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Abstract

Different studies of the embedding space of001
transformer models suggest that the distribu-002
tion of contextual representations is highly003
anisotropic — the embeddings are distributed004
in a narrow cone. Meanwhile, static word rep-005
resentations (e.g., Word2Vec or GloVe) have006
been shown to benefit from isotropic spaces.007
Therefore, previous work has developed meth-008
ods to calibrate the embedding space of trans-009
formers in order to ensure isotropy. However,010
a recent study (Cai et al., 2021) shows that011
the embedding space of transformers is locally012
isotropic, which suggests that these models013
are already capable of exploiting the expres-014
sive capacity of their embedding space. In015
this work, we conduct an empirical evaluation016
of state-of-the-art methods for isotropy calibra-017
tion on transformers and find that they do not018
provide consistent improvements across mod-019
els and tasks. These results support the the-020
sis that, given the local isotropy, transformers021
do not benefit from additional isotropy calibra-022
tion.023

1 Introduction024

The impressive performance of transformer mod-025

els (Vaswani et al., 2017) across almost all areas of026

Natural Language Processing (NLP) has sparked in-027

depth investigations of these models. A remarkable028

finding is that the contextual representations com-029

puted by transformers are strongly anistropic (Etha-030

yarajh, 2019), i.e., they are unevenly distributed031

and localized in a narrow cone of the embedding032

space. This discovery, labeled as the representa-033

tion degeneration problem by Gao et al. (2018) is034

surprising since it suggests that most of the expres-035

sive capacity of these high-dimensional spaces is036

neglected by transformers.037

Furthermore, previous work on static word repre-038

sentations, e.g., GloVE (Pennington et al., 2014) or039

Word2Vec (Mikolov et al., 2013), established that040

isotropy is a desirable property in non-contextual041

embedding spaces (Mu et al., 2017). Indeed, Mu 042

et al. (2017) and Liu et al. (2019a) showed that 043

post-processing static word embeddings in order 044

to increase isotropy improves their performance 045

in downstream tasks. Based on these results, re- 046

cent work has developed methods to correct the 047

anisotropy of the contextual representations gener- 048

ated by transformers (Gao et al., 2018; Wang et al., 049

2019b; Li et al., 2020). These isotropy calibration 050

methods have been reported to produce small gains 051

in performance on some NLP tasks. 052

However, in a recent study, Cai et al. (2021) 053

show that the space of contextual embeddings of 054

transformers is locally isotropic. By analyzing low 055

dimensional sub-spaces the authors identify iso- 056

lated clusters and manifolds and argue that isotropy 057

does exist in these manifolds. In the same line, 058

Luo et al. (2021) and Kovaleva et al. (2021) find 059

that in BERT (Devlin et al., 2019) almost all of 060

the embeddings present large values in the same 061

two components of the embedding vector. These 062

large components distort our understanding of the 063

embedding spaces by making all the representa- 064

tions have high cosine similarity. In this work, 065

we perform an extensive empirical evaluation of 066

isotropy calibration methods across different tasks 067

and models to determine if they provide consistent 068

improvements. Our results question the utility of 069

isotropy calibration in transformers, implicitly sup- 070

porting the argument that transformers do already 071

benefit from local isotropy (Cai et al., 2021). 072

2 Related Work 073

Since the appearance of the transformer architec- 074

ture and its multiple variants, of which BERT (De- 075

vlin et al., 2019) stands out as the most researched 076

model, a lot of effort has been devoted to under- 077

standing their inner workings (Rogers et al., 2020). 078

Unlike static word embeddings such as GloVE or 079

Word2Vec, transformers build contextual embed- 080

dings, i.e., dynamic representations that aggregate 081
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information from other context words. These rep-082

