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ABSTRACT

Zeroth-order optimizers have recently emerged as a practical approach for fine-
tuning large language models (LLMs), significantly reducing GPU memory con-
sumption compared to traditional first-order methods. Yet, existing zeroth-order
methods rely on hand-crafted, static sampling strategies that are not adaptable to
model-specific structures. To address this, we propose ZO Fine-tuner, a learning-
based zeroth-order optimizer for LLMs that automatically learns efficient pertur-
bation strategies through a compact and memory-efficient design. Crucially, our
approach is motivated by the observation that only a small number of foundation
models and their derivatives are widely adopted in practice. Therefore, learning
the optimizer once for a given LLM and reusing it across diverse downstream tasks
is both feasible and highly desirable. Accordingly, ZO Fine-tuner is designed to
scale learning to learn (L2L) to the foundation-model era by supporting one-time
training per LLM with minimal overhead. Experiments on 4 LLMs and 7 datasets
show that ZO Fine-tuner outperforms prior zeroth-order baselines in 82.1% of task-
model combinations, thereby demonstrating strong performance and scalability for
efficient LLM fine-tuning.

1 INTRODUCTION

Nowadays fine-tuning pre-trained foundation models on downstream tasks has become a standard
paradigm. However, as model sizes grow, traditional first-order optimizers such as Adam become
increasingly expensive. In particular, these methods impose significant memory overhead, up to 12
times (Malladi et al., 2023) more than inference. Even with parameter-efficient fine-tuning (PEFT)
methods such as LoRA (Hu et al., 2022) and Prefix-Tuning (Li & Liang, 2021), the overall memory
requirement during training remains substantial.

To address these challenges, memory-efficient zeroth-order (MeZO) optimizer (Malladi et al., 2023)
has been proposed. This approach only requires two forward passes per step and achieves competitive
performance to first-order methods while maintaining memory usage comparable to inference.
Many subsequent methods, such as HIZOO (Zhao et al., 2025), LOZO (Chen et al., 2024), MeZO-
SVRG (Gautam et al., 2024), ZO-AdamU (Jiang et al., 2023), and ZO-DAP (Ma & Huang, 2025)
attempt to improve upon MeZO by manually designing more sophisticated parameter-updating
rules. However, these designs are often based on intuition or mathematical approximations, and still
typically require extensive hyperparameter tuning beyond learning rates to perform well in practice.

We argue that prior works have largely overlooked the potential of learning to learn (L2L) techniques
(Andrychowicz et al., 2016) in this context. Unlike hand-designed optimizers, L2L provides a data-
driven approach to automatically learn effective optimization strategies. Rather than manually tuning
update rules and hyperparameters, L2L leverages auxiliary neural networks that adaptively guide the
optimization process. These learned optimizers typically rely on the same information accessible
to conventional optimizers, such as gradient signals or their approximations. By leveraging such
inputs, they often outperform their manually designed counterparts in both convergence speed and
final performance, as they are able to explore the loss landscape more effectively during optimization
(Wichrowska et al., 2017a). For example, learned optimizers have been shown to surpass SGD and
even Adam across a variety of models and tasks (Lv et al., 2017a). Similar improvements have also
been observed in zeroth-order optimization settings on small-scale models (Ruan et al., 2020).
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Figure 1: Fine-tune the LLM using trained ZO Fine-tuner. Each block of the LLM is equipped with a
lightweight neural network that predicts its perturbation variance. For LLM parameter θit in block
i at step t, PertNNi takes in compact summarizing statistics containing the Meanit, Var

i
t of the θit.

Additionally, it takes in the last perturbation variance σi
t−1, and the two losses recorded at the last

step. It outputs the updated perturbation variance σi
t and then applies normalization. By learning

non-uniform, layer-specific perturbation scales and plugging them into standard zeroth-order updates,
the fine-tuner enables efficient, high-performance gradient-free optimization of LLM.

While L2L methods have shown promise on small-scale models (Chen et al., 2021), we believe their
potential is even greater in the era of foundation models. In the small-model regime, different tasks
typically require different models, and L2L optimizers often exhibit limited transferability across
model architectures (Wichrowska et al., 2017a). As a result, a separate optimizer must be trained
for each model-task pair, leading to substantial additional costs. In contrast, a recent LLM supply
chain study shows that while there are many specialized checkpoints on platforms like Huggingface,
most are derivatives of a handful of core base models like Llama and Qwen (Shahedur Rahman et al.,
2025). Moreover, for a given LLM, the structure or properties leveraged by certain optimizers are
often consistent across tasks (Guo et al., 2024). This provides a great opportunity for L2L methods,
where a learned optimizer trained once for a base LLM can be potentially reused across diverse
derivative models and tasks. Toward practical adoption, if model creators were to ship a pretrained
learned finetuner alongside each base model, it would unlock a memory-efficient fine-tuning path
with competitive performance for downstream users.

In the context of zeroth-order optimization for LLMs, learning a perturbation distribution with
non-uniform and adaptive variance scales, rather than relying on a standard normal distribution, could
be beneficial (Ye et al., 2018; Gao & Sener, 2022; Zhao et al., 2025). However, the sheer number
of parameters of LLMs introduces new challenges when applying L2L as it requires differentiating
through the optimization process itself, which demands storing a substantial number of activations
for backpropagation. Moreover, naively applying coordinate-wise auxiliary networks at the LLM
scale can result in prohibitive memory overhead. To address this, we draw inspiration from a careful
theoretical analysis, which suggests that LLMs’ approximately block-diagonal Hessian implies that
sharing a single variance per block can already yield strong performance gains. We thus propose ZO
Fine-tuner, which consists of highly compact and memory-efficient per-parameter-block auxiliary
networks that learns shared effective perturbation variances. As a result, the memory cost is
minimal: for OPT-30B, the total storage required for all auxiliary networks is less than 2MB under
FP16 precision, which is negligible compared to the 60GB model itself. In the meantime, through
extensive experiments, we demonstrate that our ZO Fine-tuner trained on a single dataset is highly
generalizable across model derivatives and datasets, which strongly underscores the potential of
the “train once, reuse widely” goal. Our contributions are summarized as follows:

• We extend L2L framework to LLMs and show that a single learned optimizer trained on a base
model can generalize across downstream tasks and derivative checkpoints.
• Motivated by block-diagonal Hessian structure, we learn a shared perturbation variance per param-
eter block via compact per-block auxiliary networks. This dramatically reduced memory overhead
compared to coordinate-wise or fully connected designs, which made L2L practical at LLM scale.
• Across four models and seven datasets (28 task-model pairs), ZO Fine-tuner outperforms the
strongest baseline (lower training loss) in 82.1% of the combinations, achieving an average of 2.5%
improvement in accuracy with tiny memory and time overhead.
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2 RELATED WORK

