Under review as a conference paper at ICLR 2026

MITIGATING NON-IID DRIFT IN ZEROTH-ORDER FED-
ERATED LLM FINE-TUNING WITH TRANSFERABLE
SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning enables collaborative fine-tuning of Large Language Models
(LLMs) across decentralized Non-Independent and Identically Distributed (Non-
IID) clients, but such models’ massive parameter sizes lead to significant memory
and communication challenges. This work introduces MEERKAT, a sparse zeroth-
order optimization (ZO) method designed for federated LLM fine-tuning. By
limiting fine-tuning to a transferable, static, extremely sparse subset of parameters,
MEERKAT achieves remarkable communication efficiency, enabling cost-effective
high-frequency synchronization. With theoretical analysis and experiments, we
show that this high-frequency communication effectively mitigates Non-IID data
challenges and leads to superior performance compared to full-parameter ZO.
Furthermore, experiment results show that MEERKAT outperforms existing sparsity
baselines with better performance at the same communication frequency. To further
handle Non-IID drift, MEERKAT leverages traceable local updates and forms a
virtual path for each client. This virtual path mechanism reveals the GradIP
phenomenon: the inner products between LLM pre-training gradients maintained
by server and client gradients estimated via ZO converges for extreme Non-1ID
clients but oscillates for IID ones. This distinct behavior provides a signal for
identifying clients with extreme data heterogeneity. Using this signal, MEERKAT-
VP is proposed to analyze GradIP trajectories to identify extreme Non-IID clients
and applies early stopping to enhance aggregated model quality. Experiments
confirm that MEERKAT and MEERKAT-VP significantly improve the efficiency and
effectiveness of ZO federated LLM fine-tuning.

1 INTRODUCTION

Federated Learning (FL) McMahan et al.|(2017) has emerged as a powerful paradigm for enabling
decentralized collaboration, particularly relevant for fine-tuning Large Language Models (LLMs)
across numerous client devices |Dubey et al.|(2024); [Brown et al.|(2020). Unlike centralized training,
FL allows clients to train models locally and share only model updates with a central server. However,
fine-tuning LLMs in a FL setting faces two major challenges: the massive model parameter size
and the Non-Independent and Identically Distributed (Non-1ID) data distribution across clients. The
former leads to high computation demands on clients and significant communication overhead, while
the latter causes client drift and hinder global convergence. These challenges make LLM fine-tuning
impractical on resource-constrained clients and hinder the effective use of decentralized data.

Zeroth-order Optimization (ZO) provides a promising avenue for addressing some of these challenges
in federated LLM fine-tuning. By estimating gradients through model perturbations and forward
passes, ZO bypasses the need for backpropagation and the storage of intermediate activations, leading
to more memory-efficient learning on client devices |[Zhang et al.| (2021)); Fang et al.| (2022); Ling
et al.| (2024); Liu et al.| (2024); Malladi et al.|(2023). However, applying standard ZO directly to
the massive parameter space of LLMs can still be computationally inefficient and the optimization
process unstable Malladi et al.[(2023)). Moreover, adapting ZO for federated LLM fine-tuning remains
challenging, particularly in balancing computational efficiency, communication overhead, and model
performance under Non-IID data heterogeneity.
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In order to address the above challenges, we propose MEERKAT, a sparse ZO method designed for
efficient federated LLM fine-tuning. MEERKAT addresses the computational and communication
burdens by focusing ZO updates on a static, extremely sparse (less than 0.1%), and transferable subset
of LLM parameters. This subset is strategically identified using gradients derived from pre-training
data, ensuring that updates target parameters most sensitive to the loss function. This selective
approach dramatically reduces communication overhead and supports cost-effective high-frequency
synchronization. As we will demonstrate through theoretical analysis and extensive experiments,
the combination of high communication frequency and sparsity in MEERKAT enables frequent yet
lightweight synchronization. This effectively reduces the convergence error floor in theory and
practice, leading to consistently superior performance compared to full-parameter ZO fine-tuning and
other sparsity methods under the same communication frequency.

Leveraging MEERKAT’s efficient high-frequency synchronization to effectively mitigate Non-IID
data challenges, we further enhance its adaptability to weak network conditions. By employing
a virtual path mechanism to track client updates, we enable the server to analyze client training
dynamics without accessing raw data, thus facilitating robust operation even when frequent direct
communication is constrained. Within this virtual path, we observe the GradIP phenomenon, a
pattern revealed by the GradIP score, which computes the inner product between local client gradients
estimated via ZO and server pre-training gradients. GradIP scores converge for Non-IID clients while
oscillating for IID clients, serving as a clear indicator of data heterogeneity. Leveraging this insight,
we propose MEERKAT-VP that introduces a virtual path client selection method to identify clients
with significant Non-IID characteristics and apply early stopping, thereby reducing their adverse
impact on the aggregated model and enhancing its quality.

In summary, this paper makes the following contributions:

* Performance Improvement with Sparsity. Meerkat consistently outperforms full-parameter ZO
optimization in both IID and Non-IID settings, demonstrating the effectiveness of our sparse update
strategy. Extensive experiments show that Meerkat surpasses not only full-parameter ZO but also
other sparse methods, such as LoRA and weight-magnitude, achieving superior performance.

* High Frequency Communication with Sparsity Can Lower the Error Floor. MEERKAT
leverages extreme model sparsity to reduce local computational memory. Exchanging scalar
gradients drastically decreases communication costs, enabling high-frequency communication.

* Traceable Local Updates and GradIP Phenomenon: MEERKAT leverages traceable sparse local
updates and forms a virtual path. The virtual paths reveals the GradIP phenomenon: the inner
product between LLM pre-training gradients maintained by server and client gradients estimated
via ZO converges for extreme Non-IID clients but oscillates for IID ones. This distinct behavior
serves as a signal for detecting clients with extreme data heterogeneity.

* MEERKAT-VP: Early Stopping for Extreme Non-IID Clients. Leveraging the GradIP phe-
nomenon via virtual path client selection, MEERKAT-VP effectively manages extreme Non-IID
clients, by early stopping these clients to improve global model quality.

* Theoretical and Experimental Validation. We present theoretical analysis and extensive ex-
periments across diverse FL settings, validating the scalability and performance benefits of both
MEERKAT and MEERKAT-VP.
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Figure 1: MEERKAT: Sparse zeroth-order optimization for federated LLM fine-tuning workflow.
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2  SPARSE ZEROTH-ORDER OPTIMIZATION FOR FEDERATED LLLM
FINE-TUNING

This section introduces MEERKAT, a sparse ZO method for federated LLM fine-tuning, and its
upgraded version, MEERKAT-VP, which incorporates Virtual Path Client Selection(VPCS) strategy.
This strategy leverages the traceable virtual path of client local updates to identify clients with
extremely Non-IID data and applies early stopping to mitigate their adverse impact on global model
convergence. We first introduce the technical details of MEERKAT, as illustrated in Figure [T} and
subsequently describe MEERKAT-VP, shown in Figure[5] We then present theoretical convergence
analysis for both methods and discuss their strengths in terms of cost-effectiveness, traceability, and
the use of early stopping to mitigate client drift caused by Non-IID data.

2.1 MEERKAT: EXTREME SPARSE ZEROTH-ORDER FEDERATED LLM FINE-TUNING

Sparse ZO On-Device LLM Fine-Tuning. MEERKAT performs sparse ZO for LLM fine-tuning
on the client device. Let D denote the client dataset we would like an LLM to fine-tune with loss
function f. Given the LLM weight w € R?, we perform an iterative optimization by randomly
sampling a batch B C D for each step and performing the local update step as

_ f(wtezom):B) ~ f(w — ez m);B)
= 26 b
where z € R? is a random vector sampled from a Gaussian distribution A'(0, 1), € € R is the

perturbation magnitude, and m € {0, 1} is a binary sparse mask with density ratio u that selects a
subset of parameters for updates.

Vf=g(zom). (1)

Extremely Sparse Parameters Obtained from Pre-Training. According to the formulation in
Eq equation [I] we focus the perturbation of the LLM on a subset of parameters determined by a
binary mask m. The mask m is derived from the pre-training process of the LLM. We compute the
average squared gradients of each parameter over a subset of the C4 dataset|Raffel et al.| (2020). Then,
we select the top u parameters with the highest average squared gradient values and mark them as 1
in m. In practice, we set u to 0.1%, resulting in extremely sparse updates.

FL with MEERKAT. The workflow of MEERKAT is illustrated in Figure [I] and Algorithm 2]
MEERKAT first loads each client with the pre-trained weight w( and the sparse mask m. Next,
MEERKAT initializes a random seed list {s1,..., s} at the server to generate the random Gaussian
vector z for each local step in the first round. Next, MEERKAT performs an iterative federated
optimization with R rounds of client-server synchronization with each round as follows.

(1) Local ZO update at each client. Upon receiving global model weights w,_; and seed list
{sL,...,sI} from the server, each client performs 7" local iteration steps. In each local step ¢, the
client perturbs the model parameters selected by m with the random vector z! generated by the
random seed s’.. Each client then computes projected gradient g}, (a scalar) according to Eq. equation
Using g}, each client calculates the local gradient \Y /1 and updates the local model wy, with learning
rate 7). After T local steps, each client uploads a list of projected gradients {g;, g7, ..., gg} to the
server. (2) Server reconstructs client update with virtual path. Since the server shares the same
random seed list with clients for the round, it can reconstruct each client’s local model update path
upon receiving their projected gradients. We term this server-side reconstruction process the virtual
path, as it allows the server to follow the client’s local steps without accessing raw data. As shown
in Step 2 of Algorithm [2] the server uses the preserved random seed and receives project gradients
of each local step from each client to recover the local model update path for each client. (3) Sever
aggregates and initiate the next round: After virtual path reconstruction, the server aggregates the
reconstructed client model weights wi to sparsely update the global model to w,.. Subsequently, the
server sends w,. and a a new seed list {s;, 1, ..., S?+1} to clients and initializes next round.

MEERKAT-VP: Virtual Path Client Selection and Early Stopping. MEERKAT-VP extends
MEERKAT by incorporating a VPCS strategy designed for heterogeneous environments. Lever-
aging the virtual path reconstruction capability, the server analyzes client update trajectories to
identify those with extremely Non-IID data distributions. MEERKAT-VP then applies an early stop-
ping mechanism to these identified clients, restricting them to a single local step to mitigate the
negative impact of their skewed updates on global model convergence and performance.
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2.2 THEORETICAL CONVERGENCE ANALYSIS

We theoretically analyze the convergence of MEERKAT and MEERKAT-VP under the
Polyak—Ft.ojasiewicz (PL)-type non-convex condition. All technical assumptions and the corre-
sponding proof are presented in Appendix [C|

Theorem 2.1 (Convergence rate of MEERKAT). Under Assumptions|C.IHC.6] if the learning rate

L eve(irye)
u+2)’ 2 L2(24+u)?

satisfy n = min { 0 , then the global model {w"} generated by the MEERKAT

algorithm satisfies the following convergence bound:

1R - <o B mywh) - ) +0( ) +on) @

Theorem 2.2 (Convergence rate of MEERKAT-VP). Under Assumptions IC.0] if the learning rate

e (K, T+K,)
L(u+2) V2K (24u)?2 L2 Ty

satisfies = min } and each client k € Ky performs T = 1 local step

while the remaining K4 clients perform T local steps, then the global model {w"} generated by the
MEERKAT-VP algorithm satisfies the following convergence bound.:

K +Kb

1 <« * (Kg-‘er)Q (2+u)2fyT
E;Ef —f}SO( R Ry)P R >+ (K i ; Ak)
CTKQ CKbO'}QL
" O((Kg + K)(1 +U)V) * O((Kg + K)(1 +u)T7> +0(1).

3

The detailed theoretical analysis and proofs for Theorem [2.1] (MEERKAT) can be found in Ap-
pendix and for Theorem [2.2] (MEERKAT-VP) in Appendix

Insights of MEERKAT. MEERKAT’s convergence reveals the intricate interplay of local steps T'
and density u on performance. (1) MEERKAT s sparsity can theoretically improve performance.
Lower u (higher sparsity) quadratically benefits the rate-dependent term (o< (2 + u)?), favoring
faster initial convergence. However, it inflates the steady-state error ( 5 +u) Comparing to the
full-parameter case (u = 1), sparsity (u < 1) can reduce the overall bound by decreasing the
rate-dependent term, offering communication and computational benefits. Yet, excessive sparsity can
increase the steady-state error, suggesting an optimal density level u € (0, 1]. (2) High frequency
communication with sparsity can lower the error floor. Increasing T" improves the transient term

scaling with (9( (2+“) ) potentially accelerating convergence towards the steady state; however, it
expands the steady state term (9( 5 +u) thereby increasing the error floor. Conversely, decreasing T’
reduces the steady-state term, leading to a tighter final accuracy. Although smaller 7" can lead to
larger rate-dependent term. It’s impact diminishes as the number of rounds R increases. This analysis
suggests that operating with frequent communication can theoretically reduce the steady-state error.

Advantages of MEERKAT-VP. We compare each component of the error bound under the same
T and R. First, the transient term ratio between MEERKAT-VP and MEERKAT is approximately
y(1+/cy)? < 1,and as ¢, — 150+ — 0, the product y(1+./c;)? — 0, causmg the transient error

to vanish. Second, the noise term ratio is given by 77 (u((Tl +/ 2\/5)2) — 1+5/E , which remains
h 3

below 1 whenever u(1 + /c;)? < 2. Since u < 1 empirically, this condition typically holds.
Moreover, MEERKAT-VP introduces an additional variance term % that decays as O(1/T),
making it negligible for large local steps. Lastly, in terms of heterogeneity, the coefficient of the

heterogeneity term ) |, Ay in MEERKAT-VP is smaller: % < %, and the extra variance term
scales inversely with K, thus diminishing in larger systems. Therefore, Fygergarve < FEMeerkar
and this gap widens as data heterogeneity cy, increases. The detailed mathematical derivations and

analysis, please refer to the Appendix
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2.3 CLAIM 1: MEERKAT CAN OUTPERFORMS FULL-PARAMETER FEDERATED ZO UNDER
SAME SYNCHRONIZATION FREQUENCY

We claim that with fixed and extreme sparsity, MEERKAT outperforms full-parameter ZO in federated
LLM fine-tuning under the same synchronization frequency and effectively mitigates the Non-IID
client data problem through frequent synchronization and sparsity.

Advantages of Sparsity in Federated ZO. ZO has an intrinsic need for sparsity due to its reliance
on nearly uniform perturbations across dimensions. Research on ZO shows that selecting sensitive
parameters using gradient-based methods consistently outperforms alternative strategies such as
weight magnitude or random parameter selection |Guo et al.|(2024)). Following this idea, MEERKAT
produces LLM-sensitive parameters with gradient-based sparsification on pre-training data such as
C4 Raffel et al.[(2020). Moreover, MEERKAT fine-tunes LLMs by estimating gradients through
forward passes, completely bypassing backpropagation. This approach minimizes the need to cache
gradients and activations, leading to significant memory savings. Focusing on sensitive parameters,
MEERKAT ensures efficient and effective fine-tuning even under extreme sparsity levels (e.g., updating
only 0.1% of the parameters). Furthermore, these sensitive parameters exhibit transferability across
downstream tasks. Theoretical analysis (Appendix [C.4) also confirms that lower density « leads to
faster convergence via improved rate-dependent terms O((2 + u)? /(T R)), while excessive sparsity
increases the steady-state error O(7'/(2 + u)), suggesting an optimal sparsity trade-off.