resentations have sparked a lot of research interest.083

Wu et al. (2020) showed that different transformer084

architectures produce similar contextual representa-085

tions. Chronis and Erk (2020) studied the similarity086

and relatedness of contextual representations in the087

embedding spaces of BERT, while Brunner et al.088

(2019) studied how identifiable the intermediate089

representations of BERT are with respect to the090

input. Zhao et al. (2020) quantified the contextual091

knowledge of BERT and Zhao et al. (2021) ana-092

lyzed the embedding spaces of BERT in order to093

quantify the non-linearity of its layers.094

Following the discovery of anisotropy in trans-095

formers (Gao et al., 2018; Ethayarajh, 2019), dif-096

ferent isotropy calibration methods have been de-097

veloped to correct this phenomenon. Gao et al.098

(2018) and Zhang et al. (2020) introduced reg-099

ularization objectives that affect the embedding100

distances. Zhou et al. (2020) presented a module101

inspired by batch-norm that regularizes the embed-102

dings towards isotropic representations. Wang et al.103

(2019b) proposed to control the singular value de-104

cay of the output layer of transformers and Li et al.105

(2020) used normalizing flows to map transformer106

embeddings to an isotropic space. However, Cai107

et al. (2021) show that contextual representations108

are locally isotropic and suggest that this property109

allows transformers to exploit their full expressive110

capacity, questioning the utility of isotropy calibra-111

tion.112

3 Isotropy Calibration Methods113

The output distribution of transformers is typically
parameterized as a softmax function:

P (Yi = yi|hi) =
exp(hTi WI(yi))∑N
j=1 exp(hTi Wj)

,

where W ∈ RN×d is the output weight matrix,114

d is the embedding dimension, N is the output115

size, yi is the i-th output, I(yi) is the index of yi116

and h is the contextual embedding produced by117

the model. Since this constitutes a shared space118

between model embeddings h ∈ H and output119

embeddings, isotropy at the output distribution can120

be enforced by calibrating either H or W .121

We experiment with three prominent methods122

for isotropy calibration on transformers:123

Cosine Regularization. Gao et al. (2018) intro-124

duce a simple regularization term that minimizes125

the cosine similarity between any two output em- 126

beddings in order to increase the aperture of the 127

cone that contains the embeddings. This regular- 128

ization term is given by: 129

Rcos = λc
1

|V|2
n∑
i

n∑
j 6=i

ŵT
i ŵj ,

where wi is the embedding of the i-th token in the 130

vocabulary V , ŵ = w
||w|| and λc is the regulariza- 131

tion constant. 132

Spectrum Control. Wang et al. (2019b) increase
isotropy by mitigating the fast decay of the sin-
gular value distribution of the output matrix W .
They decompose W using Singular Value Decom-
position (SVD), such that W = UΣV T , where
Σ ∈ Rd×d is the diagonal matrix of singular
values. Then, they add a regularization term to
guide the singular value distribution towards a pre-
specified slow-decaying prior distribution. This
term spreads the variance away from the first few
dominating singular values, increasing the isotropy
of the space. They propose the following two regu-
larization terms:

Rpol(Σ) = λp

d∑
k=1

(σk − c1kγ)2 ,

for polynomial singular value decay; and

Rexp(Σ) = λe

d∑
k=1

(σk − c1 exp(−c2kγ))2 ,

for exponential decay, where λe, λp, c1 and c2 133

are regularization constants, σk is the k-th largest 134

singular value and γ is a parameter which controls 135

the rate of singular value decay. 136

Flow Model. Li et al. (2020) propose a method
that leverages normalizing flows to learn an invert-
ible mapping f−1φ between the embedding space of
the transformer model and an isotropic (Gaussian)
space Z . First, an invertible flow model (Kingma
and Dhariwal, 2018) fφ is trained to generate trans-
former embedding vectors h from Gaussian noise
z:

z ∼ pZ(z), h = fφ(z) .

Then, the model fφ is inverted to map transformer 137

embeddings h to the new (and isotropic) output 138

embedding space Z . 139

2



SST-2 MRPC CoLA RTE WNLI STS-B QNLI MNLI QQP

Model Accuracy F1 Mat. corr. Accuracy Accuracy Pearson corr. Accuracy Match acc. Mismatch acc. Accuracy

BERT 91.44 ±0.52 88.80±0.99 53.16±1.82 58.97±1.82 53.52±4.88 80.86 ±2.11 88.78±0.57 81.02±0.17 81.78±0.40 89.31±0.06
+Cosreg 90.71 ±1.00 88.17 ±0.38 46.94 ±4.29 56.43 ±5.16 50.23 ±4.95 78.23 ±2.19 89.58 ±0.19 81.20 ±0.41 82.04 ±0.21 89.26 ±0.10
+Spectrum-Pol 90.86 ±1.35 81.22 ±0 0 49.58 ±3.62 56.34 ±0 NaN 81.24 ±4.45 64.33 ±27.80 64.76 ±27.48 87.15 ±2.23
+Spectrum-Exp 91.21 ±0.37 81.22 ±0 0 50.90 ±3.45 56.34 ±0 NaN 86.42 ±0.42 62.43 ±24.97 63.12 ±25.20 89.16 ±0.45
+Flow 91.09 ±0.54 86.99 ±0.89 51.19 ±1.81 54.27 ±1.46 48.36 ±5.86 78.88 ±3.46 86.21 ±3.38 80.65 ±0.46 81.15 ±0.21 89.36 ±0.10

