=@(Mi1)
accuracy = train_and_eval(M; 1)
if accuracy > Accuracy(Mj4; ;) then
M1, = Mg
end if
end for
end for
l=1+1
if [== L then
=1
end if
until no available candidates

4.1 LAYERNAS FOR TOPOLOGY SEARCH

The LayerNAS algorithm is described by the pseudo code in Algorithm|ll M is a set of model candi-
dates on layer;. M 5, is the model on layer, mapped to i € H, a lower dimensional representation.
H is usually a finite integer set, so that we can index and store models.

¢ : Ml — H maps model architecture in M to a lower dimensional representation H. ¢ could be an
encoded index of model architecture, or other identifiers that group similar model architectures. We
discuss this further in[.2] When there is a unique id for each model, LayerNAS will store all model
candidates in ML

In this algorithm, the total number of model candidates we need to search is ZiLzl [M;| - |S;]. Tt has
a polynomial form, but [M | = O(|S|¥) if we set ¢(M) as unique id of models. This does not limit
the order of |M | to search. For topology search, we can design a sophisticated ¢ to group similar
model candidates. In the following discussion, we will demonstrate how to lower the order of | M|
in multi-objective NAS.

4.2 LAYERNAS FOR MULTI-OBJECTIVE NAS

LayerNAS is aimed at designing an efficient algorithm for size search or compression search problems.
As discussed in Section 3] such problems satisfy Assumption[d.1]by nature. Multi-objective NAS
usually searches for an optimal model under some constraints, such as model size, inference latency,
hardware-specific FLOPs or energy consumption. We use “cost” as a general term to refer to these
constraints. These “cost” metrics are easy to calculate and can be determined when the model
architecture is fixed. This is in contrast to calculating accuracy, which requires completing the model
training. Because the model is constructed in a layer-wise manner, the cost of the model can be
estimated by summing the costs of all layers.

Hence, we can express the multi-objective NAS problem as,

argmax Accuracy(Mp)
(81,82,...,8L)
L 2
s.t. Z Cost(s;) < target

i=1

where C'ost(s;) is the cost of applying option s; on layer;.

Under review as a conference paper at ICLR 2024

We introduce an additional assumption by considering the cost in Assumption .1}

Assumption 4.2. The optimal model M, with cost = C' when searching for layer, can be constructed
from the optimal model M;_; with cost = C' — Cost(s;) from M;_;.

In this assumption, we only keep one optimal model out of a set of models with similar costs. Suppose
we have two models with the same cost, but M has better quality than M. The assumption will be
satisfied if any changes on following layers to M, will generate a better model than making the same
change to M.

By applying Assumption to Equation (2), we can formulate the problem as combinatorial
optimization:
argmax Accuracy(M;)
T4
i—1
s.t. Z Cost(s1..i-1, %, 0i41,1.) < target 3)
j=1
where M; = (s1.i-1,%i,0i41..1), Mi—1 = (51..i-1,0i..1.) € Mli_1 s

This formulation decouples cost from reward, so there is no need to manually design an objective
function to combine these metrics into a single value, and we can avoid tuning hyper-parameters of
such an objective. Formulating the problem as combinatorial optimization allows solving it efficiently
using dynamic programming. M ;, can be considered as a memorial table to record best models on
layer; at cost h. For layer;, M, generates the M, by applying different options selected from S; ;
on layer;, ;. The search complexity is O(H - [S]| - L).

We do not need to store all M} ;, candidates, but rather group them with the following transformation:

Cost(M;) — min Cost(M;)
max Cost(M;) — min Cost(M

p(M;) = { 3 X HJ 4)

where H is the desired number of buckets to keep. Each bucket contains model candidates with costs
in a specific range. In practice, we can set I = 100, meaning we store optimal model candidates
within 1% of the cost range.

Equation limits |M;| to be a constant value since H is a constant. min Cost(M;) and
max Cost(M;) can be easily calculated when we know how to select the search option from S;11..Sy,
in order to maximize or minimize the model cost. This can be achieved by defining the order within
S;. Let s; = 1 represent the option with the maximal cost on layer;, and s; = |S| represent the
option with the minimal cost on layer,. This approach for constructing the search space facilitates an
efficient calculation of maximal and minimal costs.

The optimization applied above leads to achieving polynomial search complexity O(H - |S| - L)
. O(]M]) = H is upper bound of the number of model candidates in each layer, and becomes a
constant after applying Equation (4). [S| is the number of search options on each layer.

LayerNAS for Multi-objective NAS does not change the implementation of Algorithm[I} With the
same framework, we just need to set ¢ to group M by their costs with Equation (). In practice,
Assumption [4.2]is not always true because accuracy may vary in each training trial. The algorithm
may store a lucky model candidate that happens to get a better accuracy due to variation. We store
multiple candidates for each h to reduce the problem from training accuracy variation.

5 EXPERIMENTS

5.1 SEARCH ON IMAGENET

Search Space: we construct several search spaces based on MobileNetV2, MobileNetV2 (width
multiplier=1.4), MobileNetV3-Small and MobileNetV3-Large. For each search space, we set similar
backbone of the base model. For each layer, we consider kernel sizes from {3, 5, 7}, base filters and
expanded filters from a set of integers, and a fixed strides. The objective is to find better models with
similar MAdds of the base model.

Under review as a conference paper at ICLR 2024

To avoid coupling between preceding and succeeding layers, we first search the shared base filters in
each block to create residual shortcuts, and search for kernel sizes and expanded filters subsequently.
This ensures the search space satisfy Assumption[.1]

We estimate and compare the number of unique model candidates defined by the search space and
the maximal number of searches in Table In the experiments, we set H = 100, and store 3 best
models with same h-value. Note that the maximal number of searches does not mean actual searches
conducted in the experiments, but rather an upper bound defined by the algorithm.

A comprehensive description of the search spaces and discovered model architectures in this experi-
ment can be found in the Appendix for further reference.

