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Abstract

We introduce Dr. RAW, a unified and tuning-efficient framework for high-level
computer vision tasks directly operating on camera RAW data. Unlike previous
approaches that optimize image signal processing (ISP) pipelines and fully fine-
tune networks for each task, Dr. RAW achieves state-of-the-art performance with
minimal parameter updates and frozen backbone weights. At the input stage, we
apply lightweight pre-processing steps, including sensor and illumination mapping,
along with re-mosaicing, to mitigate data inconsistencies stemming from sensor
variations and lighting conditions. At the network level, we introduce task-specific
adaptation through two modules: Sensor Prior Prompts (SPP) and task-specific
Low-Rank Adaptation (LoRA). SPP injects sensor-aware conditioning into the
network via learnable prompts derived from RAW pixel distribution priors, while
LoRA enables efficient task-specific tuning by updating only low-rank matrices in
key backbone layers. Despite minimal tuning, Dr. RAW delivers superior results
across four RAW-based tasks (object detection, semantic segmentation, instance
segmentation, and pose estimation) on nine datasets encompassing various light
conditions. By harnessing the intrinsic physical cues of RAW alongside parameter-
efficient techniques, Dr. RAW advances RAW-based vision systems, achieving both
high accuracy and computational economy. The source code is available here.

1 Introduction

Photos recorded in RAW format are increasingly adopted in computer vision tasks due to their
captured minimally processed sensor responses [40; 25]. Meanwhile, compared with commonly
used sRGB (Fig. 2(a)), RAW data maintains higher bit depth and preserves the intrinsic physical
information. These advantages, combined with their linear relationship to scene radiance, allow RAW
to outperform sRGB images in various downstream visual tasks under real-world complex lighting
conditions, including object detection [37; 20; 54; 58], semantic and instance segmentation [15; 12],
tracking [49], pose estimation [30] and so on.

To leverage camera RAW images for high-level visual perception, early works often skipped
over the image signal processor (ISP) stage, directly using RAW as input for downstream visual
tasks [36; 64; 8], which failed to consider the gap between camera RAW images and sRGB pre-trained
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weights. Since then, various approaches have been proposed to better improve task-specific perfor-
mance (Fig. 2(b)), including dynamic ISP parameter tuning [59; 57; 50], additional RAW-to-sRGB
encoder networks [16; 54], knowledge distillation [33], and visual adapter tuning [15]. However,
existing methods mostly focus on optimizing full ISP & model weights for a single downstream task,
ignoring efficient tuning and generalizable intrinsic across diverse real-world scenarios and tasks.
Consequently, this gap leads to two key challenges: data inconsistency and tuning inefficiency.
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Figure 1: Radar chart demonstrating the superior
overall performance of our proposed Dr. RAW.

Regarding data inconsistency, datasets for dif-
ferent tasks are typically acquired using distinct
camera sensors, while camera manufacturers
adopt sensors with varying color response char-
acteristics [40; 1; 38]. At the same time, light-
ing characteristics and environmental conditions
during photography can also cause variations in
scene illumination [20; 42]. Formally, the cap-
tured camera RAW data can be represented as
the following equation [5]:

RAW =

∫
ω

ρ(x, λ) ·R(x, λ) · L(λ) dλ, (1)

where ω denotes the visible light spectrum
(380∼720 nm), ρ the illuminant spectral power
distribution, L the sensor-dependent spectral re-
sponse, and R the scene response. In practice,
even for the same scene, the captured RAW
would vary due to differences in ρ and L. For perception, the inconsistency in data can make
the downstream task challenging [47; 34], and current RAW-based perception models may further
exacerbate inconsistency due to their task-oriented neural ISPs [15; 50].

Meanwhile, tuning inefficiency arises due to current RAW-based perception models normally fully-
tuned for a specific task with a single dataset (e.g., object detection [37; 20]). Both the ISP and
backbone parameters are optimized to maximize task-specific performance (Fig. 2(b)). When
switching tasks or datasets, training both the ISP and downstream network parameters is typically
required. Otherwise, the cross-task performance tends to cause catastrophic degradation in existing
RAW-based high-level frameworks (Fig. 2(d)). This critical observation underscores the necessity for
developing tuning-efficient RAW processing systems that eliminate the requirement for extensive
network parameter adjustments.

In this work, we propose Dr. RAW, a training-efficient unified solution that addresses the above chal-
lenges. Unlike previous methods that require optimizing a large number of ISP modules and training
full backbone networks, Dr.RAW applies only two lightweight and task-relevant preprocessing steps,
sensor & illumination mapping and re-mosaicing, while omitting other heavy ISP operations. At
the network level, we maximize the utilization of sRGB-pretrained knowledge while substantially
reducing trainable parameters, achieved by introducing additional ∼2% of the backbone’s parameters
and freezing the majority of network weights during adaptation. (Fig. 2(d)).

Our contributions could be summarized as follows:

• We propose Dr. RAW, a new framework for RAW-based vision that achieves strong per-
formance across tasks without end-to-end fine-tuning, instead leveraging a frozen RAW-
pretrained backbone and lightweight, modular adaptation.

• Pre-processing blocks and task-specific adapters enable Dr. RAW to perform optimally with
high flexibility, while effectively mitigating the biases inherent in camera RAW data.

• We demonstrate the effectiveness of Dr. RAW across 4 representative RAW-based high-level
vision tasks under a total of 9 diverse conditions (see Fig. 1). Including object detection [37;
20], semantic segmentation [15], instance segmentation [12] and pose estimation [30]. Our
method not only outperforms previous SOTA approaches in accuracy but also achieves
superior training efficiency.
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Figure 2: (a). Diagram of sRGB-based visual system. (b). Diagram of the current RAW-based visual
system. (c). Our proposed pipeline freezes the backbone parameters and tunes only a few adapter
parameters for different tasks. (d). Parameters distribution and tuning & freeze backbone detection
performance [20] compare with previous state-of-the-art (SOTA) solution RAW-Adapter [15].

2 Related Works

2.1 RAW-based Computer Vision Tasks

In recent years, the advantages of camera RAW data have been extensively exploited for various low-
level vision tasks such as image denoising [7; 61], super-resolution [56; 62; 29], demoiréing [60; 55],
low-light imaging [9; 24], and reflection removal [27]. The rich details in camera RAW images,
along with their structured noise distribution, have significantly advanced low-level vision and
improved fine-detail reconstruction. Beyond the achievements in image quality improvement, recent
advancements have also demonstrated that camera RAW data continues to play an increasingly
important role in various high-level machine vision applications.

For RAW-based high-level vision tasks, mainstream approaches either optimize ISP structures
and parameters for specific downstream tasks [59; 57; 45; 50; 39] or refine selected intermediate
ISP processes [54; 15; 36; 6; 52] (e.g., color correction matrices, look-up tables). For example,
ReconfigISP [59] introduces an ISP module pool, then adopts neural architecture search (NAS)
to select optimal ISP parameters. AdaptiveISP [50] further enhances this approach by using deep
reinforcement learning to adaptively select key ISP parameters. Meanwhile, RAW-Adapter [15]
leverages attention mechanisms to optimize parameters and enhance model-level connectivity.

Departing jointly tuning an explicit ISP, research like Dirty-Pixels [16] replaces the ISP with a stack
of residual UNets encoder [41]. Chen et al. [12] removes the ISP part and additionally adds denoising
blocks on the feature map to assist RAW-based instance segmentation. While Li et al. [33] distills an
inverse ISP pipeline into a new model to improve downstream perception. Despite advancements in
RAW-based high-level vision models, existing methods are often fully tuned and overfit for a specific
downstream task, lacking the consideration of parameter-efficient task transfer for different tasks.