Performance Under High Synchronization Frequency. The lightweight communication of
MEERKAT enables frequent client-server synchronization at a low cost, which is crucial for ad-
dressing data heterogeneity [Yang et al.| (2024); Mendieta et al.,| (2022) in FL. In high-frequency
communication scenarios, both the clients and the server only exchange a list of scalars (projected
gradients) whereas in lower-frequency synchronization, clients have to upload projected gradients
but still download sparse model parameters. By eliminating the need to download sparse model
parameters in high-frequency synchronization, this approach is significantly more bandwidth-efficient,
further minimizing communication overhead. We present the high-frequency synchronization algo-
rithm of MEERKAT in Appendix [C| Algorithm [3] By facilitating frequent synchronization, training
can better prevent clients from drifting. Our previous theoretical analysis also demonstrates that a
smaller 7" might influence the rate-dependent term, its beneficial impact on reducing the steady-state
error is significant for achieving a tighter final accuracy over many rounds R.

2.4 CLAIM 2: EMPIRICAL GRADIP PHENOMENON REVEALS DATA HETEROGENEITY

MEERKAT’s traceable virtual path allows us to analyze client local training dynamics, revealing an
empirical phenomenon related to data heterogeneity via a metric we call GradIP.

Definition 2.3. Gradient Inner Product (GradIP) score: Let \v/ f,i (see Algorithm denote the ZO
gradient of LLM with Eq equation I|on client £ at local step ¢. Let V f,, denote the gradient of LLM

computed by backpropagation on pre-training data. We define the GradIP score as (V f,, v .

GradIP As Indicator for Data Heterogeneity. Leveraging the virtual path reconstruction capability
of MEERKAT, the server can trace each client’s local training trajectory. This process uses the
uploaded projected gradients g}, along with the shared random seeds (which regenerate z} ) and the

sparse mask m to reconstruct the local gradient Vf +. To understand the impact of a client’s local
data distribution on its training process, we introduce the GradIP metric. Inspired by the use of
pre-training data gradients to identify sensitive parameters, GradIP quantifies the cosine similarity
between the local gradient computed during client training and the LLM pre-training gradient.

Empirical GradIP Phenomenon. Through the traceable virtual path provided by MEERKAT, we
empirically investigated the behavior of the GradIP score among clients with different data distri-
butions (IID and Non-IID) over their local training steps. Our analysis, presented in Appendix [C.6]
demonstrates distinct patterns in the dynamics of gradient norms based on data heterogeneity. While
IID client gradient norms exhibit fluctuations, those of extremely Non-IID clients decay and converge
towards zero. The GradIP definition depends on the fixed pre-training gradient norm, local client gra-
dient norm, and the angle 6 between them. We hypothesize that 6 between these two gradient vectors
is nearly orthogonal. This leads us to expect a different manifestation of the GradIP Phenomenon
when comparing IID and extremely Non-IID clients, primarily influenced by their differing local
gradient norm trajectories.
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2.5 CLAIM 3: VIRTUAL PATH CLIENT SELECTION VIA GRADIP ANALYSIS

Building upon the traceable virtual path capa-
bility introduced in MEERKAT, we claim that —— — -
VPCS, by leveraging GradIP analysis, effec- 1: Input: calibration step 7cai, pre-tralrgng gradients
tively identifies and manages clients with ex- V fea, projected gradients {gy, . .., g}, seed s,
tremely Non-IID data distribution, thereby im- sparse mask m, initial phase steps T, later phase
proving global model performance and conver- steps Tiater, convergence threshold o, Initial to later

gence. As established in Section L4} the GradIP oo A B L e T e o & GradTP
score, computable by the server through vir- = ;

Calculation

Algorithm 1 MEERKAT-VP

tl'lal path reconstruction, 'pr0V1des a effgcpve 3: Generate z., using s".

51gnal to 1deI}t1fy such clients. VPCS utilizes 4. Compute \V, ft =gt (z& ®m)

th}s GradIP signal to detect extremely Non—HD 5: Compute Gradip = V f! - V fes (Deﬁnition.
clients. By analyzing the GradIP score trajec- . Step 2: Identify Extremely Non-IID Clients
tory and its behavior over local steps duringa 7. Compute the average value of Gradip over the
calibration phase, using metrics defined in Ap- initial-phase steps.

pendix table 3] the server empirically identifies Tt

clients exhibiting the characteristic diminishing Gradip,, e = 71— Gradip,

GradIP behavior associated with extremely Non- - Tinit —

IID data distribution. Upon identification via  §: Compute the average value of Gradip over the later-
GradlIP analysis, VPCS applies early stopping: phase steps.

these clients perform only one local training step Tiater

per communication round. To ensure full data Gradipyye; o = N Z Gradip,
utilization over training, a data pointer tracks B Tiater =

the batch processed, allowing clients to resume  9: Compute the client’s Initial to later ratio piater client
from that point in subsequent rounds. This strat- and quiescent step ratio pquie_client

egy mitigates client drift from skewed data while .
ensuring their entire dataset is eventually pro- Dauie_client = {s€41,2, . Tlaer} | Gradip, < o}
cessed. Algorithm T|outlines the detailed proce- Tiater

dure, and Figure E]illustrates the workflow. Our Gradip, i, .

previous theoretical analysis of MEERKAT-VP Plater_client =
suggests that early stopping on extremely Non- )
IID clients can lead to improved global model 10: Record client IDs whose piater client OF Pquie_cient €X-

erformance. ceed piater OF Pquie-
P 11: Step 3: Early Stopping

12: Require these identified clients to only perform one
local training step.

G ra d | platerﬁavg

3 EXPERIMENT

In this section, we aim to validate the effectiveness of MEERKAT and MEERKAT-VP. We aim to
address the following research questions in response to claims in Section[2} (1) RQ 1 for Claim 1
(2.3): Is MEERKAT more effective than full parameter federated ZO under the same synchronization
frequency, especially in heterogeneous environments? (2) RQ 2 for Claim 2 (2.4): Can the empirical
GradIP phenomenon, observed via the virtual path, effectively reveal data heterogeneity by showing
distinct behaviors for IID and Non-1ID data distribution clients? (3) RQ 3 for Claim 3 (2.5): Can
MEERKAT-VP, leveraging GradIP analysis, mitigate the impact of extreme Non-IID data compared to
MEERKAT?

We focus on models Gemma-2-2b {Team| (2024), Qwen2-1.5B [qgwe| (2024])), Llama-3.2-1B [Dubey et al.
(2024)). We conduct experiments on SST2 |Socher et al.| (2013)), AG’s News Zhang et al.|(2015), Yelp
polarity (yelp) [Zhang et al.| (2015), RTE [Wang| (2018)), BoolQ |Clark et al. (2019), WSC Levesque
et al.| (2012)), WiC Pilehvar & Camacho-Collados|(2018)) datasets. The datasets are partitioned across
clients following a Dirichlet distribution to simulate clients with Non-IID data. For more experimental
settings, we refer the readers to Appendix

3.1 ANSWER TO RQ1: SUPERIORITY OF MEERKAT COMPARED TO FULL-FEDZO IN FL

This section experimentally validates Claim 1 (Section[2.3)), demonstrating MEERKAT’s superiority
over full-parameter Federated ZO under the same synchronization frequency and its effectiveness in
mitigating Non-IID challenges via high-frequency synchronization.
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Table 1: Performance comparison of MEERKAT and Full-FedZO on multiple non-1ID data
distribution settings. “Acc” is the average test accuracy across tasks. Bold numbers indicate the
highest value in each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc
Full-FedZO 10 0.909 0.705 0940 0.641 0.542 0.634 0.523 0.699
Weight Magnitude 10 0.902 0.857 0951 0.696 0.551 0.519 0.546 0.717
Lora-FedZO 10 0.901 0.749 096 0.649 0524 0.634 059 0.715
LLaMA-3.2-1B MEERKAT 10 0.916 0872  0.964 0.695 0.600 0.653 0.614 0.759
Full-FedZO 30 0.904 0.706 0935 0.636 0.533 0.634 0.539 0.698
Weight Magnitude 30 0.902 0.84 0946 0.674 0.542 0.556 0.550 0.716
Lora-FedZO 30 0.904 0.556 0964 0.652 0.533 0.634 0.545 0.684
MEERKAT 30 0.897 0.862 0965 0.646 0.577 0.644 0.583 0.739
Full-FedZO 50 0.889 0.696 0935 0.633 0.542 0.634 0.529 0.694
Weight Magnitude 50 0.897 0.838 0948 0.662 0.551 0.562 0.554 0.716
Lora-FedZO 50 0.876 0.447 0967 0.639 0.541 0.634 0.562 0.667
MEERKAT 50 0.909 0.827 0965 0.647 0.595 0.634 0.567 0.734
Full-FedZO 100 0.901 0.705 0939 0.632 0.533 0.634 0.525 0.695
Weight Magnitude 100 0.885 0.83 0946  0.66 0.56 0.534 0.548 0.709
Lora-FedZO 100 0.868 0.247 0953 0.642 0.521 0.634 0.529 0.628
MEERKAT 100 0.896 0.777 0961 0.658 0.577 0.644 0.573 0.726
Full-FedZO 10 0.888 0.700  0.928 0.694 0.808 0.673 0.639 0.761
Weight Magnitude 10 0.881 0.84 0939 0.681 0.795 0.672 0.623 0.776
Lora-FedZO 10 0.939 0.847 0944  0.667 0.795 0.663 0.521 0.768
MEERKAT 10 0.949 0.881 0934 0.752 0.813 0.682 0.628 0.805
Qwen2-1.5b
Full-FedZO 30 0.892 0.699 0926 0.708 0.791 0.663 0.594 0.753
Weight Magnitude 30 0.88 0.843 0939 0.681 0.786 0.673 0.594 0.771
Lora-FedZO 30 0.923 0.843 0.948 0.666 0.777 0.673 0.519 0.764
MEERKAT 30 0.944 0.878 0928 0.734 0.800 0.663 0.624 0.795
Full-FedZO 50 0.868 0.696  0.922 0.707 0.773 0.663 0.594 0.746
Weight Magnitude 50 0.883 0.855 0938 0.703 0.768 0.673 0.595 0.774
Lora-FedZO 50 0.934 0.834 0941 0.679 076 0.653 0.510 0.759
MEERKAT 50 0.948 0872 0926 0.746 0.795 0.663 0.594 0.792
Full-FedZO 100 0.864 0.691 0917 0.675 0.777 0.653 0.620 0.742
Weight Magnitude 100 0.888 0.842 0934 0.695 0.768 0.656 0.579 0.766
Lora-FedZO 100 0.934 0.785 0937 0.664 0.786 0.653 0.512 0.753
MEERKAT 100 0.936 0878 0.925 0.741 0.795 0.663 0.610 0.792
Full-FedZO 10 0.928 0.721 0943 0.731 0.564 0.644 0.595 0.732
Weight Magnitude 10 0.931 0.849 0955 0.778 0.711 0.634 0.595 0.779
Lora-FedZO 10 0.936 0.853 0966 0.763 0.568 0.663 0.605 0.765
G 2-2b MEERKAT 10 0.939 0.869 096 0.804 0591 0.634 0.609 0.772
Full-FedZO 30 0.927 0.802 0932 0.725 0.568 0.634 0.581 0.738
Weight Magnitude 30 0.935 0.851 0951 0.771 0.653 0.634 0.598 0.770
Lora-FedZO 30 0.932 0.804 0966 0.671 0.551 0.634 0.589 0.735
MEERKAT 30 0.94 0.855 0947 0.734 0.568 0.644 0.601 0.756
Full-FedZO 50 0.932 0.791 0943 0.712 0.582 0.634 0.567 0.737
Weight Magnitude 50 0.936 0.851 0941 0.745 0.591 0.628 0.597 0.756
Lora-FedZO 50 0.91 0.779 0942  0.664 0.557 0.634 0.597 0.726
MEERKAT 50 0.945 0857  0.966 0.767 0.613 0.634 0.623 0.772
Full-FedZO 100 0.925 0.818 0933 0.672 0.533 0.615 0.567 0.723
Weight Magnitude 100 0.922 0.839 0942 0.723 0.568 0.644 0.592 0.747
Lora-FedZO 100 0.922 0.247 0942 062 0.541 0.634 0.573 0.640
MEERKAT 100 0.94 0.851 0951 0.745 0.551 0.634 0.574 0.749

First, to assess sparsity’s benefits, we compare MEERKAT to Full-FedZO and other sparse methods
(Weight Magnitude, LoRA-FedZO, Random-Select) with equivalent synchronization frequencies
(local steps T' € {10, 30, 50,100}). With a fixed 0.1% mask, MEERKAT reduces communication
budget by over 1000 x compared to Full-FedZO and achieves a strong computational and communi-
cation efficiency (Table[23). Using C4 as a calibration dataset, our analysis shows that the sensitivity
of the gradient is highly concentrated: the top 0.1% of the parameters have 52x larger average
square gradients than the next 0.1-1% bucket (Table E]), which motivates extreme sparsity. The
mask is transferred across domain-shifted calibration datasets, and a client-aggregated UnionMask
performs comparably (Table[TT)). Across IID and Non-IID data distributions, MEERKAT outperforms
Full-FedZO and other sparsity methods on many tasks(Tables I} [T0] [I2). Under the same settings,
MEERKAT also outperforms DeComFL |Li et al.|(2024)) (Table @

Next, we evaluate performance under an extreme communication regime with a single local step
(T'=1). We compare MEERKAT with Full-FedZO and LoRA-FedZO in the IID and Non-IID data
distributions (Dirichlet « € {0.5,0.3,0.1}). Figurepresents the results for o = 0.5, the results for
o = 0.3 and 0.1 are available in Appendix figure[6] Specifically, Figure 2]reveals a remarkable
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finding: on the Qwen2-1.5b model, MEERKAT’s average test accuracy over seven tasks under Non-IID
data distribution matches that under IID data distribution. Beyond this exact match, results show that
at alocal step of T' = 1, MEERKAT effectively bridges the performance gap between IID and Non-IID
data distribution settings, achieving nearly comparable test accuracy across both data distributions,
and consistently outperforms baselines. Varying sparsity under 7' =1 (Table [I4) confirms strong
accuracy even at 10~3-1074, substantially reducing client memory demands and making it ideal for
resource-constrained FL. These results support Claim 1: high-frequency communication combined
with extreme sparsity mitigates Non-IID drift. We also explored sensitive parameter selection using
downstream task data. Since performance remained comparable under identical communication
frequencies and sparsity levels, we prioritized pre-training data to better preserve client privacy

(Appendix [D.2] Tables [20} [T9] 21).
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Figure 2: This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on
three LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods,
and each method has two bars indicating performance under IID and Non-IID settings. The Non-IID
results are obtained under a Dirichlet distribution with o = 0.5 .The y-axis represents the average test
accuracy across multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.
All detailed results for these tasks are provided in Appendix Table

3.2 ANSWER TO RQ2: GRADIP TRAJECTORIES AS EFFECTIVE INDICATORS OF DATA
HETEROGENEITY

This section experimentally validates Claim 2 (Sec-
tion [2.4), investigating GradIP trajectories as indicators of radin U1
data heterogeneity. Based on our theoretical analysis as- 607 1 ~~~ Gradip (Non-IID)
suming single-label Non-IID data (Section[C.6), we study '

the dynamics of gradient-related metrics during local train-
ing. We first compare two extremes: IID clients vs. clients
with single-label (extreme Non-IID) data. We track three
metrics: GradIP score, local gradient norm, and cosine W I an Y
value between the local and pre-training gradients. As 0 20 40 60 80 100
shown in Figures [3] and [7] GradIP for extreme Non-IID e

chentg steqdlly decays to zero over 100 steps, wh1.Ie for Figure 3: Under a density ratio of 5 x
IID clients it fluctuates persistently. To understand this, we 103, we track the GradIP (see Defini-

analyze its components: Figure [§(a) shows cosine value tion[23) over 100 local training steps on
stays near zero (i.e., gradients are nearly orthogonal) for . S92 dataset using LLaMA-3.2-1B

both settings, suggesting the gradient norm is the key fac- del : lient with IID dat
tor. Indeed, Figure [§(b) shows that the gradient norm $Oa (f::ﬁecn()trr\g)i?ﬁl;goi_cnllgnd;t\; a

mirrors GradIP’s behavior across the two settings. More-

over, in later stages, GradIP declines more sharply for Non-IID clients than for IID ones, making this
stage-wise mean difference an additional criterion for identifying Non-IID clients. We further extend
our analysis to more general Non-IID scenarios (Figure [9] Figure [I0] Figure [TT), where GradIP
exhibits similar dynamics that correlate with the degree of heterogeneity.

