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Abstract

We present a method to fit exact Gaussian process models to large datasets by1

considering only a subset of the data. Our approach is novel in that the size of2

the subset is selected on the fly during exact inference with little computational3

overhead. From an empirical observation that the log-marginal likelihood often4

exhibits a linear trend once a sufficient subset of a dataset has been observed,5

we conclude that many large datasets contain redundant information that only6

slightly affects the posterior. Based on this, we provide probabilistic bounds on7

the full model evidence that can identify such subsets. Remarkably, these bounds8

are largely composed of terms that appear in intermediate steps of the standard9

Cholesky decomposition, allowing us to modify the algorithm to adaptively stop10

the decomposition once enough data have been observed. Empirically, we show11

that our method can be directly plugged into well-known inference schemes to fit12

exact Gaussian process models to large datasets.13

1 Introduction14

It has been observed (Chalupka et al., 2013) that the random-subset-of-data approximation can15

be a hard-to-beat baseline for approximate Gaussian process inference. However, the question of16

how to choose the size of the subset is non-trivial to answer. Here we make an attempt. The key17

computational challenge in Gaussian process regression is to evaluate the log-marginal likelihood of18

the N observed data points, which is known to have cubic complexity (Rasmussen & Williams, 2006).19

In order to arrive at a computationally less expensive approximation of this log-marginal likelihood,20

we first empirically study its behavior as we increase the number of observations. Figure 1 show this21

progression for a variety of models. We elaborate on this figure in Section 3.1, but for now note that22

after a certain number of observations, determined by the model and the dataset, the log-marginal23

likelihood starts to progress with a linear trend. This suggest that we may leverage this near-linearity24

to estimate the log-marginal likelihood of the full dataset after having seen only a subset of the data.25

However, as the point-of-linearity differs between models, this must be estimated on-the-fly to keep26

computations tractable.27

In this paper, we approach the problem from a (frequentist) probabilistic numerics perspective28

(Hennig et al., 2015). By treating the dataset as a collection of independent and identically distributed29

random variables, a common assumption in the frequentist literature, we provide expected upper and30

lower bounds on the log-marginal likelihood, which become tight when the above-mentioned linear31

trend arises. We provide a particularly efficient algorithm for computing the bounds that leverage32

the intermediate computations performed by the Cholesky decomposition that is commonly used for33

evaluating the log-marginal likelihood. The bounds are therefore practically free to evaluate. We34

further show that these bounds allow us to predict when the linear trend determines the full-data35

log-marginal likelihood, such that we can phrase an optimal stopping problem to determine a suitable36

subset of the data for a particular model. We refer to our method as Adaptive Cholesky Gaussian37

Process (ACGP). Our approach has a complexity of O(M3), where M is the processed subset-size,38
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Figure 1: The figure shows total log-marginal likelihood as a function of the size of the training set
of different permutations of a simple, synthetic dataset. The different colors correspond to different
Gaussian process models, using the squared exponential kernel with length scale ℓ and amplitude
σ2. It can be seen that the log-marginal likelihood exhibits a linear trend after sufficiently many
observations have been processed.

inducing an overhead of O(M) to the Cholesky. The main difference to previous work is that our39

algorithm does not necessarily look at the whole dataset, which makes it particularly useful in settings40

where even O(N) operations are intractable. When a dataset contains a large amount of redundant41

data, ACGP allows the inference procedure to stop early, saving precious compute—especially when42

the kernel function is expensive to evaluate.43

2 Background44

We use a PYTHON-inspired index notation, abbreviating for example [y1, . . . , yn−1]
⊤ as y:n; observe45

that the indexing starts at 1. With Diag we define the operator that sets all off-diagonal entries of a46

matrix to 0.47

2.1 Gaussian Process Regression48

We start by briefly reviewing Gaussian process (GP) models and how they are trained (see Rasmussen49

& Williams (2006, Chapter 2)). We consider the training dataset D = {xn, yn}Nn=1 with inputs50

xn ∈ Rp and outputs yn ∈ R. The inputs are collected in the matrix X = [x1,x2, . . . ,xN ]⊤ ∈51