2.2 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) focuses on freezing pre-trained models and either fine-tuning
only a subset of network parameters [21; 31; 28] or adding extra parameters for training [10; 23; 22;
26; 46]. Visual prompt tuning (VPT) [23] extends the concept of prompt tuning from natural language
processing to computer vision, enabling efficient adaptation of pre-trained models without modifying
their core architecture. Instead of altering the parameters in the model, learnable prompts guide the
model to adapt to new tasks while preserving its pre-trained knowledge. While [23] introduces task-
specific modifications at the input or feature level, low-rank adaptation (LoRA) [22] injects trainable
low-rank decomposition matrices into pre-trained weights, optimizing internal weight updates in a
low-rank manner. Inspired by these works, we extend such techniques to RAW-based applications.
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Figure 3: Overview of Dr. RAW. (a). The input RAW is processed by pre-processing blocks and
passed to a downstream module with task-specific adapters. (b) Re-mosaicing block in the pre-
processing stage. (c) Task-specific adapter design. (d) Parameter distribution across Dr. RAW.

3 Method

The overall pipeline of our method is illustrated in Fig. 3 (a). Dr. RAW incorporates pre-processing
blocks that map RAW data from various conditions and handle data inconsistency. The mapped RAW
data is then processed by a versatile backbone augmented with sensor-prior prompts and fine-tuned
using LoRA [22] to effectively adapt to downstream tasks. In Sec. 3.1, we detail the design of the
pre-processing blocks. In Sec. 3.2, we describe the sensor prior fine-tuning process.

3.1 Pre-processing Blocks
Real-world camera imaging systems are subject to continuous variability in both sensor differences
and illumination conditions (Eq. 1), which introduces significant changes in pixel distribution, thereby
further complicating model optimization across different datasets and tasks [34]. Even data collected
by the same camera exhibit considerable variations, as shown by the blue dots in Fig. 4.
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Figure 4: PCA projection of RGB-uv histogram of
RAW images [20] and mapped images I.

To alleviate these variances, we incorporate sen-
sor & illumination mapping blocks followed by
a lightweight re-mosaicing block to process in-
put RAW data. Motivated by the white balance
design in [2], which first estimates a 3×3 matrix
M to eliminate sensor differences and then a
1×3 matrix L for illumination estimation, we
adopt a similar two-stage approach. As illus-
trated in Fig.3 (a) left, we first extract the RGB-
uv histogram [18] from the input demosaiced
RAW data to get its pixel distribution. The his-
togram is then fed into a sensor mapping block
to estimate the matrix M3×3, which is then mul-
tiplied with RAW data. The transformed image
is subsequently passed through an illumination
mapping block to estimate the illumination ma-
trix L1×3. Both sensor mapping and illumination mapping blocks are composed of three simple
convolution blocks.
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After that, a re-mosaicing block (Fig.3(b)) R is further added to alleviate sensor- and scene-dependent
artifacts, which is also motivated by findings that reveal unequal contributions of the color channels
in camera RAW data [52]. As shown in Fig. 3(b), we design the re-mosaicing block R as a U-shaped
network (details see App. A). We adopt a gating operation, a lightweight nonlinear interaction
mechanism that replaces conventional activations. Specifically, the feature map is evenly split along
the channel dimension into two halves, and an element-wise product is computed between them.
Here, max-pooling is used for down-sampling, while pixel-shuffle [43] is employed for up-sampling
at each stage of the U-shaped architecture in a learnable way. The generation of mapped image I is
shown as follows:

I = R(RAW ⊗M3×3 ⊗ L1×3) (2)

We show the PCA projection of histograms in input RAW images and mapped images I in Fig. 4, it
shows that the pre-processing blocks help to reduce the spread of the data distribution during training.

3.2 Sensor Prior Efficient Tuning

For the downstream module, current RAW-based visual systems [16; 15; 50] typically require full
tuning to avoid performance degradation (see Fig. 2(d)). However, this heavy reliance on updating
backbone parameters presents a bottleneck for training efficiency (see Fig. 3(d), backbone accounts
for over 70% of the total parameters). To this end, we introduce two simple and effective components
that inject task-related knowledge into the backbone in an efficient way.

Taking into account the sensor difference and illumination condition, we propose a sensor prior prompt
(SPP) tuning. Specifically, we adopt a set of learnable prompts P = {pk ∈ Rd|k ∈ N, 1 ≤ k ≤ K}
to convey the knowledge gained from the pre-processing block to the backbone of the downstream
module. P is generated by projecting the concatenation of the sensor mapping matrix M and the
illumination mapping matrix L into a few d-dimensional embeddings:

P = FFN([M3×3,L1×3]) (3)

During training, we only fine-tune the P while keeping the weights in the backbone frozen. Depending
on the backbone architecture, we integrate SPP in different ways, which is discussed in App. B.3.

After enabling SPP, the core operation in the transformer, self-attention (SA) (see Eq. 10 in Appendix)
in each layer becomes:

Attn′(Q′,K ′, V ′) = softmax(
Q′K ′T
√
d

)V ′ (4)

, where E is the image patch embeddings, and Q′ = [P,E]WQ,K
′ = [P,E]WK , V ′ = [P,E]WV .

Eq. 4 can therefore be decoupled as:

Attn′(Q′,K ′, V ′) = softmax(
1√
d

[
PWQ(PWK)T PWQ(EWK)T

EWQ(PWK)T EWQ(EWK)T

]
)

[
PWV

EWV

]
(5)

The off-diagonal terms in the attention matrix (i.e., PWQ(EWK)T and EWQ(PWK)T ) mean that
the SPPs interact with the original image path embeddings in the attention computation, and the
top-left term PWQ(PWK)T provides sensor-specific influence on the attention. On the other hand,
the term PWV represents the influence imposed on the original image patch embeddings by SPPs.

In addition to SPP, we further apply LoRA [22] to selected layers of the backbone to enhance task
adaptability while preserving efficiency. As illustrated in Fig. 3(c), LoRA injects trainable rank-
decomposed matrices WA,WB into the attention without modifying the original weights, enabling
us to achieve effective fine-tuning with minimal parameter overhead.

W ′
h = Wh +∆W = Wh +WB

h WA
h , h ∈ {Q,K, V } (6)

To stabilize the tuning, WA is initialized with a Gaussian distribution, and WB is initialized with all
zeros. By jointly optimizing LoRA and SPP, we retain the benefits of a strong pretrained backbone
while introducing task-specific adaptability in a lightweight manner. This hybrid strategy significantly
reduces the number of trainable parameters (see Fig. 3(d)) and facilitates fast adaptation to diverse
downstream tasks with limited computation. Please find App. B.4 for more details.
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4 Experiments

4.1 Experimental Setup

Datasets. We conducted experiments on semantic segmentation, object detection, instance seg-
mentation, and pose estimation, utilizing a combination of various synthetic and real-world RAW
image datasets. For object detection, we adopted 2 real-world datasets, PASCAL RAW [37; 15] and
LOD [20]. For semantic segmentation, we utilized ADE20K RAW [15]. For instance segmentation,
we utilized LIS [12]. As for pose estimation, we used ExLPose [30]. We only used the low-light
images of LIS and ExLPose, consistent with other tasks. Refer to App. C for more details.