Zeroth-order optimization. Zeroth-order optimization appears in a wide range of applications
where either the objective function is implicit or its gradient is impossible or too expensive to
compute. For example, methods (Tang et al., 2021; Hajinezhad & Zavlanos, 2018) consider derivative-
free distributed algorithms for non-convex multi-agent optimization. ZO-BCD (Cai et al., 2021),
ZOO (Chen et al., 2017), ZO-signSGD (Liu et al., 2019) and ZO-HessAware (Ye et al., 2019) utilize
zeroth-order stochastic optimization to generate black-box adversarial example in deep learning.
Beyond that, MeZO (Malladi et al., 2023) firstly adapted the classical ZO-SGD method to fine-
tune LLMs, while achieving comparable performance with extremely great memory reduction.
Subsequently, ZO-AdaMU (Jiang et al., 2023) improved ZO-SGD by incorporating momentum into
its stochastic approximation process. HIZOO (Zhao et al., 2025) leverages Hessian information to
enhance performance in a memory-efficient manner. Other works explore structural properties of
the gradient to improve MeZO, such as utilizing low-rank approximations (Chen et al., 2024) or
exploiting gradient sparsity (Guo et al., 2024; Liu et al., 2024).

Learning to learn. Previous studies have investigated using neural networks to improve optimization
update rules, replacing manually crafted algorithms such as Adam (Kingma & Ba, 2015). (Cotter
& Conwell, 1990) tried to use recurrent neural networks (RNNs) to model the optimization process
to learn adaptively. After that, (Baxter, 1998) gave an overview of the idea and techniques of
learning to learn; for example, they proposed to train RNNs to optimize basic convex functions. Then
(Andrychowicz et al., 2016; Wichrowska et al., 2017b; Metz et al., 2019; 2022; Lv et al., 2017b)
introduced a variety of sophisticated strategies to enhance the performance of optimizers in deep
learning. Additionally, (Li & Malik, 2016) and (Li & Malik, 2017) adopted reinforcement learning
(RL) policy search techniques into the L2L framework. In the context of zeroth-order optimization,
(Ruan et al., 2020) applied L2L techniques to enhance performance on small-scale models.

3 METHOD

3.1 MOTIVATION

The foundational work in zeroth-order optimization for LLM fine-tuning, MeZO (Malladi et al.,
2023), simply estimates the directional derivative as the step size on a certain sampled direction by
evaluating the model at two perturbed parameter points. This approach only requires two forward
passes and avoids backpropagation, making it attractive for memory-constrained training. Given a
model with parameters θ ∈ Rd and loss function L, MeZO estimates the gradient on a mini-batch Bt
as:

ĝ(θt;Bt) =
L(θt + ϵut;Bt)− L(θt − ϵut;Bt)

2ϵ
ut, ut ∼ N (0, Id), (1)

and the model parameter is updated via θt+1 = θt − ηĝ(θt;Bt).
We argue that a fixed sampling rule from N (0, I) is suboptimal: the quality of zeroth-order gradient
estimates depends on local properties of the landscape at each step (Ye et al., 2018; Gao & Sener,
2022; Zhao et al., 2025). Therefore, through learning, L2L approach has the potential to generate
perturbations ut that are informed by such local signals and thus allocate perturbation effort more
effectively. However, naive implementations of this idea can incur prohibitive memory overhead.
For example, learning a separate perturbation for each individual parameter using a fully connected
auxiliary network would require at least O(d2) parameters for a model with d parameters.

We thus turn to exploit the geometric structure exhibited by LLM. Empirical evidence suggests that
the Hessian of LLM is approximately block-diagonal, with blocks aligned to natural parameter groups
(e.g., embeddings, attention Q,K,V matrices, projections, etc.) (Zhang et al., 2024b). This structure
motivates a coarse control of the perturbation: rather than learning coordinate-wise perturbations,
we target per-block adaptation. We now formalize this idea in theory, demonstrating that a simple
adaptive variance change across parameter groups could lead to potential improvements over MeZO.
Theorem 1 (Informal Version). Define the expected change in loss after performing a one step update
in parameter θt as d(θt) :=E [L(θt+1) | θt]−L(θt). Suppose now the Hessian matrix H(θt) is block-
diagonal H(θt) :=diag(H1(θt), · · · , Hb(θt)), then by varying the σi’s in Σ:=diag(σ1I, · · · , σbI)
the same gradient estimation equation 3.1 but with ut ∼ N (0,Σ) can yield tighter upper bound on
d(θt) compared to MeZO.
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The formal version and proof of this theorem can be found in appendix E. At a high level, this theorem
states that if the Hessian exhibits a block wise structure, then learning an adaptive per-block shared
variance can improve convergence over MeZO. Crucially, the per-block parameterization yields this
improvement without incurring prohibitive memory cost as the number of parameter blocks is far less
than the number of parameters. For instance, in LLaMA-8B, the model contains only 291 parameter
blocks, despite having over 8 billion individual parameters. This result thus motivates and justifies
our design of ZO Fine-tuner, a per-block variance learner. Below, we first discuss the architecture of
our ZO Fine-tuner and how to finetune downstream LLMs using a given ZO Fine-tuner. Then we
introduce the training scheme for ZO Fine-tuner to enable generalizations.

3.2 ZO FINE-TUNER

Architecture. As we discussed in the motivation section, we design ZO Fine-tuner to dynamically
generate a block diagonal variance matrix Σt corresponding to each parameter group at each optimiza-
tion step via lightweight neural networks named PertNN. To incorporate all the dynamic information,
PertNN takes in model parameters θt, previously used perturbation variances Σt−1, and their ob-
served loss as inputs ℓt−1. Intuitively, these inputs encourage PertNN to consider the effectiveness of
past updates, where perturbations that lead to sharper loss changes might indicate more informative
directions. However, we notice that the model parameters are still too memory-intensive as an input
feature. Therefore, we further compress the memory usage by only feeding the summarizing statistics
of the model parameters θt into PertNN, such as Mean(θt) and Var(θt).

Formally, the perturbation variance at each step t is generated as follows. For parameter block i,
σ(i)

t−1 is the previous perturbation variance, di is the number of parameters in this block, and Mean(i)

t

and Var(i)t represent the current mean and variance of the block’s parameter values. ω(i) denotes the
learnable parameters of the auxiliary neural network assigned to block i.

σ
(i)
t = PertNN(i)

(
ℓt−1, σ

(i)
t−1,Mean(i)t ,Var(i)t ;ω(i)

)
,

Σt = diag(σ(1)
t Id1 , σ

(2)
t Id2 , . . . , σ

(n)
t Idn).