Gradip vs. Step

3.3 ANSWER TO RQ3: VPCS EARLY STOPPING EXTREMELY NON-IID DATA DISTRIBUTION
CLIENTS

This section experimentally validates Claim 3 (Section [2.5). As established in Section[3.2] GradIP
trajectories provide an effective signal for identifying clients with extremely Non-IID data, exhibiting
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distinct behaviors. Leveraging this signal, VPCS detects extremely Non-IID clients during a calibra-
tion phase and applies early stopping, limiting them to one local training step per communication
round (Algorithm|[T). To validate the effectiveness of this VPCS strategy in improving performance,
we compared MEERKAT-VP with MEERKAT and Random Client Selection, which randomly selects
the same number of clients for early stopping as VPCS, under Non-IID data distributions dirichlet
o = 0.5 and the same communication frequencies. Crucially, for the same model, dataset, and
communication frequency, the three methods employed the same sparsity level. Figure [] illus-
trates the average test accuracy across multiple downstream tasks for MEERKAT-VP compared to
MEERKAT and RANDOM CLIENT SELECTION. Detailed results for individual tasks are presented
in Appendix [D:2] Table [I3] As shown in Figure @] MEERKAT-VP consistently outperforms both
MEERKAT and RANDOM CLIENT SELECTION in different communication frequencies. Further-
more, Table [24] shows that MEERKAT-VP achieves performance competitive with a back-propagation
upper bound and significantly outperforms an adapted FedDYN |Acar et al.| (2021) baseline. These
experimental results strongly validate Claim 3, confirming that VPCS effectively leverages GradIP
analysis to manage extremely Non-IID data distribution clients, leading to improved performance for
Z0 federated LLM fine-tuning.

LLaMA-3.2-1B Qwen2-1.5b Gemmaz2-2b

Meerkat-vp
0.80 E Random
0 Meerkat

Accuracy

7.
.
é
/
/
%
_

Local Step

Figure 4: This figure compares two methods—MEERKAT-VP, MEERKAT and Random Client Se-
lection—across three LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma?2-2b. The x-axis shows
the local step values (10, 30, 50, 100), while the y-axis indicates the average test accuracy over
multiple downstream tasks—SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC—in a Non-1ID
data distribution setting. All detailed results for these tasks are presented in Appendix @ Table@

4 RELATED WORK

Our research leverages advances in ZO federated optimization, sparsity techniques for LLMs, and
communication frequency adjustments strategies for addressing data heterogeneity. ZO methods
significantly reduce computational and communication overhead. Integrating sparsity into LLM
fine-tuning amplifies these benefits, substantially decreasing resource demands during training and
inference. Concurrently, communication frequency adjustments mitigate performance degradation
induced by Non-IID data, emphasizing a crucial trade-off between communication budget and global
model performance. A detailed discussion is provided in Appendix [B]

5 CONCLUSION

In this paper, we introduce MEERKAT, a sparse zeroth-order federated fine-tuning methodology.
Experiments show MEERKAT outperforms Full-FedZO and other sparsity methods on most tasks at
equivalent communication frequencies. MEERKAT’s efficiency enables high-frequency communica-
tion, effectively mitigating Non-IID drift. Moreover, we propose MEERKAT-VP. This methodology
utilizes VPCS, which analyzes GradIP via virtual paths to enable the selective early stopping of
extreme Non-IID clients. This approach is shown to improve model performance. Our work thus
offers effective methods for efficient ZO federated LLM fine-tuning under varying network conditions
and data heterogeneity. Given the technical focus of this work on algorithm, there are no direct
negative societal consequences inherent to it that need to be emphasized; potential negative impacts
would arise from the specific applications where these methods are deployed.
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study are detailed in the experiments section (Section[3). The workflow for MEERKAT is presented
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REFERENCES
Qwen?2 technical report. 2024.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization, 2021. URL
https://arxiv.org/abs/2111.04263.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838|

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jun Chen, Hong Chen, Bin Gu, and Hao Deng. Fine-grained theoretical analysis of federated
zeroth-order optimization. Advances in Neural Information Processing Systems, 36, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou. Communication-
efficient stochastic zeroth-order optimization for federated learning. IEEE Transactions on Signal
Processing, 70:5058-5073, 2022.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, and Zhaozhuo Xu. Zeroth-order fine-tuning
of llms with extreme sparsity, 2024. URL https://arxiv.org/abs/2406.02913|

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models
with semi-structural adaptive sparse training, 2024. URL |https://arxiv.org/abs/2407|
20584\

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning, 2021.
URLhttps://arxiv.org/abs/1910.06378.

10


https://arxiv.org/abs/2111.04263
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2406.02913
https://arxiv.org/abs/2407.20584
https://arxiv.org/abs/2407.20584
https://arxiv.org/abs/1910.06378

Under review as a conference paper at ICLR 2026

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study, 2021. URL https://arxiv.org/abs/2102.02079.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks, 2020a. URL https://arxiv.org/abs/
1812.06127.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data, 2020b. URL https://arxiv.org/abs/1907.02189.

Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimension-
free communication in federated learning via zeroth-order optimization, 2024. URL https
//arxiv.org/abs/2405.15861.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of
zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1827-1838, 2024.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo:
Less parameters for better performance in zeroth-order llm fine-tuning, 2024. URL https:
//arxiv.org/abs/2402.15751.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test time. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,

NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient 1lms
at inference time. In International Conference on Machine Learning, pp. 22137-22176. PMLR,
2023b.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. SPP: Sparsity-
preserved parameter-efficient fine-tuning for large language models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
9Rroj9GIO0Q.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqgi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—1282. PMLR, 2017.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen. Local
learning matters: Rethinking data heterogeneity in federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8397-8406, 2022.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

11


https://arxiv.org/abs/2102.02079
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/2405.15861
https://arxiv.org/abs/2405.15861
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://openreview.net/forum?id=9Rroj9GIOQ
https://openreview.net/forum?id=9Rroj9GIOQ

Under review as a conference paper at ICLR 2026

Hang Shao, Bei Liu, and Yanmin Qian. One-shot sensitivity-aware mixed sparsity pruning for large
language models. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 11296-11300. IEEE, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631-1642, 2013.

Junda Su, Zirui Liu, Zeju Qiu, Weiyang Liu, and Zhaozhuo Xu. In defense of structural sparse
adapters for concurrent llm serving. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pp. 4948-4953, 2024.

Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and Holger R. Roth.
Fedbpt: Efficient federated black-box prompt tuning for large language models, 2023. URL
https://arxiv.org/abs/2310.01467.

Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kagglel
com/m/3301.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. A novel framework for the
analysis and design of heterogeneous federated learning. IEEE Transactions on Signal Processing,
69:5234-5249, 2021. doi: 10.1109/TSP.2021.3106104.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Shaochen Zhong, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia
Hu, and Anshumali Shrivastava. Soft prompt recovers compressed 1lms, transferably. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=muBJPCIgZT.

Zhiqin Yang, Yonggang Zhang, Yu Zheng, Xinmei Tian, Hao Peng, Tongliang Liu, and Bo Han.
Fedfed: Feature distillation against data heterogeneity in federated learning. Advances in Neural
Information Processing Systems, 36, 2024.

Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 2598-2607, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen,
Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen. Revisiting
zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=THP jMr2r0S.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms, 2024b.
URLhttps://arxiv.org/abs/2310.08915.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. 2018. doi: 10.48550/ARXIV.1806.00582. URL https://arxiv,
org/abs/1806.00582.

Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Z Morley Mao, Beidi Chen, Fan Lai, and Atul
Prakash. Learn to be efficient: Build structured sparsity in large language models. arXiv preprint
arXiv:2402.06126, 2024.

Yang Zhou, Zhuoming Chen, Zhaozhuo Xu, Victoria Lin, and Beidi Chen. Sirius: Contextual sparsity
with correction for efficient 1lms. arXiv preprint arXiv:2409.03856, 2024.

12


https://arxiv.org/abs/2310.01467
https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://openreview.net/forum?id=muBJPCIqZT
https://openreview.net/forum?id=THPjMr2r0S
https://arxiv.org/abs/2310.08915
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582

Under review as a conference paper at ICLR 2026

APPENDIX

In Section[A] we discuss the usage of large language model usage in this work. In Section[B] we
present the related work relevant to this study. In Section [C] we present the theoretical convergence
analysis of MEERKAT, including its high-frequency communication method. Additionally, we analyze
the convergence of MEERKAT- VP and demonstrate its superior performance compared to MEERKAT.
We further prove that under extreme Non-IID settings, the gradient norm gradually vanishes during
convergence, whereas in IID settings, it tends to oscillate. In Section |[D| we provide details on
experimental hyperparameters and report supplementary results.

A LLM USAGE

We used an LLM-based writing assistant solely for grammar and typographical corrections to
improve the clarity of this paper. All outputs were carefully reviewed and revised by the authors
to ensure technical accuracy and consistency with the intended scientific meaning. The intellectual
contributions, methodological advances, and scientific insights are entirely original and author-driven.

B REVIEW OF RELATED WORKS

Federated Zeroth-Order Optimization. Zeroth-order optimization Malladi et al.| (2023); |Zhang
et al.| (2024a) has gained increasing attention in federated learning |Fang et al.| (2022); Zhang et al.
(2021)), particularly for addressing challenges in training costs, privacy, and communication overhead.
Fine-Grained |Chen et al.|(2024) demonstrates how clients can reduce upload overhead by sending
estimated gradients rather than full model parameters to the server, though download costs remain
significant due to complete model weight transfers. DeComFL |Li et al.| (2024) further advances
this approach by using gradient scalars for both uploads and downloads, substantially reducing
bidirectional communication costs. However, it does not address the challenges posed by data
heterogeneity (Non-IID) in federated learning. The integration of AirComp wireless technology
enables direct over-the-air aggregation of model updates |Fang et al.|(2022). In black-box settings
where pre-trained language model parameters are inaccessible, FedBPT Sun et al.[(2023)) employs ZO
to optimize prompt vectors, achieving efficient distributed optimization with reduced computational
and communication overhead. FedMeZO |Li et al.|(2020b) analyzes the convergence properties of ZO
for federated LLM fine-tuning.

Sparsity in LLM. Current research on sparsity in LLMs explores techniques such as pruning,
contextual sparsity prediction, and structured sparsity Zhang et al.| (2024b); |[Liu et al.| (2023bga);
Lu et al.| (2024)); [Zheng et al.| (2024); Shao et al.| (2024)); [Wang et al.| (2019); [Huang et al.| (2024);
Zhou et al.| (2024); Su et al.| (2024); [Xu et al.| (2024). These methods enhance both training and
inference by improving computational efficiency, reducing memory usage, and enabling deployment
in resource-constrained environments. Sparsity has also proven particularly effective in zeroth-order
(ZO) optimization |Guo et al.| (2024); [Liu et al.| (2024), especially when combined with weight
quantization for fine-tuning LLMs. Building on this, our work investigates the role of sparsity in
resource-frugal federated fine-tuning of LLMs.

High-Frequency Communication for Non-IID Federated Learning. Data heterogeneity across
clients is a major challenge in Federated Learning, significantly degrading performance compared
to IID settings. Increasing communication frequency, by reducing local training steps per round, is
explored as a strategy to mitigate this issue. Early work showed that merely reducing local steps
had limited improvements in extreme non-IID scenarios [Zhao et al.| (2018)). Theoretical analysis
later confirmed that smaller local training steps can improve convergence speed under Non-IID
conditions, but at the cost of increased communication budget, highlighting a critical trade-off|Li et al.
(2020b). To effectively handle challenges arising from non-IID data that often necessitate higher
communication, various algorithms have been proposed: SCAFFOLD [Karimireddy et al.| (2021)
highlights the ’client-drift’ problem in FedAvg, noting it’s exacerbated by increased local training
steps (reduced communication frequency), and proposes using control variates to mitigate this drift,
enabling improved convergence; FedDyn Acar et al.|(2021)) guarantees consistent convergence to the
global optimum even with a larger number of local training steps (lower communication frequency).
This overcomes the limitation of traditional methods where high communication frequency is needed
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to compensate for local-global optimum inconsistency. Empirical studies further demonstrate that
performance is highly sensitive to the number of local training steps under different non-IID distribu-
tions, and the optimal communication frequency depends on the specific data heterogeneity |Li et al.
(2021)). These works underscore the complex interplay between data heterogeneity, local computation,
and communication frequency. This complexity motivates the development of algorithmic solutions
to improve efficiency and robustness in FL under Non-IID settings.

C THEORETICAL AND ALGORITHM ANALYSIS

C.1 NOTATIONS AND DEFINITIONS

In this subsection, we formally define the assumptions, notations and concepts used in the convergence
analysis of MEERKAT and MEERKAT-VP. Table [2] summarizes the key symbols.

Table 2: Notations used in our theoretical analysis.

Notation | Meaning

w global model parameter
K total number of clients in the federated system
Dk probability or weight assigned to client &
fx total loss computed over all data samples of the client k.
f global loss function evaluated by the global model over all data

number of local update steps per communication round

communication round

local update time step

local learning rate

oS |3 ﬂ’é\%\

perturbation magnitude in ZO estimation

z}, standard Gaussian vector for client & at local step ¢ from N(0, 1)
m binary sparse mask vector (m € {0, 1}%)
d model dimension
R federated learning training round
U sparsity ratio
c gradient coverage
gL projected gradient estimate for client & at local step ¢
Vfi zeroth-order gradient of client & at local step ¢
L Lipschitz smoothness (Assumption 1)
m PL inequality (Assumption 2)
f minimal global loss achieved by optimizing the global model
& minimal client loss achieved by optimizing the local model on client &
cp, and o2 | heterogeneity-induced variance (Assumption 4)
|- Tlop operator norm of a matrix
o? variance of the sparse ZO gradient estimator(Assumption 6)
~y The clients with balanced data distributions contribute to the global model during training.

C.2 ASSUMPTIONS

We introduce the assumptions used in the convergence analysis of MEERKAT and MEERKAT-VP.
Assumption C.1 ( Lipschitz smoothness). We assume that each client £’s local objective function
fr(w) is differentiable and has L-Lipschitz continuous gradients:

IV fu(w1) — Vr(wa)| < Li|wy — wal|, VYwi,wy € RL

Consequently, the global loss f(w) = ZkK:1 prfr(W) is also L-smooth.

Assumption C.2 (PL inequality). We assume that f(w) satisfies the Polyak-f.ojasiewicz (PL)
condition:

flw) - 17 < inwwm vw € RY,
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> 0 is the PL constant. This condition holds for a broad class of non-convex objectives and is
commonly used in analyzing convergence of gradient-based and zeroth-order methods.

Assumption C.3 (Global-Local Disparities in Non-i.i.d. Setting). For any § € R?, the discrepancy
between the local and global gradient is bounded by

IV£0) = VEO < en||VFO) + oF,

where ¢;, > 0 and UEL > 0 are constants, and 6 is the global model parameter broadcast to all clients
at the start of each round. We further assume ¢j, € (0,1). In particular,

* A smaller ¢;, corresponds to lower data heterogeneity: local gradient deviations from the
global gradient are small, indicating that client data distributions are nearly i.i.d.