Implementation Details. Dr. RAW is built on the open-source computer vision toolboxes: mmdetec-
tion [11], mmsegmentation [13], and mmpose [14]. We conducted comparative experiments with
the current SOTA methods. All comparison methods adopt the same data augmentation, mainly
including random crop, random flip, multi-scale test, etc. We use mean Intersection over Union
(mIoU) to evaluate semantic segmentation, and mean Average Precision (mAP) to evaluate instance
segmentation, object detection, and pose estimation performance. The backbone of Dr. RAW is a
Swin Transformer tiny (Swin-T) [35]. Since most widely-used backbones are pretrained on RGB
images, this introduces a domain gap when applied to RAW images and impacts the performance of
downstream tasks. To address this issue, we pretrain the backbone on the large-scale RAW dataset,
i.e., AED20K RAW. Once pretrained, the backbone is frozen and transferred to other tasks. Fig. 3(d)
presents a statistical breakdown of the parameter count for each component of Dr. RAW.

Refer to App. D for more details. Due to page constraints, we present only the primary results for
each task here. Additional results can be found in the corresponding subsections in App. E.

4.2 Semantic Segmentation

Tab. 1 provides a comparison of semantic segmentation performance across multiple methods, along-
side the parameter efficiency of each model. Traditional ISP-based methods, such as Demosaicing [37]
and Karaimer et al. [25] show relatively consistent performance under normal and over-exposed
conditions, but their performance drops significantly in dark-light conditions. InvISP [53], while
competitive in well-lit scenes, deteriorates drastically in the dark, underscoring its sensitivity to illumi-
nation variations. Similarly, SID [9] and DNF [24] are designed primarily for low-light conditions and
thus only report results for the dark scenario. Among the learning-based alternatives, Dirty-Pixel [16]
and RAW-Adapter [15] show improved robustness across lighting conditions. RAW-Adapter, in partic-
ular, yields the highest mIoU under normal illumination. However, both methods come with relatively
high parameter costs, with RAW-Adapter using 45.16 million parameters, all of which are tunable.

Method No. of params(M)♣ ↓ mIoU
normal over-exp dark

Demosacing [37]

44.64 (44.64 / 100%)

46.18 45.03 34.97
Karaimer et al. [25] 46.91 42.15 20.95

InvISP [53] 46.08 44.06 5.02
SID [9] - - 27.18

DNF [24] - - 35.86
ROD [54] 46.03 42.92 37.80

Dirty-Pixel [16] 48.92 (48.92 / 100%) 46.19 44.13 36.93
RAW-Adapter [15] 45.16 (45.16 / 100%) 46.57 44.19 37.62

Dr. RAW 47.74 (20.51 / 42.9%) 46.29 45.28 38.46
♣ The number of parameters is reported in the format: x(y/z),
where x is total, y is tunable, and z = y/x.
Table 1: Semantic segmentation results on ADE20K RAW.
Best results are bolded and second-best are underlined.

Dr. RAW achieves the best overall
performance under challenging illu-
mination. It attains SOTA mIoU
in both over-exposed and dark set-
tings, while maintaining competitive
results in normal lighting. Notably,
Dr. RAW requires fewer tunable pa-
rameters—only corresponding to a
tunable ratio of 42.9%, which is signif-
icantly lower than other competitive
approaches. This demonstrates the ef-
fectiveness of Dr. RAW’s parameter-
efficient design, striking a superior
balance between segmentation accu-
racy and model compactness, particu-
larly under diverse lighting conditions. Fig. 5 visualizes some examples under various illuminations.

4.3 Object Detection

Tab. 2 presents object detection performance on the RASCAL-RAW dataset, while also accounting
for model efficiency in terms of tunable parameters. We compare three tuning strategies: frozen,
where only the detection head is trained with a fixed backbone; fully-tuned, where both backbone
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Figure 5: Qualitative comparison of semantic segmentation under different illuminations (low-light
and over-exposure ).

Method Setting, No. of params(M)♣ ↓ mAP
normal over-exp dark

Default ISP frozen, 39.62 (10.93 / 28%) 81.4 - -
fully-tuned, 39.62 (39.62 / 100%) 86.7 - -

Karaimer et al. [25] frozen, 39.62 (10.93 / 28%) 89.3 87.6 83.1
fully-tuned, 39.62 (39.62 / 100%) 90.1 89.1 87.6

Demosacing [37] frozen, 39.62 (10.93 / 28%) 88.1 89.4 86.5
fully-tuned, 39.62 (39.62 / 100%) 90.0 90.1 87.9

InvISP [53] frozen, 39.62 (10.93 / 28%) 88.7 89.3 72.3
fully-tuned, 39.62 (39.62 / 100%) 89.6 89.8 78.5

Dirty-Pixel [16] fully-tuned, 39.42 (39.42 / 100%) 89.7 89.0 83.6
RAW-Adapter [15] fully-tuned, 37.11 (37.11 / 100%) 89.7 89.5 86.6

Dr. RAW adapter, 38.67 (11.36 / 29%) 90.4 90.3 89.7
♣ Refer to Tab. 1 for the format of No. of params.
Table 2: Object detection performance across different meth-
ods on RASCAL-RAW (normal / over-exp / dark).

Method Setting mAP

Default ISP frozen 46.8
fully-tuned 65.6

Direct (RAW) frozen 47.5
fully-tuned 67.2

Karaimer et al. [25] frozen 40.6
fully-tuned 62.5

Dirty-Pixel [16] fully-tuned 61.6
RAW-Adapter [15] fully-tuned 62.1

Dr. RAW adapter 72.1

Table 3: Object detection per-
formance on LOD.

and head are trained; and adapter, our proposed task-conditioned tuning that trains lightweight
adapter modules and the detection head while keeping the backbone frozen. Dr. RAW consistently
outperforms traditional ISP-based pipelines and recent learning-based methods across all lighting
conditions. It maintains a clear advantage over fully-tuned versions of other RAW processing
pipelines, particularly exhibiting enhanced robustness in the challenging dark environment where
methods like InvISP [53] show marked performance degradation. The baseline Default ISP yields the
lowest scores, highlighting the efficacy of specialized RAW domain adaptation. Beyond accuracy, the
table provides insights into computational efficiency, specifically focusing on the number of tunable
parameters. While possessing a total parameter count (38.67M) comparable to Dirty-Pixel [16]
(39.42M) and RAW-Adapter [15] (37.11M), Dr. RAW employs an adapter-based strategy requiring
only 11.36M parameters (29% of the total) to be tuned. This contrasts sharply with the others, both
of which necessitate tuning 100% of their parameters. Tab. 3 presents the results on LOD. Among all
evaluated methods, Dr. RAW achieves the highest mAP. Specifically, Dr. RAW surpasses the strongest
fully-tuned baseline by a substantial margin of +4.9% while only adapting a fraction of the model
parameters. Qualitative comparison is shown in Fig. 6(a). These results collectively demonstrate
that Dr. RAW not only eliminates the need for an ISP and full model tuning but also achieves a new
SOTA. The proposed components are both effective and efficient, enabling substantial gains even in
the absence of paired supervision or intensive parameter updates.
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(b). Pose Estimation

(c). Instance Segmentation
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(a). Object Detection

Figure 6: Qualitative comparison of (a). object detection on the PASCAL-RAW [37] dataset under
low-light and over-exposure conditions, (b). pose estimation on the ExlPose [30] dataset and
(c). instance segmentation on the LIS dataset [12].

