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ABSTRACT

Federated Learning enables collaborative fine-tuning of Large Language Models
(LLMs) across decentralized Non-Independent and Identically Distributed (Non-
IID) clients, but such models’ massive parameter sizes lead to significant memory
and communication challenges. This work introduces MEERKAT, a sparse zeroth-
order optimization (ZO) method designed for federated LLM fine-tuning. By
limiting fine-tuning to a transferable, static, extremely sparse subset of parameters,
MEERKAT achieves remarkable communication efficiency, enabling cost-effective
high-frequency synchronization. With theoretical analysis and experiments, we
show that this high-frequency communication effectively mitigates Non-IID data
challenges and leads to superior performance compared to full-parameter ZO.
Furthermore, experiment results show that MEERKAT outperforms existing sparsity
baselines with better performance at the same communication frequency. To further
handle Non-IID drift, MEERKAT leverages traceable local updates and forms a
virtual path for each client. This virtual path mechanism reveals the GradIP
phenomenon: the inner products between LLM pre-training gradients maintained
by server and client gradients estimated via ZO converges for extreme Non-IID
clients but oscillates for IID ones. This distinct behavior provides a signal for
identifying clients with extreme data heterogeneity. Using this signal, MEERKAT-
VP is proposed to analyze GradIP trajectories to identify extreme Non-IID clients
and applies early stopping to enhance aggregated model quality. Experiments
confirm that MEERKAT and MEERKAT-VP significantly improve the efficiency and
effectiveness of ZO federated LLM fine-tuning.

1 INTRODUCTION

Federated Learning (FL) McMahan et al. (2017) has emerged as a powerful paradigm for enabling
decentralized collaboration, particularly relevant for fine-tuning Large Language Models (LLMs)
across numerous client devices Dubey et al. (2024); Brown et al. (2020). Unlike centralized training,
FL allows clients to train models locally and share only model updates with a central server. However,
fine-tuning LLMs in a FL setting faces two major challenges: the massive model parameter size
and the Non-Independent and Identically Distributed (Non-IID) data distribution across clients. The
former leads to high computation demands on clients and significant communication overhead, while
the latter causes client drift and hinder global convergence. These challenges make LLM fine-tuning
impractical on resource-constrained clients and hinder the effective use of decentralized data.

Zeroth-order Optimization (ZO) provides a promising avenue for addressing some of these challenges
in federated LLM fine-tuning. By estimating gradients through model perturbations and forward
passes, ZO bypasses the need for backpropagation and the storage of intermediate activations, leading
to more memory-efficient learning on client devices Zhang et al. (2021); Fang et al. (2022); Ling
et al. (2024); Liu et al. (2024); Malladi et al. (2023). However, applying standard ZO directly to
the massive parameter space of LLMs can still be computationally inefficient and the optimization
process unstable Malladi et al. (2023). Moreover, adapting ZO for federated LLM fine-tuning remains
challenging, particularly in balancing computational efficiency, communication overhead, and model
performance under Non-IID data heterogeneity.
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In order to address the above challenges, we propose MEERKAT, a sparse ZO method designed for
efficient federated LLM fine-tuning. MEERKAT addresses the computational and communication
burdens by focusing ZO updates on a static, extremely sparse (less than 0.1%), and transferable subset
of LLM parameters. This subset is strategically identified using gradients derived from pre-training
data, ensuring that updates target parameters most sensitive to the loss function. This selective
approach dramatically reduces communication overhead and supports cost-effective high-frequency
synchronization. As we will demonstrate through theoretical analysis and extensive experiments,
the combination of high communication frequency and sparsity in MEERKAT enables frequent yet
lightweight synchronization. This effectively reduces the convergence error floor in theory and
practice, leading to consistently superior performance compared to full-parameter ZO fine-tuning and
other sparsity methods under the same communication frequency.

Leveraging MEERKAT’s efficient high-frequency synchronization to effectively mitigate Non-IID
data challenges, we further enhance its adaptability to weak network conditions. By employing
a virtual path mechanism to track client updates, we enable the server to analyze client training
dynamics without accessing raw data, thus facilitating robust operation even when frequent direct
communication is constrained. Within this virtual path, we observe the GradIP phenomenon, a
pattern revealed by the GradIP score, which computes the inner product between local client gradients
estimated via ZO and server pre-training gradients. GradIP scores converge for Non-IID clients while
oscillating for IID clients, serving as a clear indicator of data heterogeneity. Leveraging this insight,
we propose MEERKAT-VP that introduces a virtual path client selection method to identify clients
with significant Non-IID characteristics and apply early stopping, thereby reducing their adverse
impact on the aggregated model and enhancing its quality.

In summary, this paper makes the following contributions:

• Performance Improvement with Sparsity. Meerkat consistently outperforms full-parameter ZO
optimization in both IID and Non-IID settings, demonstrating the effectiveness of our sparse update
strategy. Extensive experiments show that Meerkat surpasses not only full-parameter ZO but also
other sparse methods, such as LoRA and weight-magnitude, achieving superior performance.

• High Frequency Communication with Sparsity Can Lower the Error Floor. MEERKAT
leverages extreme model sparsity to reduce local computational memory. Exchanging scalar
gradients drastically decreases communication costs, enabling high-frequency communication.

• Traceable Local Updates and GradIP Phenomenon: MEERKAT leverages traceable sparse local
updates and forms a virtual path. The virtual paths reveals the GradIP phenomenon: the inner
product between LLM pre-training gradients maintained by server and client gradients estimated
via ZO converges for extreme Non-IID clients but oscillates for IID ones. This distinct behavior
serves as a signal for detecting clients with extreme data heterogeneity.

• MEERKAT-VP: Early Stopping for Extreme Non-IID Clients. Leveraging the GradIP phe-
nomenon via virtual path client selection, MEERKAT-VP effectively manages extreme Non-IID
clients, by early stopping these clients to improve global model quality.

• Theoretical and Experimental Validation. We present theoretical analysis and extensive ex-
periments across diverse FL settings, validating the scalability and performance benefits of both
MEERKAT and MEERKAT-VP.
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Figure 1: MEERKAT: Sparse zeroth-order optimization for federated LLM fine-tuning workflow.
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2 SPARSE ZEROTH-ORDER OPTIMIZATION FOR FEDERATED LLM
FINE-TUNING

This section introduces MEERKAT, a sparse ZO method for federated LLM fine-tuning, and its
upgraded version, MEERKAT-VP, which incorporates Virtual Path Client Selection(VPCS) strategy.
This strategy leverages the traceable virtual path of client local updates to identify clients with
extremely Non-IID data and applies early stopping to mitigate their adverse impact on global model
convergence. We first introduce the technical details of MEERKAT, as illustrated in Figure 1, and
subsequently describe MEERKAT-VP, shown in Figure 5. We then present theoretical convergence
analysis for both methods and discuss their strengths in terms of cost-effectiveness, traceability, and
the use of early stopping to mitigate client drift caused by Non-IID data.

2.1 MEERKAT: EXTREME SPARSE ZEROTH-ORDER FEDERATED LLM FINE-TUNING

Sparse ZO On-Device LLM Fine-Tuning. MEERKAT performs sparse ZO for LLM fine-tuning
on the client device. Let D denote the client dataset we would like an LLM to fine-tune with loss
function f . Given the LLM weight w ∈ Rd, we perform an iterative optimization by randomly
sampling a batch B ⊂ D for each step and performing the local update step as

g =
f(w + ϵ(z⊙m);B)− f(w − ϵ(z⊙m);B)

2ϵ
, ∇̂f = g (z⊙m) . (1)

where z ∈ Rd is a random vector sampled from a Gaussian distribution N (0, Id), ϵ ∈ R is the
perturbation magnitude, and m ∈ {0, 1}d is a binary sparse mask with density ratio u that selects a
subset of parameters for updates.

Extremely Sparse Parameters Obtained from Pre-Training. According to the formulation in
Eq equation 1, we focus the perturbation of the LLM on a subset of parameters determined by a
binary mask m. The mask m is derived from the pre-training process of the LLM. We compute the
average squared gradients of each parameter over a subset of the C4 dataset Raffel et al. (2020). Then,
we select the top u parameters with the highest average squared gradient values and mark them as 1
in m. In practice, we set u to 0.1%, resulting in extremely sparse updates.

FL with MEERKAT. The workflow of MEERKAT is illustrated in Figure 1 and Algorithm 2.
MEERKAT first loads each client with the pre-trained weight w0 and the sparse mask m. Next,
MEERKAT initializes a random seed list {s11, . . . , sT1 } at the server to generate the random Gaussian
vector z for each local step in the first round. Next, MEERKAT performs an iterative federated
optimization with R rounds of client-server synchronization with each round as follows.

(1) Local ZO update at each client. Upon receiving global model weights wr−1 and seed list
{s1r, . . . , sTr } from the server, each client performs T local iteration steps. In each local step t, the
client perturbs the model parameters selected by m with the random vector ztk generated by the
random seed str. Each client then computes projected gradient gtk (a scalar) according to Eq. equation 1.
Using gtk, each client calculates the local gradient ∇̂f t

k and updates the local model wk with learning
rate η. After T local steps, each client uploads a list of projected gradients {g1k, g2k, . . . , gTk } to the
server. (2) Server reconstructs client update with virtual path. Since the server shares the same
random seed list with clients for the round, it can reconstruct each client’s local model update path
upon receiving their projected gradients. We term this server-side reconstruction process the virtual
path, as it allows the server to follow the client’s local steps without accessing raw data. As shown
in Step 2 of Algorithm 2, the server uses the preserved random seed and receives project gradients
of each local step from each client to recover the local model update path for each client. (3) Sever
aggregates and initiate the next round: After virtual path reconstruction, the server aggregates the
reconstructed client model weights wT

k to sparsely update the global model to wr. Subsequently, the
server sends wr and a a new seed list {s1r+1, . . . , s

T
r+1} to clients and initializes next round.

MEERKAT-VP: Virtual Path Client Selection and Early Stopping. MEERKAT-VP extends
MEERKAT by incorporating a VPCS strategy designed for heterogeneous environments. Lever-
aging the virtual path reconstruction capability, the server analyzes client update trajectories to
identify those with extremely Non-IID data distributions. MEERKAT-VP then applies an early stop-
ping mechanism to these identified clients, restricting them to a single local step to mitigate the
negative impact of their skewed updates on global model convergence and performance.
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2.2 THEORETICAL CONVERGENCE ANALYSIS

We theoretically analyze the convergence of MEERKAT and MEERKAT-VP under the
Polyak–Łojasiewicz (PL)-type non-convex condition. All technical assumptions and the corre-
sponding proof are presented in Appendix C.

Theorem 2.1 (Convergence rate of MEERKAT). Under Assumptions C.1–C.6, if the learning rate

satisfy η = min

{
1

L(u+2) ,
µ
√
c
(
1+

√
ch

)
2L2(2+u)2

}
, then the global model {wr} generated by the MEERKAT

algorithm satisfies the following convergence bound:

1

R

R−1∑
r=0

(f(wr)− f∗) ≤ O
(
(2 + u)2

TR
· E[f(w0)− f(wR)]

)
+O

(
T

2 + u

)
+O

(
1
)

(2)

Theorem 2.2 (Convergence rate of MEERKAT-VP). Under Assumptions C.1–C.6, if the learning rate

satisfies η = min

{
1

L(u+2) ,
µ
√
c
(
Kg T+Kb

)
2K (2+u)2 L2 T γ

}
and each client k ∈ Kb performs T = 1 local step

while the remaining Kg clients perform T local steps, then the global model {wr} generated by the
MEERKAT-VP algorithm satisfies the following convergence bound:

1

R

R−1∑
r=0

Ez̄

[
f(wr)− f∗] ≤ O

(
(Kg +Kb)

2 (2 + u)2 γ T

c (KgT +Kb)2 R

)
+ O

(
1 + u

Kg +Kb

Kg+Kb∑
k=1

∆k

)

+ O

(
c T Kg

(Kg +Kb)(1 + u) γ

)
+ O

(
cKb σ

2
h

(Kg +Kb)(1 + u)T γ

)
+O

(
1
)
.

(3)

The detailed theoretical analysis and proofs for Theorem 2.1 (MEERKAT) can be found in Ap-
pendix C.4, and for Theorem 2.2 (MEERKAT-VP) in Appendix C.5.

Insights of MEERKAT. MEERKAT’s convergence reveals the intricate interplay of local steps T
and density u on performance. (1) MEERKAT’s sparsity can theoretically improve performance.
Lower u (higher sparsity) quadratically benefits the rate-dependent term (∝ (2 + u)2), favoring
faster initial convergence. However, it inflates the steady-state error

(
∝ 1

2+u

)
. Comparing to the

full-parameter case (u = 1), sparsity (u < 1) can reduce the overall bound by decreasing the
rate-dependent term, offering communication and computational benefits. Yet, excessive sparsity can
increase the steady-state error, suggesting an optimal density level u ∈ (0, 1]. (2) High frequency
communication with sparsity can lower the error floor. Increasing T improves the transient term
scaling with O

( (2+u)2

T R

)
, potentially accelerating convergence towards the steady state; however, it

expands the steady-state term O
(

T
2+u

)
, thereby increasing the error floor. Conversely, decreasing T

reduces the steady-state term, leading to a tighter final accuracy. Although smaller T can lead to
larger rate-dependent term. It’s impact diminishes as the number of rounds R increases. This analysis
suggests that operating with frequent communication can theoretically reduce the steady-state error.

Advantages of MEERKAT-VP. We compare each component of the error bound under the same
T and R. First, the transient term ratio between MEERKAT-VP and MEERKAT is approximately
γ(1+

√
ch)

2 < 1, and as ch → 1 so γ → 0, the product γ(1+
√
ch)

2 → 0, causing the transient error

to vanish. Second, the noise term ratio is given by σ2
h/2

σ2
h/(µ(1+

√
ch)2)

=
µ(1+

√
ch)

2

2 , which remains

below 1 whenever µ(1 +
√
ch)

2 < 2. Since µ < 1 empirically, this condition typically holds.

Moreover, MEERKAT-VP introduces an additional variance term cKbσ
2
h

2K(2+u)LTγ that decays asO(1/T ),
making it negligible for large local steps. Lastly, in terms of heterogeneity, the coefficient of the
heterogeneity term

∑
k ∆k in MEERKAT-VP is smaller: (2+u)L

4K < L
K , and the extra variance term

scales inversely with K, thus diminishing in larger systems. Therefore, EMEERKAT-VP < EMEERKAT

and this gap widens as data heterogeneity ch increases. The detailed mathematical derivations and
analysis, please refer to the Appendix C.5.
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2.3 CLAIM 1: MEERKAT CAN OUTPERFORMS FULL-PARAMETER FEDERATED ZO UNDER
SAME SYNCHRONIZATION FREQUENCY

We claim that with fixed and extreme sparsity, MEERKAT outperforms full-parameter ZO in federated
LLM fine-tuning under the same synchronization frequency and effectively mitigates the Non-IID
client data problem through frequent synchronization and sparsity.

Advantages of Sparsity in Federated ZO. ZO has an intrinsic need for sparsity due to its reliance
on nearly uniform perturbations across dimensions. Research on ZO shows that selecting sensitive
parameters using gradient-based methods consistently outperforms alternative strategies such as
weight magnitude or random parameter selection Guo et al. (2024). Following this idea, MEERKAT
produces LLM-sensitive parameters with gradient-based sparsification on pre-training data such as
C4 Raffel et al. (2020). Moreover, MEERKAT fine-tunes LLMs by estimating gradients through
forward passes, completely bypassing backpropagation. This approach minimizes the need to cache
gradients and activations, leading to significant memory savings. Focusing on sensitive parameters,
MEERKAT ensures efficient and effective fine-tuning even under extreme sparsity levels (e.g., updating
only 0.1% of the parameters). Furthermore, these sensitive parameters exhibit transferability across
downstream tasks. Theoretical analysis (Appendix C.4) also confirms that lower density u leads to
faster convergence via improved rate-dependent terms O((2 + u)2/(TR)), while excessive sparsity
increases the steady-state error O(T/(2 + u)), suggesting an optimal sparsity trade-off.

Performance Under High Synchronization Frequency. The lightweight communication of
MEERKAT enables frequent client-server synchronization at a low cost, which is crucial for ad-
dressing data heterogeneity Yang et al. (2024); Mendieta et al. (2022) in FL. In high-frequency
communication scenarios, both the clients and the server only exchange a list of scalars (projected
gradients) whereas in lower-frequency synchronization, clients have to upload projected gradients
but still download sparse model parameters. By eliminating the need to download sparse model
parameters in high-frequency synchronization, this approach is significantly more bandwidth-efficient,
further minimizing communication overhead. We present the high-frequency synchronization algo-
rithm of MEERKAT in Appendix C Algorithm 3. By facilitating frequent synchronization, training
can better prevent clients from drifting. Our previous theoretical analysis also demonstrates that a
smaller T might influence the rate-dependent term, its beneficial impact on reducing the steady-state
error is significant for achieving a tighter final accuracy over many rounds R.

2.4 CLAIM 2: EMPIRICAL GRADIP PHENOMENON REVEALS DATA HETEROGENEITY

MEERKAT’s traceable virtual path allows us to analyze client local training dynamics, revealing an
empirical phenomenon related to data heterogeneity via a metric we call GradIP.

Definition 2.3. Gradient Inner Product (GradIP) score: Let ∇̂f t
k (see Algorithm 2) denote the ZO

gradient of LLM with Eq equation 1 on client k at local step t. Let ∇fp denote the gradient of LLM
computed by backpropagation on pre-training data. We define the GradIP score as ⟨∇fp, ∇̂f t

k⟩.