* A larger cj, signals stronger non-i.i.d data distribution effects, with greater variation between
each client’s gradient and the global gradient.
Assumption C.4 (Bounded stochastic gradient variance). For any sample (z,y) ~ D and any w €
R?, denote f(w; (,y)) as the loss on that single data point, and let f(w) := E(, ,)p [f(W; (z,))]
be the average full-batch loss. We assume

= 2
[VF(w; (x.9)) = VW[, < o™
Assumption C.5 (Local-Global Optimality Gap). For each client k, define the local-global optimality
gap as
* Iy
A = [wi —w;,
where w;, is the local optimal model on client £ and w* is the global optimal model.

Assumption C.6 (Sensitive parameters are sparse). At each local step ¢ (and for every client k), there
exists a binary mask m € {0, 1} with exactly u non-zero entries and a constant ¢ € [0, 1] such that

2 2
Hm OV (Wfid (xt, Yt)) H =c vak (Wfid (xt, Yt)) H :

We further assume ¢ >> 4, meaning this small subset of “sensitive” parameters captures a dispropor-

tionately large fraction of the gradient norm.

These assumptions are standard and foundational in optimization and FL literatureBottou et al.|(2018));
Li et al.[(2020a3b)); Wang et al.| (2021)); \Guo et al.[(2024)

We start by formulating the expectation of the sensitive sparse ZO surrogate gradient norm square in
terms of its corresponding stochastic gradient norm square.

Lemma C.7 (Sensitive sparse ZO surrogate gradient norm square).

. 2 2
Ez Vf(wu(%t,yt)v?t)H = (2+U)CHVf(wt;(9Ct,yt))H .

Proof. Our masked perturbation z is sampled as z ~ N/| (O, I d7m), where I, d,m equals the identity
matrix /4 with its main diagonal masked by m.

We expand the sensitive sparse ZO surrogate—gradient covariance matrix:

Eiﬁf(u% (:C’ y)) 2)@f(w7 (Iv y)a Z)T
=E:[z2" (m© Vf(w; (2,9)))(m OV f(w; (z,y)))")zz"] i
=2(m o Vf(w;(2,9)(moe Vf(w(z,y)") + [mo Vf(w; (z,y)*lom

The above expected squared norm is obtained by summing the diagonal elements of this covariance
matrix:

E. (diag[Egﬁf(w (xay)vé)vf(w7 (9571‘/)’2)T])2

’ 2

@f(wt, Tt, Et)

2c ||Vf(wt; (xtyyt))H2 +uc va<wt; (fft»yt>) H2

2+ u)e ||V S (we; (ze,00)) H2

15
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Lemma C.8 (Unbiasedness of Masked Sparse ZO Surrogate Gradient).

Eg[@fk(wi, Z)] =moV fi(wy), wherez=z0m. (€))

Proof. First, consider the estimator defined as:

@fk(W}i.,z) _ fr(wh +e(zo m))Q—Gfk(vv}fC —€e(z ®m))

(z©m).

To proceed, we apply a first-order Taylor expansion of fj, around w! for small e:
fe(wi, £ e(z ©m)) = fr(wy) £ (V fu(W}), 2 © m) + O(e?).
Substitute these expansions into the numerator of the estimator:
(Wi, + € (z ©m)) = fi(w), — € (z ©m))
= [fu(wi) + e (Vfe(w), 2 ©Om)]
= [fe(Wh) — e(Vfu(wi), 2 @ m)] + O(e?).
Simplify the expression:
fewi + e(z ©m)) = fr(wi — e(z © m)) = 2¢(V fi(w}), 2 © m) + O(¢?).

Thus, the estimator becomes:

@fk(wi,z) _ 26<ka(wz),;@ m) + O()

(z0m) = [(Vfi(wg),z0m) + O(e)] (z©m).

As € — 0, the O(e) term disappears, yielding the approximation:

Vfe(wh, 2) = (Vfi(wh), z@m) - (z ® m).

Next, compute the expectation [E, [@ Tr(wh, z)} . Since the estimator is a vector, consider its j-th
component:

Vikwh2)| & (Vilwh).z o m) - (zmy).

Express the inner product explicitly:

d
(Vfu(wh),z@m) = (Vfi(wh))izmi.

i=1

Thus, the j-th component is:

Wfk(wiaz)} R (i(ka(wZ))izimi> zym.

J i=1

Now, take the expectation over z ~ N (0, I;), where z; are independent standard normal variables:

d d
E. KZ(ka(Wi))iZimi> ijj] =Y (Vr(wh)imim;Elzz)].

i=1 i=1
Since E[z;z;] = ¢;; (1if i = j, O otherwise), the sum reduces to:

(Vfi(w))miE[]].

16
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Given m? = my (as m; = 0 or 1) and E[27] = 1, this becomes:

(V fu(wh))m;.

Thus, for each component j:
E. | [9hvi,9)] | = mi(V A,

This implies:
E, {@fk(w}l, z)} ~mo Vf(wh).

Finally, as € — 0, the higher-order terms in the Taylor expansion vanish, making the approximation
exact:

E: [Vfi(wh,2)| = m o Vfi(w)).

C.3 MEERKAT CONVERGENCE ANALYSIS

We consider the federated zeroth-order optimization problem, where the objective is to minimize
the global loss functionLing et al.| (2024):

K
min f(w) = > pifr(w)
k=1

Each client performs 7" local steps:

witt =wl —nVfi(w), t=0,1,...,7 -1

starting from the global model w) = w". After clients finish local updates, the server performs
weighted aggregation of their model updates.

K
witl = E DLW
k=1

Theorem C.9. [Client Local ZO Update Convergence] Let fy, be L-smooth and v [+ be an unbiased
sparse zeroth-order gradient estimator with variance bounded by 0. Then we have

If we set constant learning rate n = m and T local steps, the output of client k satisfies:
1= 1
NP 2
72 EIVAGDIE <0 () + 0l 0

Proof. We start by proving Theorem [C.9] euqation [3] that each client achieves local convergence
during training with sparse zeroth-order finetuning. Next, we demonstrate that server-side aggregation
also converge. Finally, by leveraging the PL inequality, we prove that MEERKAT exhibits linear
convergence to global minimum.

Part 1: Client Local ZO Update Convergence

We analyze the effect of one local step of MEERKAT under sparse zeroth-order updates. Let client &
perform the local update:

t+1 _ ¢ 2 ot
w, T =wy —nV [,

17
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where the stochastic sparse zeroth-order gradient estimator is defined as:

Jr(wi, + e(zf, © m)) — fi(w}, — e(z}, © m))
2¢ '

9 =

Vi =gk (2, ©m)
Descent via Lipschitz smoothness. Since fj(w) is Lipschitz smoothness:
£ ” t+1

5 Ilwi™ — wi|?.

Fewi™) < fulwio) + (Vfu(wi), with —wi) +

Substituting the update Wt+1 = —nV /1, we obtain:

- B Ln? - _
Je(WE) < fulwh) = 0V Fe(wh), VIE(w.20) ) + S|V (w,20)|1
Taking expectation, we have:

L
Ealfi (W), ™)) < Ealfi(wi)] — nEzlm © V fi(w)||* + TnEZ||vfk(WZazt)H2~

2
Ealfe(wi)] < Balfi(wh)] - enBall 9 (w4 T (2 4 ) |V fi(wh) |

2

B t+1 - ty _ Lng 'NIE % 2
Ezfi(wy ) < Bafu(wi) =  ene — - c(u+2) ) (Vo fi(wi )| + == cu + 2)0

Denote & = Le(u + 2), we can rewrite as:

Eafi(w™) < Eg { fulwh) = mi (e = ) IValiwh)I?} + S0,

: : 2c : — oy — C
From the above inequality, we get np < o Suppose we use a constant learning rate n; =17 = o=

1 .
m , We get.

Ex fu(wh') < Ex {fu(wh) = IV fu(wh) |} + So™n?. ©)

Accumulating over 7' steps. Summing equation[6|over ¢t = 0to T' — 1, we get:

T-1
1 2 2 0 * 1 o 9 9
— < = _ — __
7 ZEZHka DIF < ) = f) + 7 ; il
2L(u + 2) (7)

= T(fk(wg) —f5) +o?

O (Z(flwd) = £)) + O(1),

C.4 MEERKAT CONVERGENCE ANALYSIS
We now proceed to analyze the convergence of the global model in our federated learning framework.

Having established the convergence properties of local client updates, we demonstrate how these
results extend to guarantee the convergence of the server-aggregated global model.

18
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Proof. We approach this proof systematically by analyzing how the local convergence properties of
clients extend to the global model through the aggregation process.

Global Model Update Representation. First, the global model update can be represented as:

K
+1 —w" = ZPk(W{ 7WT)
k=1

where each client k starts from the global model w” and performs 7" local updates to reach wg.

Client Local Update Accumulation For any client &, the accumulated local updates can be expressed
as:

T-1
wpl —wi =) Vi
t=0
Global Loss Descent Analysis By the L-smoothness property (Assumption|C.1I)), we have:
L
PO < FWT) + (VWD) Wit —wh) 4 2w = w2 ®

For the inner product we can get:

(VAW W —w') =3 p(VF(w), wi" —w")

K K T—-1
D ooV, Wit —w') = =0 p(V(w), Y Vf(w7))
=1 =1 t=0
’ kK T—-1
==Y ok Y (VAW),Vi(w",2,))
k=1 t=0

We assume that each client’s weight is equal p;, = 1/K, by substituting it into the above inequality,
we have:

K . K T—1
r,T
Zpk<vfk(w ), Wy — = ?Z )y Vfe(wht, ). 9)
k=1 k=1 t:O
Based on the equation@and v f} is unbiased, we have:
K T-1 ) K T71
> Z<Vf< "), V(W) =Y B[V fi(w™,2,)])
k=1 t= k=1 t=0
We substitute the equation [ and get:
K T—1 K T71
DD AV, BV fiw )]y = Y ), m OV fr(w"™)).
k=1 t=0 k=1 t:O

Under the Cauchy—Schwarz inequality, we have:
(VIW"), mO Vfi(w")) < VW] [lme Vfi(w)]

19



Under review as a conference paper at ICLR 2026

We substitute Assumption [C.6] get:
IVFWIIHm e V(W) = Vel VWV frw™ ).

Thus we get:
(VAW"), mo Vfi(w™)) < Vel VAWV fitw™)]l.
By the triangle inequality, we have

IV £l < VAW + [V fe(w™) = V(W)

We substitute Assumption [C.3]and use the properties of square roots we get:

IV £+ IV filw™) = ¥ f(w")]
< IVFWO+y/ en IV F (w2 + o7
< (L4 va) IV + o

Using the bound (V f(w"), m ® V fr(w")) < \/c|[Vf(w")| ||V k| from Cauchy—Schwarz and

Assumption[C.6] and then plugging in the above, we obtain

(VIW"), m© Vfi(w")) < Ve VLWL +Ver) V(W] + o]
< Vel +yen) [VFwDI? + Veon [V f(wT)].

Recall that the server update inner product is

T—

K
(VFw"), w™* —w") = %ZZ(W, mo V).

k=1 t=0

Ju

Substituting the bound to equation 9] We have:

(Viw"), w™ —w") > =0T Ve +en) [VH)* = nT Veon V().

Substituting this inequality to equation|[8] we have:

Pl < F(ur) — nT Ve (1 +yar) |V 7|
B nTﬁah va(wr)H + ger—O—l _er2

Applying Jensen’s inequality, the last term of the equation [TT] will be:

K T-1
W = w1 <n® Y pell Y VAP
k=1 t=0

And then we apply Cauchy-Schwarz inequality, the last term of the equation [TT| will be:

T-1

lw"t — W < nQTZpk Do IVAE

= t=0

Substitute this inequaltiy to equation [TT|We get:

Fw™) < fw") = nT Ve + Van) [V = nTveon ||V f )|
I K T-1 ,
S ST
k=1  t=0
Taking Expectation and lemma|[C.7}

20
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E; f(w™*) S E: f(w") = nTVe(l+en) [[VF(wh)]?

~

LnT2+u ci —

= nTVeon V(W) + IV fro(w™ )12

k=11t

Il
=}

According to the equation[7} we know that the client-average squared gradient has upper bound. We
substitute the equation [7]to the above inequality last term we get:

E: f(w™) < Ez f(w") = nT Ve +en) V@) = nT Veon [V

L Ln T;f(*“)c;[“(i“) (fuw”) ~ £7) +To?]

< E: f(w') = nT Vel + en) [Vf()? = nTVeon [V f(w")]

L2n2T (24 ) (u+2) < o LPPT2(24u)c
T = L2 S (futwr) - gy + L 20 ; 02 )
k=1
Accumulating Over R Rounds. Summing equation|l2fover r = 0 to R — 1, we get:
R—1
B[ (w™)] — E:[f(w")] < =0T Ve +ve) Y_||VFw
r=0
R—-1

— T Veon Y ||V f(w

r=0 (13)

R

N LT (2+u) (u+2)

-1 K
K f—

Il
o

T k 1

Ln?T? (2

+ n ( + U) c 0_2 R.
2

From the accumulated global descent inequality over R rounds:

First we set
Z IV f (w")]?.

This represents the sum of squared gradient norms over R rounds. The second term in the inequality
. R—1 r
involves > . ||V f(w"),
a, = ||Vf(w")| (withr = 0,1,..., R — 1), we consider it as a vector in R¥ along with a vector of
ones:

R-1 R-1 R-1 R—1
SV = S IVF@) 1< | STV | 1
r=0 r=0 r—0 —0

Since 277112 = R, we obtain:

R—1
an )< o S IVF@) 2 - VR = VRVS = VES.
r=0

21
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Substituting this into the second term, we have:

nT/con, Z IV f(w")|| < nTVeonVRS.

r=0
Thus, the inequality becomes:

E:[f(w™)] = E=[f(w")] < —nTVe(l + v/en)S + nTVeanVRS

L? 2T(2+u u+2) R E
+ > (fuw”

r=0 k=1

n Ln2T2(22 + U)CU2R.

Second, we focus on the term nT\/cop v RS and apply Young’s Inequality with § > 0 and non-
negative real numbers x and y,

R VoR)
W5t 7
We identify = v/S and y = nT\/co /R, since:
nTv/conVRS = (nT/conVR) - V'S.
Applying Young’s Inequality:

VE e /By < L (Ver VR

20 2
Therefore: 22,2 ps
WT\/eonVRS < = 4 TLCon o
20 2
—nT\/EUhV RS S % + 4;UhR§

Finally we replace the second term in the inequality with the above result:

Ex[f(w™)] = Es[f (w®)] < —nTVe(l + v/en) S + (25(;+77T§%R5>

This inequality now depends on .

(nrve (1+ ver) - )XNWf 2 < Ef(u) = F(w)] + TR0l R2

=

L3PT (2 +u)? = 1 5 (4
TR Sy 09
r=0 k=1
Ln?T?*(2+u)co’R

5 .

According to Assumption|C.1] we have:

Fi(w*) < Felwi) + (Vi) w* = wi) + 5w — wil3
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Since wy, is the minimizer of f,(w), the gradient at the local optimum must be zero:
ka (WZ) =0.

Substituting this into the inner product term:
(Vifr(wp), w" —w) = (0,w" —wy) = 0.

Thus, the inner product term disappears because the gradient at w;; is zero, making the inner product
with any vector (including w* — w}) equal to zero.

With the inner product term vanishing, the inequality simplifies to:
* * L
Je(w*) < fe(wy) + gﬁk-

This provides an upper bound on fi(w™*) in terms of the local optimal loss f,' and the optimality gap
Ay.