4.4 Pose Estimation

The quantitative results presented in Tab. 4 report the mAP across several low-light testsets (LL-
N, LL-H, LL-E, LL-A), comparing Dr. RAW against relevant prior methods. Operating under
the constraint of utilizing only dark RAW images, Dr. RAW consistently establishes a new SOTA
benchmark. It achieves superior mAP scores compared to all fully-tuned baselines within this
category, including Direct (RAW), Karaimer et al. [25], and InvISP [53], across the evaluated low-
light testsets. This uniform outperformance underscores the robustness and efficacy of Dr. RAW
in extracting salient pose information directly from RAW sensor data, irrespective of the specific
low-light challenge. Qualitative comparison is visualized in Fig. 6(b). Additional experimental results
against methods leveraging paired RAW-dark and RAW-normal supervision can be found in App. E.

4.5 Instance Segmentation

Tab. 5 summarizes the instance segmentation performance of our proposed method, Dr. RAW, against
a variety of methods. Within the category trained only on RAW-dark images, Dr. RAW demonstrates
compelling performance. The substantial gain in mAP75, which demands higher localization accuracy,
highlights the quality of the instance masks predicted by our method even under challenging low-
light conditions using only dark RAW input. It is noteworthy that Dr. RAW achieves this SOTA
performance within the unpaired setting using an efficient adapter-based tuning strategy, rather than
requiring full end-to-end fine-tuning like the Direct and Karaimer et al. baselines. This underscores
the efficacy of our proposed components in Dr. RAW. Fig. 6(c) illustrates representative examples of
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instance segmentation results. Additional results against methods leveraging paired RAW-dark and
RAW-normal supervision can be found in App. E.

Method Setting mAP by Testset
LL-N LL-H LL-E LL-A

Direct (RAW) frozen 12.0 7.5 3.6 8.3
fully-tuned 36.1 26.9 18.5 29.9

Karaimer et al. [25] frozen 9.7 6.9 3.6 7.2
fully-tuned 35.4 29.2 19.1 30.1

InvISP [53] frozen 6.4 3.3 2.0 4.4
fully-tuned 30.5 17.7 8.2 19.9

Dr. RAW adapter 37.0 30.9 19.6 30.4

Table 4: Pose estimation performance
across different methods trained solely
on RAW-dark images.

Method Setting mAP mAP50 mAP75 mAPbox mAPbox
50 mAPbox

75

Default ISP frozen 23.3 42.3 23.0 25.8 51.4 22.9
fully-tuned 36.1 58.4 37.6 41.9 67.7 44.1

Direct (RAW) frozen 27.6 47.4 27.4 30.1 56.2 27.7
fully-tuned 40.2 61.4 41.2 44.9 70.1 48.6

Karaimer et al. frozen 18.7 34.7 18.8 20.9 43.1 17.4
fully-tuned 34.6 55.1 35.5 39.7 63.9 42.4

Dr. RAW adapter 41.2 63.0 42.9 43.6 70.3 48.1

Table 5: Instance segmentation performance across differ-
ent methods trained solely on RAW-dark images.

4.6 Ablation Study

Component Datasets

SPP LoRA Pre-processing LOD PASCAL RAW
(normal)

PASCAL RAW
(over-exp)

PASCAL RAW
(dark)

43.6 81.4 86.0 59.9
✓ 57.9 88.6 89.5 81.1

✓ 69.3 88.9 89.9 89.5
✓ ✓ 69.8 90.3 90.1 89.4

✓ ✓ ✓ 72.1 90.4 90.3 89.7

Table 6: Component-wise ablation.

Backbone
Dataset LOD PASCAL RAW

(normal)
PASCAL RAW

(over-exp)
PASCAL RAW

(dark)

Swin-T (RAW) 72.1 90.4 90.3 89.7
Swin-T (in1k) 67.8 89.7 89.6 88.4

ViT (in1k) 65.9 89.5 89.4 86.6

Table 7: Effectiveness of RAW pretraining and gen-
eralizability across backbone architectures.

Tab. 6 presents a component-wise ablation study evaluating the impact of the pre-processing block,
SPP, and LoRA across the object detection datasets. Without any of these components, performance
is significantly lower, particularly under challenging lighting (e.g., 43.6 mAP on LOD and 59.9
on PASCAL RAW (dark)). Introducing the pre-processing block alone yields substantial gains,
especially under dark conditions (+21.2), highlighting its effectiveness in stabilizing illumination.
Adding LoRA alone also improves results across all datasets, particularly for dark scenes (from 59.9
to 89.5), demonstrating its capacity for efficient adaptation. Combining the pre-processing block
and LoRA provides further improvement, especially on LOD (+26.2 over baseline), confirming their
complementarity. Finally, integrating VPT with the pre-processing block and LoRA achieves the best
results across all datasets, with 72.1 mAP on LOD and over 90 mAP on all PASCAL RAW variants.
This indicates that our full model benefits from both robust pre-processing and parameter-efficient
tuning mechanisms, achieving consistent gains under diverse lighting conditions.

In addition, we evaluate the performance using three different backbones: Swin-T pretrained on the
large-scale RAW dataset (denoted as Swin-T (RAW)), Swin-T pretrained on ImageNet-1k (Swin-
T (in1k)), and Vision Transformer pretrained on ImageNet-1k (ViT (in1k)). As shown in Tab. 7,
Dr. RAW with Swin-T (RAW) consistently achieves the best performance across all evaluation
settings, including LOD and various PASCAL RAW conditions. The substantial performance gap
between Swin-T (RAW) and Swin-T (in1k) highlights the importance of pretraining on RAW data,
which preserves richer visual information compared to standard RGB inputs. Furthermore, when
our techniques are applied to the ViT (in1k) backbone, the model still achieves strong results,
demonstrating the generalizability of our proposed components beyond a specific architecture.

Method
mAP

PASCAL RAW
(normal)

PASCAL RAW
(over-exp)

PASCAL RAW
(dark) LOD

Karaimer et al.
(frozen, in1k) 89.3 87.6 83.1 40.6

Karaimer et al.
(fully-tuned, in1k) 90.0 90.1 87.9 62.5

Direct RAW
(frozen, in1k) 88.1 89.4 86.5 47.5

Direct RAW
(fully-tuned, in1k) 90.0 90.1 87.9 67.2

Dr.RAW
(adapter, in1k) 89.7 89.6 88.4 67.8

Dr.RAW
(adapter, RAW) 90.4 90.3 89.7 72.1

Dr.RAW
(fully-tuned, in1k) 90.6 90.4 90.2 73.8

Table 8: Effectiveness of adapter tuning strategy
across pretraining datasets.

Downstream Task Dataset Backbone Pre-training Dataset mAP

LOD ADE20K (RAW, 20210 images) 72.1
LOD PASCAL-RAW (RAW, 4259 images) 69.3
LOD in1K (RGB, 1281167 images) 67.8
LIS ADE20K (RAW, 20210 images) 41.2
LIS PASCAL-RAW (RAW, 4259 images) 37.8
LIS in1K (RGB, 1281167 images) 35.9

Table 9: Effect of backbone pre-training dataset on
downstream tasks.
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Considering the large-scale RAW pretraining is not available for our baselines, we trained Dr. RAW
using full fine-tuning on in1K to eliminate the domain mismatch that may bias the results. As
shown in Tab. 8, when all methods are fully fine-tuned and initialized with in1K pretrained weights,
Dr. RAW significantly outperforms the baseline (Direct RAW). For example, on the LOD dataset,
the performance improves from 67.2 to 73.8 (+6.6). In addition, the results also demonstrate that
RAW-based pretraining can substantially improve performance. For instance, Dr. RAW improves
from 67.8 (in1K-pretrain) to 72.1 (RAW-pretrain), achieving a gain of +4.3. Moreover, compared
to fully fine-tuning with In1K pretraining, Dr. RAW reduces the number of trainable parameters by
approximately 71%, yet the performance drops by only -1.7 (from 73.8 to 72.1).