RoBERTa 92.97 ±0.63 85.35 ±8.52 53.67 ±3.32 53.19 ±0.55 54.46 ±0.81 83.10 ±2.87 91.00 ±0.46 85.16 ±0.28 85.19 ±0.15 89.85 ±0.13
+Cosreg 92.66 ±0.23 89.17 ±2.28 48.99 ±5.61 53.67 ±1.16 53.52 ±1.41 28.44 ±44.84 90.89 ±0.19 85.41 ±0.09 85.64 ±0.22 * 89.87 ±0.12
+Spectrum-Pol 88.08 ±0.99 81.22 ±0 0 52.71 ±0 57.28 ±1.62 * NaN 83.89 ±2.46 50.63 ±29.72 51.14 ±29.29 81.76 ±12.76
+Spectrum-Exp 90.71 ±1.09 81.22 ±0 0 52.95 ±0.42 56.34 ±0 NaN 82.25 ±3.14 84.46 ±0.51 84.77 0.41 80.95 ±13.89

DistilBERT 88.23 ±1.79 87.97 ±1.02 44.11 ±2.09 56.68 ±0.62 51.17 ±5.69 23.63 ±41.08 87.53 ±0.13 78.84 ±0.27 79.50 ±0.32 88.28 ±0.25
+Cosreg 88.53 ±1.55 87.88 ±1.36 43.13 ±0.85 58.24 ±1.78 52.11 ±2.44 -0.50 ±2.08 87.15 ±0.84 78.69 ±0.17 79.42 ±0.28 88.38 ±0.05
+Spectrum-Pol 88.80 ±0.37 81.22 ±0 0 54.15 ±2.50 55.87 ±0.81 NaN 85.47 ±0.96 78.39 ±0.17 79.13 ±0.05 88.41 ±0.43
+Spectrum-Exp 88.92 ±0.67 81.22 ±0 0 54.27 ±2.71 55.87 ±0.81 NaN 86.25 ±0.80 78.38 ±1.34 79.03 ±0.34 88.12 ±0.58

Table 1: Performance for different models and calibration methods on GLUE; * denotes significantly better perfor-
mance than the corresponding uncalibrated model (p < 0.05, two-sample t-test). The NaN and 0 scores are caused
by the model always predicting the same class.