The global optimal loss is defined as:

K
Fr=Fw) = prfu(w®)
k=1
Using the bound derived for each local loss:

L
Jelw*) < i+ 5 A,

we substitute this into the expression for f*:

K
=Y mefi(w) <D <f;§ + sAk> :
k=1

k=1

=

Expanding the right-hand side:
K 1 K
< ;pkf;;k t3 ’;pkAk~

From the above equation, we have:

LS K
= 5;]%&6 < ;Pkf;~

1 K
N +—2Ak
k=1

From the equation[T4] we have the term:

L2 2T2+u2R !

> (frlw

r=0 k=1
First, we express the double sum as:

R-1 K

S (") = f7)

r=0 k=1 T

Il
o

I
7
N
(]~
=
S
N
|
1M
=
~_—

Since pi = ?, we have:

fr(w") = Kf(w"),

gt
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where f(w") = Yo pefa(w”) = & Sr, fu(w"). Therefore:
R-1 K R—1 K
Z > (fu(w’) = f7) = (Kf(w”) - f,:> :
s r=0 k=1

From the earlier derivation, we have the inequality:

Substituting this into the expression above:

-1 K R—1
ZZ —fi) < (Kf (Kf —ZAk>>
r=0 k=1 r=0
Thus:
R-1 K R-1
S () =)< (Kf( ~Kf 4 Zm)
r=0 k=1 r=0

Since A}, is constant across iterations, we can factor it out:

R—1 7 Bl K LR X
K Y0 - A=K ()= )+ S
r=0 r=0 k=1 k=1
Now, multiply by the coefficient:
L2 2T2+u2R1K TR+ w? | = IRE
S () - i) < RO e S () - )+ S
r=0 k=1 r=0 =1

Simplifying:

T

L30T (2 +u)’R

LT +u)® y (f”) = ) + oK

T

1
s

Il
=

Substituting this result into the original target inequality, we get:

(’7”(“\7 )ZIIW P < B () — k] + TcmR

=
L

+ LP*T2+uw)? ) (f(w") — f*)

r

LT+ uPR K

I
<)

A
2K .
k=1
Ln*T%(2 + u)co®R
5 .

According to the Assumption [C.2] we have:

2u(f(w") = f*) < |IVA(w]?,  vw" e R,

R—1
20 (f(w") - Z IVF(wh)?, vw" e RY,
r=0
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We let nT'/c (1+ /cp) — % > 0 and substitute the above inequality, we have:

e 7RO
2u(1TVe (1 + Var) - Z < E: [f(u?) — flu)] + T
- R—1
+ L*n*T(2 + u)?
7‘:0
L32T(2 + u)?R &
o PEETUIENT A
2K il
Ln*T%(2 + u)co®R
5 .
) < B (/) — ()]
= T ou(nTVe(l + ar) — %) _LEPT(2 4 )
n ’T? co? RS
2 2u(nTVE(l + ar) — 55) — PPT( +wy’]
K (15)
LT (2+u)’R > A
n k=1
K [Q,u(nTﬁ(l +\/cn) — 2%5) — L*n*T(2 + u)ﬂ
N Ln*T? (24 u)co® R
2[2;1(77’1\@(1 +en) — 2%5) — L*’T(2+ u)Q]
LN (- ) < & Bz [f(w%) — f(w)
R ~ E 2u(nT/e(1 + /en) — 2—15) — L*9*T(2 4 u)?
n n*T?coj &
2 2u (Ve + ar) — 55) — PPT(+wp]
K (16)
L30T (24 u)? Z Ay
n k=1
K [2,u(77Tﬁ(1 +en) — 2%5) — L*’T(2+ u)Q}
n Ln*T? (2 + u)
2[2u(nT\/E(1 +/en) — %) — L**T(2+ u)z}
We select 6 = m, which leads to:

1 nTyVe(l+/ep)
20 2
Substituting into the denominator:

2p (nTﬁ(l +ven) - W) = unTe(1 +/ep)

25



Under review as a conference paper at ICLR 2026

With the chosen §, we have:

1= E: [f(w®) — f(w®)]
R (f(w)_f)SE./M]T\/E(l“F\/a)_LG?T(Q"'U)Q

Veop
2(1+ /) [pv/e(1 + /en) — L2n(2 + u)?] an
L3n(2 +u)* Yoy A
K [p/e(1+ yfen) — L*(2 + u)?]
LnT(2 + u)co?
2 [pv/e(1 + Ver) — L2n(2 +w)?]’

_|_

where the step-size 1 must satisfy: n < % to ensure denominator positivity.

Plugging in a constant learning rate 7 = min { L(u1+2), IL;/LEQ(EQJ;‘Z;E) } We substitute this 7 to

equation[I’7)and get:
LS ) - 1) < PR g0 g
R 2 = el va) TR
2 T co?
R p— (1_4_\/* K Z 2L 24w
R-1 9
& 2w - 1) < o B Bl - rw)]) + 05 ) +om. as

O

C.5 MEERKAT-VP CONVERGENCE ANALYSIS

We propose a Virtual Path Client Selection (MEERKAT-VP) mechanism that identifies clients with
highly heterogeneous data distributions based on their optimization trajectories. Instead of excluding
them, MEERKAT-VP applies early stopping to these clients to limit their adverse influence on global
model updates while still preserving their participation.

Proof. Motivation for Early Stopping: In federated learning, clients perform local updates starting
from the global model w". For T' > 1, clients may drift towards their local optima, introducing bias
into the global update due to data heterogeneity. By identifying "bad" clients and limiting them to one
update step, we reduce their drift and align their contributions more closely with the global gradient.

We divide the K clients into two groups:

* Balanced-distribution clients (K ): Perform T local step updates.
* Skewed-distribution clients (/}): Perform only 1 local step update.

The global model update becomes:

]' T 1 T r
w”l:w”Jr? Z(wkawT)Jr? Z(wk’lfw)

kEK, keKyp

where:

wpt —w" = —n Z Vi), wpt —w" = —nV fr(w")
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Loss Descent Analysis Using the L-smoothness property:

FmY) < F(wr) + (@), w -+ Lt - )

2
We analyze the inner product term:
K
(VF(w"),w T —w") = Zpk<Vf(WT), W;’T —w")
k=1
K K T-1
S VW) Wi —w') = 0 S gV W), S VAW, 2,)
k=1 k=1 t=0
K  T-1
=N Zpk Z<Vf(wr), ka(wr ta it)>
k=1  t=0

1 r r ]‘ r T r
(V") w™h =) = 22 > (VA ), wp’ =)+ 2= D (V) wp' —w)
keK, kEKy
. T-1 R
(V") w™h —w') = - D AVFW), Y fi(w"™))
keK, t=0 (19)
— 26 D (V@) V(")
keK,
Since V f,i is unbiased, we have:
K T-1 R K T-1
DD VW), VW z)) = DD (V") BV fi(w,20)])
k=1 t=0 k=1 t=0
We substitute the equation [ and get:
K T-1 R K T-1
SN V), Bo[V(w™hz)]) = Y > (VFw"), mo Vfi(w™h)).
k=1 t=0 k=1 t=0
Thus taking expectation of equation[I9] we can get:
T-1
E-(Vf(w"),w™! — W) = —}Q( ST S (VAW m o Vi(w'))
keK, t=0 20)

+ D (VF(W"), mOVfi(w")

keKy,

Under the Cauchy—Schwarz inequality, we have:
(VIW"), mO Vfi(w")) < VW] [lme Vfi(w)]
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We substitute Assumption [C.6] get:
VWO m e V(W) = Vel VWV frw™ ).

Thus we get:
(VAW"), me Vfi(w™)) < Vel VAWV Fiw™)].
By the triangle inequality, we have
IVfe(w™ O < VAW + IV Fe(w™) = V(W]

We substitute Assumption [C.3]and use the properties of square roots we get:
IV S+ IV fru(w™) = V(W) < VAW + \/Ch IVf(wn)I? + o

< (4 Vew) IVFWD) + o

Using the bound (V f(w"), m © V fr(w")) < \/c|[Vf(w")| ||V fx| from Cauchy—Schwarz and
Assumption[C.6] and then plugging in the above, we obtain

(VW) m o Vfie(w") < Vel VW[ +ver) VAW + on]
< Ve +ve) [VIwDIP + Veon [V (wh)].

Since this bound holds uniformly for all & and ¢, and based on the equation 20| we get:

T—1
S S VW) me Viw ) + 3 (VW) m e Vfi(w)
keK, t=0 kC K,
< (1K|T + |Ka]) [Ve(l +v/an) [V £ (W) + Ve |V £ (w")]]

We get:

B[] < Ex{f(w)] - (14 e |V ()

77\/60‘ T L T T
— I |9 £ ()| + S —

2D

where o = |K4|T + | Ky|.
Since the global model update is given by:
1 1
r+1 r r,T r r,1 r
w+:w+EZ(wk _w)_'_EZ(wk —w")
kEK, kEK,

We substitute the local updates and the squared norm is:

T—
HWLWPlgzz W+ 3V filw

keK, t=0 kEKy

2

Define the update contribution per client:
A= [IEE Vi) itk € K,
=V fr.(w") ifk € Kp.
Then:

K
W E:

K

77 || 2 A

er+1 _er2

Using the Cauchy-Schwarz inequality:

K ~
> A
k=1

2
<K Z |A]|?, where Aj, denotes the actual model update on client k.
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So:
1 K
r—+1 2 A 2
ot~ < g 3]

Now compute || A ||2:

|Ak? =

r,t)

fork € K,

A . 2
[Ael? =7 Hka(w’) ‘ for k € K.

Thus:
2

. . n*
w3

We take the expectation:

Zm |+ D [V

keKy

2
&Wm—w2lk§E§}%Tt+gfz |’
For k € Ky:
Ez ||V fr(wh)|| = 2+ u)e|[Vfi(w)|
For k € Kt

Using the Cauchy-Schwarz inequality:

T-1 )
> Vi) (W)
=0

According to the lemma|C.7}

X 2
e = @+ we|V filw)|

So:

T-1 2 T-1
Zka(wr’t) <T(2+u) cZHka )
=0 =0

Combine the terms we get:

Emme—iﬂ—Tzzwf HE+ IV flw)]P

kEK, t=0 kEK,

We substitute this inequality to the equation 21}

EmWHWS&WMH7NhO+JWWﬂ "2
N (Cal o
+M Ty ZHWk "OIT D IV fr(w

keK, t=0 keK,
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B [f(w)] < Be[f(w)] — P (14 v [V )| - Y g 9 g |
22+ u)cLT = 2 224+ u)cL 2
$ PEECLT S S 9w P+ DL S 9 )]
kekK, t=0 keK,

According to the equation [7] we know that the client-average squared gradient has upper bound.

Be (1) < e [1(w)] = % (14 v [V )P - 5% o |95
2 u)eL L U 0,r X
LR Tkg; ZECEY (1 wpr) - ) + 77 .
22+u)cL 2
$ TR S 9 s
keKy,

Using Assumption which states that for any § € R?,
IV£(0) = V(O < en VSO + o,

we can bound the squared norm of the local gradient ||V fi,(w")||>. Specifically, by the inequality
(x +y)? < 222 + 2y?, we have:

IV fi(w")I* = [V f(w") 4+ (V fr(w") = V(w")|* < 2{|V ()42 |V fi(w") = V f(w")]*.
Then, applying Assumption[C.3|with § = w” and i = k:
IV S (") =V f(w")]* < e |V (w)|* + o7
Therefore,
IV fi(w")|* < 2|V f(w")]* +2 (Ch IV £ (w")|* + 0;%) = (24 2en) IV £ (w")||* + 207
Thus, we obtain the bound:
IV fi(w")[[* < (24 26n) IV f(w")]|* + 207

We substitute the bound to the inequality 23] according to the Assumption[C.3] we substitute the last
term:

nVea

VX (14 ) IV £ @) 2~ TV g 9w

ca
K

E: [f(w™™)] <E:[f(w")] -

y PCHW T S 2EEE () — gi) + 7o)

2K keK ¢
* % ) [<2 +2en) [V f(w")|* + a,ﬂ.
ke Ky
B[] < Be )] — S (14 Vi) 19 IP — P o 950

n”?(2+u)cLT 2L(2 4+ u) 0r .
+ o k;;[ 2 (fulu )ffk)+T02}

n?(2+u)cL|Kp| (1 +cp)
* K

)c L |Ky| oy

IV )24 TEFE
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E:[f(w™)] < Ez[f(w")]

2 _
L (2+U)CLKbI(<1+Ch) n\ﬁava(wr)HQ
- IR fur)|
(24
2(2+u)? LT . .
v % S () - f7)
kEK,
224+ wu)cL
+ %(T"‘ 0? Ky + 2 K0} ).
Accumulating Over R Rounds. Summing equation[24Jover r = 0to R — 1,
2 R—1
(2 +w) e LKy (1+a) —nyea -
E:[f(w™)] - Ez[f ()] < S ;wa )
R—1
necoao
- Th Z ||Vf(w )
=0 (25)
772(2"‘“)2L2TR71 o,r *
+#Z (fk(wk’ )*fk)
r=0 k€K,
2
n""(2+u)cLR/( 5 5 2
+ T(T 0" Kyg+2Kyo )
According to our previous derivation, we know that:
R—1 R—1 )
D_[VE@nll = VR Y[V 26)
r=0 r=0

Apply Young’s inequality with § > 0 and nonnegative real numbers x and y,

nveao VR
K

IN

n\/EUha & 112
VTS f (w S IV
r=0 r=0

I /\

9 n*ca?oi R§

R 2 .02.2
n/copo . 5 n*ca’o; RO
A < L= Tht
IV < 2(Q:nw 2+ e

We substitute this to the equation
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E.[f(w")] — E:[f(")] < (’7 CruelK(ra) - nee ) Z 19 ()

20202 RS 2(9 4 2L2TR . X
+77 ca‘oy +77( ;? ZZ(fk(wg’)—fk)

2K2
r=0keK,

2(2 LR
n w(zﬂ o2 K,y + 2Kba;i).
2K
27)
Given that w!"" = w", this term is equivalent to 35 Drer, (frw) = f7).
From our previous discussion, we have the inequality for a single round r:

K

Z (few™) = f) < Z(fk(wr) - f7)

keK, k=1

and the inequality used in Part 2 of the proof:

R—1
§Z<Kf( K zAk)
r=0

R-1 K

r=0 k:l

Combining these two inequalities, we obtain a bound for the sum over the set K ;:

We set v < 1 which means that the subset clients the effect to the global:

> Y (- 5) < v Y(K (fwn) - 1) +33 A
k=1

r=0 keK, r=0

We substitute this to the above inequality get:

E

R—-1
( (2+u)cf{Kb( +cp) 77\;(604 25>Z||Vf )”2

w
)
g
=
|
=
wl
=
g
\_9
IA

2ca?0? R6
nTQh +772<2+u)2L2T’}/Z<f<’LU ) —

r=0

”(2+u)cLR

¥ (T202Kg+2KbO'}2l).