GradIP As Indicator for Data Heterogeneity. Leveraging the virtual path reconstruction capability
of MEERKAT, the server can trace each client’s local training trajectory. This process uses the
uploaded projected gradients gtk along with the shared random seeds (which regenerate ztk) and the
sparse mask m to reconstruct the local gradient ∇̂f t

k. To understand the impact of a client’s local
data distribution on its training process, we introduce the GradIP metric. Inspired by the use of
pre-training data gradients to identify sensitive parameters, GradIP quantifies the cosine similarity
between the local gradient computed during client training and the LLM pre-training gradient.

Empirical GradIP Phenomenon. Through the traceable virtual path provided by MEERKAT, we
empirically investigated the behavior of the GradIP score among clients with different data distri-
butions (IID and Non-IID) over their local training steps. Our analysis, presented in Appendix C.6,
demonstrates distinct patterns in the dynamics of gradient norms based on data heterogeneity. While
IID client gradient norms exhibit fluctuations, those of extremely Non-IID clients decay and converge
towards zero. The GradIP definition depends on the fixed pre-training gradient norm, local client gra-
dient norm, and the angle θ between them. We hypothesize that θ between these two gradient vectors
is nearly orthogonal. This leads us to expect a different manifestation of the GradIP Phenomenon
when comparing IID and extremely Non-IID clients, primarily influenced by their differing local
gradient norm trajectories.
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2.5 CLAIM 3: VIRTUAL PATH CLIENT SELECTION VIA GRADIP ANALYSIS

Algorithm 1 MEERKAT-VP

1: Input: calibration step Tcali, pre-training gradients
∇fC4, projected gradients {g1k, . . . , g

Tcali
k }, seed str ,

sparse mask m, initial phase steps Tinit, later phase
steps Tlater, convergence threshold σ, Initial to later
ratio ρlater, quiescen step ratio ρquie

2: Step 1: Virtual Path Reconstruction & GradIP
Calculation

3: Generate ztk using str .
4: Compute ∇̂f t

k = gtk · (ztk ⊙m)

5: Compute Gradip = ∇̂f t
k · ∇fC4 (Definition 2.3).

6: Step 2: Identify Extremely Non-IID Clients
7: Compute the average value of Gradip over the

initial-phase steps.

Gradipinit_avg =
1

Tinit

Tinit∑
t=1

Gradipt

8: Compute the average value of Gradip over the later-
phase steps.

Gradiplater_avg =
1

Tlater

Tlater∑
t=1

Gradipt

9: Compute the client’s Initial to later ratio ρlater_client
and quiescent step ratio ρquie_client

ρquie_client =
{s ∈ {1, 2, . . . , Tlater} | Gradips < σ}

Tlater

ρlater_client =
Gradipinit_avg

Gradiplater_avg

10: Record client IDs whose ρlater_client or ρquie_client ex-
ceed ρlater or ρquie.

11: Step 3: Early Stopping
12: Require these identified clients to only perform one

local training step.

Building upon the traceable virtual path capa-
bility introduced in MEERKAT, we claim that
VPCS, by leveraging GradIP analysis, effec-
tively identifies and manages clients with ex-
tremely Non-IID data distribution, thereby im-
proving global model performance and conver-
gence. As established in Section 2.4, the GradIP
score, computable by the server through vir-
tual path reconstruction, provides a effective
signal to identify such clients. VPCS utilizes
this GradIP signal to detect extremely Non-IID
clients. By analyzing the GradIP score trajec-
tory and its behavior over local steps during a
calibration phase, using metrics defined in Ap-
pendix table 3, the server empirically identifies
clients exhibiting the characteristic diminishing
GradIP behavior associated with extremely Non-
IID data distribution. Upon identification via
GradIP analysis, VPCS applies early stopping:
these clients perform only one local training step
per communication round. To ensure full data
utilization over training, a data pointer tracks
the batch processed, allowing clients to resume
from that point in subsequent rounds. This strat-
egy mitigates client drift from skewed data while
ensuring their entire dataset is eventually pro-
cessed. Algorithm 1 outlines the detailed proce-
dure, and Figure 5 illustrates the workflow. Our
previous theoretical analysis of MEERKAT-VP
suggests that early stopping on extremely Non-
IID clients can lead to improved global model
performance.

3 EXPERIMENT

In this section, we aim to validate the effectiveness of MEERKAT and MEERKAT-VP. We aim to
address the following research questions in response to claims in Section 2: (1) RQ 1 for Claim 1
(2.3): Is MEERKAT more effective than full parameter federated ZO under the same synchronization
frequency, especially in heterogeneous environments? (2) RQ 2 for Claim 2 (2.4): Can the empirical
GradIP phenomenon, observed via the virtual path, effectively reveal data heterogeneity by showing
distinct behaviors for IID and Non-IID data distribution clients? (3) RQ 3 for Claim 3 (2.5): Can
MEERKAT-VP, leveraging GradIP analysis, mitigate the impact of extreme Non-IID data compared to
MEERKAT?

We focus on models Gemma-2-2b Team (2024), Qwen2-1.5B qwe (2024), Llama-3.2-1B Dubey et al.
(2024). We conduct experiments on SST2 Socher et al. (2013), AG’s News Zhang et al. (2015), Yelp
polarity (yelp) Zhang et al. (2015), RTE Wang (2018), BoolQ Clark et al. (2019), WSC Levesque
et al. (2012), WiC Pilehvar & Camacho-Collados (2018) datasets. The datasets are partitioned across
clients following a Dirichlet distribution to simulate clients with Non-IID data. For more experimental
settings, we refer the readers to Appendix D.1.

3.1 ANSWER TO RQ1: SUPERIORITY OF MEERKAT COMPARED TO FULL-FEDZO IN FL

This section experimentally validates Claim 1 (Section 2.3), demonstrating MEERKAT’s superiority
over full-parameter Federated ZO under the same synchronization frequency and its effectiveness in
mitigating Non-IID challenges via high-frequency synchronization.
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Table 1: Performance comparison of MEERKAT and Full-FedZO on multiple non-IID data
distribution settings. “Acc” is the average test accuracy across tasks. Bold numbers indicate the

highest value in each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B

Full-FedZO 10 0.909 0.705 0.940 0.641 0.542 0.634 0.523 0.699
Weight Magnitude 10 0.902 0.857 0.951 0.696 0.551 0.519 0.546 0.717
Lora-FedZO 10 0.901 0.749 0.96 0.649 0.524 0.634 0.59 0.715
MEERKAT 10 0.916 0.872 0.964 0.695 0.600 0.653 0.614 0.759
Full-FedZO 30 0.904 0.706 0.935 0.636 0.533 0.634 0.539 0.698
Weight Magnitude 30 0.902 0.84 0.946 0.674 0.542 0.556 0.550 0.716
Lora-FedZO 30 0.904 0.556 0.964 0.652 0.533 0.634 0.545 0.684
MEERKAT 30 0.897 0.862 0.965 0.646 0.577 0.644 0.583 0.739
Full-FedZO 50 0.889 0.696 0.935 0.633 0.542 0.634 0.529 0.694
Weight Magnitude 50 0.897 0.838 0.948 0.662 0.551 0.562 0.554 0.716
Lora-FedZO 50 0.876 0.447 0.967 0.639 0.541 0.634 0.562 0.667
MEERKAT 50 0.909 0.827 0.965 0.647 0.595 0.634 0.567 0.734
Full-FedZO 100 0.901 0.705 0.939 0.632 0.533 0.634 0.525 0.695
Weight Magnitude 100 0.885 0.83 0.946 0.66 0.56 0.534 0.548 0.709
Lora-FedZO 100 0.868 0.247 0.953 0.642 0.521 0.634 0.529 0.628
MEERKAT 100 0.896 0.777 0.961 0.658 0.577 0.644 0.573 0.726

Qwen2-1.5b

Full-FedZO 10 0.888 0.700 0.928 0.694 0.808 0.673 0.639 0.761
Weight Magnitude 10 0.881 0.84 0.939 0.681 0.795 0.672 0.623 0.776
Lora-FedZO 10 0.939 0.847 0.944 0.667 0.795 0.663 0.521 0.768
MEERKAT 10 0.949 0.881 0.934 0.752 0.813 0.682 0.628 0.805
Full-FedZO 30 0.892 0.699 0.926 0.708 0.791 0.663 0.594 0.753
Weight Magnitude 30 0.88 0.843 0.939 0.681 0.786 0.673 0.594 0.771
Lora-FedZO 30 0.923 0.843 0.948 0.666 0.777 0.673 0.519 0.764
MEERKAT 30 0.944 0.878 0.928 0.734 0.800 0.663 0.624 0.795
Full-FedZO 50 0.868 0.696 0.922 0.707 0.773 0.663 0.594 0.746
Weight Magnitude 50 0.883 0.855 0.938 0.703 0.768 0.673 0.595 0.774
Lora-FedZO 50 0.934 0.834 0.941 0.679 0.76 0.653 0.510 0.759
MEERKAT 50 0.948 0.872 0.926 0.746 0.795 0.663 0.594 0.792
Full-FedZO 100 0.864 0.691 0.917 0.675 0.777 0.653 0.620 0.742
Weight Magnitude 100 0.888 0.842 0.934 0.695 0.768 0.656 0.579 0.766
Lora-FedZO 100 0.934 0.785 0.937 0.664 0.786 0.653 0.512 0.753
MEERKAT 100 0.936 0.878 0.925 0.741 0.795 0.663 0.610 0.792

Gemma2-2b

Full-FedZO 10 0.928 0.721 0.943 0.731 0.564 0.644 0.595 0.732
Weight Magnitude 10 0.931 0.849 0.955 0.778 0.711 0.634 0.595 0.779
Lora-FedZO 10 0.936 0.853 0.966 0.763 0.568 0.663 0.605 0.765
MEERKAT 10 0.939 0.869 0.96 0.804 0.591 0.634 0.609 0.772

Full-FedZO 30 0.927 0.802 0.932 0.725 0.568 0.634 0.581 0.738
Weight Magnitude 30 0.935 0.851 0.951 0.771 0.653 0.634 0.598 0.770
Lora-FedZO 30 0.932 0.804 0.966 0.671 0.551 0.634 0.589 0.735
MEERKAT 30 0.94 0.855 0.947 0.734 0.568 0.644 0.601 0.756

Full-FedZO 50 0.932 0.791 0.943 0.712 0.582 0.634 0.567 0.737
Weight Magnitude 50 0.936 0.851 0.941 0.745 0.591 0.628 0.597 0.756
Lora-FedZO 50 0.91 0.779 0.942 0.664 0.557 0.634 0.597 0.726
MEERKAT 50 0.945 0.857 0.966 0.767 0.613 0.634 0.623 0.772
Full-FedZO 100 0.925 0.818 0.933 0.672 0.533 0.615 0.567 0.723
Weight Magnitude 100 0.922 0.839 0.942 0.723 0.568 0.644 0.592 0.747
Lora-FedZO 100 0.922 0.247 0.942 0.62 0.541 0.634 0.573 0.640
MEERKAT 100 0.94 0.851 0.951 0.745 0.551 0.634 0.574 0.749

First, to assess sparsity’s benefits, we compare MEERKAT to Full-FedZO and other sparse methods
(Weight Magnitude, LoRA-FedZO, Random-Select) with equivalent synchronization frequencies
(local steps T ∈ {10, 30, 50, 100}). With a fixed 0.1% mask, MEERKAT reduces communication
budget by over 1000× compared to Full-FedZO and achieves a strong computational and communi-
cation efficiency (Table 23). Using C4 as a calibration dataset, our analysis shows that the sensitivity
of the gradient is highly concentrated: the top 0.1% of the parameters have 52× larger average
square gradients than the next 0.1–1% bucket (Table 9), which motivates extreme sparsity. The
mask is transferred across domain-shifted calibration datasets, and a client-aggregated UnionMask
performs comparably (Table 11). Across IID and Non-IID data distributions, MEERKAT outperforms
Full-FedZO and other sparsity methods on many tasks(Tables 1, 10, 12). Under the same settings,
MEERKAT also outperforms DeComFL Li et al. (2024) (Table 18).

Next, we evaluate performance under an extreme communication regime with a single local step
(T =1). We compare MEERKAT with Full-FedZO and LoRA-FedZO in the IID and Non-IID data
distributions (Dirichlet α∈{0.5, 0.3, 0.1}). Figure 2 presents the results for α = 0.5, the results for
α = 0.3 and 0.1 are available in Appendix D.2 figure 6. Specifically, Figure 2 reveals a remarkable
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finding: on the Qwen2-1.5b model, MEERKAT’s average test accuracy over seven tasks under Non-IID
data distribution matches that under IID data distribution. Beyond this exact match, results show that
at a local step of T = 1, MEERKAT effectively bridges the performance gap between IID and Non-IID
data distribution settings, achieving nearly comparable test accuracy across both data distributions,
and consistently outperforms baselines. Varying sparsity under T =1 (Table 14) confirms strong
accuracy even at 10−3–10−4, substantially reducing client memory demands and making it ideal for
resource-constrained FL. These results support Claim 1: high-frequency communication combined
with extreme sparsity mitigates Non-IID drift. We also explored sensitive parameter selection using
downstream task data. Since performance remained comparable under identical communication
frequencies and sparsity levels, we prioritized pre-training data to better preserve client privacy
(Appendix D.2, Tables 20, 19, 21).

Figure 2: This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on
three LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods,
and each method has two bars indicating performance under IID and Non-IID settings. The Non-IID
results are obtained under a Dirichlet distribution with α = 0.5 .The y-axis represents the average test
accuracy across multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.
All detailed results for these tasks are provided in Appendix D.2, Table 14.

3.2 ANSWER TO RQ2: GRADIP TRAJECTORIES AS EFFECTIVE INDICATORS OF DATA
HETEROGENEITY

Figure 3: Under a density ratio of 5 ×
10−3, we track the GradIP (see Defini-
tion 2.3) over 100 local training steps on
the SST-2 dataset using LLaMA-3.2-1B
model, comparing a client with IID data
to a client with Non-IID data.

This section experimentally validates Claim 2 (Sec-
tion 2.4), investigating GradIP trajectories as indicators of
data heterogeneity. Based on our theoretical analysis as-
suming single-label Non-IID data (Section C.6), we study
the dynamics of gradient-related metrics during local train-
ing. We first compare two extremes: IID clients vs. clients
with single-label (extreme Non-IID) data. We track three
metrics: GradIP score, local gradient norm, and cosine
value between the local and pre-training gradients. As
shown in Figures 3 and 7, GradIP for extreme Non-IID
clients steadily decays to zero over 100 steps, while for
IID clients it fluctuates persistently. To understand this, we
analyze its components: Figure 8(a) shows cosine value
stays near zero (i.e., gradients are nearly orthogonal) for
both settings, suggesting the gradient norm is the key fac-
tor. Indeed, Figure 8(b) shows that the gradient norm
mirrors GradIP’s behavior across the two settings. More-
over, in later stages, GradIP declines more sharply for Non-IID clients than for IID ones, making this
stage-wise mean difference an additional criterion for identifying Non-IID clients. We further extend
our analysis to more general Non-IID scenarios (Figure 9, Figure 10, Figure 11), where GradIP
exhibits similar dynamics that correlate with the degree of heterogeneity.

3.3 ANSWER TO RQ3: VPCS EARLY STOPPING EXTREMELY NON-IID DATA DISTRIBUTION
CLIENTS

This section experimentally validates Claim 3 (Section 2.5). As established in Section 3.2, GradIP
trajectories provide an effective signal for identifying clients with extremely Non-IID data, exhibiting
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distinct behaviors. Leveraging this signal, VPCS detects extremely Non-IID clients during a calibra-
tion phase and applies early stopping, limiting them to one local training step per communication
round (Algorithm 1). To validate the effectiveness of this VPCS strategy in improving performance,
we compared MEERKAT-VP with MEERKAT and Random Client Selection, which randomly selects
the same number of clients for early stopping as VPCS, under Non-IID data distributions dirichlet
α = 0.5 and the same communication frequencies. Crucially, for the same model, dataset, and
communication frequency, the three methods employed the same sparsity level. Figure 4 illus-
trates the average test accuracy across multiple downstream tasks for MEERKAT-VP compared to
MEERKAT and RANDOM CLIENT SELECTION. Detailed results for individual tasks are presented
in Appendix D.2 Table 13. As shown in Figure 4, MEERKAT-VP consistently outperforms both
MEERKAT and RANDOM CLIENT SELECTION in different communication frequencies. Further-
more, Table 24 shows that MEERKAT-VP achieves performance competitive with a back-propagation
upper bound and significantly outperforms an adapted FedDYN Acar et al. (2021) baseline. These
experimental results strongly validate Claim 3, confirming that VPCS effectively leverages GradIP
analysis to manage extremely Non-IID data distribution clients, leading to improved performance for
ZO federated LLM fine-tuning.

Figure 4: This figure compares two methods—MEERKAT-VP, MEERKAT and Random Client Se-
lection—across three LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows
the local step values (10, 30, 50, 100), while the y-axis indicates the average test accuracy over
multiple downstream tasks—SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC—in a Non-IID
data distribution setting. All detailed results for these tasks are presented in Appendix D.2 Table 13.