Table 1: Comparison of model candidates in the search spaces

Target # Unique # Max
Search Space MAdds Models Trials
MobileNetV3-Small 60M 5.0e +20 1.2e+5
MobileNetV3-Large | 220M 4.8¢+26 1.5e+5
MobileNetV2 300M 53e+30 14e+5
MobileNetV2 1.4x 600M 1.6e+4+39 2.0e+6

Search, train and evaluation:

During the search process, we train the model candidates for 5 epochs, and use the top-1 accuracy on
ImageNet as a proxy metrics. Following the search process, we select several model architectures
with best accuracy on 5 epochs, train and evaluate them on 4x4 TPU with 4096 batch size (128
images per core). We use RMSPropOptimizer with 0.9 momentum, train for 500 epochs. Initial
learning rate is 2.64, with 12.5 warmup epochs, then decay with cosine schedule.

Results

We list the best models discovered by LayerNAS, and compare them with baseline models and
results from recent NAS works in Table [6] For all targeted MAdds, the models discovered by
LayerNAS achieve better performance: 69.0% top-1 accuracy on ImageNet for 61M MAdds, a
1.6% improvement over MobileNetV3-Small; 75.6% for 229M MAdds, a 0.4% improvement over
MobileNetV3-Large; 77.1% accuracy for 322M MAdds, a 5.1% improvement over MobileNetV2;
and finally, 78.6% accuracy for 627M MAdds, a 3.9% improvement over MobileNetV2 1.4x.

Note that for all of these models, we include squeeze-and-excitation blocks (Hu et al.l 2018)) and use
Swish activation (Ramachandran et al., | 2017), in order to to achieve the best performance. Some
recent works on NAS algorithms, as well as the original MobileNetV2, do not use these techniques.
For a fair comparison, we also list the model performance after removing squeeze-and-excitation
and replacing Swish activation with ReLU. The results show that the relative improvement from
LayerNAS is present even after removing these components.

5.2 NATS-BENCH

The following experiments compare LayerNAS with other NAS algorithms on NATS-Bench (Dong
et al.,[2021). We evaluate NAS algorithms from three perspectives:

* Candidate quality: the quality of the best candidate model found by the algorithm, i.e. the
peak evaluation accuracy during search.

* Stability: the ability to find the best candidate, after running multiple searches and analyzing
the average value and range of variation.

* Efficiency: The training time required to find the best candidate. The sooner the peak
accuracy candidate is reached, the more efficient the algorithm.
NATS-Bench topology search

NATS-Bench topology search defines a search space on 6 ops that connect 4 tensors, each op
has 5 options (convlx1, conv3x3, maxpool3x3, no-op, skip). It contains 15625 candidates with

Under review as a conference paper at ICLR 2024

Table 2: Comparison of models on ImageNet

Model Topl Acc. Params MAdds
MobileNetV3-Small (Howard et al.,[2019)T 67.4 2.5M 56M
MNasSmall (Tan et al.|[2019) 64.9 1.9M 65M
LayerNAS (Ours)’ 69.0 3.7M 61M
MobileNetV3-Large (Howard et al., 2019)" 75.2 5.4M 219M
LayerNAS (Ours) ' 75.6 5.1M 229M
MobileNetV2 (Sandler et al.||2018)* 72.0 3.5M 300M
ProxylessNas-mobile (Cai et al.,2018)* 74.6 4.1M 320M
MNasNet-A1l (Tan et al..[2019) 75.2 3.9M 315M
FairNAS-C (Chu et al.[2021)* 74.7 5.6M 325M
LayerNAS-no-SE(Ours)” 75.5 3.5M 319M
EfficientNet-BO (Tan & Le, [2019) 77.1 5.3M 390M
SGNAS-B (Huang & Chu}2021) 76.8 - 326M
FairNAS-C (Chu et al., 2021)" 76.7 5.6M 325M
GreedyNAS-B (You et al.[[2020) 76.8 5.2M 324M
LayerNAS (Ours)' 771 52M 322M
MobileNetV2 1.4x (Sandler et al.[[2018)* 74.7 6.9M 585M
ProgressiveNAS (Liu et al.|[2018a)™ 74.2 5.IM 588M
Shapley-NAS (Xiao et al.| [2022)* 76.1 5.4M 582M
MAGIC-AT (Xu et al.;,[2022)* 76.8 6M 598M
LayerNAS-no-SE (Ours)™ 77.1 7.6M 598M
LayerNAS (Ours) 78.6 97M 627TM

* Without squeeze-and-excitation blocks.
T With squeeze-and-excitation blocks.

their number of parameters, FLOPs, accuracy on Cifar-10, Cifar-100 (Krizhevsky et al., [2009),
ImageNet16-120 (Chrabaszcz et al.| [2017)). In Table E], we compare with recent state-of-the-art
methods. Although training-free NAS has advantage of lower search cost, LayerNAS can achieve
much better results.

Table 3: Comparison on NATS-Bench topology search. Average test accuracy on 5 runs.

I | Cifarl0 | Cifarl00 | ImageNet16-120 | Cost (sec) ||

RS 92.391+0.06 | 63.54+0.24 42.71+£0.34 le+5
RE (Real et al.,2019) 94.13£0.18 | 71.4040.50 44.764+0.64 le+5
PPO (Schulman et al.,2017) | 94.024+0.13 | 71.684+0.65 44.95+0.52 le+5
KNAS (Xu et al.[[2021) 93.05 68.91 34.11 4200
TE-NAS (Chen et al., 2021) | 93.90+0.47 | 71.24£0.56 42.384+0.46 1558

EigenNas (Zhu et al., [2022) | 93.46+0.02 | 71.42+0.63 45.54+0.04 -
NASI (Shu et al.[[2021) 93.55+0.10 | 71.20+0.14 44.84+1.41 120
FairNAS (Chu et al.| [2021) 93.23£0.18 | 71.00+1.46 42.194+0.31 le+5
SGNAS (Huang & Chu,[2021) | 93.534+0.12 | 70.31+1.09 44.98+2.10 Oe+4
LayerNAS 94.34+0.12 | 73.01+0.63 46.58+0.59 le+5

Optimal test accuracy 94.37 73.51 4731

NATS-Bench size search

NATS-Bench size search defines a search space on a 5-layer CNN model, each layer has 8 options
on different number of channels, from 8 to 64. The search space contains 32768 model candidates.
The one with the highest accuracy has 64 channels for all layers, we can refer this candidate as “the
largest model”. Instead of searching for the best model, we set the goal to search for the optimal
model with 50% FLOPs of the largest model.