(2)

With this variance, ZO Fine-tuner then updates model parameters with

ĝ(θt;Bt;ω) :=
L(θt + ϵut;Bt)− L(θt − ϵut;Bt)

2ϵ
ut, ut ∼ N (0,Σt)

θt+1 := θt − η ĝ(θt;Bt)
(3)

Importantly, we should note that ĝ is inherently a function of ut, which is a function of Σt, and thus a
function of the parameter of PertNN ω. To enable gradient-based training of PertNN within the L2L
framework, we adopt the reparameterization trick: instead of sampling ut directly from N (0,Σt),
we sample zt ∼ N (0, Id) and compute ut = Σ1/2

t zt. This makes the entire perturbation process
differentiable, allowing gradients to flow back through the perturbation generation module.

Normalization. Although effective, this non-uniform variance introduced a new challenge when
using ZO Fine-tuner as an optimizer. From the two-point ZO estimator, we see that

E[ĝ(θt;Bt)] = E[
L(θt + εut;Bt)− L(θt − εut;Bt)

2ε
] ≈ E[utu

⊤
t ]∇L(θt;Bt). (4)

Therefore, when fine-tuning downstream tasks, we note that the effective learning rate became
η · ∥ut∥2

d on average. This makes controlling the effective learning rate difficult, and the learned
variance Σt became a confounding variable in the update size. In reality, we wish Σt to only carry
information about relative block-wise variance, and we could still use a single learning rate to control
the overall step size to ensure stable training. Therefore, we introduce the following normalization,
which ensures the decoupling of the variance and the learning rate. We note that if ut=Σ

1/2
t zt with

zt ∼N (0, I), then E ∥ut∥2 = tr(ΣtΣ
⊤
t ) = ∥Σt∥2F . We then normalize by fixing the total variance

budget and let ∥Σt∥2F = ∥Id∥2F = d. Thus, only the relative block-wise variances are learned. In
practice, this keeps ∥ut∥ approximately constant (by concentration in high dimensions). For example,
with our generated Σt, if ut∼N (0,Σt), ∥ut∥ concentrates around ∥Σt∥F and we achieve the desired
control over the effective learning rate.
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Complete Optimization Algorithm. As summarized in Algorithm 1 and Figure 1, ZO Fine-tuner
first compute the block-wise non-uniform perturbation variance Σt using the learned neural network
PertNN. Then it applies normalization to control the overall magnitude of the perturbation. Finally,
it uses the normalized perturbation to update the LLM following equation 3. We notice this incurs
minimal overhead compared to MeZO, in terms of both memory and speed. In particular, the only
memory overhead compared to MeZO is the light-weight per-block PertNN, whereas the only speed
overhead is the query to PertNN.

Algorithm 1 Finetuning a LLM with ZO Fine-tuner
Require: LLM parameters θ, PertNN parameters ω, training step T , learning rate η

1: Initialize variance Σ0 as Id, LLM parameter as θ0.
2: for t = 1, ..., T do
3: Sample a batch Bt from T
4: Σt ← PertNN(θt,Σt−1, ℓt−1;ω)

5: Sample ut ∼ N(0, ∥Id∥F

∥Σt∥F
Σt) ▷ Sample after normalization

6: Compute LLM loss with perturbed parameter to obtain ℓt

7: ĝt =
l+t −l−t

2ϵ ut

8: θtt+1 = θt − ηĝt
9: end for

3.3 TRAINING ZO FINE-TUNER

We now turn to training ZO Fine-tuner in a L2L fashion. The key idea is to treat the model’s
own finetuning trajectory as supervision. After a single update by ZO Fine-tuner, we evaluate the
post-update loss and adjust PertNN so as to reduce this quantity across tasks. We next formalize this
meta-objective and outline several practical choices that make training stable.

Data Source and Objective Function. First, we need a source of training data for our ZO Fine-tuner.
In our setting, this data corresponds to different model states with various losses. A key insight of us
is to notice that the fine-tuning process of LLMs under a first-order optimizer naturally produces a
trajectory of intermediate model states, and we can directly leverage this trajectory to optimize the
perturbation variance generator.

Along the first order optimization trajectory with loss function L, we obtain a set of model parameters
{θk0}k. We then attempt to perform a one-step zeroth-order update using our ZO Fine-tuner with
update rule 3 to get θk1 and use the resulting loss as a feedback signal to assess and optimize the
effectiveness of the current perturbation strategy. Specifically, at each step we aim to minimize the
post-update loss L(θk1 ). As we discussed in section 3.2, the estimated gradient ĝ is implicitly a
differentiable function of the parameters ω of PertNN per the reparametrization trick. Therefore, we
can use a gradient-based method to update ZO Fine-tuner. Formally, the objective for training ZO
Fine-tuner is therefore:

min
ω
LZO(θ

k
0 ;ω) := min

ω
L(θk1 ) = min

ω
L
(
θk0 − η ĝ(θk0 , ω)

)
(5)

After the update, we move the parameters θk0 along the first-order trajectory to get θk+1
0 and continue

learning. As the inputs to ZO Fine-tuner are task and model-agnostic state summaries, rather than
task-specific features, the learned decisions are largely invariant to differences across datasets or
nearby checkpoints. As we will demonstrate in experiments, our ZO Fine-tuner trained on one single
dataset can be transferred to efficiently finetune other datasets and model derivatives.

Periodic Reset of Model Parameters. During the training of our ZO Fine-tuner, a lot of data needs to
be generated. However, since the optimizer is trained along the fine-tuning trajectory of a model using
a first-order optimizer, the auxiliary network tends to receive inputs that are chronologically ordered.
In particular, it will get more data from the low-loss region. As a result, it may lead to overfitting to
the low-loss region of the parameters while learning the crucial high-loss region insufficiently.

To address this issue, we introduce a periodic re-initialization mechanism. After each complete
optimization cycle or when the loss has sufficiently decreased, we reset the model parameters to their
original pre-finetuning state and restart the fine-tuning process. This approach introduces diversity
into the input distribution by exposing the optimizer to model states from multiple phases of training.

5
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Figure 2: Loss comparison across different methods on various datasets and LLMs. Models (columns)
are LLaMA-3.2-1B, LLaMA-3.1-8B, Qwen2.5-14B and OPT-30B, while datasets (rows) cover COPA,
SST-2, CB, SQuAD, WSC, BoolQ and DROP. All curves use the best hyperparameters found for each
method. The shaded region around each curve shows the standard deviation of the smoothed loss—the
wider the shade, the larger the fluctuation. ZO Fine-tuner shows advantages in both convergence
speed and final loss value across most settings.
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Algorithm 2 Learning to Learn Framework

Require: LLM parameters θ, training step T , loss function for LLM L, learning rate for LLM η1,
learning rate for PertNN η2, task list Tlist, perturbation scale ϵ.