4 RELATED WORK

Our research leverages advances in ZO federated optimization, sparsity techniques for LLMs, and
communication frequency adjustments strategies for addressing data heterogeneity. ZO methods
significantly reduce computational and communication overhead. Integrating sparsity into LLM
fine-tuning amplifies these benefits, substantially decreasing resource demands during training and
inference. Concurrently, communication frequency adjustments mitigate performance degradation
induced by Non-IID data, emphasizing a crucial trade-off between communication budget and global
model performance. A detailed discussion is provided in Appendix B.

5 CONCLUSION

In this paper, we introduce MEERKAT, a sparse zeroth-order federated fine-tuning methodology.
Experiments show MEERKAT outperforms Full-FedZO and other sparsity methods on most tasks at
equivalent communication frequencies. MEERKAT’s efficiency enables high-frequency communica-
tion, effectively mitigating Non-IID drift. Moreover, we propose MEERKAT-VP. This methodology
utilizes VPCS, which analyzes GradIP via virtual paths to enable the selective early stopping of
extreme Non-IID clients. This approach is shown to improve model performance. Our work thus
offers effective methods for efficient ZO federated LLM fine-tuning under varying network conditions
and data heterogeneity. Given the technical focus of this work on algorithm, there are no direct
negative societal consequences inherent to it that need to be emphasized; potential negative impacts
would arise from the specific applications where these methods are deployed.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The datasets and models used in this
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in Figure 1, with further details in Section 2 and Algorithm 2. The workflow for MEERKAT-VP is
demonstrated in Figure 5 and Algorithm 1. All experimental parameters are listed in Appendix 4
and 5. The complete theoretical analysis for our methods can be found in Appendix C.
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APPENDIX

In Section A, we discuss the usage of large language model usage in this work. In Section B, we
present the related work relevant to this study. In Section C, we present the theoretical convergence
analysis of MEERKAT, including its high-frequency communication method. Additionally, we analyze
the convergence of MEERKAT-VP and demonstrate its superior performance compared to MEERKAT.
We further prove that under extreme Non-IID settings, the gradient norm gradually vanishes during
convergence, whereas in IID settings, it tends to oscillate. In Section D, we provide details on
experimental hyperparameters and report supplementary results.

A LLM USAGE

We used an LLM-based writing assistant solely for grammar and typographical corrections to
improve the clarity of this paper. All outputs were carefully reviewed and revised by the authors
to ensure technical accuracy and consistency with the intended scientific meaning. The intellectual
contributions, methodological advances, and scientific insights are entirely original and author-driven.

B REVIEW OF RELATED WORKS

Federated Zeroth-Order Optimization. Zeroth-order optimization Malladi et al. (2023); Zhang
et al. (2024a) has gained increasing attention in federated learning Fang et al. (2022); Zhang et al.
(2021), particularly for addressing challenges in training costs, privacy, and communication overhead.
Fine-Grained Chen et al. (2024) demonstrates how clients can reduce upload overhead by sending
estimated gradients rather than full model parameters to the server, though download costs remain
significant due to complete model weight transfers. DeComFL Li et al. (2024) further advances
this approach by using gradient scalars for both uploads and downloads, substantially reducing
bidirectional communication costs. However, it does not address the challenges posed by data
heterogeneity (Non-IID) in federated learning. The integration of AirComp wireless technology
enables direct over-the-air aggregation of model updates Fang et al. (2022). In black-box settings
where pre-trained language model parameters are inaccessible, FedBPT Sun et al. (2023) employs ZO
to optimize prompt vectors, achieving efficient distributed optimization with reduced computational
and communication overhead. FedMeZO Li et al. (2020b) analyzes the convergence properties of ZO
for federated LLM fine-tuning.

Sparsity in LLM. Current research on sparsity in LLMs explores techniques such as pruning,
contextual sparsity prediction, and structured sparsity Zhang et al. (2024b); Liu et al. (2023b;a);
Lu et al. (2024); Zheng et al. (2024); Shao et al. (2024); Wang et al. (2019); Huang et al. (2024);
Zhou et al. (2024); Su et al. (2024); Xu et al. (2024). These methods enhance both training and
inference by improving computational efficiency, reducing memory usage, and enabling deployment
in resource-constrained environments. Sparsity has also proven particularly effective in zeroth-order
(ZO) optimization Guo et al. (2024); Liu et al. (2024), especially when combined with weight
quantization for fine-tuning LLMs. Building on this, our work investigates the role of sparsity in
resource-frugal federated fine-tuning of LLMs.

High-Frequency Communication for Non-IID Federated Learning. Data heterogeneity across
clients is a major challenge in Federated Learning, significantly degrading performance compared
to IID settings. Increasing communication frequency, by reducing local training steps per round, is
explored as a strategy to mitigate this issue. Early work showed that merely reducing local steps
had limited improvements in extreme non-IID scenarios Zhao et al. (2018). Theoretical analysis
later confirmed that smaller local training steps can improve convergence speed under Non-IID
conditions, but at the cost of increased communication budget, highlighting a critical trade-off Li et al.
(2020b). To effectively handle challenges arising from non-IID data that often necessitate higher
communication, various algorithms have been proposed: SCAFFOLD Karimireddy et al. (2021)
highlights the ’client-drift’ problem in FedAvg, noting it’s exacerbated by increased local training
steps (reduced communication frequency), and proposes using control variates to mitigate this drift,
enabling improved convergence; FedDyn Acar et al. (2021) guarantees consistent convergence to the
global optimum even with a larger number of local training steps (lower communication frequency).
This overcomes the limitation of traditional methods where high communication frequency is needed

13
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to compensate for local-global optimum inconsistency. Empirical studies further demonstrate that
performance is highly sensitive to the number of local training steps under different non-IID distribu-
tions, and the optimal communication frequency depends on the specific data heterogeneity Li et al.
(2021). These works underscore the complex interplay between data heterogeneity, local computation,
and communication frequency. This complexity motivates the development of algorithmic solutions
to improve efficiency and robustness in FL under Non-IID settings.

C THEORETICAL AND ALGORITHM ANALYSIS

C.1 NOTATIONS AND DEFINITIONS

In this subsection, we formally define the assumptions, notations and concepts used in the convergence
analysis of MEERKAT and MEERKAT-VP. Table 2 summarizes the key symbols.

Table 2: Notations used in our theoretical analysis.

Notation Meaning
w global model parameter
K total number of clients in the federated system
pk probability or weight assigned to client k

fk(w) total loss computed over all data samples of the client k.
f(w) global loss function evaluated by the global model over all data
T number of local update steps per communication round
r communication round
t local update time step
η local learning rate
ϵ perturbation magnitude in ZO estimation
ztk standard Gaussian vector for client k at local step t from N (0, Id)
m binary sparse mask vector (m ∈ {0, 1}d)
d model dimension
R federated learning training round
u sparsity ratio
c gradient coverage
gtk projected gradient estimate for client k at local step t

∇̂f t
k zeroth-order gradient of client k at local step t

L Lipschitz smoothness (Assumption 1)
µ PL inequality (Assumption 2)
f∗ minimal global loss achieved by optimizing the global model
f∗
k minimal client loss achieved by optimizing the local model on client k

ch and σ2
h heterogeneity-induced variance (Assumption 4)

∥ · ∥op operator norm of a matrix
σ2 variance of the sparse ZO gradient estimator(Assumption 6)
γ The clients with balanced data distributions contribute to the global model during training.

C.2 ASSUMPTIONS

We introduce the assumptions used in the convergence analysis of MEERKAT and MEERKAT-VP.
Assumption C.1 ( Lipschitz smoothness). We assume that each client k’s local objective function
fk(w) is differentiable and has L-Lipschitz continuous gradients:

∥∇fk(w1)−∇fk(w2)∥ ≤ L∥w1 −w2∥, ∀w1,w2 ∈ Rd.

Consequently, the global loss f(w) =
∑K

k=1 pkfk(w) is also L-smooth.
Assumption C.2 (PL inequality). We assume that f(w) satisfies the Polyak-Łojasiewicz (PL)
condition:

f(w)− f∗ ≤ 1

2µ
∥∇f(w)∥2, ∀w ∈ Rd,

14
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µ > 0 is the PL constant. This condition holds for a broad class of non-convex objectives and is
commonly used in analyzing convergence of gradient-based and zeroth-order methods.
Assumption C.3 (Global–Local Disparities in Non-i.i.d. Setting). For any θ ∈ Rd, the discrepancy
between the local and global gradient is bounded by∥∥∇f(θ)−∇fi(θ)∥∥2 ≤ ch

∥∥∇f(θ)∥∥2 + σ2
h,

where ch > 0 and σ2
h ≥ 0 are constants, and θ is the global model parameter broadcast to all clients

at the start of each round. We further assume ch ∈ (0, 1). In particular,

• A smaller ch corresponds to lower data heterogeneity: local gradient deviations from the
global gradient are small, indicating that client data distributions are nearly i.i.d.

• A larger ch signals stronger non-i.i.d data distribution effects, with greater variation between
each client’s gradient and the global gradient.

Assumption C.4 (Bounded stochastic gradient variance). For any sample (x, y) ∼ D and any w ∈
Rd, denote f(w; (x, y)) as the loss on that single data point, and let f̄(w) := E(x,y)∼D

[
f(w; (x, y))

]
be the average full-batch loss. We assume

∥∥∇f(w; (x, y))−∇f̄(w)
∥∥2
2
≤ σ2.

Assumption C.5 (Local–Global Optimality Gap). For each client k, define the local–global optimality
gap as

∆k =
∥∥w∗

k −w∗∥∥2
2
,

where w∗
k is the local optimal model on client k and w∗ is the global optimal model.

Assumption C.6 (Sensitive parameters are sparse). At each local step t (and for every client k), there
exists a binary mask m ∈ {0, 1}d with exactly u non-zero entries and a constant c ∈ [0, 1] such that∥∥m⊙∇fk(wt

k; (xt,yt)
)∥∥2 = c

∥∥∇fk(wt
k; (xt,yt)

)∥∥2 .
We further assume c≫ u

d , meaning this small subset of “sensitive” parameters captures a dispropor-
tionately large fraction of the gradient norm.

These assumptions are standard and foundational in optimization and FL literatureBottou et al. (2018);
Li et al. (2020a;b); Wang et al. (2021); Guo et al. (2024)

We start by formulating the expectation of the sensitive sparse ZO surrogate gradient norm square in
terms of its corresponding stochastic gradient norm square.
Lemma C.7 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄

∥∥∥∇̂f(wt, (xt, yt), z̄t
)∥∥∥2 = (2 + u)c

∥∥∥∇f(wt; (xt, yt)
)∥∥∥2.

Proof. Our masked perturbation z̄ is sampled as z̄ ∼ N
(
0, Ĩd,m

)
, where Ĩd,m equals the identity

matrix Id with its main diagonal masked by m.

We expand the sensitive sparse ZO surrogate–gradient covariance matrix:

Ez̄∇̂f(w, (x, y), z̄)∇̂f(w, (x, y), z̄)⊤
= Ez̄[z̄z̄

⊤((m⊙∇f(w; (x, y)))(m⊙∇f(w; (x, y)))⊤)z̄z̄⊤]
= 2((m⊙∇f(w; (x, y)))(m⊙∇f(w; (x, y)))⊤) + ∥m⊙∇f(w; (x, y))∥2Ĩd,m

The above expected squared norm is obtained by summing the diagonal elements of this covariance
matrix:

Ez̄

∥∥∥∇̂f(wt, xt, z̄t
)∥∥∥2 =

(
diag

[
Ez̄∇̂f

(
w, (x, y), z̄

)
∇̂f
(
w, (x, y), z̄

)⊤])2
= 2c

∥∥∇f(wt; (xt, yt)
)∥∥2 + uc

∥∥∇f(wt; (xt, yt)
)∥∥2

= (2 + u)c
∥∥∇f(wt; (xt, yt)

)∥∥2.
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Lemma C.8 (Unbiasedness of Masked Sparse ZO Surrogate Gradient).

Ez̄

[
∇̂fk(wt

k, z̄)
]
= m⊙∇fk(wt

k), where z̄ = z⊙m. (4)

Proof. First, consider the estimator defined as:

∇̂fk(wt
k, z) =

fk(w
t
k + ϵ(z ⊙m))− fk(w

t
k − ϵ(z ⊙m))

2ϵ
· (z ⊙m).

To proceed, we apply a first-order Taylor expansion of fk around wt
k for small ϵ:

fk(w
t
k ± ϵ(z ⊙m)) = fk(w

t
k)± ϵ⟨∇fk(wt

k), z ⊙m⟩+O(ϵ2).

Substitute these expansions into the numerator of the estimator:

fk
(
wt

k + ϵ (z ⊙m)
)
− fk

(
wt

k − ϵ (z ⊙m)
)

=
[
fk(w

t
k) + ϵ ⟨∇fk(wt

k), z ⊙m⟩
]

−
[
fk(w

t
k)− ϵ ⟨∇fk(wt

k), z ⊙m⟩
]
+O(ϵ2).

Simplify the expression:

fk(w
t
k + ϵ(z ⊙m))− fk(w

t
k − ϵ(z ⊙m)) = 2ϵ⟨∇fk(wt

k), z ⊙m⟩+O(ϵ2).

Thus, the estimator becomes:

∇̂fk(wt
k, z) =

2ϵ⟨∇fk(wt
k), z ⊙m⟩+O(ϵ2)

2ϵ
· (z⊙m) =

[
⟨∇fk(wt

k), z ⊙m⟩+O(ϵ)
]
(z⊙m).

As ϵ→ 0, the O(ϵ) term disappears, yielding the approximation:

∇̂fk(wt
k, z) ≈ ⟨∇fk(wt

k), z ⊙m⟩ · (z ⊙m).

Next, compute the expectation Ez

[
∇̂fk(wt

k, z)
]
. Since the estimator is a vector, consider its j-th

component: [
∇̂fk(wt

k, z)
]
j
≈ ⟨∇fk(wt

k), z ⊙m⟩ · (zjmj).

Express the inner product explicitly:

⟨∇fk(wt
k), z ⊙m⟩ =

d∑
i=1

(∇fk(wt
k))izimi.

Thus, the j-th component is:[
∇̂fk(wt

k, z)
]
j
≈

(
d∑

i=1

(∇fk(wt
k))izimi

)
zjmj .

Now, take the expectation over z ∼ N (0, Id), where zi are independent standard normal variables:

Ez

[(
d∑

i=1

(∇fk(wt
k))izimi

)
zjmj

]
=

d∑
i=1

(∇fk(wt
k))imimjE[zizj ].

Since E[zizj ] = δij (1 if i = j, 0 otherwise), the sum reduces to:

(∇fk(wt
k))jm

2
jE[z2j ].
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Given m2
j = mj (as mj = 0 or 1) and E[z2j ] = 1, this becomes:

(∇fk(wt
k))jmj .

Thus, for each component j:

Ez

[[
∇̂fk(wt

k, z)
]
j

]
≈ mj(∇fk(wt

k))j .

This implies:
Ez

[
∇̂fk(wt

k, z)
]
≈m⊙∇fk(wt

k).

Finally, as ϵ→ 0, the higher-order terms in the Taylor expansion vanish, making the approximation
exact:

Ez̄

[
∇̂fk(wt

k, z̄)
]
= m⊙∇fk(wt

k).

C.3 MEERKAT CONVERGENCE ANALYSIS

We consider the federated zeroth-order optimization problem, where the objective is to minimize
the global loss functionLing et al. (2024):

min
w

f(w) =

K∑
k=1

pkfk(w)

Each client performs T local steps:

wt+1
k = wt

k − η∇f t
k(w), t = 0, 1, . . . , T − 1

starting from the global model w0
k = wr. After clients finish local updates, the server performs

weighted aggregation of their model updates.

wr+1 =

K∑
k=1

pkw
r
k.

Theorem C.9. [Client Local ZO Update Convergence] Let fk be L-smooth and ∇̂f t
k be an unbiased

sparse zeroth-order gradient estimator with variance bounded by σ2. Then we have

If we set constant learning rate η = 1
L(u+2) and T local steps, the output of client k satisfies:

1

T

T−1∑
t=0

E∥∇fk(wt
k)∥2 ≤ O

(
1

T

)
+O(σ2). (5)

Proof. We start by proving Theorem C.9 euqation 5 that each client achieves local convergence
during training with sparse zeroth-order finetuning. Next, we demonstrate that server-side aggregation
also converge. Finally, by leveraging the PL inequality, we prove that MEERKAT exhibits linear
convergence to global minimum.

Part 1: Client Local ZO Update Convergence

We analyze the effect of one local step of MEERKAT under sparse zeroth-order updates. Let client k
perform the local update:

wt+1
k = wt

k − η∇̂f t
k,

17
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where the stochastic sparse zeroth-order gradient estimator is defined as:

gtk =
fk(w

t
k + ϵ(ztk ⊙m))− fk(w

t
k − ϵ(ztk ⊙m))

2ϵ
.

∇̂f t
k = gtk · (ztk ⊙m)

Descent via Lipschitz smoothness. Since fk(w) is Lipschitz smoothness:

fk(w
t+1
k ) ≤ fk(w

t
k) + ⟨∇fk(wt

k),w
t+1
k −wt

k⟩+
L

2
∥wt+1

k −wt
k∥2.

Substituting the update wt+1
k −wt

k = −η∇̂f t
k, we obtain:

fk(w
t+1
k ) ≤ fk(w

t
k)− η⟨∇fk(wt

k), ∇̂f t
k(w, z̄t) ⟩+

Lη2

2
∥∇̂f t

k(w, z̄t)∥2.