Under this constraints for size search, we implement popular NAS algorithms for comparison, which
are also used in the original benchmark papers (Ying et al.,2019; Dong et al.}2021): random search,
proximal policy optimization (PPO) (Schulman et al.,|2017) and regularized evolution (RE) (Real

Under review as a conference paper at ICLR 2024

et al.,[2019). We conduct 5 runs for each algorithm, and record the best accuracy at different training
costs.

LayerNAS treats this as a compression problem. The base model, which is the largest model, has 64
channels on all layers. By applying search options with fewer channels, the model becomes smaller,
faster and less accurate. The search process is to find the optimal model with expected FLOPs. By
filtering out candidates that do not produce architectures falling within the expected FLOPs range,
we can significantly reduce the number of candidates that need to be searched.

Table 4: Comparison on NATS-Bench size search. Average test accuracy on 5 runs.

Cifar10 | Cifar100 | ImageNetl16-120
Training time (sec) 2e+5 4e+5 6e+5
Target mFLOPs 140 140 35

RS 0.9265 | 0.6935 0.4381
RE (Real et al.,2019) 0.9282 | 0.6962 0.4476
PPO (Schulman et al.;[2017) | 0.9283 | 0.6957 0.4438
LayerNAS 0.9320 | 0.7064 0.4537
Optimal validation 0.9264 | 0.6922 0.4500
Optimal test 0.9334 | 0.7086 0.4553

6 CONCLUSION AND FUTURE WORK

In this research, we propose LayerNAS that formulates Multi-objective Neural Architecture Search
to Combinatorial Optimization. By decoupling multi-objectives into cost and accuracy, and leverages
layerwise attributes, we are able to reduce the search complexity from O(|S|¥) to O(H - |S| - L).

Our experiment results demonstrate the effectiveness of LayerNAS in discovering models that achieve
superior performance compared to both baseline models and models discovered by other NAS
algorithms under various constraints of MAdds. Specifically, models discovered through LayerNAS
achieve top-1 accuracy on ImageNet of 69% for 61M MAdJds, 75.6% for 229M MAdds, 77.1%
for 322M MAdds, 78.6% for 627M MAdds. Furthermore, our analysis reveals that LayerNAS
outperforms other NAS algorithms on NATS-Bench in all aspects including best model quality,
stability and efficiency.

While the current implementation of LayerNAS has shown promising results, several current limita-
tions that can be addressed by future work:

* LayerNAS is not designed to solve scale search problems mentioned in Section 3] because
many hyper-parameters of model architecture are interdependent in scale search problem,
which contradicts the statement in Assumption[4.1]

* One-shot NAS algorithms have been shown to be more efficient. We aim to investigate the
potential of applying LayerNAS to One-shot NAS algorithms.

REFERENCES

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In International conference on machine learning, pp.
550-559. PMLR, 2018.

Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, and
Quoc V Le. Can weight sharing outperform random architecture search? an investigation with
tunas. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14323-14332, 2020.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pp. 115-123. PMLR, 2013.

Under review as a conference paper at ICLR 2024

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Patryk Chrabaszcz, [lya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 12239-12248, 2021.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth
international joint conference on artificial intelligence, 2015.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking nas
algorithms for architecture topology and size. IEEE transactions on pattern analysis and machine
intelligence, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997-2017, 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pp. 1437-1446. PMLR,
2018.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784-800, 2018.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314-1324, 2019.

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018.

Sian-Yao Huang and Wei-Ta Chu. Searching by generating: Flexible and efficient one-shot nas with
architecture generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 983-992, 2021.

Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. Reinforcement
learning for neural architecture search: A review. Image and Vision Computing, 89:57-66, 2019.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Advances in neural
information processing systems, 31, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

Under review as a conference paper at ICLR 2024

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem.
Sgas: Sequential greedy architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1620-1630, 2020.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European conference on computer vision (ECCV), pp. 19-34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018b.

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEFE transactions on neural networks and learning
systems, 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 3296-3305, 2019.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In International Conference on Machine Learning, pp. 7588-7598. PMLR, 2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095-4104. PMLR,
2018.

Guocheng Qian, Xuanyang Zhang, Guohao Li, Chen Zhao, Yukang Chen, Xiangyu Zhang, Bernard
Ghanem, and Jian Sun. When nas meets trees: An efficient algorithm for neural architecture search.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
27822787, 2022.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 47804789, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. Nasi: Label-
and data-agnostic neural architecture search at initialization. arXiv preprint arXiv:2109.00817,
2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 86128620, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734-10742, 2019.

11

Under review as a conference paper at ICLR 2024

Han Xiao, Ziwei Wang, Zheng Zhu, Jie Zhou, and Jiwen Lu. Shapley-nas: Discovering operation
contribution for neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11892-11901, 2022.

Jin Xu, Xu Tan, Kaitao Song, Renqgian Luo, Yichong Leng, Tao Qin, Tie-Yan Liu, and Jian Li.
Analyzing and mitigating interference in neural architecture search. In International Conference
on Machine Learning, pp. 24646-24662. PMLR, 2022.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. Knas: green
neural architecture search. In International Conference on Machine Learning, pp. 11613-11625.
PMLR, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105-7114. PMLR, 2019.

Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas:
Towards fast one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1999-2008, 2020.

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
arXiv preprint arXiv:1903.11728, 2019.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural
architecture search. In International conference on machine learning, pp. 7603-7613. PMLR,
2019.

Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, and Volkan Cevher. Generalization properties of nas
under activation and skip connection search. arXiv preprint arXiv:2209.07238, 2022.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8697-8710. IEEE Computer Society, 2018.

12

Under review as a conference paper at ICLR 2024

A NOTATION

S;: Search options for layer;.

|S;|: Num of search options on layer,.

s;: selected search option on layer; from the set S;

o0;: default search option applied on layer,, o; .1, is the architecture of the baseline model.
(81,82, .., $1): A model architecture that applies s; on layer,, so on layer,, ... , sy, on layer,

(81..i—1,Ti, 0i41..1.): A model architecture that applies s; on layer;, so on layer,, ..., default search
option 0;11 on layer, , {, ... or, on layery, and search x; on layer;.