‘We substitute «:

2 LK K,T + K)
Eg[f(wR)] —Eg[f(wo)] < (77 (2+u)CK »(1+cp) _ nve( gK + Ky) 215> Z 19 £ (w2
20(K2T? + 2K, TK), + K2)o2 R ol
SR T 1) +772(2+U)2L2T7;(f(w)—f*)

2 273 K 2
L0 (24+w) LTRWZAIH_n (24 u)cLR

5K Ve (T202K9 + 2Kb0,21) .

k=1
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To simplify the inequality, we solve for §:

1 /(B T+ Ky) 7?2+ u)cLEy(1 +cp) L Ve T + Ky)

26 2K K K ’
1 n/e(K T+ Ky) (2 + u)eLKy(1 + cp)
20 2K K ’
K

(K T + Kp) — 2n2(2 4+ u)eLKy(1 4 ¢p,)
For § > 0, the denominator must be positive:
ne(K,T + Kp) — 20*(2 + u)eLKp(1 + ¢) > 0,

yielding the condition:
V(KT + Ky)
2(2 4+ u)eLKy(1 +¢p)”

n <

Substitute §:

E: [f(w")] - E:[f(")] < —M Z 19 £ ()2

n c(K T+ Kp)?02R
TaK (Ve(KyT + Kp) — 20*(2 + u)cLKy(1 + cp))
R—1

+0* 2+ ) LTy Y (f(w") - f7)

r=0

)23
+77(2+u LTR’yZA

n*(2+u)cLR

+ 2K

(T?0° K, + 2Ky07) -

According to the Assumption[C.2] we have:
2u(f(w") = f*) < V(WP vw" e R,

R—1
20 ) (F(w") - ZHW DI vwT e R
r=0

Combine the PL inequality to the above function we get:

M Z IV £ < B[ (®)] - Ex[f(w™)]

nc(K,T + Kp)?0iR

- 2K (nye(KyT + Ky) — 2n?(2 + u)cLKy(1 + c3))

R—-1
+ (24 u)? LTy Y (f(w") — f*)

r=0

)2L3
7 (2+u LTRWZA]C

2(2 4+ u)cLR
+77( u)c

5T (T?0°K, + 2Ky07,) -
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Let Sg = Zf’;ol E[f(w") — f*], Ds = nv/e(K,T + Kp) — 202(2 + u)cLKy(1 + ¢p,). We require
Ds > 0.

Substituting this back into the original inequality:

K, T+ K
el Ig( + b)SE+n2(2+u)2L2T75E

n*e(K,T + Kp)?02 R
9K Dy

E[f(w™)] - E[f(w°)] < -

2 273 K
n°(2 +u)?L°T Ry
2K Z Ak
2+ u)cLR 5 5 2
+ — (T o°K, +2Kbah) .
2K
Collecting terms involving Sg:

npy/e(KyT + Ky)
K

E[f(w™)] — E[f(w’)] < <U2(2 +u)? LTy — > SE -+ other terms.

Moving Sg to the left side:

c(K,T+ K
(VBT LR 2o 4 )21277) S < B{F ()] - Bl (")
2 2 2 2 2713 K
n’c(K,T + Kp)?o;, R n°(2+w)?L°T Ry
: A

* 2K Dy + 2K ; F
2

+ M(T%QKQ +2K,02). (28)

2K

Since E[f(w®)] > f* (typically f* is the minimum), we have E[f(w®)] — E[f(w)] < E[f(w°) —
f*]. Let f§ = E[f(w®) — f*] (the initial expected suboptimality). Let the coefficient of Sg be
Cy = w —n?(2 4 u)?L*T+. To ensure C% > 0, we need 7 sufficiently small such that

BVe(KaTHEY) ey,

N < R@+tw)?LTy

20(K, T+ Kp)202 R 2—|—u L3TR
n*e( g b) h 77( ’YZAk

! < *
CsSg < fo + 9K D;

2
n°(2+wu)cLR
T(TQUng +2Kb0—}21)
Our goal is Sk = % Zf‘;ol E[f(w") — f*]. Dividing both sides by R:
R—1
1 1 2¢(K,T + Kyp)? o}
’ 2 :]E ™y _ f*] < 20 h
2 273 K
n°(2+u)? L° Ty
+ Ve > A
k=1
2
n”"(2+u)cl
+ T<T202K‘q + QKbO'}QL).
Finally, dividing both sides by Cg (assuming C'g > 0):
= 1 < 1 {fo . n2e(K,T + K;)202
Z:o Cy 2K (nye(KyT 4+ Ky) — 20%(2 + u)cLKy(1 + ¢))

2(9 4 )2 3Ty & 2(2 L
+77(+U) vak+n(+U)0

Ve e (T°0°K, + 2Ky07) |

k=1
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where
c(K, T+ K
Cy = npe( Ig b) — n?(2+u)’L*T , Ds = nve (KgT+Kb)—2n2(2+u)cL Kp(14cp).
To ensure both Cy > 0 and Ds > 0, we require
o VelB, T+ Ky) < pV (KT + Ky)
TS 9@t el Ky(I+cn) S K(2+u)2l2Ty
|
=15 =1ns

Let

MNmax = min{ﬁ& ﬁS}v RS (0’ %] :
Choosing 0§ = % gives

1 _ e (BT + Ky)
1= 2 e = R (0 w)2L2T A
We select
_ iV e(KyT + Ky)
2K (2 4+ u)?2L?Ty
And from previous client convergence conclusion, we pick a constant local learning rate
c 1 2c
Tlclient — — = L(U+2) < E

ue (Ky THK)
u+2) ’ 2K (24w)?2 L2 T~

Substituting the learning rate n = min{ I }, since 7 is a small value, we

neglect 7.

1S o AK2(2 4+ )2 LPTYE[f(w®) — 7] | o} 2+u a
EZ()Ez[f(w)—f]S (KT T K2R + 5+ sz

C
— ¢ (T?%K, + 2K 2).
* 4K(2+u)LTfy( 7 Ry T 2%,

K2(2+u)?yT
Il < O(C(KQTJer)QR)

MZU

+
S

<1+u ZAkg-i-ZAkb)
<KCTK )
(

CKbUh ) +0(1).

(29)

+
S

+OK

Define the error upper-bounds for MEERKAT-VP and the baseline MEERKAT as follows:

5 _AK?(2 4w’ LTy E[f (w°) - /] N a,i 2—|—u ZAk c(T?0*Ky + 2Ky07)
MEERKATVE ™5 2 0 (K, T + K))? R 2 AK2+wLTy |

(I) Transient term

(IT) Steady-state term

_ALPQ@+w?  E[fw") - f, o2 L& T co?
EMeerkar = p2c(L+/en)2T R [ (14_]1/») ZAk+ 2L(2+u):| .

(') Transient term (I') Steady-state term
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e Transient term ratio:

I
(D) ~ y(14++/cn)? < 1, andascy — 1, y(1 + y/cp)* — 0.

(1)
* Noise term ratio:
%i/2 pH Ve s < 1when (1 + /cp)? < 2
= 5 h *
o/ (n(1+/en)?) 2
Empirically p < 1, thus u (1 + /c)? < 2 is True. Additionally, VPCS includes an extra term
2
ﬂ((czlfr%’ which decays as % and becomes negligible for large 7'.

* Heterogeneity and variance terms:

(2+u)L & L& ,
Y Z A < e Z Ay, and the extra variance term decays as 1/ K.
k=1 k=1

Therefore, under the same 7" and R, Eumgerxar-ve < Emeerar and this gap widens as data hetero-
geneity cy, increases.

REMARKS

The analysis of the upper bound in Equation [I7]reveals how the local training step 7', density level u,
and communication rounds R collectively influence the optimization dynamics through a balance of
convergence rate, bias—variance trade-offs, and steady-state error control:

* Impact of Local Update Steps 7 A smaller 7T amplifies the term

2
@] (% CE[f(w®) — f (wR)]) , increasing the average optimality gap after R communi-
cation rounds when R is fixed. However, this effect can be mitigated by increasing R, as the
scaling factor % reduces the term’s impact. Conversely, reducing 7' diminishes the variance term

@) (%Lu), leading to a smaller steady-state error. Thus, a smaller 7' may prolong the transient

phase but ultimately achieves a tighter optimality gap relative to f* after sufficient rounds.

* Density Level u. Reducing u (i.e., increasing sparsity) quadratically benefits the transient term, yet
it also inflates the steady-state term through the denominator 2 4 w. Choosing u therefore amounts
to balancing communication savings against the plateau error; aggressive sparsification should be
coupled with smaller 7" to avoid performance degradation.

* MEERKAT-VP Client Selection Strategy: By early-stopping extreme data-imbalance clients
with a single local training step, MEERKAT-VP effectively reduces Non-IID drift in zeroth-order
federated 1lm fine-tuning. This strategy lowers the coefficient of the transient term and further
reduces heterogeneity- and variance-induced steady-state error. Under fixed 7" and R, these effects
yield strictly faster convergence and a tighter optimality gap in Non-IID settings.

These conclusions illustrate how tuning T', IR, u, and the MEERKAT-VP client selection strategy can
optimize performance in federated, sparse, and Non-IID learning scenarios.

C.6 EMPIRICAL ANALYSIS OF THE GRADIP PHENOMENON

By Lemma [C.8] the masked sparse zeroth-order (ZO) surrogate gradient is an unbiased estimator of
the masked first-order gradient. Building on this fact, we define the vector g.(w;x, y) is obtained by
computing the gradient of the cross-entropy loss for a single sample with respect to a small subset of
parameters selected by a mask.

From logits to Softmax Probabilities we have:
* The model’s final layer outputs a logit for each class:

h(z;w) = (hl, e hc) e RY.
* The softmax probabilities are given by:

h;
e’
pj(z;w) = =

Zr:l ehT
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The cross-entropy loss for a single sample is:

lw;z,y) = —logpy(z;w), wherey € {1,...,C}.

For each logit h;, the partial derivative is:

or
an, P Liy—jy = pi — (ey)s;
where e, is the one-hot vector with 1 in the y-th component.

Since we are only interested in the sensitive parameters selected by the mask m, the gradient with
respect to the parameters can be written as:

ge(w; z,y) =V, L(w;z,y)

Here:
* Vu, hj (z; w) is the gradient/Jacobian of the logit h; with respect to the masked parameter w,,.
* By collecting the coefficients p; — 1,—; into a vector, we obtain the compact form:

ge(w;z,y) = (p — )" Vi, b5 w).

In our existing local client convergence inequality and from the assumption [C.4} we can empirically
write the key constant estimator variance:

1

o']% = P Var(r,y)ka [9c(w; 2, 9)].

We write g. in matrix form: Define:
J(z;w) = Vo, h(z;w) € R™*C a(z, y;w) = p(a;w) — e, € RC.

Thus:
ge(wiz,y) = I (x;w) a(z, y; w) € R,

We substitute this equation to the above estimator variance:

1 1
O—I% = % E(L,y) ||g(w’ I7y) - vfk(w)||2 = a tr JT Cov(w,y) [a(x,y; w)] JI- (1)

total variance Ya

Note:

+ ¥, € REXC is determined solely by the label distribution and prediction probabilities.
* J reflects the network structure and influences only a similarity coefficient.

Analysis of Extreme Non-IID (Single Label y):

* The label is fixed, so 1,—; is constant.

* If the model is mostly correct: p & e,:, then a(x, y; w) ~ 0, yielding:

yT?

1
Yo~0 = o,~—tr(0)=0.

non dm
Analysis of Approximate IID (Balanced Multi-Label)
* The label y varies across {1,...,C}.
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 Even as the loss decreases, p; differs across classes. The covariance is:
(Za)rs =E [(pr - 11/:7’)(175 - 1y28)] - (E[pr - 11/:7’]) (E[ps - 1y:S]) .
=0 =0

This matrix has diagonal elements E [(p, — 1,—,)?] > 0, making ¥, positive definite or semi-
definite but non-zero. Thus:

ohy = di tr (J'2,J) > 0.

m

Our local convergence bound is:

1 1
T L EIVAWIP <0 () + o,
t=0

which indicates that in the steady state, the upper bound of the gradient norm is determined by o7.
Therefore,

2 2 0 IID clients: Gradient Norm oscillates significantly;
iid non-iid Non-IID clients: Gradient Norm decreases monotonically and approaches 0.

REMARKS

In summary, by substituting the explicit form of the cross-entropy gradient into our sparse ZO
convergence formula, we can empirically explain that due to the variance differences caused by
label distributions, the Gradient Norms of IID clients maintains significant fluctuations, while that of
extremely Non-IID clients rapidly decays and converges to zero.

Step 1: Virtual Path Reconstruction
& Gradip Calculation

Step 0: Local Training
With Calibration Step | Step 2: Identify Clients with
—[F Projected Gradient Local Step 1 Gradip Extremely Non-IID Data
T tnitial phase steps
Step 3.2: Clients with ! Client 1 Calculate Initial to later ratio
extremely Non-lID data N N . " training path| R .
use a local step of 1. Client 1 Projected Gradient list —>TD Local Step 2 Gradip quiescent step ratio F
M@ Client 2 g Calculate Initial to later ratio i .
Client 2 training path! later phase steps & § Client 1
- quiescent step ratio with Extreme
r z sa_mple_d f[om_ i Data
Distribution
) U @ @ Server "TD CTTT 1T} Calibration Step Gradip
Client n-1 Client n-1 Pretrain Dataset
‘-TD—'ﬁ @ training path__Generate Gradeint
. [ Calculate Gradip &
Clientn T Analyze Virtual Path
Client n Client n with Relative
training path balanced
Data Distribution
Step 3.1: Send the ID of clients

with extremely Non-IID data.

Step 3: Early Stopping

Figure 5: MEERKAT-VP: Each client locally trains with a prescribed statistic step, yielding a
sequence of projected gradients. The server leverages a randomly sampled vector z} from the
Gaussian distribution V(0, I;) to reconstruct V f£, and then computes GradIP (see Definition
at every local training step. By analyzing the resulting GradIP values across all clients, the system
distinguishes those clients with extremely Non-IID data from those that are relatively balanced. For
the parameters later phase steps , initial phase steps, quiescent step ratio, and initial to later ratio,
please refer to Table [3]in Appendix

D MORE EXPERIMENTAL DETAILS

D.1 ADDITIONAL EXPERIMENTAL SETTINGS

Testbed. All experiments are run on servers with the following configurations: RTX A6000 Setup:
Ubuntu 18.04.6 LTS with 2 NVIDIA RTX A6000 GPUs (each with 48GB GPU memory). GH200
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Algorithm 2 MEERKAT: Sparse Zeroth-Order Optimization for Federated LLM Fine-Tuning

Input: pre-trained weight wg, sparse mask m, learning rate 7, perturbation scale ¢, number of
rounds R, total number of clients K number of local steps T’
Server initiate seed list {s1,--- ,sT}
for Roundr = 1to R do
Step 1. Local ZO update.
for each client k in parallel do
Download model from server: wy, < w,_1
Download seed list {s!,--- , s’} from server
for local stept = 1 to T do
Initialize z}, with seed st.
Sample a batch B on client dataset.
Wi« wi + e (z, ©m)
Compute loss f < f(W;B)
wi « wi — 2¢- (z}, ©m)
Compute loss: f_ + f(Wi;B)
Compute projected gradient:
g (f+ — f-)/2€

Update client model:
Vi < gk - (2, ©m)
with « wi —nVfi
end for
Send projected gradients {g}, g, ..., g} } to server.
end for
Step 2. Server recover each client’s update with virtual path.
for k = 1to K do
for local stept = 1to T do
Generate z!, with seed st.
Perform virtual path:

Vi =gl (2 ©m)

t+1 t va i3
Wi W =V [

Store recover client model parameters w7
end for
end for
Step 3. Server Aggregate reconstructed sparse model update.

K

1 E T

W, < ? Wi
k=1

Generate new seed list {s!, ;,---,sZ.;}.
end for
Output: wg
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Algorithm 3 MEERKAT with high frequency server-client synchronization

Input: Seed s and projected gradients g}, from all clients, global model m, learning rate 7), number
of clients K, sparse mask m
Aggregate projected gradients from all clients with same seed:

| X
9<% Z Ik
k=1
Calculate Zeroth-Order Gradients:
Vfg-(z0m)
Update global model parameters:

Wil ewrfn(@f(bm)

Generate new seed s_new
Output: Send aggregated global projected gradients g and seed s_new to all clients.

Setup: Ubuntu 20.04 with 1 NVIDIA GH200 GPU (480GB GPU memory). A100 Setup: Ubuntu
22.04 with 1 NVIDIA A100 GPU (40GB GPU memory).