The availability of large-scale RAW datasets is a practical consideration. Therefore, we conducted
an experiment with the scenario where large-scale synthetic RAW data like ADE20K-RAW is not
available, as shown in Tab. 9. We pre-trained a new backbone using only the much smaller PASCAL-
RAW dataset (4259 images). We then evaluated this backbone on the LOD and LIS tasks. This
study shows that while large-scale pre-training yields the best results, our method still achieves
strong performance when pre-trained on a smaller, more accessible RAW dataset, attributing the
performance gains come from both the RAW pre-training and our adaptation modules.

To directly evaluate the generalization to unseen sensors, we conducted a zero-shot experiment. We
took Dr. RAW trained on the PASCAL RAW dataset (captured with a Nikon DSLR camera) and
tested it without any fine-tuning, on RAW images of the same scenes captured with two unseen
sensors, iPhone X and Samsung (we adopt [51] to do RAW-to-RAW mapping). The model achieves
88.3 mAP and 88.8 mAP, respectively. Compare with original performance 90.4 on Nikon, the results
show only a marginal drop when tested on unseen sensors, demonstrating Dr. RAW’s generalization.

4.7 Impact of Pre-processing Block

To assess the effectiveness, we analyzed RGB-uv histograms of RAW and mapped images. The
RGB-uv histogram captures color distributions in log-chromaticity space [17], where each image
is represented by a high-dimensional vector formed by concatenating 2D histograms of the R, G,
and B channels over the (u, v) plane [3]. We visualize these histograms using PCA, as shown in
Fig. 4. Each point denotes one image’s chromaticity distribution, and ellipses illustrate group-wise
covariance in the projected space. RAW images exhibit a long, curved spread with a large and
anisotropic covariance ellipse, reflecting significant chromatic variability. In contrast, the mapped
images form a tight, centered cluster with reduced and more isotropic covariance, demonstrating
improved consistency in chromaticity. Quantitatively, the average intra-class distance decreases from
0.380 (RAW) to 0.259 (mapped images), indicating reduced sample variability. The centroids of
the two groups are separated by 0.32 in Euclidean distance, confirming a noticeable shift in color
representation. The first two principal components explain 74.5% and 5.4% of the variance, capturing
the dominant structure of chromatic change. These improvements simplify downstream learning by
reducing feature noise and enabling more stable, efficient optimization.

5 Conclusion
We present Dr. RAW, a unified and parameter-efficient framework for high-level vision tasks operating
directly on RAW images. By combining lightweight sensor-aware pre-processing with modular
adapter-based tuning strategies, Dr. RAW achieves SOTA performance across object detection,
semantic segmentation, instance segmentation, and pose estimation under diverse lighting conditions.
Notably, Dr. RAW minimizes task-specific parameter updates while maintaining robustness and
generalizability. Extensive experiments across nine RAW datasets confirm that Dr. RAW effectively
bridges the gap between efficient adaptation and high-performance perception in RAW domains.
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A Re-mosaicing Block Architecture

The re-mosaicing block (Fig. 3(b)) serves as the fundamental building unit of our model, following
a minimalist design philosophy that balances computational efficiency and representational power.
Unlike traditional convolutional blocks that heavily rely on complex attention mechanisms or deep
non-linearities, the re-mosaicing block adopts a more streamlined yet effective architecture. It lever-
ages simple convolutional operations, channel-wise normalization, and efficient feature modulation
strategies to extract and refine features.

A core component in the re-mosaicing block is the use of a simple gating mechanism (SG), a
lightweight nonlinear interaction mechanism that replaces conventional activations such as ReLU or
GELU. It is inspired by findings that color channels contribute unequally across tasks and lighting
conditions [52]. Specifically, the input feature map is evenly split along the channel dimension into
two halves, and an element-wise product is computed between them:

SG(x) = x1 · x2,where x = [x1, x2] (7)

This operation enables direct and efficient channel-wise interaction without introducing additional
parameters or computational overhead. By operating in-place and avoiding expensive non-linear func-
tions, SG significantly reduces memory access costs while still enabling expressive transformations,
making it particularly well-suited for real-time and resource-constrained applications.

In the decoding path, the block integrates PixelShuffle [44] for upsampling, which has become a
preferred alternative to transposed convolutions due to its artifact-free nature and computational
simplicity. PixelShuffle rearranges a tensor of shape (C · r2, H,W ) into a higher-resolution tensor
of shape (C, rH, rW ), where r is the upscaling factor. This deterministic rearrangement avoids the
checkerboard artifacts often introduced by transposed convolutions and preserves fine spatial detail,
which is crucial for high-fidelity image enhancement.

The overall structure of the re-mosaicing block is symmetric and modular, consisting of two sequential
convolutional segments separated by normalization and nonlinear interactions. This design, free from
transformer-style self-attention or heavy MLPs, allows it to be deeply stacked without overfitting or
vanishing gradients, making it highly scalable.

B Vision Transformer and Swin Transformer

B.1 Vision Transformer

For a plain vision transformer (ViT) with N layers, an image is divided into m fixed-sized patches
{Ij ∈ R3×h×w|j ∈ N, 1 ≤ j ≤ m}, h,w are the height and the width of the image patches. Each
patch is then first projected to a d-dimensional embedding with positional encoding:

ej0 = Embed(Ij) ej0 ∈ Rd, j = 1, 2, · · · ,m (8)

We denote the collection of image patch embeddings Ei = {eji ∈ Rd|j ∈ N, 1 ≤ j ≤ m}, as inputs
to the (i+ 1)-th transformer layer (Li+1). The ViT is formulated as:

Ei = Li(Ei−1) i = 1, 2, · · · , N (9)

Each layer Li consists of multi-head self attention (MSA) [48] and feed-forward networks (FFN) [4]
together with LayerNorm and residual connections [19].

The attention function is computed on the embeddings Ei packed together into a query matrix Q =
EiWQ, a key matrix K = EiWK , and a value matrix V = EiWV , where WQ,WK ,WV ∈ Rd×d.
We compute the matrix of outputs as:

Attn(Q,K, V ) = softmax(
QKT

√
d

)V (10)

In addition to MSA sub-layers, each of the layers contains a FFN, which is applied to each position
separately and identically. It consists of two linear transformations with a ReLU activation in between.
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Figure 7: SPP integration. (a). For ViT, we embed the prompts between the cls token and the image
embeddings. (b). For Swin Transformer, we insert the visual prompts before Window Multi-Head
Self-Attention(W-MSA) and Shifted Window Multi-Head Self-Attention(Swin-MSA), removing it
during the patch merging stage.

B.2 Swin Transformer

Swin transformer [35] is built by replacing the standard MSA module in a transformer block by a
module based on shifted windows, with other layers kept the same. Swin transformer computes
self-attention within local windows. The windows are arranged to evenly partition the image in a
non-overlapping manner. The window-based self-attention module lacks connections across windows,
which limits its modeling power. To introduce cross-window connections while maintaining the
efficient computation of non-overlapping windows, swin transformer utilizes a shifted window parti-
tioning approach that alternates between two partitioning configurations in consecutive transformer
blocks. The first module uses a regular window partitioning strategy that starts from the top-left pixel,
and the feature map is evenly partitioned into windows of size W . Then, the next module adopts a
windowing configuration that is shifted from that of the preceding layer, by displacing the windows
by (⌊W

2 ⌋, ⌊W
2 ⌋) pixels from the regularly partitioned windows. The shifted window partitioning

approach introduces connections between neighboring non-overlapping windows in the previous
layer and is found to be effective in image classification, object detection, and semantic segmentation.