M.;: A model candidate that is searched on layer;,, it’s in the form of (s1. -1, %4, 0i+1..1.)-
M;: All model candidates searching on layer;.
M; 5: Model candidates searching on layer;, and are mapped to h € H.

@ : M — H: transforms a model architecture M € M to a finite integer set H

B NASBENCH-101 SEARCH DETAILS

NASBench-101 defines a search space on 5 ops, each op has 3 options (conv1x1, conv3x3, maxpool
3x3), and 21 potential edges to connect these ops and input, output ops. It contains 509M candidates
with their number of parameters, accuracy on Cifar-10, and other information.

We construct the LayerNAS search space by adding a new edge for each layer. Search options in each
layer are used to determine either to include a new op or connect two existing ops. By doing so, all
constructed candidates can be legit, because all candidates are connected graphs. And this approach
of search space construction can satisfy the assumption of LayerNAS: the best model candidate in
layer, can be constructed from candidates in layer, ; by adding an new edge.

In the experiments, Regularized Evolution (RE) sets population_size=50, tournament_size=10;
Proximal Policy Optimization (PPO) sets train_batch_size=16, update_batch_size=8,
num_updates_per_feedback=10. Both RE and PPO are using MNAS as objective function:
Accuracy x (Cost/Target) 007

In Figure 3] we observe that in earlier searching iterations LayerNAS performs slightly worse than
other algorithms. This is because LayerNAS initially searches model candidates with fewer ops
and edges, which intuitively perform poorly. However, after collecting enough information from
early layers, LayerNAS consistently performs better. This is because LayerNAS does not rely on
randomness, rather, it adds ops and edges from successful candidates in each layers, leading to
continuous improvement.

0.944

0.942

0.940

accuracy

0.938

random
— evolution
— o
— LayerNAS

0936

0 1 2 3 4 5
total trainimg time spent {seconds) le6

Figure 3: NASBench-101 test accuracy on Cifar-10, average on 100 runs

13

Under review as a conference paper at ICLR 2024

Table 5: Comparison on NASBench-101

Algorithm Validation accuracy Test accuracy
RS 0.9480 0.9401
RE 0.9497 0.9416
PPO 0.9476 0.9396
LayerNAS 0.9505 0.9426
Optimal 0.9432 0.9445

C NATS-BENCH SEARCH DETAILS

In the experiments, Regularized Evolution (RE) sets population_size=50, tournament_size=10;
Proximal Policy Optimization (PPO) sets train_batch_size=16, update_batch_size=8,
num_updates_per_feedback=10. Both RE and PPO are using MNAS as objective function:
Accuracy x (Cost/Target) %07

C.1 NATS-BENCH TOPOLOGY SEARCH

NATS-Bench topology search defines a search space on 6 ops that connect 4 tensors, each op has 5
options (conv1x1, conv3x3, maxpool3x3, no-op, skip).

In our experiments, we construct the LayerNAS search space by adding a new tensor for each layer.
Search options in each layer are encoded with all op types that connect this tensor to previous tensors.
So it has only 3 layers, each layer has 5, 25, 125 options.

Validation and test accuracy are shown in Figure 4] and Figure[5]

random

— evolution

ppo
2% — LayerNAS

0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000 15000 20000 25000 30000 35000 40000 0 20000 40000 60000 80000 100000 120000
total tr (seconds) total trai (seconds) total trainin econds|

ining time spent (seconds)

Figure 4: NATS-Bench topology search valid accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-
120

945

94.0
935
93.0

Zas

g o20

915

random
— evolution 38
90.5 — ppo 66 — pp

random 67
— evolution

random
— evolution
— ppo

— LayerNAS

91.0

o0
— LayerNAS — LayerNAs
90.0 65 36
0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000 15000 20000 25000 30000 35000 40000 4

total training time spent (seconds) total training time spent (seconds)

20000 40000 60000 80000 100000 120000
total training time spent (seconds)

Figure 5: NATS-Bench topology search test accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120

C.2 NATS-BENCH SIZE SEARCH

NATS-Bench size search provides a dataset with information on model architectures with 5 layers.
Each layer is a convolutional layer with different num of channels selected from {8, 16, 24, 32, 40,

14

Under review as a conference paper at ICLR 2024

48, 56, 64}. The model with 64 channels for all layers has the most model parameters, the largest
latency and the best accuracy. The objective is to find the optimal model with 50% FLOPs.

LayerNAS constructs the search space by using the largest model as base model, and applies search
options that reduce channels per layer. Althoughh LayerNAS steadily improves valid accuracy over
time, test accuracy drops. This is due to in-correlation between test accuracy and valid accuracy.

Validation and test accuracy are shown in Figure[6]and Figure[7] We can observe that LayerNAS can
outperform other algorithms on both validation and test accuracy. We can also attribute test accuracy
drop in LayerNAS to the lack of correlation with validation accuracy.

85.00 61.0 30.0

s 83.75
83.50

83.25

83.00

0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000 15000 20000 25000 30000 35000 40000 o 10000 20000 30000 40000 50000 60000
total econds) total trai (seconds) total training time spent (seconds)

Figure 6: NATS-Bench size search valid accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120

0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000 15000 20000 25000 30000 35000 40000 4 10000 20000 30000 40000 50000 60000
total training time spent (seconds) tal t s total seconds)

Figure 7: NATS-Bench size search test accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120

D DYNAMIC PROGRAMMING IMPLEMENTATION OF LAYERNAS FOR
MULTI-OBJECTIVE NAS

Algorithm 2] demonstrates how to implement LayerNAS with Dynamic Programming, which has
clear explanation why search complexity is O(H - [S| - L) .

The implementation is not used in practice because it spends most of time searching in layer; ;_;,
we cannot get a model in expected cost range until last layer is searched.