RN×p. A GP f ∼ GP(m(x), k(x,x′)) is a collection of random variables defined in terms of52

a mean function, m(x), and a covariance function or kernel, k(x,x′) = cov(f(x), f(x′)), such53

that any finite amount of random variables has a Gaussian distribution. Hence, the prior over54

f := f(X) is N (f ;m(X),Kff), where we have used the shorthand notation Kff = k(X,X). We55

will consider the observations y as being noise-corrupted versions of the function values f , and we56

shall parameterize this corruption through the likelihood function p(y |f), which for regression tasks57

is typically assumed to be Gaussian, p(y |f) = N (f , σ2I). For such a model, the posterior over test58

inputs X∗ can be computed in closed-form: p(f∗ |y) = N (m∗,S∗), where59

m∗ = k(X∗,X)K−1y and S∗ = k(X∗,X∗)− k(X∗,X)K−1k(X,X∗).

with K := Kff + σ2I . By marginalizing over the function values of the likelihood distribution,60

we obtain the marginal likelihood, p(y) =
∫
p(y |f)p(f)df , the de facto metric for comparing61

the performance of models in the Bayesian framework. While this integral is not tractable in62

general, it does have a closed-form solution for Gaussian process regression. Given the GP prior,63

p(f) = N (0,Kff), and the Gaussian likelihood, the log-marginal likelihood distribution can be64

found to be65

log p(y) = −1

2
log det [K]− 1

2
y⊤K−1y − N

2
log 2π . (1)
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2.2 Background on the Cholesky decomposition66

Inverting covariance matrices such as K is a slow and numerically unstable procedure. Therefore, in67

practice, one typically leverages the Cholesky decomposition of the covariance matrices to compute68

the inverses. The Cholesky decomposition of a symmetric and positive definite matrix K is the69

unique, lower1 triangular matrix L such that K = LL⊤ (Golub & Van Loan, 2013, Theorem 4.2.7).70

The advantage of having such a decomposition is that inversion with triangular matrices amounts to71

Gaussian elimination. There are different options to compute L. The Cholesky of a 1× 1 matrix is72

the square root of the scalar. For larger matrices,73

chol[K] =

[
chol[K :s,:s] 0

T chol
[
Ks:,s: − TT⊤

]]
, (2)

where T := K :s,s:chol[K :s,:s]
−⊤ and s is any integer between 1 and the size of K. Hence, extending74

a given Cholesky to a larger matrix requires three steps:75

1. solve the linear equation system T ,76

2. apply the downdate Ks:,s: − TT⊤ and77

3. compute the Cholesky of the down-dated matrix.78

An important observation is that Ks:,s: − TT⊤ is the posterior covariance matrix S∗ + σ2I when79

considering Xs: as test points. We will make use of this observation in Section 3.5. The log-80

determinant of K can be obtained from the Cholesky using log det [K] = 2
∑N

n=1 logLnn. A81

similar recursive relationship exists between the quadratic form y⊤K−1y and L−1y (see appendix,82

Equation (22)).83

2.3 Related work84

Much work has gone into tractable approximations to the log-marginal likelihood. Arguably, the85

most popular approximation methods for GPs are inducing point methods (Quiñonero-Candela &86

Rasmussen, 2005; Snelson & Ghahramani, 2006; Titsias, 2009; Hensman et al., 2013, 2017; Shi et al.,87

2020; Artemev et al., 2021), where the dataset is approximated through a set of pseudo-data points88

(inducing points), summarizing information from nearby data. Other approaches involve building89

approximations to K (Fine & Scheinberg, 2001; Harbrecht et al., 2012; Wilson & Nickisch, 2015;90

Rudi et al., 2017; Wang et al., 2019) or aggregating of distributed local approximations (Gal et al.,91

2014; Deisenroth & Ng, 2015). One may also consider separately the approximation of the quadratic92

form via linear solvers such as conjugate gradients (Hestenes & Stiefel, 1952; Cutajar et al., 2016)93

and the approximation of the log-determinant (Fitzsimons et al., 2017a,b; Dong et al., 2017). Another94

line of research is scaling the hardware (Nguyen et al., 2019).95

All above referenced approaches have computational complexity at least O(N) (with the exception96

of Hensman et al. (2013) since it uses mini-batching). However, the size of a dataset is seldom a97

particularly chosen value but rather the ad-hoc end of the sampling procedure. The dependence on98

the dataset size implies that more data requires more computational budget even though more data99

might not be helpful. This is the main motivation for our work: to derive an approximation algorithm100

where computational complexity does not depend on redundant data.101

The work closest in spirit to the present paper is by Artemev et al. (2021), who also propose lower and102

upper bounds on quadratic form and log-determinant. There are a number of differences, however.103