1: Initialize PertNN as ω0, LLM parameter as θ0, perturbation variance ΣT
0 as Id for each task T .

2: for t = 1, ..., T do
3: Tlist ← Shuffle(Tlist)
4: for each task T in Tlist do
5: Sample a batch BTt from T
6: ΣT

t ← PertNN(θt,Σ
T
t−1, ℓ

T
t−1;ωt); normalize such that ∥ΣT

t ∥2F = ∥Id∥2F
7: Sample ut ∼ N (0,Σt) and Compute LLM loss with perturbed parameter to obtain ℓt

8: LZO ← LT (θt − η1
l+t −l−t

2ϵ ut;BTt ), ωt ← ωt − η2
∂LZO

∂ωt
▷ Update PertNN with SGD

9: lt ← LT (θt;BTt ), θt ← θt − η1
∂lt
∂θt

▷ Update LLM with SGD
10: end for
11: ωt+1 ← ωt, θt+1 ← θt
12: When the training step t reaches a predefined period, reinitialize LLM parameter as θ0.
13: end for

Complete Learning to Learn Framework for ZO Fine-tuner Training. Algorithm 2 illustrates the
complete L2L framework for training ZO Fine-tuner. At each training step, we sample a training
dataset and a batch from this dataset to perform a one-step update to ZO Fine-tuner as described
above. Moreover, we periodically reset the model parameters to mitigate the bias discussed previously.
Despite the complexity of this training algorithm, we would like to emphasize that it is a one-time
cost: once ZO Fine-tuner is learned, deployment reduces to Algorithm 1.

4 EXPERIMENT

Following MeZO Malladi et al. (2023), we evaluate ZO Fine-tuner with four LLMs: LLaMA-3.2-
1B (Grattafiori et al., 2024), LLaMA-3.1-8B (Grattafiori et al., 2024), Qwen2.5-14B (Bai et al., 2023),
and OPT-30B (Zhang et al., 2022) using seven diverse benchmark datasets including SST-2 (Socher
et al., 2013), CB (De Marneffe et al., 2019), COPA (Roemmele et al., 2011), BoolQ (Clark et al.,
2019), WSC (Levesque et al., 2012), SQuAD (Rajpurkar et al., 2016), and DROP (Dua et al., 2019).

We compare our approach against four representative zeroth-order optimization baselines for LLM
fine-tuning: HIZOO (Zhao et al., 2025), LOZO (Chen et al., 2024), MeZO and MeZO-Adam (Malladi
et al., 2023). Due to computational resource constraints, we replace the expensive MeZO-Adam with
a more efficient variant MeZO-AdamU (Jiang et al., 2023) for models larger than LLaMA-3.2-1B. To
ensure a fair comparison, we perform the same grid search over learning rates for each method and
pick the best learning rate when reporting. More details can be found in appendix C.2.

For our ZO Fine-tuner, we train it once using algorithm 2 on the COPA dataset. This choice is mainly
due to COPA’s consistently smooth loss decrease during standard fine-tuning. Its small size and also
yield fast cycles. Unless otherwise noted, the ZO Fine-tuner trained on COPA is reused as is
across all other tasks and models. In appendix D.5, we also discussed more about multi-dataset
training. Other hyperparameters and training details can be found in section C.3.

4.1 MAIN RESULTS

Generalization Across Datasets. Figure 2 compares convergence across all 28 dataset-model pairs
using each method’s best learning rate. We observe that ZO Fine-tuner (red) consistently reaches
lower loss faster. The effect is especially clear on SST-2, CB, COPA, SQuAD, and DROP, where
curves descend more steeply early on and settle at a better plateau. In addition, we report the final
loss and accuracy values for all 28 combinations in Table 1. On average, ZO Fine-tuner achieves an
average accuracy improvement of 2.5% over MeZO. Overall, Our method outperforms the baselines
in 75.0% of the task-model combinations in accuracy and 82.1% in the converged loss. These results
indicate strong generalization capability of ZO Fine-tuner, as training ZO Fine-tuner on a single
COPA dataset already yields consistent gains across datasets.
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Table 1: Average training loss in the final epoch and accuracy on seven datasets for each method and
model combination under the best hyperparameter. We report both loss (↓) and accuracy / F1 (↑)
across tasks of diverse formats to evaluate the overall performance.

Model Method COPA SST-2 CB SQuAD WSC BoolQ DROP

Loss Acc Loss Acc Loss Acc Loss F1 Loss Acc Loss Acc Loss F1

MeZO 1.77 0.75 0.29 0.90 0.55 0.70 0.48 0.75 0.35 0.62 0.63 0.63 1.16 0.29
MeZO-Adam 1.62 0.79 0.20 0.92 0.53 0.66 0.41 0.78 0.42 0.61 0.66 0.62 1.14 0.29

LLaMA-3.2-1B HIZOO 1.71 0.78 0.27 0.90 0.44 0.71 0.43 0.75 0.55 0.54 0.62 0.61 1.09 0.29
LOZO 1.72 0.74 0.20 0.92 0.58 0.64 0.47 0.78 0.51 0.61 0.62 0.64 1.15 0.32
ZO Fine-tuner 1.54 0.80 0.14 0.93 0.57 0.67 0.37 0.78 0.31 0.56 0.58 0.66 1.03 0.35

MeZO 1.54 0.92 0.29 0.92 0.54 0.71 0.32 0.89 0.55 0.63 0.42 0.78 0.69 0.64
MeZO-AdamU 1.67 0.89 0.36 0.92 0.61 0.70 0.35 0.86 0.61 0.64 0.50 0.75 0.73 0.59

LLaMA-3.1-8B HIZOO 1.50 0.93 0.27 0.92 0.47 0.71 0.32 0.88 0.36 0.62 0.36 0.79 0.64 0.60
LOZO 1.46 0.89 0.25 0.94 0.54 0.70 0.33 0.90 0.61 0.63 0.41 0.83 0.74 0.65
ZO Fine-tuner 1.35 0.91 0.18 0.94 0.26 0.76 0.31 0.90 0.44 0.62 0.34 0.87 0.54 0.66

MeZO 1.28 0.86 0.21 0.88 0.05 0.93 0.24 0.88 0.18 0.76 0.23 0.84 0.45 0.66
MeZO-AdamU 1.43 0.85 0.35 0.89 0.13 0.91 0.28 0.90 0.25 0.75 0.35 0.84 0.50 0.64