Algorithm 2 Dynamic Programming for Combinatorial Optimization

forl=1toL —1do
for M; € M; do
for s € S;;1 do
M 41 = apply_search_option(M;, s)
h = cost(M 1)
accuracy = train_and_eval(M 1)
if accuracy > Accuracy(M; 11) then
M1, =M
end if
end for
end for
end for

15

Under review as a conference paper at ICLR 2024

E DISCUSSION ON SEARCH SPACE ASSUMPTIONS

Assumption 4.1 sets some characteristics of search spaces that can be leveraged to improve the search
efficiency. Instead of expecting all search spaces can satisfy this assumption, in experiments, we
construct search spaces based on MobileNet to intentionally make them satisfy Assumption 4.1.
While we cannot guarantee that all search spaces can be transformed to satisfy Assumption 4.1,
most search spaces used in existing models or studies either implicitly use this assumption or can
be transformed to satisfy it. We also demonstrate the effectiveness of this assumption from the
experiments on MobileNet.

E.1 SEARCH SPACE IS COMPLETE

Assume we are searching for the optimal model s; ..s,,, and we store all possible model candidates on
each layer. During the search process on layer,,, we generate model architectures by modifying o,, to
other options in S. Since we store all model architectures for layer,,_;, the search process can create
all [S|™ candidates on layer,, by adding each s,, € S to the models in M, _;. Therefore, M,, contains
all possibilities in the search space. This process can then be applied backward to the first layer.

E.2 SEQUENTIAL SEARCH ORDER

Assume, after LayerNAS sequential search, we get optimal model defined as a; ..a;..a,,. For sake
of contradiction, there exists a model a;..b;..a,,, with superior performance, by applying a change
in previous layers. Since the search space is complete, model a;..b;0;41..0,, must exist, and has
been processed in M;. In the sequential search, model a;..b;a;41..0, can be created by using a; 1
on layer;, ;. Repeating this process for all subsequent layers will eventually lead to a;..b;..an,
contradicting our assumption that optimal model from sequential search is a;..a;..a,. Therefore, we
can search sequentially.

E.3 LIMIT OF THE ASSUMPTION

MobileNet architecture does not satisfy Assumption 4.1 by default. Residual requires layer; and
layer; have the same num of filters. Suppose S; = {32,64,96}, S; = {64, 96, 128}, the residual
shortcut cannot be created if s; = 32, s; = 96. This is the case when preceding layers are coupled
with succeeding layers. To overcome this issue, we introduce a virtual layer, with options {64, 96}.
We first search this shared filter to create residual shortcuts, and then search specs for each layer. This
transformation ensures that the new search space satisfy Assumption 4.1. In the case of MobileNet
search space, we first search for the common filters for the block and then for the expanded filters for
each layer. This approach allows us to perform LayerNAS on a search space that satisfies Assumption
4.1.

F DISCUSSION ON NUM OF REPLICAS TO STORE

From experiments on MobileNet, we observed that multiple runs on the same model architecture
can yield standard deviations of accuracy ranging from 0.08% to 0.15%. Often times, the difference
can be as high as 0.3%. To address this, we propose storing multiple candidates for the same cost to
increase the likelihood of keeping the better model architecture for every layer search.

Suppose we have two models with the same cost, x and y, where x is inferior and y is superior, and the
training accuracy follows a Gaussian distribution N (1, o2). The probability of - obtaining a higher
accuracy than y is P(z —y > 0), where & — y ~ N (ug — iy, 022 + 0,,%). In emprical examples,
tz — by = —0.002 and o, = 0.001, then x has the probability of 9.2% of obtaining a higher accuracy.
When we have L = 20 layers, the probability of keeping the better model architecture for every layer
search is (1 — p)?° = 18%.

By storing k candidates with the same cost, we can increase the probability of keeping the better
model architecture. When k = 3, the probability of storing all inferior models is p* = 0.08%. The
probability of keeping the better model architecture for all L = 20 layer searches is 98.4%, which is
practically good enough.

16

Under review as a conference paper at ICLR 2024

Theoretically, if we store infinite candidates per layer, we are performing a complete grid search,
which guarantees a optimal model architecture.

G TRANSFERABILITY
LayerNAS’s explored model architectures exhibit improved performance across various tasks as well.

Table 6: Comparison of models on ImageNet

Model ImageNet top-1 acc CoCo mAP Params MAdds
MobileNetV2 72.0 22.1 3.5M 300M
LayerNAS w/o SE 77.1 23.85 7.6M 598M
LayerNAS 78.6 24.84 9.7M 527M
MobileNetV3-Small 67.4 16 2.5M 56M
LayerNAS 69.0 17.94 3. M 61M
MobileNetV3-Large 75.2 22.0 5.4M 219M
LayerNAS 75.6 23.75 5.1M 229M

H MOBILENETV2 AND MOBILENETV3 SEARCH DETAILS

We aim to search models under different MAdds constrants: 60M (similar to MobileNetV3-Small),
220M (similar to MobileNetV3-Large), 300M (similar to MobileNetV2), 600M (similar to Mo-
bileNetV2 1.4x).

For each block, we will search the number of output filters of the block first. All layers in the block
have the same number of output filters to create residual block correctly. Following the search for the
block output filters, we search expanded filter and kernel size of each layers in this block. Strides are
fixed for all layers. We use |S| to denote the number of search options of this layer, which facilitates
the computation on the number of unique model architectures, and max number of required search
trials in LayerNAS.

H.1 60M MADDS MODEL

The search spaces has L = 16 encoded length. Number of unique model architecture is [|S|
5.0e + 20. We store up to 300 model candidates per layer, so max number of trials is 300 x > [S]
1.2e + 5.

H.2 220M MADDS MODEL
The search spaces has L = 21 encoded length, the number of unique model architecture is [[[S| =

4.8e + 26 For LayerNAS, we store up to 300 model candidates per layer, so max number of trials is
300 x > |S| =1.5e +5

H.3 300M MADDS MODEL
The search spaces has L = 26 encoded length, the number of unique model architectures is [[[S| =

5.3e + 30. We store up to 300 model candidates per layer, so max number of trials is 300 x > [S| =
1.4e + 5.

