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Abstract

Recent deep reinforcement learning methods have achieved remarkable success in1

solving multi-objective combinatorial optimization problems (MOCOPs) by de-2

composing them into multiple subproblems, each associated with a specific weight3

vector. However, these methods typically treat all subproblems equally and solve4

them using a single model, hindering the effective exploration of the solution space5

and thus leading to suboptimal performance. To overcome the limitation, we pro-6

pose POCCO, a novel plug-and-play framework that enables adaptive selection of7

model structures for subproblems, which are subsequently optimized based on pref-8

erence signals rather than explicit reward values. Specifically, POCCO integrates9

a conditional computation block into the decoder, where a sparse gating network10

dynamically routes each subproblem through either a subset of feed-forward (FF)11

experts or a parameter-free identity (ID) expert. This enables context-aware se-12

lection of computation paths, effectively scaling model capacity and enhancing13

representation learning. Moreover, POCCO replaces raw scalarized rewards with14

pairwise preference learning: for each subproblem, the policy samples two trajec-15

tories, identifies the preferred one, and optimizes a Bradley–Terry likelihood based16

on their average log-likelihoods. This comparative feedback guides learning toward17

more preferred solutions, promoting efficient exploration and faster convergence.18

We integrate POCCO into two state-of-the-art neural MOCOP solvers—CNH and19

WE-CA—yielding POCCO-C and POCCO-W, respectively. As shown in Table 1,20

POCCO-W consistently outperforms WE-CA across all benchmarks, setting a new21

state-of-the-art among neural MOCOP methods. Similarly, POCCO-C surpasses22

CNH in every case, demonstrating its clear advantage.23

Table 1: Performance on Bi-TSP, Bi-CVRP, Bi-KP, and Tri-TSP Instances

Task Method Small Medium Large
HV Gap Time HV Gap Time HV Gap Time

Bi-TSP
CNH 0.6270 0.00% 13s 0.6387 0.48% 16s 0.7019 0.83% 33s
POCCO-C 0.6275 -0.08% 14s 0.6409 0.14% 20s 0.7047 0.44% 42s
WE-CA 0.6270 0.00% 6s 0.6392 0.41% 9s 0.7034 0.62% 18s
POCCO-W 0.6275 -0.08% 7s 0.6411 0.11% 14s 0.7055 0.32% 36s

Bi-CVRP
CNH 0.4287 0.33% 11s 0.4087 0.51% 15s 0.4065 0.59% 25s
POCCO-C 0.4294 0.16% 16s 0.4101 0.17% 25s 0.4079 0.24% 53s
WE-CA 0.4290 0.26% 7s 0.4089 0.46% 10s 0.4068 0.51% 21s
POCCO-W 0.4294 0.16% 8s 0.4102 0.15% 17s 0.4084 0.12% 46s

Bi-KP
CNH 0.3556 0.17% 16s 0.4527 0.15% 23s 0.3598 0.14% 55s
POCCO-C 0.3560 0.06% 20s 0.4535 -0.02% 36s 0.3603 0.00% 1.4m
WE-CA 0.3558 0.11% 8s 0.4531 0.07% 16s 0.3602 0.03% 50s
POCCO-W 0.3562 0.00% 11s 0.4534 0.00% 26s 0.3603 0.00% 1.3m

Tri-TSP
CNH 0.4698 0.30% 10s 0.4358 1.78% 14s 0.4931 2.32% 25s
POCCO-C 0.4704 0.17% 18s 0.4393 0.99% 17s 0.4985 1.25% 28s
WE-CA 0.4707 0.11% 5s 0.4389 1.08% 8s 0.4975 1.45% 17s
POCCO-W 0.4710 0.04% 6s 0.4397 0.90% 13s 0.4985 1.25% 23s
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