Taking expectation, we have:

Ez̄[fk(w
t+1
k )] ≤ Ez̄[fk(w

t
k)]− ηEz̄∥m⊙∇fk(wt

k)∥2 +
Lη2

2
Ez̄∥∇̂fk(wt

k, z̄t)∥2.

Ez̄[fk(w
t+1
k )] ≤ Ez̄[fk(w

t
k)]− cηEz̄∥∇fk(wt

k)∥2 +
Lη2

2
(2 + u)cEz̄

∥∥∇fk(wt
k

)∥∥2.
Ez̄fk(w

t+1
k ) ≤ Ez̄fk(w

t
k)−

(
cηt −

Lη2t
2

c(u+ 2)

)
∥∇wfk(w

t
k)∥2 +

Lη2t
2

c(u+ 2)σ2.

Denote α = Lc(u+ 2), we can rewrite as:

Ez̄fk(w
t+1
k ) ≤ Ez̄

{
fk(w

t
k)− ηt

(
c− α

2
ηt

)
∥∇wfk(w

t
k)∥2

}
+

α

2
σ2η2t .

From the above inequality, we get η < 2c
α . Suppose we use a constant learning rate ηt = η = c

α =
1

L(u+2) , we get:

Ez̄fk(w
t+1
k ) ≤ Ez̄

{
fk(w

t
k)−

cη

2
∥∇wfk(w

t
k)∥2

}
+

α

2
σ2η2. (6)

Accumulating over T steps. Summing equation 6 over t = 0 to T − 1, we get:

1

T

T−1∑
t=0

Ez̄∥∇fk(wt
k)∥2 ≤

2

cηT
(fk(w

0
k)− f∗

k ) +
1

T

T−1∑
t=0

α

2cη
σ2η2

=
2L(u+ 2)

cT
(fk(w

0
k)− f∗

k ) + σ2

= O
( u
T
(fk(w

0
k)− f∗

k )
)
+O(1).

(7)

C.4 MEERKAT CONVERGENCE ANALYSIS

We now proceed to analyze the convergence of the global model in our federated learning framework.
Having established the convergence properties of local client updates, we demonstrate how these
results extend to guarantee the convergence of the server-aggregated global model.
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Proof. We approach this proof systematically by analyzing how the local convergence properties of
clients extend to the global model through the aggregation process.

Global Model Update Representation. First, the global model update can be represented as:

wr+1 −wr =

K∑
k=1

pk(w
T
k −wr)

where each client k starts from the global model wr and performs T local updates to reach wT
k .

Client Local Update Accumulation For any client k, the accumulated local updates can be expressed
as:

wr,T
k −wr = −η

T−1∑
t=0

∇̂f t
k

Global Loss Descent Analysis By the L-smoothness property (Assumption C.1), we have:

f(wr+1) ≤ f(wr) + ⟨∇f(wr),wr+1 −wr⟩+ L

2
∥wr+1 −wr∥2 (8)

For the inner product we can get:

⟨∇f(wr),wr+1 −wr⟩ =
K∑

k=1

pk⟨∇f(wr),wr,T
k −wr⟩

Accoding to the client local update process, we have:

K∑
k=1

pk⟨∇fk(wr),wr,T
k −wr⟩ = −η

K∑
k=1

pk⟨∇f(wr),

T−1∑
t=0

∇̂fk(wr,t, z̄t)⟩

= −η
K∑

k=1

pk

T−1∑
t=0

⟨∇f(wr), ∇̂fk(wr,t, z̄t)⟩

We assume that each client’s weight is equal pk = 1/K, by substituting it into the above inequality,
we have:

K∑
k=1

pk
〈
∇fk(wr), wr,T

k −wr
〉
= − η

K

K∑
k=1

T−1∑
t=0

〈
∇f(wr), ∇̂fk(wr,t, z̄t)

〉
. (9)

Based on the equation 9 and ∇̂f t
k is unbiased, we have:

K∑
k=1

T−1∑
t=0

〈
∇f(wr), ∇̂fk(wr,t, z̄t)

〉
=

K∑
k=1

T−1∑
t=0

〈
∇f(wr), Ez̄

[
∇̂fk(wr,t, z̄t)

]〉
We substitute the equation 4 and get:

K∑
k=1

T−1∑
t=0

〈
∇f(wr), Ez̄

[
∇̂fk(wr,t, z̄t)

]〉
=

K∑
k=1

T−1∑
t=0

〈
∇f(wr), m⊙∇fk(wr,t)

〉
.

Under the Cauchy–Schwarz inequality, we have:

〈
∇f(wr), m⊙∇fk(wr,t)

〉
≤ ∥∇f(wr)∥ ∥m⊙∇fk(wr,t)∥
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We substitute Assumption C.6 get:

∥∇f(wr)∥ ∥m⊙∇fk(wr,t)∥ =
√
c ∥∇f(wr)∥ ∥∇fk(wr,t)∥.

Thus we get: 〈
∇f(wr), m⊙∇fk(wr,t)

〉
≤
√
c ∥∇f(wr)∥ ∥∇fk(wr,t)∥.

By the triangle inequality, we have

∥∇fk(wr,t)∥ ≤ ∥∇f(wr)∥+ ∥∇fk(wr,t)−∇f(wr)∥

We substitute Assumption C.3 and use the properties of square roots we get:

∥∇f(wr)∥+ ∥∇fk(wr,t)−∇f(wr)∥

≤ ∥∇f(wr)∥+
√

ch ∥∇f(wr)∥2 + σ2
h

≤ (1 +
√
ch) ∥∇f(wr)∥+ σh.

Using the bound ⟨∇f(wr), m⊙∇fk(wr,t)⟩ ≤
√
c ∥∇f(wr)∥ ∥∇fk∥ from Cauchy–Schwarz and

Assumption C.6, and then plugging in the above, we obtain

⟨∇f(wr), m⊙∇fk(wr,t)⟩ ≤
√
c ∥∇f(wr)∥

[
(1 +

√
ch) ∥∇f(wr)∥+ σh

]
≤
√
c (1 +

√
ch) ∥∇f(wr)∥2 +

√
c σh ∥∇f(wr)∥.

Recall that the server update inner product is

〈
∇f(wr), wr+1 − wr

〉
= − η

K

K∑
k=1

T−1∑
t=0

〈
∇f, m⊙∇fk

〉
.

Substituting the bound to equation 9. We have:

〈
∇f(wr), wr+1 − wr

〉
≥ − η T

√
c (1 +

√
ch) ∥∇f(wr)∥2 − η T

√
c σh ∥∇f(wr)∥. (10)

Substituting this inequality to equation 8, we have:

f
(
wr+1

)
≤ f

(
wr
)
− η T

√
c
(
1 +
√
ch
) ∥∥∇f(wr)

∥∥2
− η T

√
c σh

∥∥∇f(wr)
∥∥+ L

2

∥∥wr+1 − wr
∥∥2 (11)

Applying Jensen’s inequality, the last term of the equation 11 will be:

∥wr+1 −wr∥2 ≤ η2
K∑

k=1

pk∥
T−1∑
t=0

∇̂fr,t
k ∥

2

And then we apply Cauchy-Schwarz inequality, the last term of the equation 11 will be:

∥wr+1 −wr∥2 ≤ η2T

K∑
k=1

pk

T−1∑
t=0

∥∇̂fr,t
k ∥

2

Substitute this inequaltiy to equation 11 We get:

f
(
wr+1

)
≤ f

(
wr
)
− η T

√
c (1 +

√
ch)
∥∥∇f(wr)

∥∥2 − η T
√
c σh

∥∥∇f(wr)
∥∥

+
L

2
η2 T

K∑
k=1

pk

T−1∑
t=0

∥∥∇̂fr,t
k

∥∥2.
Taking Expectation and lemma C.7:
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Ez̄ f(w
r+1) ≤ Ez̄ f(w

r)− η T
√
c (1 +

√
ch) ∥∇f(wr)∥2

− η T
√
c σh ∥∇f(wr)∥+ Lη2 T (2 + u) c

2K

K∑
k=1

T−1∑
t=0

∥∇fk(wr,t)∥2 .

According to the equation 7, we know that the client-average squared gradient has upper bound. We
substitute the equation 7 to the above inequality last term we get:

Ez̄ f(w
r+1) ≤ Ez̄ f(w

r)− η T
√
c (1 +

√
ch) ∥∇f(wr)∥2 − η T

√
c σh ∥∇f(wr)∥

+
Lη2 T (2 + u) c

2K

K∑
k=1

[2L (u+ 2)

c

(
fk(w

r)− f∗
k

)
+ T σ2

]
≤ Ez̄ f(w

r)− η T
√
c (1 +

√
ch) ∥∇f(wr)∥2 − η T

√
c σh ∥∇f(wr)∥

+
L2 η2 T (2 + u) (u+ 2)

K

K∑
k=1

(
fk(w

r)− f∗
k

)
+

Lη2 T 2 (2 + u) c

2
σ2 (12)

Accumulating Over R Rounds. Summing equation 12 over r = 0 to R− 1, we get:

Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤ − η T

√
c (1 +

√
ch)

R−1∑
r=0

∥∥∇f(wr)
∥∥2

− η T
√
c σh

R−1∑
r=0

∥∥∇f(wr)
∥∥

+
L2 η2 T (2 + u) (u+ 2)

K

R−1∑
r=0

K∑
k=1

(
fk(w

r)− f∗
k

)
+

Lη2 T 2 (2 + u) c

2
σ2 R .

(13)

From the accumulated global descent inequality over R rounds:

First we set

S =

R−1∑
r=0

∥∇f(wr)∥2.

This represents the sum of squared gradient norms over R rounds. The second term in the inequality
involves

∑R−1
r=0 ∥∇f(wr)∥, and we apply the Cauchy-Schwarz inequality to it. For the sequence

ar = ∥∇f(wr)∥ (with r = 0, 1, . . . , R− 1), we consider it as a vector in RR along with a vector of
ones:

R−1∑
r=0

∥∇f(wr)∥ =
R−1∑
r=0

∥∇f(wr)∥ · 1 ≤

√√√√R−1∑
r=0

∥∇f(wr)∥2 ·

√√√√R−1∑
r=0

12.

Since
∑R−1

r=0 12 = R, we obtain:

R−1∑
r=0

∥∇f(wr)∥ ≤

√√√√R−1∑
r=0

∥∇f(wr)∥2 ·
√
R =

√
R
√
S =

√
RS.
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Substituting this into the second term, we have:

ηT
√
cσh

R−1∑
r=0

∥∇f(wr)∥ ≤ ηT
√
cσh

√
RS.

Thus, the inequality becomes:

Ez̄[f(w
R)]− Ez̄[f(w

0)] ≤ −ηT
√
c(1 +

√
ch)S + ηT

√
cσh

√
RS

+
L2η2T (2 + u)(u+ 2)

K

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k )

+
Lη2T 2(2 + u)c

2
σ2R.

Second, we focus on the term ηT
√
cσh

√
RS and apply Young’s Inequality with δ > 0 and non-

negative real numbers x and y,

xy ≤ x2

2δ
+

y2δ

2
.

We identify x =
√
S and y = ηT

√
cσh

√
R, since:

ηT
√
cσh

√
RS = (ηT

√
cσh

√
R) ·
√
S.

Applying Young’s Inequality:
√
S · (ηT

√
cσh

√
R) ≤ (

√
S)2

2δ
+

(ηT
√
cσh

√
R)2δ

2
.

Therefore:

ηT
√
cσh

√
RS ≤ S

2δ
+

η2T 2cσ2
hRδ

2
.

−ηT
√
cσh

√
RS ≤ S

2δ
+

η2T 2cσ2
hRδ

2
.

Finally we replace the second term in the inequality with the above result:

Ez̄[f(w
R)]− Ez̄[f(w

0)] ≤ −ηT
√
c(1 +

√
ch)S +

(
S

2δ
+

η2T 2cσ2
hRδ

2

)
+

L2η2T (2 + u)2

K

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k )

+
Lη2T 2(2 + u)c

2
σ2R.

This inequality now depends on δ.

(
ηT
√
c
(
1 +
√
ch
)
− 1

2δ

)R−1∑
r=0

∥∇f(wr)∥2 ≤ Ez̄

[
f(w0)− f(wR)

]
+ η2T 2cσ2

hRδ2

+
L2η2T (2 + u)2

K

R−1∑
r=0

K∑
k=1

(
fk(w

r)− f∗
k

)
+

Lη2T 2(2 + u)c σ2R

2
.

(14)

According to Assumption C.1, we have:

fk(w
∗) ≤ fk(w

∗
k) + ⟨∇fk(w∗

k),w
∗ −w∗

k⟩+
L

2
∥w∗ −w∗

k∥22.
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Since w∗
k is the minimizer of fk(w), the gradient at the local optimum must be zero:

∇fk(w∗
k) = 0.

Substituting this into the inner product term:

⟨∇fk(w∗
k),w

∗ −w∗
k⟩ = ⟨0,w∗ −w∗

k⟩ = 0.

Thus, the inner product term disappears because the gradient at w∗
k is zero, making the inner product

with any vector (including w∗ −w∗
k) equal to zero.

With the inner product term vanishing, the inequality simplifies to:

fk(w
∗) ≤ fk(w

∗
k) +

L

2
∆k.

This provides an upper bound on fk(w
∗) in terms of the local optimal loss f∗

k and the optimality gap
∆k.

The global optimal loss is defined as:

f∗ = f(w∗) =

K∑
k=1

pkfk(w
∗).

Using the bound derived for each local loss:

fk(w
∗) ≤ f∗

k +
L

2
∆k,

we substitute this into the expression for f∗:

f∗ =

K∑
k=1

pkfk(w
∗) ≤

K∑
k=1

pk

(
f∗
k +

L

2
∆k

)
.

Expanding the right-hand side:

f∗ ≤
K∑

k=1

pkf
∗
k +

L

2

K∑
k=1

pk∆k.

From the above equation, we have:

f∗ − L

2

K∑
k=1

pk∆k ≤
K∑

k=1

pkf
∗
k .

− 1

K

K∑
k=1

f∗
k ≤ −f∗ +

L

2K

K∑
k=1

∆k.

From the equation 14, we have the term:

L2η2T (2 + u)2

K

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) .

First, we express the double sum as:
R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) =

R−1∑
r=0

(
K∑

k=1

fk(w
r)−

K∑
k=1

f∗
k

)
.

Since pk = 1
K , we have:

K∑
k=1

fk(w
r) = Kf(wr),
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where f(wr) =
∑K

k=1 pkfk(w
r) = 1

K

∑K
k=1 fk(w

r). Therefore:

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) =

R−1∑
r=0

(
Kf(wr)−

K∑
k=1

f∗
k

)
.

From the earlier derivation, we have the inequality:

− 1

K

K∑
k=1

f∗
k ≤ −f∗ +

L

2K

K∑
k=1

∆k.

Substituting this into the expression above:

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) ≤
R−1∑
r=0

(
Kf(wr)−

(
Kf∗ − L

2

K∑
k=1

∆k

))
.

Thus:
R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) ≤
R−1∑
r=0

(
Kf(wr)−Kf∗ +

L

2

K∑
k=1

∆k

)
.

Since ∆k is constant across iterations, we can factor it out:

K

R−1∑
r=0

(f(wr)− f∗) +
L

2

R−1∑
r=0

K∑
k=1

∆k = K

R−1∑
r=0

(f(wr)− f∗) +
LR

2

K∑
k=1

∆k.

Now, multiply by the coefficient:

L2η2T (2 + u)2

K

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) ≤
L2η2T (2 + u)2

K

[
K

R−1∑
r=0

(f(wr)− f∗) +
LR

2

K∑
k=1

∆k

]
.

Simplifying:

L2η2T (2 + u)2
R−1∑
r=0

(f(wr)− f∗) +
L3η2T (2 + u)2R

2K

K∑
k=1

∆k.

Substituting this result into the original target inequality, we get:(
ηT
√
c (1 +

√
ch)−

1

2δ

)R−1∑
r=0

∥∇f(wr)∥2 ≤ Ez̄

[
f(w0)− f(wR)

]
+

η2T 2cσ2
hRδ

2

+ L2η2T (2 + u)2
R−1∑
r=0

(f(wr)− f∗)

+
L3η2T (2 + u)2R

2K

K∑
k=1

∆k

+
Lη2T 2(2 + u)cσ2R

2
.

According to the Assumption C.2 we have:

2µ(f(wr)− f∗) ≤ ∥∇f(wr)∥2, ∀wr ∈ Rd,

2µ

R−1∑
r=0

(f(wr)− f∗) ≤
R−1∑
r=0

∥∇f(wr)∥2, ∀wr ∈ Rd,
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We let ηT
√
c
(
1 +
√
ch
)
− 1

2δ > 0 and substitute the above inequality, we have:

2µ(ηT
√
c (1 +

√
ch)−

1

2δ
)

R−1∑
r=0

(f(wr)− f∗) ≤ Ez̄

[
f(w0)− f(wR)

]
+

η2T 2cσ2
hRδ

2

+ L2η2T (2 + u)2
R−1∑
r=0

(f(wr)− f∗)

+
L3η2T (2 + u)2R

2K

K∑
k=1

∆k

+
Lη2T 2(2 + u)cσ2R

2
.

R−1∑
r=0

(
f(wr)− f∗) ≤ Ez̄

[
f(w0)− f(wR)

]
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

+
η2T 2 c σ2

h Rδ

2
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

]

+

L3 η2T (2 + u)2 R

K∑
k=1

∆k

2K
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

]
+

Lη2T 2 (2 + u) c σ2 R

2
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

] .