Qwen2.5-14B HIZOO 1.34 0.87 0.26 0.93 0.03 0.89 0.24 0.89 0.02 0.79 0.25 0.86 0.49 0.68
LOZO 1.40 0.91 0.38 0.93 0.19 0.91 0.26 0.90 0.04 0.79 0.32 0.86 0.46 0.67
ZO Fine-tuner 1.34 0.92 0.24 0.94 0.03 0.93 0.22 0.91 0.02 0.76 0.29 0.89 0.40 0.70

MeZO 1.93 0.83 0.38 0.89 0.69 0.64 0.59 0.74 0.55 0.63 0.60 0.66 1.66 0.31
MeZO-AdamU 2.07 0.80 0.43 0.84 0.70 0.66 0.67 0.73 0.62 0.63 0.62 0.66 1.70 0.30

OPT-30B HIZOO 1.97 0.81 0.43 0.86 0.67 0.66 0.65 0.75 0.53 0.61 0.62 0.65 1.61 0.30
LOZO 1.86 0.82 0.40 0.90 0.73 0.64 0.96 0.75 0.58 0.62 0.70 0.66 2.83 0.27
ZO Fine-tuner 1.81 0.85 0.35 0.87 0.66 0.70 0.56 0.77 0.51 0.60 0.61 0.67 1.59 0.31

Figure 3: Loss curves under varying learning rates for different optimizers on (top) SST2 with
LLaMA-3.1-8B, and (bottom) SQuAD with Qwen2.5-14B.

Generalization Across Model Derivatives. We further investigate the generalization capability of
ZO Fine-tuner to derived models. We take the ZO Fine-tuner trained with LLaMA-3.1-8B and use
it to finetune Llama-3.1-8B-Instruct. As can be seen in table 3, ZO Fine-tuner can also generalize
to effectively finetune derived models across a single model family. On both datasets evaluated,
ZO Fine-tuner beats MeZO both in terms of both average loss and final accuracy. Practically, this
supports the train-once, reuse-across-derivatives paradigm we have mentioned. If model developers
could release a pretrained finetuner with each base model, then model users can then efficiently
finetune the model further on derivative checkpoints with near-inference memory.

4.2 ABLATION STUDIES

Learning Rate. Figure 3 further demonstrates the sensitivity of different methods to the choice of
learning rate. Notably, ZO Fine-tuner often achieves comparable loss at a learning rate of 1×10−8 to
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Table 2: Ablation results on Normalization and Periodic Reset. We report the final loss and the
final accuracy. Consistently, both techniques individually improve performance across models and
datasets, and combining them achieves the best results.

Setting LLaMA-8B + SQuAD LLaMA-8B + SST2 Qwen-14B + SQuAD Qwen-14B + SST2

Base 0.3950 / 0.840 0.3976 / 0.874 0.3582 / 0.844 0.4086 / 0.800
Reset alone 0.3682 / 0.856 0.3891 / 0.881 0.3551 / 0.851 0.4039 / 0.810
Normalization alone 0.3071 / 0.899 0.3061 / 0.920 0.2380 / 0.904 0.3885 / 0.844
Reset+Normalization 0.3065 / 0.905 0.1789 / 0.941 0.2246 / 0.911 0.2403 / 0.935

Table 3: We demonstrate that the ZO
Fine-tuner trained form LLaMA-3.1-
8B generalizes well to LLaMA-3.1-8B-
Instruct. Across datasets it outperforms
MeZO in final loss and accuracy.

Method Dataset Loss / Acc

SST2 MeZO 0.276 / 0.92
ZO Fine-tuner 0.164 / 0.95

SQuAD MeZO 0.291 / 0.90
ZO Fine-tuner 0.287 / 0.92

Table 4: Ablation results on parameter sharing strategy.
We compare our block-wise scheme to a simpler layer-
wise baseline. As shown below, block-wise sharing con-
sistently achieves lower final loss and higher accuracy.

Model Sharing SST2 Loss / Acc SQuAD Loss / Acc

LLaMA-8B layer wise 0.23 / 0.92 0.32 / 0.88
block wise 0.18 / 0.94 0.31 / 0.90

Qwen-14B layer wise 0.27 / 0.91 0.25 / 0.88
block wise 0.24 / 0.94 0.22 / 0.91

that of baseline methods operating at 1×10−7. When the learning rate further increases to 1× 10−6,
many baseline methods suffer from instability and fail to converge, falling short of the performance
that ZO Fine-tuner achieves at 1× 10−7. More results can be found in D.1.

Normalization & Periodic Reset. We also conduct experiments to evaluate the effectiveness of our
design choices including normalization introduced in section 3.2 and periodic reset in section 3.3.
From table 2, it is clear that both normalization and periodic reset helps ZO Fine-tuner for achieving
better performance.

Parameter Sharing Strategy. Finally, we evaluate the granularity of sharing in ZO Fine-tuner,
comparing our block-wise scheme to a simpler layer-wise sharing baseline. As shown in Table 4,
block-wise sharing consistently achieves lower final loss and higher accuracy. Importantly, this choice
is theory-driven: when the Hessian is (approximately) block-diagonal, theorem 1 indicates that the
natural unit for variance sharing is the Hessian block itself.

4.3 MEMORY USAGE AND TIME EFFICIENCY ANALYSIS

Memory Usage. The memory overhead of ZO Fine-tuner when using to finetune LLMs mainly
comes from the additional memory taken by PertNN. However, the parameter number of our ZO
Fine-tuner is extremely small, even negligible compared to the LLMs. Consequently, the memory
footprint of our method remains essentially identical to that of MeZO. Under equivalent experimental
settings, it requires only 1/4 of the memory overhead incurred by Adam. For example, MeZO and ZO
Fine-tuner peak at 61GB and 62GB of GPU memory when fine-tuning OPT-30B, whereas first-order
Adam reaches 312GB with FP16. More details can be found in D.3.

Time Efficiency. Similarly, the time overhead comes directly from the query to PertNN. However,
this overhead is typically minimal. For example, when fine-tuning on DROP using LLaMA-3.2-1B
on an L40S GPU with a batch size of 16, the generation of perturbation takes only 0.025 seconds,
while all other operations take approximately 0.70 seconds. This means our method introduces
less than 3.4% additional overhead, demonstrating strong time efficiency. This overhead becomes
even less significant with larger models. For instance, under the same setting with LLaMA-3.1-8B,
perturbation generation takes only 0.052 seconds compared to a total runtime of 3.14 seconds. More
details can be found in D.2.

5 CONCLUSION

We introduced ZO Fine-tuner, a learning-to-learn zeroth-order optimizer that uses adaptive, per-block
perturbation variances. The finetuner trained once on a single dataset is demonstrated to transfer
across tasks and to finetuned derivatives, supporting a practical “train once, reuse widely” path.
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A LLM USAGE

We used LLM only to polish writing and retrieve related works for this work.