Dataset. We conducted experiments using datasets from the GLUE and SuperGLUE benchmarks,
including SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC. To create IID clients data, we shuffle
the entire dataset and evenly divide it among the clients. To create Non-IID clients data, we split the
data using a Dirichlet distribution. For all tasks, the Dirichlet o parameter is set to 0.5 to control the
degree of data heterogeneity.

Evaluation metric. In our experiments, test accuracy is used as the primary evaluation metric.
Accuracy is computed as the proportion of correctly predicted labels across all evaluation samples.,
Additionally, we incorporate the GradIP score (see Definition [2.3)) to analyze further the dynamics of
local model training under IID and Non-IID client data settings. GradIP provides a metric to measure
the quality of client training trajectories, particularly in heterogeneous data distributions.

Notations. We present the parameters definition used in MEERKAT-VP in Table

Table 3: MEERKAT-VP Parameters Notation

Term Explanation

calibration steps 7t Number of steps each client performs to measure GradIP.

initial phase steps Tijt Number of earliest local steps used to measure the early-phase GradIP.
later phase steps Tjater Number of latest local steps used to observe the late-phase GradIP.

convergence threshold o  Threshold indicating when GradIP is effectively zero.
quiescent step ratio pq e Fraction of later phase where GradIP stays below threshold
Initial to later ratio pjaer  Ratio of average GradIP in the initial phase to that in the later phase.

Hyper-parameters. We use the following hyper-parameters in our experiments; see Table

MEERKAT-VP Hyperparameter Selection. Below, we present the default hyperparameter values for
MEERKAT- VP, task-specific adjustments, and the results of our hyperparameter sensitivity analysis to
demonstrate the robustness of the method.

These default values work well for most tasks. However, some tasks benefit from task-specific tuning,
particularly the RTE task which shows sensitivity to these parameters:

Sensitivity Analysis. We conducted sensitivity analysis to understand the robustness of our method to
hyperparameter variations. Tables[7]and 8| show the performance stability across different parameter
settings.
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Table 4: Hyper-parameters used in our experiments.

Parameter Value

MEERKAT learning rate [2e-4, 2e-8]
MEERKAT-VP learning rate  [2e-4, 2e-8]
LoRA-FedZO learning rate  [2e-4, 2e-8]
Full-FedZO learning rate [2e-4, 2e-8]

Batch size 16

Dirichlet alpha 0.5,0.3,0.1
LoRA rank 16

LoRA alpha 16

initial phase steps 20

later phase steps 20
convergence threshold 1

quiescent step ratio [0.4,0.5,0.7]
Initial to later ratio [1.5,2,5, 10, 15]
calibration steps 100

Total clients 10

Table 5: Default MEERKAT-VP Hyperparameter Values

initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio
20 20 1 0.5 5

Table 6: Task-Specific VPCS Hyperparameters for RTE Task

Model initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio
Gemma2-2B 20 20 1 0.7 5
LLaMA-3.2-1B 20 20 0.5 0.7 5
Qwen2-1.5B 20 20 0.5 0.5 5

Table 7: Parameter Sensitivity Analysis for LLaMA-3.2-1B on SST-2 Task

initial phase steps later phase steps  convergence threshold quiescent step ratio Initial to later ratio | Performance

20 20 1 0.5 3 0.922
20 20 1 0.5 5 0.922
20 20 1 0.5 7 0.922
20 20 1 0.5 10 0.922
20 20 1 0.5 12 0.922

Table 8: Parameter Sensitivity Analysis for RTE Task

Model initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio \ Performance
20 20 0.8 0.5 7 0.617
LLaMA-3.2-1B 20 20 0.7 0.5 5 ‘ 0.617
i 20 20 1 0.5 3 0.657
Gemma2-28 20 20 1 05 5 ‘ 0.657

D.2 ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experimental results to compare MEERKAT, MEERKAT-VP,
Full-FedZO, and LoRA-FedZO under various settings. The results include five tables and three
figures, providing a detailed evaluation of performance across different models, datasets and experi-
ment settings. Table [3| provides a description of the parameters used in MEERKAT-VP, and Table 4]
lists the experiment parameters used in this experiment. Tables [5] and [f] list the hyperparameter
values for MEERKAT-VP. Tables [7]and [8] demonstrate the robustness of the MEERKAT-VP parameter
selection. Table[9]provides a quantitative analysis that demonstrates the significant disparity in gradi-
ent sensitivity across different parameter groups, thereby justifying our selection criteria. Table[TT]
shows that a domain-shifted calibration dataset can be used effectively to select sensitive model
parameters. Furthermore, we designed an experiment where each client builds a local parameter
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mask from its own dataset. The results demonstrate that aggregating these local masks into a union
mask does not achieve better performance than using a single, globally unified mask. Table [12]
compares MEERKAT and Full-FedZO on multiple tasks at the same communication frequency for
Llama-3.2-1B, Qwen2-1.5B, and Gemma-2-2b models. Table E]presents results in a Non-IID client
data scenario, comparing MEERKAT-VP and MEERKAT under the same communication frequency
and sparsity density, and demonstrating MEERKAT-VP improved performance. Table [[4]investigates
the robustness of MEERKAT by evaluating test accuracy with local step 1 across different sparsity
densities. Table E] compares MEERKAT, Full-FedZO and LoRA-FedZO under high communication
frequency across IID and Non-IID client data settings. Table 22]details the number of training rounds
required for convergence across different models and tasks. Table 23] benchmarks computational
and communication efficiency, demonstrating that MEERKAT significantly reduces peak RAM usage
and client download bandwidth compared to the Full-FedZO and LoRA-FedZO baselines. Table [24]
shows that our MEERKAT-VP method achieves competitive performance against the back-propagation
upper bound and substantially outperforms FedDYN Acar et al| (2021). Figure[7]and Figure 9] further
illustrate the phenomenon of GradIP under IID and Non-IID client data settings.

Table 9: Gradient Sensitivity Analysis for Qwen2-1.5B Model on C4 Dataset (Top 0.1% Parameters).
To quantitatively analyze gradient sensitivity, we ranked all parameters by their average squared
gradients from pre-training and divided them into four disjoint (non-overlapping) buckets: 0-0.1%,
0.1-1%, 1-10% and 10%-100%.

Bucket / Metric Top 0.1% 0.1%-1% 1%-10% 10%-100%

Avg Gradient Square  4.403 x 1072 8.536 x 1075 1.075 x 107®  1.764 x 10~
Std Gradient Square ~ 8.094 x 1072 5.858 x 107°  6.255 x 1076 1.099 x 1076
Max Gradient Square ~ 1.413 x 10! 3.147 x 10™*  3.505 x 107>  5.245 x 1076
Min Gradient Square ~ 3.166 x 10™*  3.529 x 107%  5.245 x 107¢  1.025 x 10~

Table 10: Accuracy of MEERKAT vs. Random-Select (Qwen2-1.5B, 0.1% mask). Directly
addressing the comparison with random selection, we ran a control experiment that shows our
method is significantly better across all tasks. The local step is 10.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg

MEERKAT 0.949 0.881 0934  0.752 0.813 0.682 0.628  0.806
Random Select  0.821 0.543 0.852  0.667 0.711 0.663  0.539 0.685

Improvement +12.8% +33.8% +82% +8.5% +102% +19% +89% +12.1%
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Table 11: Performance Comparison with Different Calibration Datasets and Methods. Our method
does not require the original pre-training data. It uses a small sample (128 sequences) from any
public, high-quality text corpus to create a transferable parameter mask. This table confirms
MEERKAT’s flexibility and transferability across different domains, including web-text, code, and
medical data, consistently outperforming the Full-FedZO baseline. We also explore UnionMask, a
client-specific mask aggregation approach: (1) Each client computes its own mask based on local
data distribution; (2) Clients send masks to the server for aggregation into a union mask; (3) All
clients use this union mask for ZO training; (4) The server uses the union mask for parameter
updates. Results show that the specialized UnionMask performs similarly to our transferable mask,
validating our universality approach. The local step is 10. Code data: microsoft/rStar-Coder. Medical
data: FreedomlIntelligence/medical-o1-reasoning-SFT.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg
Full-FedZO 0.909 0.705 0940 0.641 0.542 0.634 0.523 0.699
Web-Text Domain Calibration Data
MEERKAT (C4, 0.1%) 0.916 0.872 0.964 0.695 0.600 0.653 0.614 0.759
MEERKAT (Wiki, 0.1%) 0.913 0.855 0952 0.646 0.582 0.634 0.567 0.736
MEERKAT (ArXiv, 0.1%) 0.901 0.851 0949 0.714 0573 0.644 0.562 0.742
MEERKAT (FineWeb, 0.1%) 0.902 0.846 0958 0.695 0.584 0.634 0.561 0.740
Domain-Shifted Calibration Data
MEERKAT (Code, 0.1%) 0.915 0.843 0956 0.695 0.551 0.612 0.602 0.739
MEERKAT (Bio, 0.1%) 0.912 0.850 0956 0.694 0.560 0.625 0.595 0.742

Client-Specific Mask Aggregation
UnionMask (per-client, C4, 0.1%)  0.902 0.845 0950 0.669 0.582 0.634 0.569 0.736

Table 12: Performance comparison of MEERKAT and Full-FedZO on tasks SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, WIC under an IID client data setting. “Acc” is the average test accuracy across
tasks. Bold numbers indicate the highest value in each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

Full-FedZO 10 0.913 0.700 0938 0.646 0.537 0.634 0.540 0.701

MEERKAT 10 0.925 0.881 0.964 0.751 0.684 0.634 0.648 0.784

Full-FedZO 30 0.913 0700 0935 0.643 0542 0.634 0528 0.699

LLaMA-3.2-1B MEERKAT 30 0.919 0865 0967 0.729 0.644 0.663 0.617 0.772
- Full-FedZO 50 0.913 0.698 0939  0.641 0520 0.634 0.539 0.698
MEERKAT 50 0.920 0.871 0.966 0.734 0.648 0.653 0.614 0.772

Full-FedZO 100 0.903 0.705 0934 0.656 0.537 0.634 0.537 0.70I

MEERKAT 100 0.913 0842 0945 0.722 0573 0.634 0.595 0.746

Full-FedZO 10 0.891 0.701 0.931 0.696 0.800 0.682 0.579 0.754

MEERKAT 10 0.944 0.889 0942 0.788 0.817 0.700 0.656 0.819

Full-FedZO 30 0.902 0702 0930 0.709 0817 0.663 0.583 0.758

Qwen2-1.5b MEERKAT 30 0.942 0895 0940 0.786 0.840 0.710 0.659 0.825
) Full-FedZO 50 0.902 0.705 0.929  0.701 0.808 0.663 0.590 0.757
MEERKAT 50 0.942 0.885 0934 0.784 0.840 0.634 0.637 0.808

Full-FedZO 100 0.899 0714 0.928 0.705 0.831 0.682 0594 0.765

MEERKAT 100 0.946 0.886 0930 0.776 0.804 0.653 0.653 0.807

Full-FedZO 10 0.87 0732 0944 0717 0564 0.634 0.592 0.723

MEERKAT 10 0.943 0.892 097 0817 0.724 0.653 0.636 0.805

Full-FedZO 30 0.91 0.81 0942 0.73 056 0.644 0.578 0.739

G 2-2b MEERKAT 30 0.943 0887 0973 0.812 0.617 0.663 0.608 0.786
Full-FedZO 50 0911 0812 0942 0.735 0551 0.634 0572 0.737

MEERKAT 50 0.94 0873 0964 0.812 0.604 0.634 0.617 0.778

Full-FedZO 100 0.917 0.83 0936 0.728 056 0.644 059 0.744

MEERKAT 100 0.949 0.87 0.954 0.815 0.568 0.634 0.592 0.769
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Table 13: Comparison of MEERKAT-VP and MEERKAT under Non-IID client data setting, with the
same local step and sparsity. Tasks include SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC.
“Acc” indicates the average test accuracy across all tasks. Bold numbers highlight the best result in
each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

MEERKAT-VP 10 0.922 0.864 0962 0.713 0.617 0.644 0.625 0.764

MEERKAT 10 0.916 0.872 0964 0.695 0.600 0.653 0.614 0.759

MEERKAT-VP 30 0.919 0.825 0963 0.685 0.595 0.634 0.631 0.750

LLaMA-3.2-1B MEERKAT 30 0.897 0.862 0965 0.646 0577 0.644 0583 0.739
MEERKAT-VP 50 0.909 0.836 0959 0.691 0577 0615 0.615 0.743

MEERKAT 50 0.909 0.827 0965 0.647 0.595 0.634 0.567 0.734

MEERKAT-VP 100 0.904 0.824 0962 0.684 0577 0.653 0.630 0.747

MEERKAT 100 0.896 0777 0961 0.658 0.577 0.644 0573 0.726

MEERKAT-VP 10 0.941 0.886 0.947 0.76 0.822 0.653 0.636 0.806

MEERKAT 10 0.949 0.881 0934 0752 0813 0.682 0.628 0.805

MEERKAT-VP 30 0.935 0.876 0953 0.759 0.822 0.653 0.626 0.803

Qwen2-1.5b MEERKAT 30 0.944 0.878 0928 0.734 0.800 0.663 0.624 0.795
MEERKAT-VP 50 0.931 0.882 0946 0.754 0804 0644 0.63 0.798

MEERKAT 50 0.948 0.872 0926 0.746 0.795 0.663 0.594 0.792

MEERKAT-VP 100 0.935 0.874 0947 0.751 0817 0.653 0.644 0.803

MEERKAT 100 0.936 0.878  0.925 0.741 0.795 0.663 0.61 0.792

MEERKAT-VP 10 0.948 0.873 0971 0.802 0.657 0.663 0.609 0.789

MEERKAT 10 0.939 0.869 096 0.804 0.591 0.634 0.609 0.772

MEERKAT-VP 30 0.948 0.86 0974 0.799 0.6 0634 0619 0.776

G 2.2b MEERKAT 30 0.94 0.855 0947 0734 0568 0.644 0.601 0.755
MEERKAT-VP 50 0.949 0.853 0969 0.782 0551 0615 0620 0.762

MEERKAT 50 0.945 0.857 0.966 0.767 0.613 0.634 0.623 0.772

MEERKAT-VP 100 0.944 0.812 0.97  0.733 0551 0.634 0.634 0.754

MEERKAT 100 0.94 0.851 0951 0.745 0551 0.634 0574 0.749

Table 14: MEERKAT performance at local step = 1 with varying outlier percentages across the
LLaMA-3.2-1B, Qwen2-1.5b, and Gemma?2-2b models. We report test accuracy on SST-2, AgNews,
Yelp, BoolQ, RTE, WSC, and WIC under both IID and Non-IID client data settings. Bold numbers

indicate the highest value in each row.