(15)

1

R

R−1∑
r=0

(
f(wr)− f∗) ≤ 1

R

Ez̄

[
f(w0)− f(wR)

]
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

+
η2T 2 c σ2

h δ

2
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

]

+

L3 η2T (2 + u)2
K∑

k=1

∆k

2K
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

]
+

Lη2T 2 (2 + u) c σ2

2
[
2µ
(
ηT
√
c(1 +

√
ch)−

1

2δ

)
− L2η2T (2 + u)2

] .

(16)

We select δ = 1
ηT

√
c(1+

√
ch)

, which leads to:

1

2δ
=

ηT
√
c(1 +

√
ch)

2
Substituting into the denominator:

2µ

(
ηT
√
c(1 +

√
ch)−

ηT
√
c(1 +

√
ch)

2

)
= µηT

√
c(1 +

√
ch)
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With the chosen δ, we have:

1

R

R−1∑
r=0

(f(wr)− f∗) ≤ 1

R
·

Ez̄

[
f(w0)− f(wR)

]
µηT
√
c(1 +

√
ch)− L2η2T (2 + u)2

+

√
cσ2

h

2(1 +
√
ch)
[
µ
√
c(1 +

√
ch)− L2η(2 + u)2

]
+

L3η(2 + u)2
∑K

k=1 ∆k

2K
[
µ
√
c(1 +

√
ch)− L2η(2 + u)2

]
+

LηT (2 + u)cσ2

2
[
µ
√
c(1 +

√
ch)− L2η(2 + u)2

] ,

(17)

where the step-size η must satisfy: η <
µ
√
c(1+

√
ch)

L2(2+u)2 to ensure denominator positivity.

Plugging in a constant learning rate η = min

{
1

L(u+2) ,
µ
√
c
(
1+

√
ch

)
2L2(2+u)2

}
. We substitute this η to

equation 17 and get:

1

R

R−1∑
r=0

(
f(wr)− f∗) ≤ 4L2(2 + u)2

µ2c
(
1 +
√
ch
)2
TR

Ez̄

[
f(w0)− f∗]

+
σ2
h

µ
(
1 +
√
ch
)2 +

L

K

K∑
k=1

∆k +
T c σ2

2L (2 + u)
.

1

R

R−1∑
r=0

(
f(wr)− f∗) ≤ O( (2 + u)2

TR
· E[f(w0)− f(wR)]

)
+O

(
T

2 + u

)
+O(1). (18)

C.5 MEERKAT-VP CONVERGENCE ANALYSIS

We propose a Virtual Path Client Selection (MEERKAT-VP) mechanism that identifies clients with
highly heterogeneous data distributions based on their optimization trajectories. Instead of excluding
them, MEERKAT-VP applies early stopping to these clients to limit their adverse influence on global
model updates while still preserving their participation.

Proof. Motivation for Early Stopping: In federated learning, clients perform local updates starting
from the global model wr. For T > 1, clients may drift towards their local optima, introducing bias
into the global update due to data heterogeneity. By identifying "bad" clients and limiting them to one
update step, we reduce their drift and align their contributions more closely with the global gradient.

We divide the K clients into two groups:

• Balanced-distribution clients (Kg): Perform T local step updates.
• Skewed-distribution clients (Kb): Perform only 1 local step update.

The global model update becomes:

wr+1 = wr +
1

K

∑
k∈Kg

(wr,T
k − wr) +

1

K

∑
k∈Kb

(wr,1
k − wr)

where:

wr,T
k − wr = −η

T−1∑
t=0

∇̂fk(wr,t), wr,1
k − wr = −η∇̂fk(wr)
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Loss Descent Analysis Using the L-smoothness property:

f(wr+1) ≤ f(wr) + ⟨∇f(wr), wr+1 − wr⟩+ L

2
∥wr+1 − wr∥2

We analyze the inner product term:

⟨∇f(wr), wr+1 − wr⟩ =
K∑

k=1

pk⟨∇f(wr),wr,T
k −wr⟩

K∑
k=1

pk⟨∇f(wr),wr,T
k −wr⟩ = −η

K∑
k=1

pk⟨∇f(wr),

T−1∑
t=0

∇̂fk(wr,t, z̄t)⟩

= −η
K∑

k=1

pk

T−1∑
t=0

⟨∇f(wr), ∇̂fk(wr,t, z̄t)⟩

Since we have balanced-distribution clients and skewed-distribution clients:

⟨∇f(wr), wr+1 − wr⟩ = 1

K

∑
k∈Kg

⟨∇f(wr), wr,T
k − wr⟩+ 1

K

∑
k∈Kb

⟨∇f(wr), wr,1
k − wr⟩

⟨∇f(wr), wr+1 − wr⟩ = − η

K

∑
k∈Kg

T−1∑
t=0

⟨∇f(wr), ∇̂fk(wr,t)⟩

− η

K

∑
k∈Kb

⟨∇f(wr), ∇̂fk(wr)⟩
(19)

Since ∇̂f t
k is unbiased, we have:

K∑
k=1

T−1∑
t=0

〈
∇f(wr), ∇̂fk(wr,t, z̄t)

〉
=

K∑
k=1

T−1∑
t=0

〈
∇f(wr), Ez̄

[
∇̂fk(wr,t, z̄t)

]〉
We substitute the equation 4 and get:

K∑
k=1

T−1∑
t=0

〈
∇f(wr), Ez̄

[
∇̂fk(wr,t, z̄t)

]〉
=

K∑
k=1

T−1∑
t=0

〈
∇f(wr), m⊙∇fk(wr,t)

〉
.

Thus taking expectation of equation 19, we can get:

Ez̄⟨∇f(wr),wr+1 −wr⟩ = − η

K

( ∑
k∈Kg

T−1∑
t=0

⟨∇f(wr), m⊙∇fk(wr,t)⟩

+
∑
k∈Kb

⟨∇f(wr), m⊙∇fk(wr)⟩

) (20)

Under the Cauchy–Schwarz inequality, we have:

〈
∇f(wr), m⊙∇fk(wr,t)

〉
≤ ∥∇f(wr)∥ ∥m⊙∇fk(wr,t)∥
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We substitute Assumption C.6 get:

∥∇f(wr)∥ ∥m⊙∇fk(wr,t)∥ =
√
c ∥∇f(wr)∥ ∥∇fk(wr,t)∥.

Thus we get: 〈
∇f(wr), m⊙∇fk(wr,t)

〉
≤
√
c ∥∇f(wr)∥ ∥∇fk(wr,t)∥.

By the triangle inequality, we have

∥∇fk(wr,t)∥ ≤ ∥∇f(wr)∥+ ∥∇fk(wr,t)−∇f(wr)∥
We substitute Assumption C.3 and use the properties of square roots we get:

∥∇f(wr)∥+ ∥∇fk(wr,t)−∇f(wr)∥ ≤ ∥∇f(wr)∥+
√

ch ∥∇f(wr)∥2 + σ2
h

≤ (1 +
√
ch) ∥∇f(wr)∥+ σh.

Using the bound ⟨∇f(wr), m⊙∇fk(wr,t)⟩ ≤
√
c ∥∇f(wr)∥ ∥∇fk∥ from Cauchy–Schwarz and

Assumption C.6, and then plugging in the above, we obtain

⟨∇f(wr), m⊙∇fk(wr,t)⟩ ≤
√
c ∥∇f(wr)∥

[
(1 +

√
ch) ∥∇f(wr)∥+ σh

]
≤
√
c (1 +

√
ch) ∥∇f(wr)∥2 +

√
c σh ∥∇f(wr)∥.

Since this bound holds uniformly for all k and t, and based on the equation 20 we get:∑
k∈Kg

T−1∑
t=0

⟨∇f(wr),m⊙∇fk(wr,t)⟩+
∑
k∈Kb

⟨∇f(wr),m⊙∇fk(wr)⟩

≤ (|Kg|T + |Kb|)
[√

c(1 +
√
ch)∥∇f(wr)∥2 +

√
cσh∥∇f(wr)∥

]
.

We get:

Ez̄[f(w
r+1)] ≤ Ez̄[f(w

r)]− η
√
cα

K
(1 +

√
ch)∥∇f(wr)∥2

− η
√
cα

K
σh∥∇f(wr)∥+ L

2
Ez̄∥wr+1 − wr∥2

(21)

where α = |Kg|T + |Kb|.
Since the global model update is given by:

wr+1 = wr +
1

K

∑
k∈Kg

(wr,T
k − wr) +

1

K

∑
k∈Kb

(wr,1
k − wr)

We substitute the local updates and the squared norm is:

∥wr+1 − wr∥2 =
η2

K2

∥∥∥∥∥∥
∑
k∈Kg

T−1∑
t=0

∇̂fk(wr,t) +
∑
k∈Kb

∇̂fk(wr)

∥∥∥∥∥∥
2

Define the update contribution per client:

∆̂k =

{
−η
∑T−1

t=0 ∇̂fk(wr,t) if k ∈ Kg,

−η∇̂fk(wr) if k ∈ Kb.

Then:

wr+1 − wr =
1

K

K∑
k=1

∆̂k

∥wr+1 − wr∥2 =
1

K2

∥∥∥∥∥
K∑

k=1

∆̂k

∥∥∥∥∥
2

Using the Cauchy-Schwarz inequality:∥∥∥∥∥
K∑

k=1

∆̂k

∥∥∥∥∥
2

≤ K

K∑
k=1

∥∆̂k∥2, where ∆̂k denotes the actual model update on client k.
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So:

∥wr+1 − wr∥2 ≤ 1

K

K∑
k=1

∥∆̂k∥2

Now compute ∥∆̂k∥2:

∥∆̂k∥2 = η2

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

for k ∈ Kg,

∥∆̂k∥2 = η2
∥∥∥∇̂fk(wr)

∥∥∥2 for k ∈ Kb.

Thus:

∥wr+1 − wr∥2 ≤ η2

K

∑
k∈Kg

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

+
∑
k∈Kb

∥∥∥∇̂fk(wr)
∥∥∥2


We take the expectation:

Ez̄∥wr+1 − wr∥2 ≤ η2

K

∑
k∈Kg

Ez̄

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

+
∑
k∈Kb

Ez̄

∥∥∥∇̂fk(wr)
∥∥∥2


For k ∈ Kb:

Ez̄

∥∥∥∇̂fk(wr)
∥∥∥2 = (2 + u)c ∥∇fk(wr)∥2

For k ∈ Kg:

Ez̄

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

Using the Cauchy-Schwarz inequality:

Ez̄

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

≤ T

T−1∑
t=0

Ez̄

∥∥∥∇̂fk(wr,t)
∥∥∥2

According to the lemma C.7:

Ez̄

∥∥∥∇̂fk(wr,t)
∥∥∥2 = (2 + u)c

∥∥∇fk(wr,t)
∥∥2

So:

Ez̄

∥∥∥∥∥
T−1∑
t=0

∇̂fk(wr,t)

∥∥∥∥∥
2

≤ T (2 + u)c

T−1∑
t=0

∥∥∇fk(wr,t)
∥∥2

Combine the terms we get:

Ez̄∥wr+1 − wr∥2 ≤ η2(2 + u)c

K

T
∑
k∈Kg

T−1∑
t=0

∥∥∇fk(wr,t)
∥∥2 + ∑

k∈Kb

∥∇fk(wr)∥2


We substitute this inequality to the equation 21.

Ez̄[f(w
r+1)] ≤ Ez̄[f(w

r)]− η
√
cα

K
(1 +

√
ch) ∥∇f(wr)∥2

− η
√
cα

K
σh ∥∇f(wr)∥

+
η2(2 + u)cL

2K

T
∑
k∈Kg

T−1∑
t=0

∥∥∇fk(wr,t)
∥∥2 + ∑

k∈Kb

∥∇fk(wr)∥2


(22)
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Ez̄

[
f(wr+1)

]
≤ Ez̄

[
f(wr)

]
− η
√
c α

K
(1 +

√
ch)
∥∥∇f(wr)

∥∥2 − η
√
c α

K
σh

∥∥∇f(wr)
∥∥

+
η2(2 + u) cLT

2K

∑
k∈Kg

T−1∑
t=0

∥∥∇fk(wr,t)
∥∥2 + η2(2 + u) cL

2K

∑
k∈Kb

∥∥∇fk(wr)
∥∥2

According to the equation 7, we know that the client-average squared gradient has upper bound.

Ez̄

[
f(wr+1)

]
≤ Ez̄

[
f(wr)

]
− η
√
c α

K
(1 +

√
ch)
∥∥∇f(wr)

∥∥2 − η
√
c α

K
σh

∥∥∇f(wr)
∥∥

+
η2(2 + u) cLT

2K

∑
k∈Kg

[2L(2 + u)

c

(
fk(w

0,r
k )− f∗

k

)
+ T σ2

]

+
η2(2 + u) cL

2K

∑
k∈Kb

∥∥∇fk(wr)
∥∥2.

(23)

Using Assumption C.3, which states that for any θ ∈ Rd,

∥∇f(θ)−∇fi(θ)∥2 ≤ ch ∥∇f(θ)∥2 + σ2
h,

we can bound the squared norm of the local gradient ∥∇fk(wr)∥2. Specifically, by the inequality
(x+ y)2 ≤ 2x2 + 2y2, we have:

∥∇fk(wr)∥2 = ∥∇f(wr) + (∇fk(wr)−∇f(wr))∥2 ≤ 2 ∥∇f(wr)∥2+2 ∥∇fk(wr)−∇f(wr)∥2 .
Then, applying Assumption C.3 with θ = wr and i = k:

∥∇fk(wr)−∇f(wr)∥2 ≤ ch ∥∇f(wr)∥2 + σ2
h.

Therefore,

∥∇fk(wr)∥2 ≤ 2 ∥∇f(wr)∥2 + 2
(
ch ∥∇f(wr)∥2 + σ2

h

)
= (2 + 2ch) ∥∇f(wr)∥2 + 2σ2

h.

Thus, we obtain the bound:

∥∇fk(wr)∥2 ≤ (2 + 2ch) ∥∇f(wr)∥2 + 2σ2
h.

We substitute the bound to the inequality 23, according to the Assumption C.3, we substitute the last
term:

Ez̄

[
f(wr+1)

]
≤ Ez̄

[
f(wr)

]
− η
√
c α

K
(1 +

√
ch) ∥∇f(wr)∥2 − η

√
c α

K
σh ∥∇f(wr)∥

+
η2(2 + u) cLT

2K

∑
k∈Kg

[2L(2 + u)

c

(
fk(w

0,r
k )− f∗

k

)
+ T σ2

]

+
η2(2 + u) cL

2K

∑
k∈Kb

[
(2 + 2ch) ∥∇f(wr)∥2 + σ2

h

]
.

Ez̄

[
f(wr+1)

]
≤ Ez̄

[
f(wr)

]
− η
√
c α

K
(1 +

√
ch) ∥∇f(wr)∥2 − η

√
c α

K
σh ∥∇f(wr)∥

+
η2(2 + u) cLT

2K

∑
k∈Kg

[2L(2 + u)

c

(
fk(w

0,r
k )− f∗

k

)
+ T σ2

]

+
η2(2 + u) cL |Kb| (1 + ch)

K
∥∇f(wr)∥2 + η2(2 + u) cL |Kb|σ2

h

K
.
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Ez̄

[
f(wr+1)

]
≤ Ez̄

[
f(wr)

]
+

η2(2 + u) cLKb (1 + ch)− η
√
c α

K

∥∥∇f(wr)
∥∥2

− η
√
c α σh

K

∥∥∇f(wr)
∥∥

+
η2(2 + u)2 L2T

K

∑
k∈Kg

(
fk(w

0,r
k )− f∗

k

)

+
η2(2 + u) cL

2K

(
T 2 σ2 Kg + 2Kbσ

2
h

)
.

(24)

Accumulating Over R Rounds. Summing equation 24 over r = 0 to R− 1,

Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤ η2(2 + u) cLKb (1 + ch)− η

√
c α

K

R−1∑
r=0

∥∥∇f(wr)
∥∥2

− η
√
c α σh

K

R−1∑
r=0

∥∥∇f(wr)
∥∥

+
η2(2 + u)2 L2 T

K

R−1∑
r=0

∑
k∈Kg

(
fk(w

0,r
k )− f∗

k

)

+
η2(2 + u) cLR

2K

(
T 2 σ2 Kg + 2Kb σ

2
)
.

(25)

According to our previous derivation, we know that:

R−1∑
r=0

∥∥∇f(wr)
∥∥ ≤ √R

√√√√R−1∑
r=0

∥∥∇f(wr)
∥∥2 . (26)

Apply Young’s inequality with δ > 0 and nonnegative real numbers x and y,

xy ≤ x2

2δ
+

y2δ

2
.

η
√
c σhα

K

R∑
r=0

∥∇f(wr)∥ ≤ η
√
c ασh

√
R

K

√√√√ R∑
r=0

∥∇f(wr)∥2

≤ 1

2δ

R∑
r=0

∥∇f(wr)∥2 +
η2 c α2σ2

h Rδ

2K2

−η
√
c σhα

K

R∑
r=0

∥∇f(wr)∥ ≤ 1

2δ

R∑
r=0

∥∇f(wr)∥2 +
η2 c α2σ2

h Rδ

2K2
.

We substitute this to the equation 25.
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Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤

(
η2(2 + u) cLKb (1 + ch) − η

√
c α

K
+

1

2δ

)
R−1∑
r=0

∥∇f(wr)∥2

+
η2 c α2σ2

h Rδ

2K2
+

η2(2 + u)2 L2 T

K

R∑
r=0

∑
k∈Kg

(
fk(w

0,r
k )− f∗

k

)

+
η2(2 + u) cLR

2K

(
T 2 σ2 Kg + 2Kb σ

2
h

)
.