B DISCUSSIONS

B.1 LIMITATIONS AND FUTURE WORK

The coordinate-wise structure has already been shown to be effective and reasonable in the era of L2L
for zeroth-order optimizer on small-scale models (Ruan et al., 2020). While our current design uses a
diagonal variance matrix Σt for its memory efficiency and strong empirical performance, exploring
non-diagonal structures is a potential improvement, though it may require additional techniques to
mitigate the associated memory overhead.

Moreover, more properties of LLM gradient and Hessian could be potentially exploited. For example,
Chen et al. (2024); Sun et al. (2025) explicitly exploits the low-rank structure of LLM gradients. A
potential future direction is to leverage these properties to generate more informed perturbations or
cut the memory usage even more.

C IMPLEMENTATION DETAILS

C.1 DATASETS AND MODELS

We evaluate all optimizers on seven NLP tasks spanning multiple formats, including natural language
inference, question answering, and commonsense reasoning. SST-2 (Socher et al., 2013) is a binary
sentiment classification benchmark from the GLUE suite. CB (De Marneffe et al., 2019) and
COPA (Roemmele et al., 2011) are low-resource natural language inference tasks from SuperGLUE,
requiring models to recognize textual entailment or choose causal relationships. BoolQ (Clark et al.,
2019) involves answering yes/no questions given short passages. WSC (Levesque et al., 2012)
tests pronoun resolution in challenging coreference contexts. SQuAD (Rajpurkar et al., 2016) and
DROP (Dua et al., 2019) are span-based question answering datasets that require locating answer
spans in context paragraphs. For most classification tasks, we report accuracy as the evaluation metric.
For SQuAD and DROP, we follow standard practice and report F1 score to better capture partial
match quality.

We evaluate our optimizers on four representative large language models with diverse architectures
and scales: LLaMA-3.2-1B (Grattafiori et al., 2024), LLaMA-3.1-8B (Grattafiori et al., 2024),
Qwen2.5-14B (Bai et al., 2023), and OPT-30B (Zhang et al., 2022).

C.2 HYPERPARAMETERS

We use a two-layer MLP with 64 hidden units and a tanh activation function as the auxiliary neural
network for each parameter block. Table 5 presents the hyperparameter search grids used in our
experiments to facilitate reproducibility. We primarily perform a grid search over three learning rate
values: 10−4, 10−5, and 10−6 for MeZO-Adam, and 10−6, 10−7, and 10−8 for all other methods.
For the WSC task, we additionally include 3 × 10−7, as most methods exhibit slow loss decay at
10−7 and become unstable when using 10−6. We run 20,000 optimization steps on LLaMA-1B
and LLaMA-8B, and 10,000 steps on Qwen-14B and OPT-30B due to resource limitation. A batch
size of 16 is used for all models by default, except for OPT-30B, where we reduce it to 4 due to
GPU memory constraints. Also due to computational resource constraints, we replace the expensive
MeZO-Adam with its more efficient variant MeZO-AdamU (Jiang et al., 2023) for models larger
than LLaMA-1B. As shown in the hyperparameter table, our method, together with MeZO, requires
the smallest number of tunable hyperparameters among all baselines.

C.3 LEARNING TO LEARN DETAILS

In Section 3.3, we introduced our learning to learn framework. Here, we elaborate on additional
implementation details. We use a two-layer MLP with 64 hidden units and a tanh activation function
as the auxiliary neural network for each parameter block. Empirically, we set ϵ = 10−3, η1 = 10−6,
and η2 = 10−2 in Algorithm 2. When the task list Tlist contains only a single task, the framework
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Table 5: Hyperparameter configurations for ZO Fine-tuner and all baseline methods.

Method Hyperparameters Values

MeZO
Batch size 16 for LLaMA-1B/8B/Qwen-14B; 4 for OPT-30B

Learning rate {10−6, 10−7, 10−8} (plus 3× 10−7 for WSC only)
ϵ 10−3

MeZO-Adam

Batch size 16
Learning rate {10−4, 10−5, 10−6} (plus 3× 10−6 for WSC only)

ϵ 10−3

ϵAdam {10−6,10−7,10−8}

ZO-AdamU

Batch Size 16 for LLaMA-1B/8B/Qwen-14B; 4 for OPT-30B
Learning Rate {10−6, 10−7, 10−8} (plus 3× 10−7 for WSC only)

ϵ 10−3

α {0.2, 0.5, 0.7}
β(1) {0.9, 0.8, 0.7}
β(2) {0.01, 0.05, 0.1}

HIZOO
Batch Size 16 for LLaMA-1B/8B/Qwen-14B; 4 for OPT-30B

Learning Rate {10−6, 10−7, 10−8} (plus 3× 10−7 for WSC only)
ϵ 10−3

Smooth Constant {10−7, 10−8}

LOZO

Batch Size 16 for LLaMA-1B/8B/Qwen-14B; 4 for OPT-30B
Learning Rate {10−6, 10−7, 10−8} (plus 3× 10−7 for WSC only)

ϵ 10−3

Rank (r) {2, 4}
Interval (ν) {50, 100}

ZO Fine-Tuner
Batch Size 16 for LLaMA-1B/8B/Qwen-14B; 4 for OPT-30B

Learning Rate {10−6, 10−7, 10−8} (plus 3× 10−7 for WSC only)
ϵ 10−3

reduces to single-dataset training as a special case. We find that training on a single dataset can yield
competitive performance with reduced cost. In our experiments, the optimizer is trained on COPA. A
comparison between single-dataset and multi-dataset training results is provided in Section D.5. We
also block certain gradient flows to reduce memory consumption during learning-to-learn. Specifically,
recall that

ĝ(θt;ω) =
L(θt + ϵut)− L(θt − ϵut)

2ϵ
ut

ut = PertNN(θt,Σt−1, ℓt−1;ω)zt, zt ∼ N (0, Id).

The gradient of the ZO loss, defined as LZO(θ;ω) := L(θ − ηĝ(θ;ω)), propagates first to ĝ(θt;ω),
and then further through both components used to construct it: the perturbation direction ut and
the finite-difference estimator L(θt+ϵut)−L(θt−ϵut)

2ϵ . To save memory, we cut off the gradient flow
through the finite-difference term, which eliminates the need to back-propagate through the inner loss
evaluations and store their activations. Despite this approximation, we still observe strong empirical
performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS ON LEARNING RATE SENSITIVITY

We previously presented the sensitivity of different optimization methods to the learning rate in
Section 4.2. Due to space constraints, only a subset of the results was shown. Here, we provide the
complete loss curves across the three benchmarks SQuAD, SST-2, and COPA using LLaMA-1B,
LLaMA-8B, Qwen-14B, and OPT-30B, as shown in Figure 4 and Figure 5.
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Figure 4: Loss curves under varying learning rates for different optimizers with LLaMA-1B (top)
and Qwen-14B (bottom). We report results on SST2, Copa, and SQuAD. For MeZO-Adam, note
that the actual learning rates used were 10−4, 10−5, and 10−6, corresponding to the plotted values of
10−6, 10−7, and 10−8, respectively.