H.4 600M MADDS MODEL

The search spaces has L = 31 encoded length, the number of unique model architecture is [[[S| =
1.6e + 39 For LayerNAS, we store up to 300 model candidates per layer, so max number of trials is
300 x >_|S| = 2.0e + 6

17

Under review as a conference paper at ICLR 2024

Table 7: 60M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
conv2d{3x3} 16 2
bneck {3x3} {24, 20, 18, 16, 14, 12} 2 6
Block filter {36, 32, 28, 24, 20, 18, 16} 7
{144, 136, 128, 120, 112, 104,
bneck {3x3, 5x5} 96, 88, 80, 72, 68, 64, 60, 56} 2 28
{144, 136, 128, 120, 112, 104,
bneck {3x3, 5x5} 96, 88, 80, 72 68, 64, 60, 56} 1 28
Block filter {60, 56, 52, 48, 44, 40, 36, 32, 28} 9
{192, 176, 160, 144, 128,
bneck {3x3, 5x5, 7x7} 112, 104, 96, 88, 80, 72, 64} 2 36
{480, 440, 400, 360, 320, 300,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 220, 200, 180, 160} 1 39
{480, 440, 400, 360, 320, 300,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 220, 200, 180, 160} 1 39
{96, 88, 80, 72, 64, 60, 56,
Block filter 52,48, 44, 40, 36, 32} 13
{240, 200, 180, 160, 140,
bneck {3x3, 5x5, 7x7} 120, 100, 90, 80} 1 27
{288, 256, 224, 208, 192, 176,
bneck {3x3, 5x5, 7x7} 160, 152, 144, 136, 128, 120} 1 36
{192, 176, 160, 144, 128, 120, 112,
Block filter 104, 96, 88, 80, 72, 64} 13
{576, 544, 512, 480, 448, 416,
bneck {3x3, 5x5, 7x7} 384, 352, 320, 288, 256, 224} 2 36
{1152, 1088, 1024, 960, 896, 832,
bneck {3x3, 5x5, 7x7} 768, 704, 640, 576, 516, 448} 1 36
{1152, 1088, 1024, 960, 896, 832,
bneck {3x3, 5x5, 7x7} 768, 704, 640, 576, 516, 448} 1 36
conv2d Ix1 {864, 576}, 2
pool, 7x7
conv2d 1x1 {1536, 1024} 2
conv2d 1x1 {1001}
Table 8: LayerNAS Model under 60M MAdds
Input Operator | # Output filter | # Expanded Filter | strides
224 x 224 x 3 | conv2d 3x3 16 2
112 x 112 x 16 | bneck 3x3 16 2
56 x 56 x 16 bneck 3x3 28 144 2
28 x 28 x 28 bneck 3x3 28 128 1
28 x 28 x 28 bneck 5x5 44 96 2
14 x 14 x 44 bneck 3x3 44 220 1
14 x 14 x 44 bneck 3x3 44 200 1
14 x 14 x 44 bneck 7x7 40 160 1
14 x 14 x 40 bneck 3x3 40 152 1
14 x 14 x 96 bneck 5x5 96 224 2
7TX7x96 bneck 3x3 96 448 1
7 X7 x96 bneck 3x3 96 512 1
7xT7x96 conv2d 1x1 864 1
7 X7 x 864 pool, 7x7 1
7T X7 x 864 conv2d 1x1 1536 1
7x7x 1536 | conv2d 1x1 1001 1

18

Under review as a conference paper at ICLR 2024

Table 9: 220M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
Conv2d{3x3} 16 2
bneck {3x3} {24, 20, 18, 16, 14, 12} 1 6
Block filter {36, 32, 28, 24, 20, 16}
{96, 88, 80, 72,
bneck {3x3, 5x5} 68, 64, 60, 56, 48} 2 18
{124, 116, 108, 100, 92, 84,
bneck {3x3, 5x5, 7x7} 72, 68, 64, 56, 48} 1 33
{64, 56,52, 48,
Block filter 44, 40, 36, 32, 24} 9
{128, 120, 112, 104, 96,
bneck {3x3, 5x5, 7x7} 88, 80, 76, 72, 64, 56} 2 33
{240, 200, 180, 160,
bneck {3x3, 5x5, 7x7} 140, 120, 110, 100, 80} 1 27
{240, 200, 180, 160,
bneck {3x3, 5x5, 7x7} 140, 120, 110, 100, 80} 1 27
{160, 140, 130, 120,
Block filter 110, 100, 80, 70, 60} 9
{360, 320, 300, 280, 260,
bneck {3x3, 5x5, 7x7} 240, 220, 200, 180, 160} 2 30
{400, 360, 340, 320, 300, 280,
bneck {3x3, 5x5, 7x7} 260, 240, 220, 200, 180, 160, 120} 1 36
{368, 336, 304, 288, 272, 256,
bneck {3x3, 5x5, 7x7} 240, 224, 208, 184, 168, 152} 1 36
{368, 336, 304, 288, 272, 256,
bneck {3x3, 5x5, 7x7} 240, 224, 208, 184, 168, 152} 1 36
{224,208, 192, 176, 160,
Block filter 144, 128, 112, 96, 80} 10
{960, 880, 800, 720, 640, 560,
bneck {3x3, 5x5, 7x7} 520, 480, 440, 400, 360} 1 33
{1344, 1200, 1056, 960, 888,
bneck {3x3, 5x5, 7x7} 816, 768, 720, 624, 576, 480} 1 33
{320, 280, 240, 220,
Block filter 200, 180, 160, 120, 100 } 9
{1344, 1200, 1056, 960, 888,
bneck {3x3, 5x5, 7x7} 816, 768, 720, 624, 576, 480} 2 33
{1920, 1760, 1600, 1440, 1280,
bneck {3x3, 5x5, 7x7} 1120, 960, 880, 800, 720, 640} 1 33
{1920, 1760, 1600, 1440, 1280,
bneck {3x3, 5x5, 7x7} 1120, 960, 880, 800, 720, 640} 1 33
{1728, 1664, 1600,
bneck {3x3, 5x5, 7x7} | {480, 440, 400, 360, 320, 300, 280} 1536, 1440, 1280, 1216} 1 7
conv2d Ix1 {960}
pool, 7x7
conv2d 1x1 {1440, 1280} 2
conv2d 1x1 {1001}