1D Non-1ID
Model Outlier Percentage SST-2 AgNews Yelp BoolQ RTE WSC WIC SST-2 AgNews Yelp BoolQ RTE WSC WIC
Se-1 0.917 0.72 0965 0.725 0.653 0.644 0.634 0.895 0.669 0964 0.684 0.644 0.653 0.594
LLaMA-3.2-1B Se-2 0913 0.861 0966 0.749 0.653 0.644 0.633 0915 0.87 097 0722 0.653 0.644 0.619
- Se-3 0.900 0.885 0971 0.769 0.702 0.653 0.614 0.930 0.874 0963 0.753 0.620 0.66 0.62
Se-4 0.910 0.877 0954 0.773 0.720 0.663 0.641 0911 0.888 0956 0.700 0.693 0.663 0.628
Se-5 0.922 0.879 0964 0.724 0.631 0.625 0.648 0.92 0.876 0940 0.725 0.613 0.663 0.626
Se-1 0.854  0.856 0947 0766 0.82 0.663 0.644 0.845 0.854 0946 0.753 0.826 0.682 0.631
Qwen2-1.5b Se-2 0.925 0.868 0949 0778 0.826 0.692 0.647 093 0.853 0943 0759 0.822 0.663 0.663
- Se-3 0.926 0.851 0945 0.765 0.813 0.692 0.658 0.924 0.866 094 0759 0.822 0.692 0.661
Se-4 0.92 0.764 0943 0.774 0813 0.682 0.645 0918 0.848 0943 0.762 0.813 0.682 0.647
Se-5 0.903 0.78 0.941  0.748 0.80 0.673 0.625 0.896 0.799 0.937  0.739 0.80 0.673 0.633
Se-1 0.842  0.867 0963 0751 0.657 0.673 0.626 0.871 0.855 0952 0.695 0.653 0.663 0.619
Gemma2-2b 5e-2 0932  0.878 0977 0.809 0.791 0.663 0.623  0.92 0.863 0968 0.786 0.706 0.653 0.634
5e-3 0.952 0871 0971 0.837 0.800 0.663 0.639 0942  0.853 097 0807 0.751 0.653 0.645
Se-4 0.941 0.824 0967 0.83 0.764 0.663 0.612 0.941 0.83 0962 0.831 0.746 0.634 0.63
5e-5 0.92 0.828 0952 0797 0.6 0.634 0.606 0922 0764 0949 0774 056 0.634 0.601

Table 15: Performance comparison of Full-FedZO, LoRA-FedZO, and MEERKAT under synchronous
updates with localstep = 1, evaluated on both IID and Non-IID client data settings(Dirichlet

a = 0.5) across LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. We report test accuracy on SST-2,

AgNews, Yelp, BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc
Full-FedZO 0.918 0.801 0937 0.686 0.54 0.625 0.58 0.726

LLaMA-3.2-1B (IID) LoRA-FedZO 0915 0.855 0944 0.672 0599 0.663 0.599 0.749
MEERKAT 0.900 0.885 0971 0.773 0.702 0.653 0.614 0.785

Full-FedZO 0911 0.831 0937 0.672 0.528 0.587 0.567 0.719
LLaMA-3.2-1B (Non-IID) LoRA-FedZO 08669  0.842 0944 0.659 0.53 0.567 0.578 0.712

MEERKAT 0.93 0.888 0963 0.753 0.67 0.66 0.62 0.783
Full-FedZO 0.9013 0.726 0918 0.700 0.797 0.710 0.579 0.761
Qwen2-1.5b (IID) LoRA-FedZO  0.935 0.752 0925 0.686 0.794 0.673 0.606 0.767
MEERKAT 0.926 0.851 0945 0.778 0.813 0.692 0.658 0.809

Full-FedZO 0.844 0.725 0937 0.688 0.769 0.663 0.565 0.741
Qwen2-1.5b (Non-1ID) LoRA-FedZO  0.932 0.76 0944 0.682 0.773 0.682 0.565 0.763

MEERKAT 0.924 0.866 094  0.762 0.822 0.692 0.661 0.809
Full-FedZO 0.934 0.84 0953  0.774 0.542 0.644 0.606 0.756
Gemma2-2b (IID) LoRA-FedZO  0.942 0.856 094 0735 052 0.644 0.606 0.749
MEERKAT 0.952 0871 0971 0.837 0.8  0.663 0.639 0.819

Full-FedZO 0.93 0.824 095 0744 056 0.625 0.575 0.744
Gemma2-2b (Non-1ID) LoRA-FedZO 0.9415 0.825 0954 0.711 0.528 0.625 0.578 0.737
MEERKAT 0.942 0.853 097 0807 0.751 0.653 0.645 0.803
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Table 16: Performance comparison of LoORA-FedZO, and MEERKAT under synchronous updates
with localstep = 1, evaluated on Non-IID client data settings (Dirichlet o = 0.3) across
LLaMA-3.2-1B, Qwen2-1.5b, and Gemma?2-2b. We report test accuracy on SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

Full-FedZO 0.891 0.759 094  0.623 0528 0.644 0.551 0.705
LLaMA-3.2-1B (Non-IID) LoRA-FedZO 0.915 0866 0952 0.646 0.586 0.653 0.554 0.739
MEERKAT 0.918 0.843 097 0.761 0.626 0.653 0.609 0.769

Full-FedZO 0.52 0.347 0.45 0.62 0532 0632 051 0516
Qwen2-1.5b (Non-1ID) LoRA-FedZO  0.855 0.732 0907 0.674 0.72 0.634 0.603 0.732
MEERKAT 0.91 0809 0954 0.772 0.822 0.682 0.661 0.801

Full-FedZO 0.881 0.761 094 0.688 0.552 0.613 0.603 0.720
Gemma2-2b (Non-IID) LoRA-FedZO  0.922 0.826 0921 0.681 052 0.625 0.606 0.729
MEERKAT 0.942 0.873 097 0.806 0.688 0.634 0.615 0.79

Table 17: Performance comparison of LoORA-FedZO, and MEERKAT under synchronous updates
with localstep = 1, evaluated on Non-IID client data settings (Dirichlet o = 0.1) across
LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

Full-FedZO 0.891 0.754 0933 0.626 0.522 0365 0512 0.658
LLaMA-3.2-1B (Non-IID) LoRA-FedZO  0.902 0.845 0942 0.643 0.533 0.365 0.559 0.684
MEERKAT 0.92 0.794 0965 0.745 0.582 0.644 0.603 0.750

Full-FedZO 0.49 0.247 0.44 0.62 0528 0.634 05 049%
Qwen2-1.5b (Non-1ID) LoRA-FedZO  0.848 0.735 0.92 0.67 0.746 0.548 0.601 0.724
MEERKAT 0.889 0.78 0944 0732 0.822 0.634 0.637 0.777

Full-FedZO 0.879 0.741 0937 0.681 048 0.634 0.601 0.708
Gemma2-2b (Non-IID) LoRA-FedZO 091 0.78 0914 0.682 0551 0.567 0.608 0.716
MEERKAT 0.944 0866  0.971 0.805 0.728 0.605 0.628 0.792

Table 18: Test accuracy of MEERKAT versus DecomFL on Qwen2-1.5b with a single local step under

Non-IID data settings (Dirichlet v = 1). Results are shown for SST-2, BoolQ, RTE, and WSC; bold

indicates the best score in each row. Experiments use 8 clients in total, with 2 clients participating in
each round, following the DecomFL configuration.

Model Method SST-2 BoolQ RTE WSC

DecomFL  0.868 0.674 0.773 0.653
MEERKAT 0918 0.734 0.817 0.682

Qwen2-1.5b

Table 19: Performance comparison of Task-Mask, and MEERKAT under synchronous updates with
localstep = 1, evaluated on IID client data settings across LLaMA-3.2-1B, Qwen2-1.5b, and
Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC. Bold
numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC
Task 0910 0847 0957 0718 0661 0644 0.661

LLaMA-3.2-1B (IID)  \yerewar 090 0.885 0971 0773 0702 0.653 0.614
Task 0936 0827 0954 0765 083 0711 0.664

Qwen2-15b (D) \yprekar 0926 0.851 0945 0778 0813 0692 0.658
Task 0942 0868 0972 078 0728 0644 06

Gemma2-2b (D) yyovcwar 0952 0871 0971 0.837 0.8  0.663 0.639
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(a) This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on three
LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods, and
each method has two bars indicating performance under IID and Non-IID settings. The Non-1ID
results are obtained under a Dirichlet « = 0.3 .The y-axis represents the average test accuracy across
multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.
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(b) This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on three
LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods, and
each method has two bars indicating performance under IID and Non-IID settings. The Non-1ID
results are obtained under a Dirichlet « = 0.1 .The y-axis represents the average test accuracy across
multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.

Figure 6: Comparison of Full-FedZO, LoRA-FedZO, and MEERKAT on LLaMA-3.2-1B, Qwen2-
1.5b, and GemmaZ2-2b under IID and Non-IID settings with varying Dirichlet o. Subfigure(a) presents
results for Non-IID data generated with o« = 0.3, while Subfigure(b) shows results for Non-IID data
with a = 0.1.

Table 20: Performance comparison of Task-Mask, which uses downstream task data to select
sensitive model parameters, and MEERKAT under synchronous updates with localstep = 1,
evaluated on Non-IID client data settings (Dirichlet & = 0.5) across LLaMA-3.2-1B, Qwen2-1.5b,
and Gemma?2-2b. We report test accuracy on SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC.
Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC
Task 0904 0874 0956 0744 0591 0615 0622
LLaMA-3.2-1B (Non-lID)  nyopewnr 093 0888 0963 0753 062 0.66  0.62
Task 0938 0863 0956 0779 0817 0692 065
Qwen2-1.5b (Non-IID)  \jorcwar 0924 0.866 094 0762 0822 0.692 0.661
Task 091 083 0966 0822 072 0644 0578

Gemma2-2b (Non-lID)  yyorovar 0942 0853 097 0807 0751 0.653 0.645
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Table 21: Test accuracy of MEERKAT versus Task-Mask on Qwen2-1.5b with a 10 local step under
Non-IID data settings (Dirichlet o = 0.5). Results are shown for SST-2, BoolQ, RTE, and WSC;
bold indicates the best score in each row. Experiments use 8 clients in total, with 2 clients
participating in each round, following the DecomFL configuration.

Model Method SST-2 BoolQ RTE WSC

Task 0932 0.784 0.823 0.681
MEERKAT 0.944 0.752 0.813 0.682

Qwen2-1.5b

Table 22: MEERKAT Convergence Rounds for the LLaMA-3.2-1B, Gemma2-2B, and Qwen2-1.5B
models on the SST-2, AgNews, Yelp, and BoolQ tasks, with 10 local steps.

Model SST-2 AgNews Yelp BoolQ
Gemma2-2B 39 61 29 43
Qwen2-1.5B 51 75 36 70
LLaMA-3.2-1B 85 77 52 97

Table 23: Computation and Communication Efficiency Benchmark Shows MEERKAT’s Superior
Resource Usage over Baselines. We benchmarked resource usage on Qwen2-1.5B with 10 clients
(FP16). Setting: Full-FedZO vs Meerkat vs LoORA-FedZO, where LoRA is configured with rank =

16, a = 16—the same setting used in Table[}

Method/Metrics RAM (Peak) Upload/Client Download/Client
Full-FedZO 12,600 MiB 0.078 KB 2.875 GB
LoRA-FedZO 10,741 MiB 0.078 KB 35.22 MB
MEERKAT (0.1% mask) 7,850 MiB 0.078 KB 2.50 MB

Table 24: Performance Comparison of MEERKAT-VP, Back-propagation, and MEERKAT+FedDYN
on LLaMA-3.2-1B. While ZO methods cannot match back-prop’s performance due to gradient noise
from limited sampling, MEERKAT-VP achieves competitive results (0.764 avg) with significantly
lower memory consumption. We adapted FedDYN method for MEERKAT with a=0.01 following the
original paper. MEERKAT-VP outperforms this adaptation (0.764 vs 0.728). The local steps is 10.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg
Back-propagation 0.925 0.893 0968 0.751 0.644 0.660 0.630 0.782
MEERKAT-VP 0.922 0.864 0962 0.713 0.617 0.644 0.625 0.764

MEERKAT+FedDYN  0.917 0.841 0954 0.638 0.564 0.615 0.570 0:728
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(a) The GradIP measured for IID and Non-
[ID clients data under the WIC task using
the Llama-3.2-1B model.
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(c) The GradIP measured for IID and Non-
IID clients data under the Yelp task using
the Llama-3.2-1B model.
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(e) The GradIP measured for IID and Non-
IID clients data under the RTE task using
the Llama-3.2-1B model.
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(b) The GradIP measured for IID and Non-
IID clients data under the AgNews task us-
ing the Llama-3.2-1B model.
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(d) The GradIP measured for IID and Non-
IID clients data under the BoolQ task using
the Llama-3.2-1B model.
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(f) The GradIP measured for IID and Non-
IID clients data under the WSC task using
the Llama-3.2-1B model.
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(g) The GradIP measured for IID and Non-
IID clients data under the BoolQ task using
the Gemma-2-2b model.

Figure 7: These figures show GradIP (Definition curves under IID and Non-IID settings,
computed over 100 local training steps on six datasets (WSC, BoolQ, RTE, WIC, AgNews, Yelp)
using the Llama-3.2-1B model with density level 5 x 1073, An extra BoolQ result is shown for the

Gemma-2-2B model.
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Cosine Similarity vs. Step
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(a) Cosine similarity between local ZO gradients
and C4 pre-trained gradients.
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(b) Gradient norm from local ZO training under
Non-IID and IID data distribution.

Figure 8: The left panel shows the cosine similarity between locally computed ZO gradients and
gradients from the C4-pre-trained data, illustrating that the two gradient vectors remain nearly
orthogonal throughout training. The right panel presents the norm of local ZO gradients over
training steps, showing a consistent decay and convergence in magnitude under Non-IID and IID
data distribution. These observations are obtained under density level of 5 x 1073,
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(a) GradIP for Non-IID clients on the AgNews
task, where the two classes have a highly imbal-
anced ratio (5 vs. 89 samples).
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(b) GradIP for Non-IID clients data on the BoolQ
task, where the two classes have a highly imbal-
anced ratio (6 vs. 190 samples).
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Figure 9: These subfigures show GradIP (see Definition [2.3) for LLaMA-3.2-1B under Non-IID
client data with 100 local training steps. Subfigure (a) uses AgNews (5 vs. 89), while Subfigure (b)

uses BoolQ (6 vs. 190).
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GradIP vs. Step BoolQ Qwen
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(a) The experiments, conducted using the Qwen2-1.5B model on the BoolQ dataset, reveal that under

Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in GradIP

between the early and later stages of training. In the extreme Non-IID case, the GradIP values in the
later stages tend to approach zero.
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—e— Client 0 (ratio 1:1)
20 —=— Client 1 (ratio 1:10)
—— Client 2 (ratio 1:20)

30 40 50 60 70 80 90 100
Step

(b) The experiments, conducted using the Llama-3.2-1B model on the BoolQ dataset, reveal that

under Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in

GradlIP between the early and later stages of training. In the extreme Non-IID case, the GradIP values
in the later stages tend to approach zero.

GradIP vs. Step BoolQ Gemma
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(c) The experiments, conducted using the Gemma-2-2B model on the BoolQ dataset, reveal that
under Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in

GradlIP between the early and later stages of training. In the extreme Non-IID case, the GradIP values
in the later stages tend to approach zero.

Figure 10: GradIP analysis for different models on the BoolQ dataset under Non-IID and IID
conditions: As the class imbalance ratio increases, GradIP in the later training stages tends to
approach zero. This decline is more pronounced under Non-IID settings, where the gap between

initial and final GradIP values is larger than in the IID case. All trends are visualized using a moving
average for clarity. 50
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GradIP vs. Step AGnews Qwen
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(a) The experiments, conducted using the Qwen2-1.5B model on the AGNews dataset, reveal that
under Non-IID settings—especially with a 1:15:1:1 class imbalance—there is a pronounced decline
in GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP
values in the later stages tend to approach zero.

GradIP vs. Step AGnews Llama
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(b) The experiments, conducted using the Llama-3.2-1B model on the AGNews dataset, reveal that
under Non-IID settings—especially with a 1:15:1:1 class imbalance—there is a pronounced decline

in GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP
values in the later stages tend to approach zero.

Figure 11: GradIP analysis for different models on the AGNews dataset under Non-IID and IID
conditions: As the class imbalance ratio increases, GradIP in the later training stages tends to approach
zero. This decline is more pronounced under Non-IID settings, where the gap between initial and
final GradIP values is larger than in the IID case. All trends are visualized using a moving average
for clarity; consequently, the plotted lines do not begin at step zero, as the initial data points are used

to compute the first averaged value. This is an intentional effect of the visualization, not an error or a
result of missing data.
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