Across the grid search over learning rates 10−6, 10−7, and 10−8, the ZO Fine-tuner consistently
achieves superior results compared to all baselines when comparing their best-performing settings.
On LLaMA-1B, LLaMA-8B, Qwen-14B and OPT-30B, our method exhibits faster convergence and
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Figure 5: Loss curves under varying learning rates for different optimizers with Qwen-14B (top) and
OPT-30B (bottom). We report results on SST2, Copa, and SQuAD.

achieves lower final loss, particularly under the two learning rates 10−7 and 10−8. Notably, ZO
Fine-tuner often matches or exceeds the best performance of other methods at 10−7, even when
operating at 10−8 on LLaMA-1B, LLaMA-8B and Qwen-14B.
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Table 6: Component-wise runtime breakdown (in seconds and percentage of total time) for different
models. All results are tested on DROP and L40S GPU with a batch size of 16 using FP16.

Model Generate Var Perturb Param Update Param Compute Loss Total Time

LLaMA-1B 0.025s (3.39%) 0.052s (7.07%) 0.021s (2.86%) 0.631s (86.65%) 0.729s
LLaMA-8B 0.052s (1.66%) 0.460s (14.67%) 0.192s (6.11%) 2.433s (77.55%) 3.137s
Qwen-14B 0.119s (2.06%) 0.395s (6.82%) 0.164s (2.84%) 5.106s (88.27%) 5.785s
OPT-30B 0.142s (1.64%) 0.214s (2.48%) 0.090s (1.04%) 8.183s (94.82%) 8.630s

When increasing the learning rate from 10−8 to 10−7, ZO Fine-Tuner continues to improve. In
contrast, baseline methods tend to suffer from instability at higher learning rates like 10−6 when
increasing from 10−7, especially on LLaMA-1B and LLaMA-8B. At the low end (10−8), many
baselines exhibit stagnation, which means their loss decreases slowly or plateaus. This suggests
limited adaptivity in low-gradient regimes. These observations underscore the robustness of ZO
Fine-Tuner across a wide range of learning rates and tasks, highlighting its strong default behavior
even without fine-tuned hyperparameters.

D.2 TIME ANALYSIS

We further break down the runtime of each component involved in the optimizer and summarize
the results in Table 6. Among these, the variance generation step is extremely lightweight. It only
accounts for 3.39% of total runtime on LLaMA-1B, and less than 2.06% on larger models such as
LLaMA-8B, Qwen-14B, and OPT-30B. This highlights the efficiency of our design: although we
introduce an additional learned component to control perturbation variance, it imposes almost no
computational overhead.

This can be easily explained as we only employ a lightweight neural network for each parameter
block. More specifically, a two-layer MLP with just 32 hidden units. In addition, both the input and
output of these networks are compressed, further reducing the computational cost.

In contrast, the dominant cost comes from loss computation, which includes forward passes for both
positive and negative perturbations. This accounts for over 77%–95% of total runtime and is intrinsic
to all zeroth-order optimization frameworks. Overall, our method introduces minimal additional cost
while achieving adaptive and effective optimization.

D.3 MEMORY ANALYSIS

Table 7 reports the peak GPU memory usage of various optimization methods across different model
sizes on the SST-2 dataset. We observe that all zeroth-order (ZO) methods, including MeZO, LOZO,
and HiZOO, exhibit similar memory footprints. The only notable exception is ZO-AdaMU, which
incurs higher memory usage due to its additional momentum tracking. Compared to the first-order
method like Adam, all ZO methods consume significantly less memory, highlighting the efficiency of
ZO-based optimization. Notably, our ZO Fine-Tuner achieves comparable memory usage to other ZO
baselines, indicating that it introduces no additional memory overhead beyond standard ZO designs.

Table 7: Peak GPU memory usage (GB) of different optimization methods across models on the
SST-2 dataset, using batch size = 1 and FP16 precision.

Method LLaMA-1B LLaMA-8B Qwen-14B OPT-30B

MeZO 5 20 35 61
LOZO 5 20 35 61
HiZOO 6 23 40 65
ZO-AdaMU 9 39 69 122
ZO Fine-Tuner 5 21 36 62
FO-SGD 9 40 74 126
FO-Adam 13 84 163 316
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Table 8: Time and memory cost of meta-training the ZO Fine-Tuner in our L2L framework. GPU
memory usage and GPU time (in minutes) are reported for different foundation models. This cost is
incurred only once per base model, and the trained fine-tuner can be reused across downstream tasks.

Model GPU Memory (GB) Meta-training GPU Time (min)

LLaMA-1B 13 3
LLaMA-8B 83 15
Qwen-14B 150 25
OPT-30B 332 51

D.4 COST OF LEARNING TO LEARN

We also assess the time and memory overhead incurred during the training of the ZO Fine-Tuner in
table 8. In general, L2L takes approximately 2.4× the time of standard first-order fine-tuning. This
is expected, as the L2L process inherently includes a full fine-tuning phase using SGD. However,
importantly, this cost is incurred only once, as a single ZO Fine-Tuner trained for a given model can
be reused across diverse downstream tasks, effectively amortizing the training cost.

D.5 COMPARISON BETWEEN SINGLE-DATASET AND MULTI-DATASET TRAINING

We also compare the performance of ZO Fine-tuner under single-dataset and multi-dataset training
settings. In the multi-dataset setting, we construct a diverse training set by selecting one representative
dataset from each task type: SST-2 for sentiment analysis, CB and COPA for natural language
inference, and SQuAD for question answering. For the single-dataset setting, the optimizer is trained
solely on COPA.

The multi-dataset setting could lead to better performance. However, as shown in Figure 6, in some
cases, the ZO Fine-tuner trained on a single dataset can outperform its multi-dataset counterpart.
Overall, the two settings yield comparable performance. Single-dataset training is also simpler to
implement and tune, while still achieving competitive results. And that’s why we choose to use it
throughout the main experiments.

(a) CB + LLaMA-1B (b) DROP + LLaMA-8B

Figure 6: Comparison of inference loss between ZO Fine-tuners trained with single-dataset and
multi-dataset settings. Results are reported on CB task using LLaMA-1B (left) and on DROP task
LLaMA-8B (right). The single-dataset variant is trained solely on COPA, while the multi-dataset
variant is jointly trained on COPA, SST-2, and SQuAD.