4 Experiments140

We evaluate the impact of each of these calibration141

methods on state-of-the-art transformer models in142

three prominent areas of Natural Language Pro-143

cessing: language understanding, machine trans-144

lation, and summarization. For all of the models,145

we use the implementation and fine-tuning param-146

eters from HuggingFace (Wolf et al., 2020) (cf.147

Appendix B). We run each experiment three times148

and report the mean and standard deviation. Fine-149

tuning time is reported on a Nvidia Titan RTX150

GPU.151

To characterize the isotropy of the output embed-152

ding space we adopt the I1 and I2 isotropy mea-153

sures from (Wang et al., 2019b), with I1(W ) ∈154

[0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller155

I2(W ) indicate more isotropic embeddings (cf.156

App. A for details).157

4.1 Language Understanding158

We consider three representative transformer mod-159

els with different sizes, BERT-base (Devlin et al.,160

2019), RoBERTa (Liu et al., 2019b), and Distil-161

BERT (Sanh et al., 2020). We evaluate these mod-162

els on the development set of GLUE (Wang et al.,163

2019a), a well-known benchmark for language un-164

derstanding that consists of nine different tasks.165

Due to the high computational cost of flow calibra-166

tion and the large number of tasks, we apply this167

method only on BERT to save resources.168

In Table 1 we report the performance per task169

of the calibrated and uncalibrated models. We ob-170

serve the same pattern for all three models. In171

the overwhelming majority of cases, the calibrated172

models perform comparably to or worse than the173

uncalibrated ones, with calibration improving per- 174

formance with statistical significance (p < 0.05, 175

two-sample t-test) only in RoBERTa for WNLI 176

with exponential decay and MNLI mismatched 177

with cosine regularization. More specifically, co- 178

sine regularization and flow calibration (in BERT) 179

do not affect performance much, while spectrum 180

control in some cases produces severe performance 181

degradation or even prevents learning, e.g., CoLA 182

and STS-B. Furthermore, flow calibration adds a 183

large training overhead, requiring on average 4.2 184

times more time per training epoch. 185

These results reveal that no isotropy calibration 186

method yields consistently better performance than 187

the uncalibrated models in language understanding 188

tasks. 189

4.2 Machine Translation 190

We test multilingual BART (M-BART) (Liu et al., 191

2020) on English-Romanian and German-English 192

WMT16 (Bojar et al., 2016) translation datasets. 193

In Table 2 we report BLUE scores, compute time, 194

and the isotropy metrics, for the uncalibrated and 195

calibrated models. To reduce the high compu- 196

tational cost of flow calibration, we apply this 197

method only on a reduced version of 50 000 sam- 198

ples for both tasks, English-Romanian and German- 199

English translation. As a reference, we also provide 200

the scores of the uncalibrated model on the small 201

datasets. We find, that while cosine regularization 202

does not significantly affect either BLEU scores or 203

isotropy metrics, both variants of spectrum control 204

improve isotropy but produce a performance degra- 205

dation of over 3 and 5 BLEU points in the English- 206

Romanian and German-English tasks respectively, 207

while requiring 25% to 50% more computation 208

3



EN-RO DE-EN

Model BLEU (↑) I1(↑) I2(↓) Time (min) BLEU (↑) I1(↑) I2(↓) Time (min)

M-BART 26.15 ±0.08 0.88 ±0.01 0.60 ±0 108 ±0 22.81 ±0.35 0.89 ±0.01 0.60 ±0 176 ±0
+Cosreg 26.07 ±0.10 0.88 ±0.01 0.60 ±0 110 ±0 23.03 ±0.27 0.89 ±0.01 0.60 ±0 188 ±1
+Spectrum-Pol 22.94 ±0.18 1.00 ±0 0.02 ±0 176 ±2 16.27 ±0.06 1.00 ±0 0.02 ±0 265 ±0
+Spectrum-Exp 22.92 ±0.05 1.00 ±0 0.02 ±0 170 ±1 16.24 ±0.12 1.00 ±0 0.02 ±0 230 ±18

M-BART (small dataset) 9.09 ±1.02 0.88 ±0 0.60 ±0 9 ±0 11.61 ±2.25 0.88 ±0 0.60 ±0 9 ±0
+Flow 8.57 ±2.52 0.89 ±0 0.60 ±0 95 ±0 10.93 ±0.70 0.88 ±0 0.60 ±0 96 ±1

Table 2: Multilingual BART performance, isotropy (I1 and I2) and fine-tuning time per epoch with different
calibration methods for English - Romanian and German - English translation. Due to computational cost, the flow
method was tested only on a smaller version of the EN-RO dataset with 50 000 sentences.

time. On the other hand, flow calibration yields209

comparable BLEU score to the uncalibrated model210

but requires on average 10.5 times more computa-211

tion per epoch. These results suggest a negative212

and counter-intuitive relation between isotropy and213

downstream performance: when isotropy increases,214

performance decreases. We observe a similar trend215

for language understanding in Appendix C.216

Overall, and in line with the results in the previ-217

ous section, isotropy calibration in machine trans-218

lation tends to degrade performance and increase219

the computational budget.220

4.3 Summarization221

We evaluate BART (Lewis et al., 2020) on the222

CNN/DM summarization task (Hermann et al.,223

2015); again we use a reduced dataset (20 000 ar-224

ticles) for flow calibration. The results in Table 3225

show that none of the calibrated models performs226

significantly better than their uncalibrated counter-227

parts in terms of ROUGE score (Lin, 2004) (cf.228

Appendix D). Cosine regularization does not af-229

fect performance nor isotropy, while spectrum con-230

trol improves isotropy (I1 and I2) at the cost of a231

small performance drop. The flow model performs232

comparably to uncalibrated BART but requires 5.5233

times more computation. Overall, we find no ev-234

idence that isotropy calibration provides gains in235

summarization.236

5 Discussion237

Our extensive evaluation shows that none of the238

considered isotropy calibration methods produce239

consistent improvements over the uncalibrated240

models across tasks, domains and architectures.241

In fact, we observe a negative relation between242

isotropy calibration and downstream performance.243

The most aggressive method, i.e., spectrum con-244

trol, produces the largest improvement in isotropy245

CNN / Daily Mail

Model R-1 (↑) I1(↑) I2(↓) Time (min)