19

Under review as a conference paper at ICLR 2024

Table 10: LayerNAS Model under 220M MAdds

Input Operator | # Output filter | # Expanded Filter | strides

224 x 224 x 3 | conv2d 3x3 16 2
112 x 112 x 16 | bneck 3x3 18 1
112 x 112 x 16 | bneck 3x3 24 64 2
56 x 56 x 28 bneck 3x3 24 48 1
56 x 56 x 28 bneck 5x5 56 80 2
28 x 28 x 44 bneck 5x5 56 200 1
28 x 28 x 44 bneck 5x5 56 100 1
28 x 28 x 44 bneck 5x5 80 400 2
14 x 14 x 40 bneck 3x3 80 200 1
14 x 14 x 96 bneck 3x3 80 272 1
7x7x96 bneck 3x3 80 168 1
14 x 14 x 44 bneck 5x5 112 440 1
14 x 14 x 40 bneck 5x5 112 576 1
14 x 14 x 96 bneck 7x7 160 624 2
7Tx7x96 bneck 5x5 160 640 1
7T X7 x96 bneck 3x3 160 640 1
7 X7 x96 conv2d 1x1 960 1
7 x T x 864 pool, 7x7 1
7 x 7 x 864 conv2d 1x1 1280 1
7 x7x 1536 | conv2d 1x1 1001 1

I EXAMPLE

Consider a model with 3 layers, each with 4 options: A, B, C, D, corresponding to computational
costs of 1M, 2M, 3M, and 4M MAdds, respectively. A sample model architecture can be represented
as BCA, indicating that the 1st layer uses B, the 2nd layer uses C, and the 3rd layer uses A. The total
cost of this model is 2+3+1=6M MAdds. The goal is to search for the optimal model architecture
within the cost range of §-OM MAdds.

LayerNAS settings:

* For each layer, candidates are grouped into 4 buckets, each bucket stores up to 2 candidates.

* In each iteration, 2 candidates are randomly selected to generate 2 valid children.
Cost range:

* 1st layer cost range: 9-12M, buckets: [9IM], [10M], [11M], [12M]
* 2nd layer cost range: 6-12M, buckets: [6-7M], [8M], [OM, 10M], [11M, 12M]
* 3rd layer: only stores [8M, 9M]

Marks:

* Candidates that fall outside the designated cost range are marked as "drop"

* Once all child architectures have been generated, the model is marked with "[x]"

Ist layer: train and eval: ADD (9M, 0.3), CDD (11M, 0.45)

2nd layer: Choose ADD and CDD
ADD generates ABD (7M drop), ACD (8M, 0.27), AAD(6M drop), all children searched
CDD generates CAD(8M, 0.4), CBD(9M, 0.42)
[6-7TM]: []
[8M]: [ACD(8M, 0.27), CAD(8M, 0.4)]
[9-10M]: [ADD(9M, 0.3)]

20

Under review as a conference paper at ICLR 2024

Table 11: 300M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
Conv2d{3x3} 32 2

bneck [3x3] (24,20, 16, 14] 1 i

Block filter (48, 44, 40, 36, 32, 28, 24) 7

bneck {3x3, 5x5} (72,64,56,52,48,44,40} | 2 | 14
{144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 1 20
(144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 1 |20

Block filter 160, 56, 52, 48, 44, 40, 36, 32) 8
{144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 2 20
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7} 120, 110, 100, 80} 1|24
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7} 120, 110, 100, 80} 1 24
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7} 120, 110, 100, 80} 1 24

Block filter {120, 110, 100, 90, 80, 70, 60} 7
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 2 24
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1 24
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1| 24

Block filter {144, 128, 120, 104, 96, 88, 80, 72} 8
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1 24
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7} 304, 288, 272, 256, 240} 1 27
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7} 304, 288, 272, 256, 240} 1 27
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7) 304, 288, 272, 256, 240) 1|27

Block filter {288, 256, 224, 192, 160, 144} 6
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7} 608, 576, 512, 448} 2 |24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7) 608, 576, 512, 448) 1 |24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7) 608, 576, 512, 448} 1|24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7} 608, 576, 512, 448} 1 24
{1728, 1664, 1600,

bneck {3x3, 5x5, 7x7} | {480, 440, 400, 360, 320, 300, 280} 1536, 1440, 1280, 1216} 1 7

pool, 7x7
conv2d Ix1 {1920, 1600, 1280} 3
conv2d 1x1 {1001}

21

Under review as a conference paper at ICLR 2024

Table 12: LayerNAS Model under 300M MAdds

Input Operator | # Output filter | # Expanded Filter | strides
224 x 224 x 3 | conv2d 3x3 32 2
112 x 112 x 32 | bneck 3x3 24 1
112 x 112 x 24 | bneck 3x3 28 40 2
56 x 56 x 28 bneck 3x3 28 144 1
56 x 56 x 28 bneck 3x3 28 88 1
56 X 56 x 28 bneck 3x3 40 104 2
28 x 28 x 40 bneck 5x5 40 110 1
28 x 28 x 40 bneck 3x3 40 180 1
28 x 28 x 40 bneck 5x5 40 130 1
28 x 28 x 40 bneck 7x7 90 260 2
14 x 14 x 90 bneck 3x3 90 220 1
14 x 14 x 90 bneck 3x3 90 200 1
14 x 14 x 90 bneck 7x7 120 320 1
14 x 14 x 120 bneck 5x5 120 288 1
14 x 14 x 120 bneck 7x7 120 256 1
14 x 14 x 120 bneck 3x3 120 368 1
14 x 14 x 120 bneck 7x7 160 608 2
7 x 7 x 160 bneck 7x7 160 576 1
7 x 7 x 160 bneck 5x5 160 608 1
7 x 7 x 160 bneck 3x3 160 448 1
7 x 7 x 160 bneck 3x3 280 1216 1
7 x 7 x280 pool, 7x7 1
7 x 7 x 280 conv2d 1x1 1920 1
7 x 7 x1920 conv2d 1x1 1001 1

[11-12M]: [CDD(11M, 0.45)]

3rd layer: Choose ACD and CDD
ACD generates ACA (5M drop), ACB(6M drop), ACC(7M drop), all children searched
CDD generates CDC(10M drop), CDB(9M, 0.4), CDA(8M, 0.37), all children searched
[8-9M]: [CAD(8M, 0.4), ADD(9M, 0.3) CDB(9M, 0.4)]