(27)

Given that w0,r
k = wr, this term is equivalent to

∑R
r=0

∑
k∈Kg

(
fk(w

r)− f∗
k

)
.

From our previous discussion, we have the inequality for a single round r:

∑
k∈Kg

(
fk(w

r)− f∗
k

)
≤

K∑
k=1

(
fk(w

r)− f∗
k

)
and the inequality used in Part 2 of the proof:

R−1∑
r=0

K∑
k=1

(fk(w
r)− f∗

k ) ≤
R−1∑
r=0

(
Kf(wr)−Kf∗ +

L

2

K∑
k=1

∆k

)
.

Combining these two inequalities, we obtain a bound for the sum over the set Kg:

We set γ ≤ 1 which means that the subset clients the effect to the global:

R−1∑
r=0

∑
k∈Kg

(
fk(w

r)− f∗
k

)
≤ γ

R−1∑
r=0

(
K
(
f(wr)− f∗)+ L

2

K∑
k=1

∆k

)

We substitute this to the above inequality get:

Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤
(
η2(2 + u) cLKb (1 + ch)

K
− η
√
c α

K
+

1

2δ

)R−1∑
r=0

∥∇f(wr)∥2

+
η2 c α2 σ2

h Rδ

2K2
+ η2(2 + u)2 L2 T γ

R−1∑
r=0

(
f(wr)− f∗)

+
η2(2 + u)2 L3 T Rγ

2K

K∑
k=1

∆k

+
η2(2 + u) cLR

2K

(
T 2 σ2 Kg + 2Kb σ

2
h

)
.

We substitute α:

Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤
(
η2(2 + u)cLKb(1 + ch)

K
− η
√
c(KgT +Kb)

K
+

1

2δ

)R−1∑
r=0

∥∇f(wr)∥2

+
η2c(K2

gT
2 + 2KgTKb +K2

b )σ
2
hRδ

2K2
+ η2(2 + u)2L2Tγ

R−1∑
r=0

(f(wr)− f∗)

+
η2(2 + u)2L3TRγ

2K

K∑
k=1

∆k +
η2(2 + u)cLR

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
.
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To simplify the inequality, we solve for δ:

1

2δ
= −η

√
c(KgT +Kb)

2K
− η2(2 + u)cLKb(1 + ch)

K
+

η
√
c(KgT +Kb)

K
,

1

2δ
=

η
√
c(KgT +Kb)

2K
− η2(2 + u)cLKb(1 + ch)

K
,

δ =
K

η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch)

.

For δ > 0, the denominator must be positive:

η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch) > 0,

yielding the condition:

η <

√
c(KgT +Kb)

2(2 + u)cLKb(1 + ch)
.

Substitute δ:

Ez̄

[
f(wR)

]
− Ez̄

[
f(w0)

]
≤ −η

√
c(KgT +Kb)

2K

R−1∑
r=0

∥∇f(wr)∥2

+
η2c(KgT +Kb)

2σ2
hR

2K (η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch))

+ η2(2 + u)2L2Tγ

R−1∑
r=0

(f(wr)− f∗)

+
η2(2 + u)2L3TRγ

2K

K∑
k=1

∆k

+
η2(2 + u)cLR

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
.

According to the Assumption C.2 we have:

2µ(f(wr)− f∗) ≤ ∥∇f(wr)∥2, ∀wr ∈ Rd,

2µ

R−1∑
r=0

(f(wr)− f∗) ≤
R−1∑
r=0

∥∇f(wr)∥2, ∀wr ∈ Rd,

Combine the PL inequality to the above function we get:

η
√
c(KgT +Kb)

2K

R−1∑
r=0

∥∇f(wr)∥2 ≤ Ez̄

[
f(w0)

]
− Ez̄

[
f(wR)

]
+

η2c(KgT +Kb)
2σ2

hR

2K (η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch))

+ η2(2 + u)2L2Tγ

R−1∑
r=0

(f(wr)− f∗)

+
η2(2 + u)2L3TRγ

2K

K∑
k=1

∆k

+
η2(2 + u)cLR

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
.
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Let SE =
∑R−1

r=0 E[f(wr)− f∗], Dδ = η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch). We require

Dδ > 0.

Substituting this back into the original inequality:

E[f(wR)]− E[f(w0)] ≤ −ηµ
√
c(KgT +Kb)

K
SE + η2(2 + u)2L2TγSE

+
η2c(KgT +Kb)

2σ2
hR

2KDδ

+
η2(2 + u)2L3TRγ

2K

K∑
k=1

∆k

+
η2(2 + u)cLR

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
.

Collecting terms involving SE :

E[f(wR)]− E[f(w0)] ≤
(
η2(2 + u)2L2Tγ − ηµ

√
c(KgT +Kb)

K

)
SE + other terms.

Moving SE to the left side:(ηµ√c (KgT +Kb)

K
− η2(2 + u)2L2Tγ

)
SE ≤ E[f(w0)]− E[f(wR)]

+
η2c (KgT +Kb)

2σ2
h R

2KDδ
+

η2(2 + u)2L3T Rγ

2K

K∑
k=1

∆k

+
η2(2 + u)cLR

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
. (28)

Since E[f(wR)] ≥ f∗ (typically f∗ is the minimum), we have E[f(w0)]− E[f(wR)] ≤ E[f(w0)−
f∗]. Let f∗

0 = E[f(w0) − f∗] (the initial expected suboptimality). Let the coefficient of SE be
C ′

S =
ηµ

√
c(KgT+Kb)

K − η2(2 + u)2L2Tγ. To ensure C ′
S > 0, we need η sufficiently small such that

η <
µ
√
c(KgT+Kb)

K(2+u)2L2Tγ . Then:

C ′
SSE ≤ f∗

0 +
η2c(KgT +Kb)

2 σ2
h R

2KDδ
+

η2(2 + u)2 L3 T Rγ

2K

K∑
k=1

∆k

+
η2(2 + u) cLR

2K

(
T 2 σ2 Kg + 2Kb σ

2
h

)
.

Our goal is 1
RSE = 1

R

∑R−1
r=0 E[f(wr)− f∗]. Dividing both sides by R:

C ′
S

1

R

R−1∑
r=0

E[f(wr)− f∗] ≤ f∗
0

R
+

η2 c (KgT +Kb)
2 σ2

h

2KDδ

+
η2 (2 + u)2 L3 T γ

2K

K∑
k=1

∆k

+
η2 (2 + u) cL

2K

(
T 2σ2Kg + 2Kbσ

2
h

)
.

Finally, dividing both sides by C ′
S (assuming C ′

S > 0):

1

R

R−1∑
r=0

Ez̄[f(w
r)− f∗] ≤ 1

C ′
S

[
f∗
0

R
+

η2c(KgT +Kb)
2σ2

h

2K (η
√
c(KgT +Kb)− 2η2(2 + u)cLKb(1 + ch))

+
η2(2 + u)2L3Tγ

2K

K∑
k=1

∆k +
η2(2 + u)cL

2K

(
T 2σ2Kg + 2Kbσ

2
h

)]
,
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where

C ′
S =

η µ
√
c (KgT +Kb)

K
− η2(2+u)2L2T γ, Dδ = η

√
c (KgT+Kb)−2η2(2+u)cLKb(1+ch).

To ensure both C ′
S > 0 and Dδ > 0, we require

η <

√
c(KgT +Kb)

2(2 + u)cLKb(1 + ch)︸ ︷︷ ︸
=η̄δ

, η <
µ
√
c(KgT +Kb)

K(2 + u)2L2T γ︸ ︷︷ ︸
=η̄S

.

Let
ηmax = min{η̄δ, η̄S}, θ ∈

(
0, 1

2

]
.

Choosing θ = 1
2 gives

η = 1
2 ηmax =

µ
√
c (KgT +Kb)

2K (2 + u)2L2T γ
.

We select

η =
µ
√
c(KgT +Kb)

2K(2 + u)2L2Tγ

And from previous client convergence conclusion, we pick a constant local learning rate

ηclient =
c

α
=

1

L (u+ 2)
<

2c

α

Substituting the learning rate η = min

{
1

L (u+2) ,
µ
√
c
(
Kg T+Kb

)
2K (2+u)2 L2 T γ

}
, since η is a small value, we

neglect η2.

1

R

R−1∑
r=0

Ez̄

[
f(wr)− f∗] ≤ 4K2(2 + u)2L2Tγ E[f(w0)− f∗]

µ2 c (KgT +Kb)2 R
+

σ2
h

2
+

(2 + u)L

4K

K∑
k=1

∆k

+
c

4K(2 + u)LT γ

(
T 2σ2Kg + 2Kbσ

2
h

)
.

1

R

R−1∑
r=0

Ez̄

[
f(wr)− f∗] ≤ O

(
K2 (2 + u)2 γ T

c (KgT +Kb)2 R

)

+ O

(
1 + u

K
(

Kg∑
k=1

∆kg +

Kb∑
k=1

∆kb)

)

+ O

(
c T Kg

K(1 + u) γ

)
+ O

(
cKb σ

2
h

K(1 + u)T γ

)
+O

(
1
)
.

(29)

Define the error upper-bounds for MEERKAT-VP and the baseline MEERKAT as follows:

EMEERKAT-VP =
4K2(2 + u)2L2T γ

µ2 c (KgT +Kb)2
E[f(w0)− f∗]

R︸ ︷︷ ︸
(I) Transient term

+

[
σ2
h

2
+

(2 + u)L

4K

K∑
k=1

∆k +
c
(
T 2σ2Kg + 2Kbσ

2
h

)
4K(2 + u)LT γ

]
︸ ︷︷ ︸

(II) Steady-state term

,

EMEERKAT =
4L2(2 + u)2

µ2 c (1 +
√
ch)2 T

E[f(w0)− f∗]

R︸ ︷︷ ︸
(I’) Transient term

+

[
σ2
h

µ (1 +
√
ch)2

+
L

K

K∑
k=1

∆k +
T c σ2

2L (2 + u)

]
︸ ︷︷ ︸

(II’) Steady-state term

.
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• Transient term ratio:
(I)

(I ′)
≈ γ (1 +

√
ch)

2 < 1, and as ch → 1, γ(1 +
√
ch)

2 → 0.

• Noise term ratio:
σ2
h/2

σ2
h/(µ (1 +

√
ch)2)

=
µ (1 +

√
ch)

2

2
, which is < 1 when µ (1 +

√
ch)

2 < 2.

Empirically µ < 1, thus µ (1 +
√
ch)

2 < 2 is True. Additionally, VPCS includes an extra term
cKbσ

2
h

2K(2+u)LTγ , which decays as 1
T and becomes negligible for large T .

• Heterogeneity and variance terms:

(2 + u)L

4K

K∑
k=1

∆k <
L

K

K∑
k=1

∆k, and the extra variance term decays as 1/K.

Therefore, under the same T and R, EMEERKAT-VP < EMEERKAT and this gap widens as data hetero-
geneity ch increases.

REMARKS

The analysis of the upper bound in Equation 17 reveals how the local training step T , density level u,
and communication rounds R collectively influence the optimization dynamics through a balance of
convergence rate, bias–variance trade-offs, and steady-state error control:

• Impact of Local Update Steps T : A smaller T amplifies the term
O
(

(2+u)2

TR · E[f(w0)− f(wR)]
)

, increasing the average optimality gap after R communi-
cation rounds when R is fixed. However, this effect can be mitigated by increasing R, as the
scaling factor 1

R reduces the term’s impact. Conversely, reducing T diminishes the variance term

O
(

T
2+u

)
, leading to a smaller steady-state error. Thus, a smaller T may prolong the transient

phase but ultimately achieves a tighter optimality gap relative to f∗ after sufficient rounds.
• Density Level u. Reducing u (i.e., increasing sparsity) quadratically benefits the transient term, yet

it also inflates the steady-state term through the denominator 2 + u. Choosing u therefore amounts
to balancing communication savings against the plateau error; aggressive sparsification should be
coupled with smaller T to avoid performance degradation.

• MEERKAT-VP Client Selection Strategy: By early-stopping extreme data-imbalance clients
with a single local training step, MEERKAT-VP effectively reduces Non-IID drift in zeroth-order
federated llm fine-tuning. This strategy lowers the coefficient of the transient term and further
reduces heterogeneity- and variance-induced steady-state error. Under fixed T and R, these effects
yield strictly faster convergence and a tighter optimality gap in Non-IID settings.

These conclusions illustrate how tuning T , R, u, and the MEERKAT-VP client selection strategy can
optimize performance in federated, sparse, and Non-IID learning scenarios.

C.6 EMPIRICAL ANALYSIS OF THE GRADIP PHENOMENON

By Lemma C.8, the masked sparse zeroth-order (ZO) surrogate gradient is an unbiased estimator of
the masked first-order gradient. Building on this fact, we define the vector gc(w;x, y) is obtained by
computing the gradient of the cross-entropy loss for a single sample with respect to a small subset of
parameters selected by a mask.

From logits to Softmax Probabilities we have:

• The model’s final layer outputs a logit for each class:

h(x;w) =
(
h1, . . . , hC

)
∈ RC .

• The softmax probabilities are given by:

pj(x;w) =
ehj∑C
r=1 e

hr

.
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The cross-entropy loss for a single sample is:

ℓ(w;x, y) = − log py(x;w), where y ∈ {1, . . . , C}.

For each logit hj , the partial derivative is:

∂ℓ

∂hj
= pj − 1{y=j} = pj − (ey)j ,

where ey is the one-hot vector with 1 in the y-th component.

Since we are only interested in the sensitive parameters selected by the mask m, the gradient with
respect to the parameters can be written as:

gc(w;x, y) = ∇wm
ℓ(w;x, y)

=

C∑
j=1

∂ℓ

∂hj
∇wm

hj(x;w)

=
(
p(x;w)− ey

)⊤
∇wm

h(x;w).

Here:

• ∇wmhj(x;w) is the gradient/Jacobian of the logit hj with respect to the masked parameter wm.
• By collecting the coefficients pj − 1y=j into a vector, we obtain the compact form:

gc(w;x, y) = (p− ey)
⊤∇wm

h(x;w).

In our existing local client convergence inequality and from the assumption C.4, we can empirically
write the key constant estimator variance:

σ2
k =

1

d
Var(x,y)∼Dk

[gc(w;x, y)].

We write gc in matrix form: Define:

J(x;w) = ∇wm
h(x;w) ∈ Rdm×C , a(x, y;w) = p(x;w)− ey ∈ RC .

Thus:
gc(w;x, y) = J⊤(x;w)a(x, y;w) ∈ Rdm .

We substitute this equation to the above estimator variance:

σ2
k =

1

dm
E(x,y)

∥∥g(w;x, y)−∇fk(w)∥∥2︸ ︷︷ ︸
total variance

=
1

dm
tr

J⊤ Cov(x,y)
[
a(x, y;w)

]︸ ︷︷ ︸
Σa

J

 . (1)

Note:

• Σa ∈ RC×C is determined solely by the label distribution and prediction probabilities.
• J reflects the network structure and influences only a similarity coefficient.

Analysis of Extreme Non-IID (Single Label y†):

• The label is fixed, so 1y=j is constant.
• If the model is mostly correct: p ≈ ey† , then a(x, y;w) ≈ 0, yielding:

Σa ≈ 0 =⇒ σ2
non ≈

1

dm
tr(0) = 0.

Analysis of Approximate IID (Balanced Multi-Label)

• The label y varies across {1, . . . , C}.
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• Even as the loss decreases, pj differs across classes. The covariance is:
(Σa)rs = E [(pr − 1y=r)(ps − 1y=s)]− (E[pr − 1y=r])︸ ︷︷ ︸

=0

(E[ps − 1y=s])︸ ︷︷ ︸
=0

.

This matrix has diagonal elements E
[
(pr − 1y=r)

2
]
> 0, making Σa positive definite or semi-

definite but non-zero. Thus:
σ2

iid =
1

dm
tr
(
J⊤ΣaJ

)
> 0.

Our local convergence bound is:

1

T

T−1∑
t=0

E∥∇fk(wt
k)∥2 ≤ O

(
1

T

)
+ σ2

k,

which indicates that in the steady state, the upper bound of the gradient norm is determined by σ2
k.

Therefore,

σ2
iid ≫ σ2

non-iid ≈ 0 =⇒
{

IID clients: Gradient Norm oscillates significantly;
Non-IID clients: Gradient Norm decreases monotonically and approaches 0.

REMARKS

In summary, by substituting the explicit form of the cross-entropy gradient into our sparse ZO
convergence formula, we can empirically explain that due to the variance differences caused by
label distributions, the Gradient Norms of IID clients maintains significant fluctuations, while that of
extremely Non-IID clients rapidly decays and converges to zero.

Server

Client 1 
training path

Calculate Gradip &
Analyze Virtual Path

...

Step 0: Local Training
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Client 1

Client n-1

Client n
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...