B.3 Sensor Prior Prompt Integration

We adopt a set of learnable sensor prior prompts (SPP) P = {pk ∈ Rd|k ∈ N, 1 ≤ k ≤ K} to
convey the sensor prior knowledge from sensor-independent illumination mapping to the backbone.
Here, K denotes the number of SPP adopted in the backbone. During the tuning, only the SPPs
are being updated, while the backbone is kept frozen. Each query p is generated by projecting
the concatenation of the sensor mapping matrix and the illumination mapping matrix into a few
d-dimensional embeddings

p = FFN([M3×3,L3×3]) (11)

They are inserted in the embeddings after the Embed layer (Eq. 8).

For a ViT-based backbone, as shown in Fig. 7(a), we integrate the SPPs between the cls token and
image embeddings. The process for the ith layer is formulated as:

[cls, ,Ei+1] = Li(cls, pi,Ei) (12)

, where denotes removing the token at the position corresponding to p in the output of the ith layer,
followed by inserting pi+1 before feeding Ei+1 into the (i+ 1)th layer.

For the Swin Transformer-based backbone, we incorporate the SPPs within local windows, excluding
them during patch merging, as shown in Fig. 7(b).
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B.4 Low-Rank Adaptation

A typical transformer-based backbone contains many dense layers that perform matrix multiplication
(App. B), and the weights in the layers usually have full rank. To efficiently adapt it to a new task,
LoRA constrains the update of the weight matrix Wh ∈ Rd×d by representing it with a low-rank
decomposition, i.e.,

W ′
h = Wh +∆W = Wh +WB

h WA
h (13)

, where WA
h ∈ Rd×r, WB

h ∈ Rr×d, and r ≪ d. During training, Wh is frozen and does not receive
gradient updates, while WA

h and WB
h contain trainable parameters. Both Wh and ∆W are multiplied

with the same input, and their respective output vectors are summed coordinate-wise. Therefore,
consider a matrix multiplication h = Whe in a well-trained backbone, where e is an embedding, the
adapted forward pass yields:

h′ = Whe+∆We = Whe+WB
h WA

h e (14)

WA
h is initialized with a Gaussian distribution, and WB

h is initialized with all zeros, leading to
∆W = 0 at the beginning of the update, and stabilizing LoRA.

In Dr. RAW, we solve the training inefficiency by introducing LoRA into the backbone. Specifically,
we insert low rank matrices into WQ,WK ,WV in Eq. 10, and the weights in FFN. For each task,
we train a set of compatible low-rank matrices. Therefore, we can explicitly compute W ′

ht
=

Wht
+WB

ht
WA

ht
for task t during inference. When we need to switch to another downstream task

t′, we can replace WA
ht

and WB
ht

with WA
ht′

and WB
ht′

, a quick operation with very little memory
overhead. Importantly, we do not introduce any additional latency during inference compared to a
fine-tuned model by construction.

C Datasets

We conducted experiments on object detection, semantic segmentation, instance segmentation, and
pose estimation, utilizing a combination of various synthetic and real-world RAW image datasets. For
object detection, we adopted 2 open-source real-world datasets, PASCAL RAW [37] and LOD [20].
LOD is a real-world dataset consisting of 2230 low-light condition RAW images taken by a Canon
EOS 5D Mark IV camera with 8 object classes. We took 1800 images as the training set and the
other 430 images as the test set. PASCAL RAW is a normal-light condition dataset with 4259
RAW images, taken by a Nikon D3200 DSLR camera with 3 object classes. Following [15], two
synthesized datasets PASCAL RAW (dark) and PASCAL RAW (over-exp) are additionally adopted to
verify the generalization capability of Dr. RAW across various lighting conditions. For the semantic
segmentation task, we utilized the widely used sRGB dataset ADE20K [63] to generate the RAW
dataset with various lighting conditions, namely ADE20K RAW (dark), ADE20K RAW (normal),
and ADE20K RAW (over-exp), similar to [15]. The training and test split of ADE20K RAW is the
same as ADE20K. For the instance segmentation task, we utilized LIS, containing more than two
thousand pairs of low/normal-light images, covering various real-world indoor/outdoor low-light
scenes. It includes precise instance-level pixel-wise labels, with a total of 10504 labeled instances
across 8 common object classes: bicycle, car, motorcycle, bus, bottle, chair, dining table, and TV. As
for pose estimation, we used ExLPose [30], which collected 2556 images of 251 scenes; 2,065 of
201 scenes are used for training, and the remaining 491 of 50 scenes are kept for testing. We only
used the low-light images of ExLPose to make the pose estimation consistent with other tasks. Each
annotation contains a bounding box and 14 body joints following CrowdPose [32]. An overview of
each dataset is presented in Tab. 10.

D Evaluation Metrics

To evaluate the effectiveness of segmentation models, mean Intersection over Union (mIoU) has
become one of the standard metrics due to its robustness and interpretability. Intersection over Union
(IoU) quantifies the overlap between predicted and ground truth regions for a given class. It is
formally defined as the ratio between the intersection and the union of the predicted and ground truth
masks.

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth|

(15)
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Dataset
Info.

Task Image Number Type Sensor

PASCAL RAW [37]
(normal/ dark / over-exp)

Object
Detection

4259 real-world & synthesis Nikon D3200 DSLR

LOD [20] 2230 real-world Canon EOS 5D Mark IV

ADE20K RAW [15]
(normal/ dark / over-exp)

Semantic
Segmentation

27574 synthesis -

LIS [12]
Instance

Segmentation
2230 real-world Canon EOS 5D Mark IV

ExlPose [30] Pose Estimation 2556 real-world
Basler daA1920-160uc

(with Sony IMX392 CMOS)

Table 10: Overview of the datasets in our experiments.

This formulation penalizes both false positives and false negatives, thus providing a stringent assess-
ment of segmentation quality. Unlike pixel accuracy, which may be overly optimistic in imbalanced
datasets, IoU offers a more reliable measure of the model’s spatial prediction fidelity. To evaluate
performance across multiple semantic categories, IoU is computed for each class individually and
then averaged to produce the mean IoU.

mIoU =
1

C

C∑
i=1

IoUi (16)

This approach ensures that all classes contribute equally to the final score, thereby mitigating the
dominance of frequent classes and enabling fairer evaluation in datasets with long-tail distributions.

On the other hand, mean Average Precision (mAP), another widely adopted metric, captures both the
precision-recall trade-off and the localization accuracy of model predictions. Unlike accuracy-based
metrics, mAP rewards high precision at high recall and penalizes false positives and missed detections,
making it a rigorous standard for assessing performance across a range of tasks. For object detection,
Average Precision (AP) is computed for each class by integrating the precision-recall curve derived
from ranked predictions. A detection is considered correct if it has the correct label and its predicted
bounding box achieves an IoU with the ground truth box above a certain threshold. Given a set of
predictions sorted by confidence, the precision and recall values are computed at each rank, and the
AP for class c is calculated as:

APc =

∫ 1

0

Precisionc(x)dx (17)

The mean Average Precision (mAP) is then computed as the average over all classes:

mAP =
1

C

C∑
i=1

APi (18)

In instance segmentation, mAP is extended by replacing bounding boxes with pixel-level masks. The
IoU is thus calculated between predicted and ground truth masks rather than boxes. Accordingly,
two metrics are often reported: mAPbox(based on bounding boxes) and mAPmask (based on instance
masks).