BART 38.21 ±0.05 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 0.99 ±0 0.04 ±0 230 ±18

BART (small d.) 36.56 ±0.25 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 0.94 ±0 0.25 ±0 95 ±2

Table 3: ROUGE-1 score, isotropy (I1 and I2), and
fine-tuning time per epoch with different calibration
methods on BART for summarization. Due to compu-
tational cost, the flow calibration method was tested on
a smaller version of the dataset.

metrics as well as the most significant performance 246

drop. On the other hand, the effect of cosine reg- 247

ularization and flow calibration is small in both, 248

isotropy and performance. 249

According to Cai et al. (2021), the local isotropy 250

of the embedding space of transformers may enable 251

them to exploit their full expressive capacity. Fur- 252

thermore, concurrent findings by Luo et al. (2021) 253

and Kovaleva et al. (2021) reveal that certain com- 254

ponents of the contextual embeddings consistently 255

present very large magnitudes, which distort the 256

cosine distances in the embedding space and ques- 257

tions their anisotropy. This could explain why ad- 258

ditional isotropy calibration does not consistently 259

improve the performance of transformers in down- 260

stream tasks. 261

In light of our results, we discourage isotropy 262

calibration of transformers as a means of improving 263

downstream performance. However, we believe 264

that further investigation of the embedding space 265

of transformers may be beneficial to increase our 266

ability to interpret these models and improve their 267

architecture. 268
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A Isotropy Metrics 432

To characterize the isotropy of the output embedding space we adopt the I1 and I2 isotropy measures
from (Wang et al., 2019b).

I1(W ) =
minv∈V Z(v)

maxv∈V Z(v)
,

is based on the observation by (Arora et al., 2016), that the partition function Z(v) =
∑n

i=1 exp(vTwi)
should be close to a constant for any unit vector v if the embedding matrix W is isotropic. Here, we
abuse notation and wi ∈W is the i-th row of the embedding matrix W . Following (Mu et al., 2017) we
use the set of eigenvectors of W TW as V . The second measure

I2(W ) =

√∑
v∈V (Z(v)− Z̄(v))2

|V |Z̄(v)2
,

is the sample standard deviation of the partition function Z(v) normalized by its average Z̄(v). This way, 433

I1(W ) ∈ [0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller I2(W ) indicate more isotropic embeddings. 434

B Model Hyperparameter Configuration 435

For all the models used in his work we use the implementation from HuggingFace and follow their 436

instructions for the hyperparameters. In particular, we use the following configurations: 437

BERT and DistilBERT. Learning rate 2e−5 without scheduling, batch size 32, 3 training epochs for all 438

GLUE tasks except for MRPC and WNLI, for which we train during 5 epochs. 439

RoBERTa. Learning rate of 1e−5 for all GLUE tasks except for SST-2 and STS-B, for which the 440

learning rate is set to 1e−5, same number of epochs as for BERT and DistilBERT, batch size of 32. 441

M-BART and BART. Learning rate of 3e−5 with polynomial decay, batch size 48, and 5 training 442

epochs. 443

C Isotropy Scores on GLUE 444

Here, in Table 4, we present the isotropy scores obtained in our evaluation of GLUE with BERT, RoBERTa, 445

and DistilBERT, which were not included in the main text due to lack of space. 446

The isotropy metrics I1 and I2 show the opposite trend to the performance metrics. An improvement 447

in isotropy reflects a decrease in downstream performance. This way, we see that across models and 448

tasks, cosine regularization and flow calibration (for BERT) have a small impact on isotropy and that the 449

performance of the models calibrated with these techniques is close to the that of the uncalibrated models. 450

On the other hand, spectrum control produces a very significant increase in isotropy, with many tasks 451

reaching a I1 of 1.00; while in Table 1 we see how it produces strong performance degradation. This, 452

further suggests a negative relation between isotropy and the downstream performance of transformers. 453
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SST-2 MRPC CoLA

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)

BERT 0.91 ±0.01 0.4 ±0 0.91 ±0.01 0.38 ±0.01 0.91 ±0.01 0.39 ±0.01
+Cosreg 0.91 ±0.2 0.39 ±0.02 0.92 ±0.01 0.39 ±0.2 0.91 ±0.01 0.39 ±0.01
+Spectrum-Pol 1.00 ±0 0.007 ±0.003 1.00 ±0 7e−4 ±3e−4 1.00 ±0 6e−4 ±1e−4
+Spectrum-Exp 0.99 ±0.01 0.02 ±0.02 1.00 ±0 6e−4 ±2e−4 1.00 ±0 7e−4 ±3e−4