...
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&
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&
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...
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Step 2: Identify Clients with 
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Figure 5: MEERKAT-VP: Each client locally trains with a prescribed statistic step, yielding a
sequence of projected gradients. The server leverages a randomly sampled vector ztk from the
Gaussian distribution N (0, Id) to reconstruct ∇f t

k, and then computes GradIP (see Definition 2.3)
at every local training step. By analyzing the resulting GradIP values across all clients, the system
distinguishes those clients with extremely Non-IID data from those that are relatively balanced. For
the parameters later phase steps , initial phase steps, quiescent step ratio, and initial to later ratio,
please refer to Table 3 in Appendix D.1

D MORE EXPERIMENTAL DETAILS

D.1 ADDITIONAL EXPERIMENTAL SETTINGS

Testbed. All experiments are run on servers with the following configurations: RTX A6000 Setup:
Ubuntu 18.04.6 LTS with 2 NVIDIA RTX A6000 GPUs (each with 48GB GPU memory). GH200
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Algorithm 2 MEERKAT: Sparse Zeroth-Order Optimization for Federated LLM Fine-Tuning

Input: pre-trained weight w0, sparse mask m, learning rate η, perturbation scale ϵ, number of
rounds R, total number of clients K number of local steps T
Server initiate seed list {s11, · · · , sT1 }
for Round r = 1 to R do

Step 1. Local ZO update.
for each client k in parallel do

Download model from server: wk ← wr−1

Download seed list {s1r, · · · , sTr } from server
for local step t = 1 to T do

Initialize ztk with seed str.
Sample a batch B on client dataset.
w̃t

k ← wt
k + ϵ · (ztk ⊙m)

Compute loss f+ ← f(w̃t
k;B)

w̃t
k ← wt

k − 2ϵ · (ztk ⊙m)
Compute loss: f− ← f(w̃t

k;B)
Compute projected gradient:

gtk ← (f+ − f−)/2ϵ

Update client model:
∇̂f t

k ← gtk · (ztk ⊙m)

wt+1
k ← wt

k − η∇̂f t
k

end for
Send projected gradients {g1k, g2k, . . . , gTk } to server.

end for
Step 2. Server recover each client’s update with virtual path.
for k = 1 to K do

for local step t = 1 to T do
Generate ztk with seed str.
Perform virtual path:

∇̂f t
k = gtk · (ztk ⊙m)

wt+1
k ← wt

k − η∇̂f t
k

Store recover client model parameters wT
k

end for
end for
Step 3. Server Aggregate reconstructed sparse model update.

wr ←
1

K

K∑
k=1

wT
k

Generate new seed list {s1r+1, · · · , sTr+1}.
end for
Output: wR
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Algorithm 3 MEERKAT with high frequency server-client synchronization

Input: Seed s and projected gradients gtk from all clients, global model m, learning rate η, number
of clients K, sparse mask m
Aggregate projected gradients from all clients with same seed:

g ← 1

K

K∑
k=1

gk

Calculate Zeroth-Order Gradients:

∇̂f ← g · (z⊙m)

Update global model parameters:

wr+1 ← wr − η (∇̂f ⊙m)

Generate new seed s_new
Output: Send aggregated global projected gradients g and seed s_new to all clients.

Setup: Ubuntu 20.04 with 1 NVIDIA GH200 GPU (480GB GPU memory). A100 Setup: Ubuntu
22.04 with 1 NVIDIA A100 GPU (40GB GPU memory).

Dataset. We conducted experiments using datasets from the GLUE and SuperGLUE benchmarks,
including SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC. To create IID clients data, we shuffle
the entire dataset and evenly divide it among the clients. To create Non-IID clients data, we split the
data using a Dirichlet distribution. For all tasks, the Dirichlet α parameter is set to 0.5 to control the
degree of data heterogeneity.

Evaluation metric. In our experiments, test accuracy is used as the primary evaluation metric.
Accuracy is computed as the proportion of correctly predicted labels across all evaluation samples.,
Additionally, we incorporate the GradIP score (see Definition 2.3) to analyze further the dynamics of
local model training under IID and Non-IID client data settings. GradIP provides a metric to measure
the quality of client training trajectories, particularly in heterogeneous data distributions.

Notations. We present the parameters definition used in MEERKAT-VP in Table 3.

Table 3: MEERKAT-VP Parameters Notation

Term Explanation
calibration steps Tcali Number of steps each client performs to measure GradIP.
initial phase steps Tinit Number of earliest local steps used to measure the early-phase GradIP.
later phase steps Tlater Number of latest local steps used to observe the late-phase GradIP.
convergence threshold σ Threshold indicating when GradIP is effectively zero.
quiescent step ratio ρquie Fraction of later phase where GradIP stays below threshold
Initial to later ratio ρlater Ratio of average GradIP in the initial phase to that in the later phase.

Hyper-parameters. We use the following hyper-parameters in our experiments; see Table 4

MEERKAT-VP Hyperparameter Selection. Below, we present the default hyperparameter values for
MEERKAT-VP, task-specific adjustments, and the results of our hyperparameter sensitivity analysis to
demonstrate the robustness of the method.

These default values work well for most tasks. However, some tasks benefit from task-specific tuning,
particularly the RTE task which shows sensitivity to these parameters:

Sensitivity Analysis. We conducted sensitivity analysis to understand the robustness of our method to
hyperparameter variations. Tables 7 and 8 show the performance stability across different parameter
settings.
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Table 4: Hyper-parameters used in our experiments.

Parameter Value
MEERKAT learning rate [2e-4, 2e-8]
MEERKAT-VP learning rate [2e-4, 2e-8]
LoRA-FedZO learning rate [2e-4, 2e-8]
Full-FedZO learning rate [2e-4, 2e-8]
Batch size 16
Dirichlet alpha 0.5, 0.3, 0.1
LoRA rank 16
LoRA alpha 16
initial phase steps 20
later phase steps 20
convergence threshold 1
quiescent step ratio [0.4, 0.5, 0.7]
Initial to later ratio [1.5, 2, 5, 10, 15]
calibration steps 100
Total clients 10

Table 5: Default MEERKAT-VP Hyperparameter Values

initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio
20 20 1 0.5 5

Table 6: Task-Specific VPCS Hyperparameters for RTE Task

Model initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio
Gemma2-2B 20 20 1 0.7 5
LLaMA-3.2-1B 20 20 0.5 0.7 5
Qwen2-1.5B 20 20 0.5 0.5 5

Table 7: Parameter Sensitivity Analysis for LLaMA-3.2-1B on SST-2 Task

initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio Performance
20 20 1 0.5 3 0.922
20 20 1 0.5 5 0.922
20 20 1 0.5 7 0.922
20 20 1 0.5 10 0.922
20 20 1 0.5 12 0.922

Table 8: Parameter Sensitivity Analysis for RTE Task

Model initial phase steps later phase steps convergence threshold quiescent step ratio Initial to later ratio Performance

LLaMA-3.2-1B 20 20 0.8 0.5 7 0.617
20 20 0.7 0.5 5 0.617

Gemma2-2B 20 20 1 0.5 3 0.657
20 20 1 0.5 5 0.657

D.2 ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experimental results to compare MEERKAT, MEERKAT-VP,
Full-FedZO, and LoRA-FedZO under various settings. The results include five tables and three
figures, providing a detailed evaluation of performance across different models, datasets and experi-
ment settings. Table 3 provides a description of the parameters used in MEERKAT-VP, and Table 4
lists the experiment parameters used in this experiment. Tables 5 and 6 list the hyperparameter
values for MEERKAT-VP. Tables 7 and 8 demonstrate the robustness of the MEERKAT-VP parameter
selection. Table 9 provides a quantitative analysis that demonstrates the significant disparity in gradi-
ent sensitivity across different parameter groups, thereby justifying our selection criteria. Table 11
shows that a domain-shifted calibration dataset can be used effectively to select sensitive model
parameters. Furthermore, we designed an experiment where each client builds a local parameter
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mask from its own dataset. The results demonstrate that aggregating these local masks into a union
mask does not achieve better performance than using a single, globally unified mask. Table 12
compares MEERKAT and Full-FedZO on multiple tasks at the same communication frequency for
Llama-3.2-1B, Qwen2-1.5B, and Gemma-2-2b models. Table 13 presents results in a Non-IID client
data scenario, comparing MEERKAT-VP and MEERKAT under the same communication frequency
and sparsity density, and demonstrating MEERKAT-VP improved performance. Table 14 investigates
the robustness of MEERKAT by evaluating test accuracy with local step 1 across different sparsity
densities. Table 15 compares MEERKAT, Full-FedZO and LoRA-FedZO under high communication
frequency across IID and Non-IID client data settings. Table 22 details the number of training rounds
required for convergence across different models and tasks. Table 23 benchmarks computational
and communication efficiency, demonstrating that MEERKAT significantly reduces peak RAM usage
and client download bandwidth compared to the Full-FedZO and LoRA-FedZO baselines. Table 24
shows that our MEERKAT-VP method achieves competitive performance against the back-propagation
upper bound and substantially outperforms FedDYN Acar et al. (2021). Figure 7 and Figure 9 further
illustrate the phenomenon of GradIP under IID and Non-IID client data settings.

Table 9: Gradient Sensitivity Analysis for Qwen2-1.5B Model on C4 Dataset (Top 0.1% Parameters).
To quantitatively analyze gradient sensitivity, we ranked all parameters by their average squared

gradients from pre-training and divided them into four disjoint (non-overlapping) buckets: 0-0.1%,
0.1-1%, 1-10% and 10%-100%.

Bucket / Metric Top 0.1% 0.1%-1% 1%-10% 10%-100%

Avg Gradient Square 4.403× 10−3 8.536× 10−5 1.075× 10−5 1.764× 10−6

Std Gradient Square 8.094× 10−2 5.858× 10−5 6.255× 10−6 1.099× 10−6

Max Gradient Square 1.413× 101 3.147× 10−4 3.505× 10−5 5.245× 10−6

Min Gradient Square 3.166× 10−4 3.529× 10−5 5.245× 10−6 1.025× 10−19

Table 10: Accuracy of MEERKAT vs. Random-Select (Qwen2-1.5B, 0.1% mask). Directly
addressing the comparison with random selection, we ran a control experiment that shows our

method is significantly better across all tasks. The local step is 10.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg
MEERKAT 0.949 0.881 0.934 0.752 0.813 0.682 0.628 0.806
Random Select 0.821 0.543 0.852 0.667 0.711 0.663 0.539 0.685

Improvement +12.8% +33.8% +8.2% +8.5% +10.2% +1.9% +8.9% +12.1%
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Table 11: Performance Comparison with Different Calibration Datasets and Methods. Our method
does not require the original pre-training data. It uses a small sample (128 sequences) from any

public, high-quality text corpus to create a transferable parameter mask. This table confirms
MEERKAT’s flexibility and transferability across different domains, including web-text, code, and
medical data, consistently outperforming the Full-FedZO baseline. We also explore UnionMask, a
client-specific mask aggregation approach: (1) Each client computes its own mask based on local
data distribution; (2) Clients send masks to the server for aggregation into a union mask; (3) All
clients use this union mask for ZO training; (4) The server uses the union mask for parameter

updates. Results show that the specialized UnionMask performs similarly to our transferable mask,
validating our universality approach. The local step is 10. Code data: microsoft/rStar-Coder. Medical

data: FreedomIntelligence/medical-o1-reasoning-SFT.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg
Full-FedZO 0.909 0.705 0.940 0.641 0.542 0.634 0.523 0.699

Web-Text Domain Calibration Data

MEERKAT (C4, 0.1%) 0.916 0.872 0.964 0.695 0.600 0.653 0.614 0.759
MEERKAT (Wiki, 0.1%) 0.913 0.855 0.952 0.646 0.582 0.634 0.567 0.736
MEERKAT (ArXiv, 0.1%) 0.901 0.851 0.949 0.714 0.573 0.644 0.562 0.742
MEERKAT (FineWeb, 0.1%) 0.902 0.846 0.958 0.695 0.584 0.634 0.561 0.740

Domain-Shifted Calibration Data

MEERKAT (Code, 0.1%) 0.915 0.843 0.956 0.695 0.551 0.612 0.602 0.739
MEERKAT (Bio, 0.1%) 0.912 0.850 0.956 0.694 0.560 0.625 0.595 0.742

Client-Specific Mask Aggregation

UnionMask (per-client, C4, 0.1%) 0.902 0.845 0.950 0.669 0.582 0.634 0.569 0.736

Table 12: Performance comparison of MEERKAT and Full-FedZO on tasks SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, WIC under an IID client data setting. “Acc” is the average test accuracy across
tasks. Bold numbers indicate the highest value in each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B

Full-FedZO 10 0.913 0.700 0.938 0.646 0.537 0.634 0.540 0.701
MEERKAT 10 0.925 0.881 0.964 0.751 0.684 0.634 0.648 0.784
Full-FedZO 30 0.913 0.700 0.935 0.643 0.542 0.634 0.528 0.699
MEERKAT 30 0.919 0.865 0.967 0.729 0.644 0.663 0.617 0.772
Full-FedZO 50 0.913 0.698 0.939 0.641 0.520 0.634 0.539 0.698
MEERKAT 50 0.920 0.871 0.966 0.734 0.648 0.653 0.614 0.772
Full-FedZO 100 0.903 0.705 0.934 0.656 0.537 0.634 0.537 0.701
MEERKAT 100 0.913 0.842 0.945 0.722 0.573 0.634 0.595 0.746

Qwen2-1.5b

Full-FedZO 10 0.891 0.701 0.931 0.696 0.800 0.682 0.579 0.754
MEERKAT 10 0.944 0.889 0.942 0.788 0.817 0.700 0.656 0.819
Full-FedZO 30 0.902 0.702 0.930 0.709 0.817 0.663 0.583 0.758
MEERKAT 30 0.942 0.895 0.940 0.786 0.840 0.710 0.659 0.825
Full-FedZO 50 0.902 0.705 0.929 0.701 0.808 0.663 0.590 0.757
MEERKAT 50 0.942 0.885 0.934 0.784 0.840 0.634 0.637 0.808
Full-FedZO 100 0.899 0.714 0.928 0.705 0.831 0.682 0.594 0.765
MEERKAT 100 0.946 0.886 0.930 0.776 0.804 0.653 0.653 0.807

Gemma2-2b

Full-FedZO 10 0.87 0.732 0.944 0.717 0.564 0.634 0.592 0.723
MEERKAT 10 0.943 0.892 0.97 0.817 0.724 0.653 0.636 0.805
Full-FedZO 30 0.91 0.81 0.942 0.73 0.56 0.644 0.578 0.739
MEERKAT 30 0.943 0.887 0.973 0.812 0.617 0.663 0.608 0.786
Full-FedZO 50 0.911 0.812 0.942 0.735 0.551 0.634 0.572 0.737
MEERKAT 50 0.94 0.873 0.964 0.812 0.604 0.634 0.617 0.778
Full-FedZO 100 0.917 0.83 0.936 0.728 0.56 0.644 0.59 0.744
MEERKAT 100 0.949 0.87 0.954 0.815 0.568 0.634 0.592 0.769
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Table 13: Comparison of MEERKAT-VP and MEERKAT under Non-IID client data setting, with the
same local step and sparsity. Tasks include SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC.

“Acc” indicates the average test accuracy across all tasks. Bold numbers highlight the best result in
each row.

Methods Local Step SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B

MEERKAT-VP 10 0.922 0.864 0.962 0.713 0.617 0.644 0.625 0.764
MEERKAT 10 0.916 0.872 0.964 0.695 0.600 0.653 0.614 0.759

MEERKAT-VP 30 0.919 0.825 0.963 0.685 0.595 0.634 0.631 0.750
MEERKAT 30 0.897 0.862 0.965 0.646 0.577 0.644 0.583 0.739

MEERKAT-VP 50 0.909 0.836 0.959 0.691 0.577 0.615 0.615 0.743
MEERKAT 50 0.909 0.827 0.965 0.647 0.595 0.634 0.567 0.734

MEERKAT-VP 100 0.904 0.824 0.962 0.684 0.577 0.653 0.630 0.747
MEERKAT 100 0.896 0.777 0.961 0.658 0.577 0.644 0.573 0.726

Qwen2-1.5b

MEERKAT-VP 10 0.941 0.886 0.947 0.76 0.822 0.653 0.636 0.806
MEERKAT 10 0.949 0.881 0.934 0.752 0.813 0.682 0.628 0.805

MEERKAT-VP 30 0.935 0.876 0.953 0.759 0.822 0.653 0.626 0.803
MEERKAT 30 0.944 0.878 0.928 0.734 0.800 0.663 0.624 0.795

MEERKAT-VP 50 0.931 0.882 0.946 0.754 0.804 0.644 0.63 0.798
MEERKAT 50 0.948 0.872 0.926 0.746 0.795 0.663 0.594 0.792

MEERKAT-VP 100 0.935 0.874 0.947 0.751 0.817 0.653 0.644 0.803
MEERKAT 100 0.936 0.878 0.925 0.741 0.795 0.663 0.61 0.792

Gemma2-2b

MEERKAT-VP 10 0.948 0.873 0.971 0.802 0.657 0.663 0.609 0.789
MEERKAT 10 0.939 0.869 0.96 0.804 0.591 0.634 0.609 0.772

MEERKAT-VP 30 0.948 0.86 0.974 0.799 0.6 0.634 0.619 0.776
MEERKAT 30 0.94 0.855 0.947 0.734 0.568 0.644 0.601 0.755

MEERKAT-VP 50 0.949 0.853 0.969 0.782 0.551 0.615 0.620 0.762
MEERKAT 50 0.945 0.857 0.966 0.767 0.613 0.634 0.623 0.772

MEERKAT-VP 100 0.944 0.812 0.97 0.733 0.551 0.634 0.634 0.754
MEERKAT 100 0.94 0.851 0.951 0.745 0.551 0.634 0.574 0.749

Table 14: MEERKAT performance at local step = 1 with varying outlier percentages across the
LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b models. We report test accuracy on SST-2, AgNews,
Yelp, BoolQ, RTE, WSC, and WIC under both IID and Non-IID client data settings. Bold numbers

indicate the highest value in each row.