For human pose estimation, mAP is computed using the Object Keypoint Similarity (OKS) metric,
which measures the similarity between predicted and ground truth keypoints. Unlike IoU, OKS
accounts for keypoint visibility and object scale. It is defined as:

OKS =

∑
i exp(−

d2
i

2s2k2
i
)δ(vi = 1)∑

i δ(vi = 1)
(19)

, where di is the Euclidean distance between the predicted and ground truth keypoints, s is the object
scale, ki is a keypoint-specific constant controlling falloff, and vi is the visibility flag. Similar to
mAP in detection, AP is computed at multiple OKS thresholds (e.g., 0.50–0.95), and the final pose
mAP is the mean across these thresholds and keypoints.
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E Detailed Experimental Results

Owing to space constraints, we are unable to include the complete set of experimental results in the
main manuscript. Additional results are provided in the appendix. All experiments were conducted
on a server equipped with four NVIDIA RTX A6000 GPUs. The software environment includes
Python 3.8, PyTorch 1.12, MMDetection 3.3.0, MMSegmentation 1.2.1, and MMPose 1.3.2.

E.1 Object Detection

Tab. 11 presents per-category AP under varying illumination conditions (i.e., normal, over-exposure
(over-exp), and dark), on the PASCAL RAW dataset. Our method, Dr. RAW, consistently achieves
the highest AP across all object categories and lighting conditions, demonstrating its robustness to
illumination changes. Under normal lighting, Dr. RAWachieves 90.8, 90.3, and 90.1 AP for car,
person, and bicycle, respectively, surpassing all competing baselines. Notably, in the challenging
dark setting, Dr. RAWoutperforms prior works by large margins, achieving 90.7 (car), 88.6 (person),
and 89.7 (bicycle), while the closest runner-up, RAW-Adapter, drops significantly (e.g., only 85.7 for
bicycle). While traditional pipelines such as Demosaicing and Karaimer et al. perform reasonably
under normal and over-exposed conditions, their accuracy degrades in low light. In contrast, InvISP
suffers substantial performance drops in the dark (e.g., 74.6 for bicycle), indicating brittleness in
extreme scenarios. These results underscore the illumination-invariant capability of Dr. RAWand its
effectiveness in learning directly from RAW data without relying on handcrafted ISP operations.

Method Normal Over-Exp Dark
Car Person Bicycle Car Person Bicycle Car Person Bicycle

Dr. RAW 90.8 90.3 90.1 90.6 90.1 90.1 90.7 88.6 89.7
Karaimer et al. 90.7 89.9 89.5 90.6 87.3 89.3 89.8 85.9 87.1
Demosaicing 90.7 89.9 89.6 90.7 89.6 90.0 89.7 86.8 87.3

InvISP 90.4 88.6 89.8 90.6 89.5 89.3 83.5 77.5 74.6
Dirty-Pixel 90.6 88.3 90.0 89.9 88.7 89.2 85.5 82.8 82.6

RAW-Adapter 90.3 88.9 89.9 90.6 88.0 89.8 89.3 84.6 85.7

Table 11: Per-category performance (mAP) across different illumination conditions and methods on
PASCAL RAW.

Tab. 12 reports per-class AP on the LOD dataset. Dr. RAW achieves the best overall balance and
outperforms competing methods in 5 out of 8 categories, including chair (81.5), dining table (52.8),
and TV monitor (76.0), demonstrating its strong capability in modeling both structural and fine-
grained texture details. While RAW-Adapter yields the highest AP on car (91.9), it underperforms
on other classes such as bottle (42.5) and TV monitor (42.4), indicating limited generalization. ISP-
based pipelines (e.g., Default ISP and Karaimer et al.) perform reasonably in structured scenes but
degrade on visually complex or texture-sensitive categories like motorbike and dining table. Notably,
Direct(RAW) achieves strong results on bottle (72.6) and bus (67.1), but its performance fluctuates
due to the lack of the pre-processing block (Sec. 3.1).

In contrast, Dr. RAW not only delivers SOTA results in terms of average AP (72.7), but does
so with remarkable parameter efficiency. Our model updates only 29% of the total parameters,
significantly reducing storage overhead without sacrificing accuracy. This lightweight fine-tuning
strategy proves especially effective in extracting discriminative features directly from RAW inputs
while maintaining generalization across varied object types and scenes. These results affirm that our
approach successfully bridges the gap between efficiency and performance, setting a new standard
for RAW-domain recognition.

E.2 Pose Estimation

Tab. 13 reports the mAP across several low-light testsets (LL-N, LL-H, LL-E, LL-A), comparing
Dr. RAW against relevant prior methods. A distinction is maintained between methods employing
paired RAW-dark/RAW-normal supervision (♢) and those restricted to unpaired training solely on
RAW-dark images (♠), the category encompassing Dr. RAW. We highlight the leading performance
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Method Class
Bicycle Car Motorbike Chair Dining Table Bottle TV Monitor Bus

Dr. RAW 74.5 90.5 71.4 81.5 52.8 65.9 76.0 64.4
Dirty-Pixel 70.9 89.2 68.9 73.4 35.7 52.4 53.8 48.1

RAW-Adapter 70.4 91.9 70.6 77.9 38.0 42.5 42.4 63.4
Default ISP 76.3 90.2 63.4 79.1 41.0 63.6 51.3 59.8

Direct (RAW) 76.5 90.7 64.7 75.8 31.6 72.6 59.3 67.1
Karaimer et al. 72.1 89.5 61.5 73.2 28.0 63.7 52.3 59.4

Table 12: Per-class performance (AP) across methods on LOD.

Method Setting mAP by Testset
LL-N LL-H LL-E LL-A

LLFlow+CPN♢ fully-tuned 35.2 20.1 8.3 22.1
LIME+CPN♢ fully-tuned 38.3 25.6 12.5 26.6

DANN♢ fully-tuned 34.9 24.9 13.3 25.4
AdvEnt♢ fully-tuned 35.6 23.5 8.8 23.8

Lee et al.♢ fully-tuned 42.3 34.0 18.6 32.7

Direct (RAW) ♠ freeze 12.0 7.5 3.6 8.3
fully-tuned 36.1 26.9 18.5 29.9

Karaimer et al. ♠ freeze 9.7 6.9 3.6 7.2
fully-tuned 35.4 29.2 19.1 30.1

InvISP ♠ freeze 6.4 3.3 2.0 4.4
fully-tuned 30.5 17.7 8.2 19.9

Dr. RAW♠ adapter 37.0 30.9 19.6 30.4
♢ Trained with paired RAW-dark/RAW-normal. ♠ Trained solely on RAW-dark images.
Table 13: Pose estimation performance across different methods trained solely on RAW-dark images.
Best results are bolded and second-best are underlined within each training category.

for each metric separately within each training paradigm. Specifically, the best-performing method is
indicated in bold, and the second-best is underlined. Operating under the constraint of utilizing only
dark RAW images, Dr. RAW consistently establishes a new SOTA benchmark. It achieves superior
mAP scores compared to all fully-tuned baselines within this category, including Direct (RAW),
Karaimer et al., and InvISP, across the evaluated low-light testsets. This uniform outperformance
underscores the robustness and efficacy of Dr. RAW in extracting salient pose information directly
from RAW sensor data via its adapter-based tuning strategy, irrespective of the specific low-light
challenge. Moreover, a comparative analysis against methods leveraging paired RAW-dark and RAW-
normal supervision (♢) reveals the striking competitiveness of Dr. RAW. While the top-performing
paired approach (Lee et al.) generally exhibits higher mAP, Dr. RAW substantially narrows the
performance differential attributable to the supervision type. It surpasses several established paired-
data techniques across all conditions. Critically, on the particularly challenging LL-E test set,
Dr. RAW’s performance marginally exceeds that of Lee et al., suggesting exceptional resilience to
extremely low-light scenarios that potentially mitigates the necessity for paired supervision in such
demanding contexts.