E THEORETICAL ANALYSIS

In this section, we formally discuss our theoretical results and derive theorem 1. First, we set up the
notations and definition we need and formally present the theorem.

Definition 1 (Expected Loss Change). The expected change in loss after performing a one-step
update from parameter θt is defined as

d(θt) := E[L(θt+1) | θt]− L(θt).
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Assumption 1 (Local r-effective rank). Let G(θt) = max(x,y)∈D ∥∇L(θt; {(x, y)})∥. There exists
a matrix H(θt) ≤ ℓ · Id such that:

1. For all θ such that ∥θ − θt∥ ≤ ηdG(θt), we have ∇2L(θ) ⪯ H(θt).
2. The effective rank of H(θt), i.e. tr(H(θt))/∥H(θt)∥op, is at most r.

Theorem 2. Under Assumption 1, the expected loss change after one-step update of MeZO has upper
bound as follows, where ΣMB = Cov(∇L(θt; {(xi, yi)})):

dMeZO(θt) = E[L(θt+1)|θt]− L(θt)

≤ −η∥∇L(θt)∥2 +
η2ℓ

2
·
(
dr + d− 2

d+ 2
+ 1

)
·
(
∥∇L(θt)∥2 +

1

B
tr(ΣMB(θt))

)
Assumption 2 (Local Block-wise ri-Effective Rank). The Hessian matrix H(θt) in Assumption 1 sat-
isfies the following property: H(θt)=diag(H1(θt), . . . ,Hm(θt)) and ri :=tr(Hi(θt))/∥Hi(θt)∥op
have different upper bounds ri.
Theorem 3. Under Assumption 1 and Assumption 2 and ideal situation, assigning distinct perturba-
tion variances across parameter blocks can yield a tighter upper bound than that of dMeZO(θt).

Assumption 1 and Theorem 1 are directly from the theoretical analysis of MeZO Malladi et al. (2023).
MeZO states the Lipschitz condition alone does not guarantee convergence in high-dimensional
settings and it is necessary to leverage the low-rank structure of the Hessian matrix. Assumption
2 is consistent with the actual situation, which has been deeply researched and checked by work like
Adam-mini (Zhang et al., 2024b;a).

In this section, we consider a setting where, at each iteration, we sample a perturbation block-by-block:
for the i-th parameter block, we draw noise from the distribution N(0, σiIdi

), apply the perturbation
to the i-th block of parameters, and perform a zeroth-order update accordingly. Let the total number
of blocks be b, and denote by L(θt,j) the loss after perturbing the j-th block at iteration t. We further
denote the full loss after perturbing all b blocks as L(θt+1), and let ∇jL(θt,j) denote the j-th block
of the gradient evaluated at θt,j . Here, we adopt the sphere (normalized-Gaussian) perturbation used
in the original MeZO analysis for its built-in step-size control. An analogous convergence form also
holds for Gaussian perturbations, as shown in prior work(Malladi et al., 2023), when the probability
of large updates ∥θt+1 − θt∥ is kept small, which ensures the required local assumptions hold with
high probability.

Proof. As shown in Theorem 2, the expected loss decrease under MeZO is bounded by
dMeZO(θt) = E[L(θt+1)|θt]− L(θt)

≤ −η∥∇L(θt)∥2 +
η2ℓ

2
·
(
dr + d− 2

d+ 2
+ 1

)
·
(
∥∇L(θt)∥2 +

1

B
tr(ΣMB(θt))

)
Since each block-wise gradient estimate is still an unbiased estimator of the true gradient restricted to
the corresponding block, we can get:
E[L(θt,j+1)|θt,j ]− L(θt,j) ≤

− ησ2
j ∥∇jL(θt,j)∥2 +

η2σ4
j ℓ

2
·
(
drj + d− 2

d+ 2
+ 1

)
·
(
∥∇jL(θt,j)∥2 +

1

B
tr(ΣMB,j(θt,j))

)
By summing both sides over j = 1 to b and taking expectation, we eliminate the dependence on θt,j :
the right-hand side becomes a function of θt only, while the left-hand side depends only on θt+1 and
θt. This yields:

E[L(θt+1)|θt]− L(θt) ≤ −η
b∑

j=1

σ2
jE[∥∇jL(θt,j)∥2|θt]

+

b∑
j=1

η2σ4
j ℓ

2
·
(
drj + d− 2

d+ 2
+ 1

)
·
(
E[∥∇jL(θt,j)∥2|θt] +

1

B
tr(E[ΣMB,j(θt,j)|θt])

)

=

b∑
j=1

[
−ησ2

j ∥∇jL(θt)∥2 +
η2σ4

j ℓ

2
·
(
drj + d− 2

d+ 2
+ 1

)
·
(
∥∇jL(θt)∥2 +

1

B
tr(ΣMB(θt))

)]
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The equality in the last line follows from the condition that the Hessian matrix is block-diagonal
according to Assumption 2. Specifically, when updating block j1, the change in the gradient of block
j2 (j2 ̸= j1) can be expressed as:

∇j2L(θt,j1)−∇j2L(θt) =
∫ 1

0

Hj2j1(θt + sPj1δ) δ ds,

where Pj1 denotes the projection onto block j1, and Hj2,j1(·) is the (j2, j1) block of the Hessian.
The perturbation direction δ is sampled from the standard multivariate normal distribution and
scaled by the corresponding block-wise variance, i.e., δ ∼ N (0, σ2

j1
Idj1

) for block j1. Under the
block-diagonal assumption, Hj2,j1(·) = 0 for all j2 ̸= j1, and thus cross-block gradient changes
vanish.

Even if Assumption 2 does not hold exactly, the effect of cross-block interactions can still be
controlled by bounding the operator norm of the off-diagonal blocks of the Hessian. As long as these
terms remain small, the overall error introduced in the bound remains negligible.

Note that if we set σj = 1 for all j, our upper bound reduces to the standard MeZO bound:

E[L(θt+1)|θt]− L(θt)

≤
b∑

j=1

[
−η∥∇jL(θt)∥2 +

η2ℓ

2
·
(
drj + d− 2

d+ 2
+ 1

)
·
(
∥∇jL(θt)∥2 +

1

B
tr(ΣMB(θt))

)]

≤ −η∥∇L(θt)∥2 +
η2ℓ

2
·
(
dr + d− 2

d+ 2
+ 1

)
·
(
∥∇L(θt)∥2 +

1

B
tr(ΣMB(θt))

)
where r is the (uniform) effective rank used in MeZO and r ≥ rj for any j. Therefore, by optimizing
σj for each block according to its local structure (e.g., rj), we can obtain a strictly tighter upper
bound than dMeZO(θt).
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