Start from 1st layer again
Ist layer: train and eval BDD (10M, 0.35), DDD(12M, 0.5)
ADD (9M, 0.3)[x], BDD (10M, 0.35), CDD (11M, 0.45), DDD(12M, 0.5)

2nd layer: Choose BDD, CDD
BDD generates BAD (7M drop), BCD (9M, 0.33), BBD (8M, 0.32), all children searched
CDD generates CCD(10M, drop), all children searched
[6-7TM]: []
[8M]: [ACD(8M, 0.27) (BBD is better, remove ACD), CAD(8M, 0.4), BBD(8M, 0.32)]
[9-10M]: [ADD(9M, 0.3), BCD(9M, 0.33)]
[11-12M]: [CDD(11M, 0.45)[x]]

3rd layer: Choose BCD, BBD
BCD: BCA(6M, drop), BCB(7M, drop), BCC(8M, 0.32), all children searched
BBD: BBA(5M, drop), BBC(7M, drop), BBB(6M, drop), all children searched
[8-9M]: [CAD(8M, 0.4), CDB(9M, 0.4)]

Move to Ist layer
Ist layer:

22

Under review as a conference paper at ICLR 2024

Table 13: 600M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
Conv2d(3x3) 32 2
bneck [3x3] (36, 32, 28, 24, 20, 16] I 6
Block filter {56, 52, 48, 44, 40, 36, 32, 28} 8
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 2 14
bneck {3x3, 5x5) (88, 80, 72, 64, 56, 52, 48) 1 |14
bneck {3x3, 5x5) (88, 80, 72, 64, 56, 52, 48) 1| 14
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 1 14
Block filter {72, 64, 60, 56, 52, 48, 44, 40} 8
{180, 160, 144, 128, 120,
bneck {3x3, 5x5} 112, 104, 96, 92, 88, 80} 2 22
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
Block filter {200, 180, 160, 140, 120, 100, 90, 80} 8
{440, 400, 360, 320,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 200} 2 24
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7) 400, 360, 320, 280, 240} 1|27
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{180, 160, 144, 128,
Block filter 120, 104, 96, 88, 80} 9
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
(560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256) 1|36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
Block filter {320, 288, 256, 224, 192, 160} 6
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 2 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{600, 560, 520, 480, {1920, 1856, 1792, 1728,
bneck {3x3, 5x5, 7x7} 440, 400, 360, 320} 1664, 1600, 1536, 1440} 1 24
pool, 7x7
conv2d 1x1 {2560, 2240, 1920} 3
conv2d 1x1 {1001}

23

Under review as a conference paper at ICLR 2024

Table 14: LayerNAS Model under 600M MAdds

Input Operator | # Output filter | # Expanded Filter | strides
224 x 224 x 3 | conv2d 3x3 32 2
112 x 112 x 32 | bneck 3x3 36 1
112 x 112 x 36 | bneck 5x5 36 80 2
56 x 56 x 36 bneck 5x5 36 72 1
56 X 56 x 36 bneck 3x3 36 80 1
56 x 56 x 36 bneck 5x5 36 72 1
56 X 56 X 36 bneck 3x3 48 144 2
28 x 28 x 48 bneck 3x3 48 140 1
28 x 28 x 48 bneck 3x3 48 160 1
28 x 28 x 48 bneck 3x3 48 130 1
28 x 28 x 48 bneck 5x5 48 140 1
28 X 28 x 48 bneck 7x7 140 360 2
14 x 14 x 140 | bneck 5x5 140 360 1
14 x 14 x 140 | bneck 3x3 140 560 1
14 x 14 x 140 | bneck 5x5 140 440 1
14 x 14 x 140 | bneck 7x7 144 360 1
14 x 14 x 144 | bneck 5x5 144 560 1
14 x 14 x 144 | bneck 3x3 144 288 1
14 x 14 x 144 | bneck 5x5 144 400 1
14 x 14 x 144 | bneck 5x5 144 256 1
14 x 14 x 144 | bneck 3x3 192 864 2
7x7x192 bneck 5x5 192 928 1
7Tx7x192 bneck 7x7 192 736 1
7 x7x192 bneck 7x7 192 800 1
7 x7x192 bneck 3x3 192 928 1
7 x 7T x192 bneck 3x3 320 1440 1
7 x 7 x 320 pool, 7x7 1
7 X7 %320 conv2d 1x1 2560 1
7 X 7 x 2560 | conv2d Ix1 1001 1

24

Under review as a conference paper at ICLR 2024

ADD (9M, 0.3)[x], BDD (10M, 0.35)[x], CDD (11M, 0.45)[x], DDD(12M, 0.5)

2nd layer: Choose DDD
DDD: DDA(9M, 0.37), DDB(10M, drop), DDC(11M, drop), all children searched
[6-7M]: []
[8M]: [CAD(8M, 0.4), BBD(8M, 0.32)[x]]
[9-10M]: [ADD(9M, 0.3), BCD(9M, 0.33)[x], DDA(9M, 0.37)]
[11-12M]: [CDD(11M, 0.45)[x]]

3rd layer: Choose CAD, DDA
CAD: CAA(5M, drop), CAC(7M, drop), CAB(6M, drop), all children searched
DDA: DDB(10M, drop), DDC(11M, drop), all children searched

No more potential candidates, the best model found is CAD(8M, 0.4). Out of a total of 43 = 64
candidates, LayerNAS train and eval 12 candidates.

25

	Introduction
	Related Work
	Problem Definition
	Method
	LayerNAS for Topology Search
	LayerNAS for Multi-objective NAS

	Experiments
	Search on ImageNet
	NATS-Bench

	Conclusion and Future Work
	Notation
	NASBench-101 Search Details
	NATS-Bench Search Details
	NATS-Bench topology search
	NATS-Bench size search

	Dynamic Programming Implementation of LayerNAS for Multi-objective NAS
	Discussion on search space assumptions
	Search space is complete
	Sequential search order
	Limit of the assumption

	Discussion on num of replicas to store
	Transferability
	MobileNetV2 and MobileNetV3 Search Details
	60M MAdds Model
	220M MAdds Model
	300M MAdds Model
	600M MAdds Model

	Example