E.3 Instance Segmentation

Tab. 14 summarizes the instance segmentation performance of our proposed method, Dr. RAW,
against a variety of methods. Our proposed method, Dr. RAW, achieves strong performance while
operating in the adapter-based setting, striking a compelling balance between accuracy and parameter
efficiency. A critical distinction lies in the training data utilized. Methods marked with ♢ leverage
paired RAW-dark and RAW-normal images, providing direct supervision for low-light enhancement
or domain translation integrated with the downstream task. In contrast, methods marked with ♠,
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Method Setting mAP mAP50 mAP75 mAPbox mAPbox
50 mAPbox

75

EnlightenGAN + SGN ♢ fully-tuned 37.1 60.2 37.4 44.5 67.0 48.6
Zero-DCE + SGN ♢ fully-tuned 36.9 60.3 37.4 44.8 67.5 49.0

SID ♢ fully-tuned 37.8 60.0 38.3 44.7 66.6 46.9
REDI ♢ fully-tuned 36.0 59.0 35.8 42.8 66.1 45.9

Chen et al. ♢ fully-tuned 42.7 66.2 43.3 50.3 72.6 55.2

Default ISP ♠ freeze 23.3 42.3 23.0 25.8 51.4 22.9
fully-tuned 36.1 58.4 37.6 41.9 67.7 44.1

Direct (RAW) ♠ freeze 27.6 47.4 27.4 30.1 56.2 27.7
fully-tuned 40.2 61.4 41.2 44.9 70.1 48.6

Karaimer et al. ♠ freeze 18.7 34.7 18.8 20.9 43.1 17.4
fully-tuned 34.6 55.1 35.5 39.7 63.9 42.4

Dr. RAW♠ adapter 41.2 63.0 42.9 43.6 70.3 48.1
♢ The model is trained on the RAW-dark and RAW-normal image pairs.
♠ The model is trained solely on the RAW-dark images.
Table 14: Instance segmentation performance across different methods trained solely on RAW-dark
images. Best results are bolded and second-best are underlined within each training category.

including our Dr. RAW, are trained solely on RAW-dark images, representing a more challenging
scenario where explicit normal-light guidance is absent during training. For fairness, we highlight
the best and second-best results in each training category separately: methods trained with paired
RAW-normal supervision (♢) and those trained solely on RAW-dark data (♠). Within the category
trained only on RAW-dark images, Dr. RAW demonstrates compelling performance. Specifically,
Dr. RAW outperforms the strongest baseline in this category, Direct (RAW) fully-tuned, by 1%
in mAP, 1.6% in mAP50, and 1.7% in mAP75. The substantial gain in mAP75, which demands
higher localization accuracy, highlights the quality of the instance masks predicted by our method
even under challenging low-light conditions using only dark RAW input. While the bounding box
mAP (mAPbox) of 43.6 is slightly below the fully-tuned Direct (RAW) method, our mask mAP
metrics indicate superior segmentation accuracy. It is noteworthy that Dr. RAW achieves this SOTA
performance within the unpaired setting using an efficient adapter-based tuning strategy, rather
than requiring full end-to-end fine-tuning like the Direct and Karaimer et al. baselines. Compared
to methods trained with paired data (♢), Dr. RAW is remarkably competitive. While Chen et al.,
benefiting from paired supervision, achieves the highest overall score (42.7 mAP), Dr. RAW (41.2
mAP) significantly narrows the performance gap. It notably outperforms several paired-data methods
like EnlightenGAN+SGN (37.1 mAP), Zero-DCE+SGN (36.9 mAP), SID (37.8 mAP), and REDI
(36.0 mAP). This underscores the efficacy of Dr. RAW for robust instance segmentation directly from
dark RAW images, achieving results comparable to methods requiring significantly more supervision
in the form of paired normal-light images.

Tab. 15 reports per-class performance on LIS for both object detection (APbox) and instance seg-
mentation (APmask) across the methods trained solely on RAW-dark images. Dr. RAW consistently
outperforms prior approaches across nearly all categories, achieving the best APbox in 6 out of 8
classes and the best APmask in 7 out of 8 classes. These include significant gains in complex object
categories such as motorbike (45.6 box / 50.8 mask), bottle (63.4 / 67.3), and chair (71.7 / 73.3).
Compared to Karaimer et al. and the Default ISP pipeline, Dr. RAW demonstrates superior adaptabil-
ity under real-world RAW distributions. While Direct(RAW) benefits from bypassing ISP artifacts, it
lacks robustness in categories like TV monitor or car, where subtle color and texture cues are essential.
These gains can be attributed to two key components in our architecture. First, the pre-processing
block allows the model to normalize global color and exposure shifts across devices and scenes,
improving resilience under diverse lighting. In addition, it enables high-fidelity feature extraction
early in the pipeline. Second, the parameter-efficient strategies effectively task-specific information
without altering the domain-general knowledge in the backbone. Together, these modules bridge the
gap between low-level RAW signals and high-level recognition tasks, resulting in strong performance
on both detection and segmentation tasks.
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Method APbox

Bicycle Chair Dining Table Bottle Motorbike Car TV Monitor Bus

Karaimer et al. 34.3 66.0 30.4 59.3 37.3 27.9 19.6 42.8
Direct (RAW) 41.2 71.6 38.8 62.8 44.5 32.3 21.8 46.5
Default ISP 38.0 67.3 34.9 57.8 39.7 30.4 22.1 45.2
Dr. RAW 39.7 71.7 39.2 63.4 45.6 32.0 24.8 47.0

Method APmask

Bicycle Chair Dining Table Bottle Motorbike Car TV Monitor Bus

Karaimer et al. 21.0 66.5 24.2 62.1 38.7 12.3 4.6 47.2
Direct (RAW) 26.1 72.7 33.1 65.9 47.6 17.5 6.3 52.6
Default ISP 22.7 67.3 29.5 62.2 38.7 13.4 5.1 50.0
Dr. RAW 25.8 73.3 34.2 67.3 50.8 18.6 6.7 53.7

Table 15: Per-class APbox and APmask across methods on LIS.

E.4 Future Direction

For future research directions, we believe it is feasible to train a foundation model based on RAW
images that supports multi-task learning without the need for adaptation in each specific task. For
example, we could build multiple decoders on a shared backbone to address various RAW-based
computer vision tasks. This approach is of crucial importance to real-world systems and downstream
tasks such as autonomous driving and wildlife monitoring.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction accurately reflect the experiments in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in App. E.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please check Sec. 3 and Appendix for proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information in Sec. 4.1 and App. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments are repeated 5 times, and the reported number is the mean of
all runs.
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resource is mentioned in App. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work discusses a fundamental problem that lies in computational photog-
raphy. It does not involve user data, identity, or any sensitive information. We believe it
does not carry a direct societal impact at this stage.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of such a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use public datasets, LOD, PASCAL RAW, ADE20K RAW, LIS, and
ExlPose, and we properly cite the original papers in the manuscript. We also utilize open-
source toolboxes, mmdetection mmsegmentation, and mmpose. Dataset licenses and terms
of use have been respected, and all reused assets are properly credited with version and
source information provided where applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We develop the method and will release it properly in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include experimental studies related to crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our study does not involve human subjects or participant data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We do not use LLMs as an important, original, or non-standard component of
the core methods. Our research is a pure vision-based research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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