+Flow 0.92 ±0.01 0.40 ±0 0.91 ±0.01 0.40 ±0 0.91 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Spectrum-Pol 1.00 ±0 0.008 ±0.002 1.00 ±0 5e−4 ±4e−4 1.00 ±0 5e−4 ±2e−4
+Spectrum-Exp 1.00 ±0 0.005 ±0.004 1.00 ±0 1e−4 ±2e−4 1.00 ±0 6e−4 ±4e−4

DistilBERT 0.91 ±0.01 0.38 ±0.01 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01
+Cosreg 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01
+Spectrum-Pol 1.00 ±0.01 0.012 ±0.016 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4
+Spectrum-Exp 1.00 ±0.01 0.009 ±0.010 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4

RTE WNLI STS-B

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)

BERT 0.92 ±0.01 0.39 ±0.02 0.91 ±0.01 0.39 ±0.02 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.03 0.91 ±0.01 0.40 ±0.01 0.95 ±0.01 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±1e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 0.002 ±0
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 2e−4 ±3e−4 1.00 ±0 13e−4 ±6e−4
+Flow 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.02 0.95 ±0.01 0.23 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.95 ±0.01 0.23 ±0.01
+Cosreg 0.91 ±0 0.41 ±0 0.91 ±0.01 0.40 ±0.01 0.95 ±0 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 7e−4 ±3e−4
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 15e−4 ±13e−4

DistilBERT 0.92 ±0.01 0.38 ±0.01 0.92 ±0 0.39 ±0.01 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01 0.95 ±0 0.22 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4
+Spectrum-Exp 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4

QNLI MNLI QQP

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)

BERT 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0.01 0.9 ±0 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.06 ±0.02 0.95 ±0.01 0.21 ±0.04 0.92 ±0.02 0.39 ±0.06
+Spectrum-Exp 1.00 ±0 5e−4 ±1e−4 0.98 ±0.01 0.08 ±0.03 0.97 ±0.03 0.12 ±0.12
+Flow 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.31 ±0 0.92 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.93 ±0.01 0.93 ±0.01 0.32 ±0.01 0.39 ±0
+Spectrum-Pol 1.00 ±0 0.005 ±0.003 0.96 ±0.03 0.15 ±0.13 0.99 ±0.2 0.04 ±0.07
+Spectrum-Exp 1.0 ±0.01 0.012 ±0.015 0.98 ±0.01 0.10 ±0.04 0.99 ±0.01 0.04 ±0.06

DistilBERT 0.92 ±0 0.38 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.1 0.38 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.32 ±0 0.992 ±0.01 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.03 ±0.04 0.93 ±0.01 0.29 ±0.01 0.93 ±0.03 0.36 ±0.17
+Spectrum-Exp 1.00 ±0.01 0.02 ±0.03 0.97 ±0.1 0.13 ±0.01 0.95 ±0.01 0.25 ±0.01

Table 4: Isotropy of the embedding space of the different transformer model and calibration method combinations
on GLUE tasks.
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D Complete Summarization Results 454

Here we report the complete summarization results, including the ROUGE-2 and ROUGE-L metrics, 455

omitted in the main text. 456

CNN / Daily Mail

Model R-1 (↑) R-2 (↑) R-L (↑) I2(↑) I2(↓) Time (min)

BART 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 16.60 ±0.08 25.26 ±0.09 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 16.62 ±0.01 26.30 ±0.05 0.99 ±0 0.04 ±0 230 ±18

BART (small dataset) 36.56 ±0.25 15.62 ±0.07 25.05 ±0.07 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 15.40 ±0.23 24.79 ±0.19 0.94 ±0 0.25 ±0 95 ±2

Table 5: Complete BART summariation performance, embedding space isotropy and fine-tuning time per epoch
using different calibration methods on the CNN / DailyMail dataset. Due to computational cost, the flow calibration
method was tested on a smaller version of the dataset with 20 000 articles.

The performance in terms of ROUGE-2 and ROUGE-L scores follows the same patterns as ROUGE- 457

1. Similar to language understanding and machine translation, increasing isotropy does not improve 458

performance. 459
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