IID Non-IID
Model Outlier Percentage SST-2 AgNews Yelp BoolQ RTE WSC WIC SST-2 AgNews Yelp BoolQ RTE WSC WIC

LLaMA-3.2-1B

5e-1 0.917 0.72 0.965 0.725 0.653 0.644 0.634 0.895 0.669 0.964 0.684 0.644 0.653 0.594
5e-2 0.913 0.861 0.966 0.749 0.653 0.644 0.633 0.915 0.87 0.97 0.722 0.653 0.644 0.619
5e-3 0.900 0.885 0.971 0.769 0.702 0.653 0.614 0.930 0.874 0.963 0.753 0.620 0.66 0.62
5e-4 0.910 0.877 0.954 0.773 0.720 0.663 0.641 0.911 0.888 0.956 0.700 0.693 0.663 0.628
5e-5 0.922 0.879 0.964 0.724 0.631 0.625 0.648 0.92 0.876 0.940 0.725 0.613 0.663 0.626

Qwen2-1.5b

5e-1 0.854 0.856 0.947 0.766 0.82 0.663 0.644 0.845 0.854 0.946 0.753 0.826 0.682 0.631
5e-2 0.925 0.868 0.949 0.778 0.826 0.692 0.647 0.93 0.853 0.943 0.759 0.822 0.663 0.663
5e-3 0.926 0.851 0.945 0.765 0.813 0.692 0.658 0.924 0.866 0.94 0.759 0.822 0.692 0.661
5e-4 0.92 0.764 0.943 0.774 0.813 0.682 0.645 0.918 0.848 0.943 0.762 0.813 0.682 0.647
5e-5 0.903 0.78 0.941 0.748 0.80 0.673 0.625 0.896 0.799 0.937 0.739 0.80 0.673 0.633

Gemma2-2b

5e-1 0.842 0.867 0.963 0.751 0.657 0.673 0.626 0.871 0.855 0.952 0.695 0.653 0.663 0.619
5e-2 0.932 0.878 0.977 0.809 0.791 0.663 0.623 0.92 0.863 0.968 0.786 0.706 0.653 0.634
5e-3 0.952 0.871 0.971 0.837 0.800 0.663 0.639 0.942 0.853 0.97 0.807 0.751 0.653 0.645
5e-4 0.941 0.824 0.967 0.83 0.764 0.663 0.612 0.941 0.83 0.962 0.831 0.746 0.634 0.63
5e-5 0.92 0.828 0.952 0.797 0.6 0.634 0.606 0.922 0.764 0.949 0.774 0.56 0.634 0.601

Table 15: Performance comparison of Full-FedZO, LoRA-FedZO, and MEERKAT under synchronous
updates with localstep = 1, evaluated on both IID and Non-IID client data settings(Dirichlet

α = 0.5) across LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. We report test accuracy on SST-2,
AgNews, Yelp, BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B (IID)
Full-FedZO 0.918 0.801 0.937 0.686 0.54 0.625 0.58 0.726
LoRA-FedZO 0.915 0.855 0.944 0.672 0.599 0.663 0.599 0.749
MEERKAT 0.900 0.885 0.971 0.773 0.702 0.653 0.614 0.785

LLaMA-3.2-1B (Non-IID)
Full-FedZO 0.911 0.831 0.937 0.672 0.528 0.587 0.567 0.719
LoRA-FedZO 0.8669 0.842 0.944 0.659 0.53 0.567 0.578 0.712
MEERKAT 0.93 0.888 0.963 0.753 0.67 0.66 0.62 0.783

Qwen2-1.5b (IID)
Full-FedZO 0.9013 0.726 0.918 0.700 0.797 0.710 0.579 0.761
LoRA-FedZO 0.935 0.752 0.925 0.686 0.794 0.673 0.606 0.767
MEERKAT 0.926 0.851 0.945 0.778 0.813 0.692 0.658 0.809

Qwen2-1.5b (Non-IID)
Full-FedZO 0.844 0.725 0.937 0.688 0.769 0.663 0.565 0.741
LoRA-FedZO 0.932 0.76 0.944 0.682 0.773 0.682 0.565 0.763
MEERKAT 0.924 0.866 0.94 0.762 0.822 0.692 0.661 0.809

Gemma2-2b (IID)
Full-FedZO 0.934 0.84 0.953 0.774 0.542 0.644 0.606 0.756
LoRA-FedZO 0.942 0.856 0.94 0.735 0.52 0.644 0.606 0.749
MEERKAT 0.952 0.871 0.971 0.837 0.8 0.663 0.639 0.819

Gemma2-2b (Non-IID)
Full-FedZO 0.93 0.824 0.95 0.744 0.56 0.625 0.575 0.744
LoRA-FedZO 0.9415 0.825 0.954 0.711 0.528 0.625 0.578 0.737
MEERKAT 0.942 0.853 0.97 0.807 0.751 0.653 0.645 0.803

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 16: Performance comparison of LoRA-FedZO, and MEERKAT under synchronous updates
with localstep = 1, evaluated on Non-IID client data settings (Dirichlet α = 0.3) across

LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B (Non-IID)
Full-FedZO 0.891 0.759 0.94 0.623 0.528 0.644 0.551 0.705
LoRA-FedZO 0.915 0.866 0.952 0.646 0.586 0.653 0.554 0.739
MEERKAT 0.918 0.843 0.97 0.761 0.626 0.653 0.609 0.769

Qwen2-1.5b (Non-IID)
Full-FedZO 0.52 0.347 0.45 0.62 0.532 0.632 0.51 0.516
LoRA-FedZO 0.855 0.732 0.907 0.674 0.72 0.634 0.603 0.732
MEERKAT 0.91 0.809 0.954 0.772 0.822 0.682 0.661 0.801

Gemma2-2b (Non-IID)
Full-FedZO 0.881 0.761 0.94 0.688 0.552 0.613 0.603 0.720
LoRA-FedZO 0.922 0.826 0.921 0.681 0.52 0.625 0.606 0.729
MEERKAT 0.942 0.873 0.97 0.806 0.688 0.634 0.615 0.79

Table 17: Performance comparison of LoRA-FedZO, and MEERKAT under synchronous updates
with localstep = 1, evaluated on Non-IID client data settings (Dirichlet α = 0.1) across

LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp,
BoolQ, RTE, WSC, and WIC. Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC Acc

LLaMA-3.2-1B (Non-IID)
Full-FedZO 0.891 0.754 0.933 0.626 0.522 0.365 0.512 0.658
LoRA-FedZO 0.902 0.845 0.942 0.643 0.533 0.365 0.559 0.684
MEERKAT 0.92 0.794 0.965 0.745 0.582 0.644 0.603 0.750

Qwen2-1.5b (Non-IID)
Full-FedZO 0.49 0.247 0.44 0.62 0.528 0.634 0.5 0.494
LoRA-FedZO 0.848 0.735 0.92 0.67 0.746 0.548 0.601 0.724
MEERKAT 0.889 0.78 0.944 0.732 0.822 0.634 0.637 0.777

Gemma2-2b (Non-IID)
Full-FedZO 0.879 0.741 0.937 0.681 0.48 0.634 0.601 0.708
LoRA-FedZO 0.91 0.78 0.914 0.682 0.551 0.567 0.608 0.716
MEERKAT 0.944 0.866 0.971 0.805 0.728 0.605 0.628 0.792

Table 18: Test accuracy of MEERKAT versus DecomFL on Qwen2-1.5b with a single local step under
Non-IID data settings (Dirichlet α = 1). Results are shown for SST-2, BoolQ, RTE, and WSC; bold
indicates the best score in each row. Experiments use 8 clients in total, with 2 clients participating in

each round, following the DecomFL configuration.

Model Method SST-2 BoolQ RTE WSC

Qwen2-1.5b DecomFL 0.868 0.674 0.773 0.653
MEERKAT 0.918 0.734 0.817 0.682

Table 19: Performance comparison of Task-Mask, and MEERKAT under synchronous updates with
localstep = 1, evaluated on IID client data settings across LLaMA-3.2-1B, Qwen2-1.5b, and

Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC. Bold
numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC

LLaMA-3.2-1B (IID) Task 0.910 0.847 0.957 0.718 0.661 0.644 0.661
MEERKAT 0.90 0.885 0.971 0.773 0.702 0.653 0.614

Qwen2-1.5b (IID) Task 0.936 0.827 0.954 0.765 0.83 0.711 0.664
MEERKAT 0.926 0.851 0.945 0.778 0.813 0.692 0.658

Gemma2-2b (IID) Task 0.942 0.868 0.972 0.78 0.728 0.644 0.6
MEERKAT 0.952 0.871 0.971 0.837 0.8 0.663 0.639
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(a) This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on three
LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods, and
each method has two bars indicating performance under IID and Non-IID settings. The Non-IID
results are obtained under a Dirichlet α = 0.3 .The y-axis represents the average test accuracy across
multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.

(b) This figure compares three methods—Full-FedZO, LoRA-FedZO, and MEERKAT—on three
LLMs: LLaMA-3.2-1B, Qwen2-1.5b, and Gemma2-2b. The x-axis shows the different methods, and
each method has two bars indicating performance under IID and Non-IID settings. The Non-IID
results are obtained under a Dirichlet α = 0.1 .The y-axis represents the average test accuracy across
multiple downstream tasks—SST2, AgNews, Yelp, BoolQ, RTE, WSC, and WiC.

Figure 6: Comparison of Full-FedZO, LoRA-FedZO, and MEERKAT on LLaMA-3.2-1B, Qwen2-
1.5b, and Gemma2-2b under IID and Non-IID settings with varying Dirichlet α. Subfigure(a) presents
results for Non-IID data generated with α = 0.3, while Subfigure(b) shows results for Non-IID data
with α = 0.1.

Table 20: Performance comparison of Task-Mask, which uses downstream task data to select
sensitive model parameters, and MEERKAT under synchronous updates with localstep = 1,

evaluated on Non-IID client data settings (Dirichlet α = 0.5) across LLaMA-3.2-1B, Qwen2-1.5b,
and Gemma2-2b. We report test accuracy on SST-2, AgNews, Yelp, BoolQ, RTE, WSC, and WIC.

Bold numbers indicate the highest value in each row.

Model Method SST-2 AgNews Yelp BoolQ RTE WSC WIC

LLaMA-3.2-1B (Non-IID) Task 0.904 0.874 0.956 0.744 0.591 0.615 0.622
MEERKAT 0.93 0.888 0.963 0.753 0.62 0.66 0.62

Qwen2-1.5b (Non-IID) Task 0.938 0.863 0.956 0.779 0.817 0.692 0.65
MEERKAT 0.924 0.866 0.94 0.762 0.822 0.692 0.661

Gemma2-2b (Non-IID) Task 0.91 0.834 0.966 0.822 0.72 0.644 0.578
MEERKAT 0.942 0.853 0.97 0.807 0.751 0.653 0.645
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Table 21: Test accuracy of MEERKAT versus Task-Mask on Qwen2-1.5b with a 10 local step under
Non-IID data settings (Dirichlet α = 0.5). Results are shown for SST-2, BoolQ, RTE, and WSC;

bold indicates the best score in each row. Experiments use 8 clients in total, with 2 clients
participating in each round, following the DecomFL configuration.

Model Method SST-2 BoolQ RTE WSC

Qwen2-1.5b Task 0.932 0.784 0.823 0.681
MEERKAT 0.944 0.752 0.813 0.682

Table 22: MEERKAT Convergence Rounds for the LLaMA-3.2-1B, Gemma2-2B, and Qwen2-1.5B
models on the SST-2, AgNews, Yelp, and BoolQ tasks, with 10 local steps.

Model SST-2 AgNews Yelp BoolQ
Gemma2-2B 39 61 29 43
Qwen2-1.5B 51 75 36 70
LLaMA-3.2-1B 85 77 52 97

Table 23: Computation and Communication Efficiency Benchmark Shows MEERKAT’s Superior
Resource Usage over Baselines. We benchmarked resource usage on Qwen2-1.5B with 10 clients
(FP16). Setting: Full-FedZO vs Meerkat vs LoRA-FedZO, where LoRA is configured with rank =

16, α = 16—the same setting used in Table 1.

Method/Metrics RAM (Peak) Upload/Client Download/Client
Full-FedZO 12,600 MiB 0.078 KB 2.875 GB
LoRA-FedZO 10,741 MiB 0.078 KB 35.22 MB
MEERKAT (0.1% mask) 7,850 MiB 0.078 KB 2.50 MB

Table 24: Performance Comparison of MEERKAT-VP, Back-propagation, and MEERKAT+FedDYN
on LLaMA-3.2-1B. While ZO methods cannot match back-prop’s performance due to gradient noise

from limited sampling, MEERKAT-VP achieves competitive results (0.764 avg) with significantly
lower memory consumption. We adapted FedDYN method for MEERKAT with α=0.01 following the

original paper.MEERKAT-VP outperforms this adaptation (0.764 vs 0.728). The local steps is 10.

Method SST-2 AGNews Yelp BoolQ RTE WSC WIC Avg
Back-propagation 0.925 0.893 0.968 0.751 0.644 0.660 0.630 0.782
MEERKAT-VP 0.922 0.864 0.962 0.713 0.617 0.644 0.625 0.764
MEERKAT+FedDYN 0.917 0.841 0.954 0.638 0.564 0.615 0.570 0.728
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(a) The GradIP measured for IID and Non-
IID clients data under the WIC task using
the Llama-3.2-1B model.

(b) The GradIP measured for IID and Non-
IID clients data under the AgNews task us-
ing the Llama-3.2-1B model.

(c) The GradIP measured for IID and Non-
IID clients data under the Yelp task using
the Llama-3.2-1B model.

(d) The GradIP measured for IID and Non-
IID clients data under the BoolQ task using
the Llama-3.2-1B model.

(e) The GradIP measured for IID and Non-
IID clients data under the RTE task using
the Llama-3.2-1B model.

(f) The GradIP measured for IID and Non-
IID clients data under the WSC task using
the Llama-3.2-1B model.

(g) The GradIP measured for IID and Non-
IID clients data under the BoolQ task using
the Gemma-2-2b model.

Figure 7: These figures show GradIP (Definition 2.3) curves under IID and Non-IID settings,
computed over 100 local training steps on six datasets (WSC, BoolQ, RTE, WIC, AgNews, Yelp)
using the Llama-3.2-1B model with density level 5× 10−3. An extra BoolQ result is shown for the
Gemma-2-2B model.
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(a) Cosine similarity between local ZO gradients
and C4 pre-trained gradients.
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(b) Gradient norm from local ZO training under
Non-IID and IID data distribution.

Figure 8: The left panel shows the cosine similarity between locally computed ZO gradients and
gradients from the C4-pre-trained data, illustrating that the two gradient vectors remain nearly
orthogonal throughout training. The right panel presents the norm of local ZO gradients over
training steps, showing a consistent decay and convergence in magnitude under Non-IID and IID
data distribution. These observations are obtained under density level of 5× 10−3.

(a) GradIP for Non-IID clients on the AgNews
task, where the two classes have a highly imbal-
anced ratio (5 vs. 89 samples).

(b) GradIP for Non-IID clients data on the BoolQ
task, where the two classes have a highly imbal-
anced ratio (6 vs. 190 samples).

Figure 9: These subfigures show GradIP (see Definition 2.3) for LLaMA-3.2-1B under Non-IID
client data with 100 local training steps. Subfigure (a) uses AgNews (5 vs. 89), while Subfigure (b)
uses BoolQ (6 vs. 190).
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(a) The experiments, conducted using the Qwen2-1.5B model on the BoolQ dataset, reveal that under
Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in GradIP
between the early and later stages of training. In the extreme Non-IID case, the GradIP values in the
later stages tend to approach zero.

(b) The experiments, conducted using the Llama-3.2-1B model on the BoolQ dataset, reveal that
under Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in
GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP values
in the later stages tend to approach zero.

(c) The experiments, conducted using the Gemma-2-2B model on the BoolQ dataset, reveal that
under Non-IID settings—especially with a 1:20 class imbalance—there is a pronounced decline in
GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP values
in the later stages tend to approach zero.

Figure 10: GradIP analysis for different models on the BoolQ dataset under Non-IID and IID
conditions: As the class imbalance ratio increases, GradIP in the later training stages tends to
approach zero. This decline is more pronounced under Non-IID settings, where the gap between
initial and final GradIP values is larger than in the IID case. All trends are visualized using a moving
average for clarity. 50
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(a) The experiments, conducted using the Qwen2-1.5B model on the AGNews dataset, reveal that
under Non-IID settings—especially with a 1:15:1:1 class imbalance—there is a pronounced decline
in GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP
values in the later stages tend to approach zero.

(b) The experiments, conducted using the Llama-3.2-1B model on the AGNews dataset, reveal that
under Non-IID settings—especially with a 1:15:1:1 class imbalance—there is a pronounced decline
in GradIP between the early and later stages of training. In the extreme Non-IID case, the GradIP
values in the later stages tend to approach zero.

Figure 11: GradIP analysis for different models on the AGNews dataset under Non-IID and IID
conditions: As the class imbalance ratio increases, GradIP in the later training stages tends to approach
zero. This decline is more pronounced under Non-IID settings, where the gap between initial and
final GradIP values is larger than in the IID case. All trends are visualized using a moving average
for clarity; consequently, the plotted lines do not begin at step zero, as the initial data points are used
to compute the first averaged value. This is an intentional effect of the visualization, not an error or a
result of missing data.
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