Their bound relies on the method of conjugate gradients where we work directly with the Cholesky104

decomposition. Furthermore, while their bounds are deterministic, ours are probabilistic, which can105

make them tighter in certain cases, as they do not need to hold for all worst-case scenarios. This is106

also the main difference to the work of Hensman et al. (2013). Their bounds allow for mini-batching,107

but these are inherently deterministic when applied with full batch size.108

1Equivalently, one can define L to be upper triangular such that K = L⊤L.
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3 Methodology109

In the following, we will sketch our method. Our main goal is to convey the idea and intuition. To110

this end, we use suggestive notation. We refer the reader to the appendix for a more thorough and111

formal treatment.112

3.1 Intuition on the linear extrapolation113

The marginal likelihood is typically presented as a joint distribution, but, one can also view it from a114

cumulative perspective as the sum of log-conditionals:115

log p(y) =

N∑
n=1

log p(yn |y:n) . (3)

With this equation in hand, the phenomena in Figure 1 becomes much clearer. The figure shows116

the value of Equation (3) for an increasing number of observations n. When the plot exhibits a117

linear trend, it is because the summands log p(yn |y:n) become approximately constant, implying118

that the model is not gaining additional knowledge. In other words, new outputs are conditionally119

independent given the output observations seen so far.120

The key problem addressed in this paper is how to estimate the full marginal likelihood, p(y), from121

only a subset of M observations. The cumulative view of the log-marginal likelihood in Equation (3)122

is our starting point. In particular, we will provide bounds, which are functions of seen observations,123

on the estimate of the full marginal likelihood. These bounds will allow us to decide, on the fly, when124

we have seen enough observations to accurately estimate the full marginal likelihood.125

3.2 Stopping strategy126

Suppose that we have processed M data points with N −M data points yet to be seen. We can then127

decompose Equation (3) into a sum of terms which have already been computed and a remaining sum128

log p(y) =

M∑
n=1

log p(yn | y:n)︸ ︷︷ ︸
A: processed

+

N∑
n=M+1

log p(yn | y:n)︸ ︷︷ ︸
B: remaining

.

Recall that we consider the xi, yi as independent and identically distributed random variables.129

Hence, we could estimate B as (N − M)A/M . Yet this is estimator is biased, since130

(xM+1, yM+1), . . . , (xN , yN ) interact non-linearly through the kernel function. Instead, we will131

derive unbiased lower and upper bounds, L and U . To obtain unbiased estimates, we use the last-m132

processed points, such that conditioned on the points up to s :=M −m, log p(y) can be bounded133

from above and below:134

E[L |X:s,y:s] ≤ A+ E[B |X:s,y:s] ≤ E[U |X:s,y:s],

and the observations from s to M can be used to estimate L and U . We can then detect when the135

upper and lower bounds are sufficiently near each other, and stop computations early when the136

approximation is sufficiently good. More precisely, given a desired relative error r, we stop when137

U − L
2min(|U|, |L|) < r and sign(U) = sign(L) . (4)

If the bounds hold, then the estimator (L+ U)/2 achieves the desired relative error (Lemma 16 in138

appendix). This is in contrast to other approximations, where one specifies a computational budget,139

rather than a desired accuracy.140

3.3 Bounds141

From Equation (1), we see that the log-marginal likelihood decomposes into the log-determinant of142

the kernel matrix, a quadratic term, and a constant term. In the following we present upper and lower143

bounds for both the log-determinant (UD and LD, respectively) and the quadratic term (UQ and LQ).144

4



We will need the posterior equations for the observations, that is p(yn |y:n), and we will need them145

as functions of test inputs x∗ and x′
∗. To this end, define146

m
(n)
∗ (x∗) := k(x∗,X :n)K

−1
:n,:ny:n and

Σ
(n)
∗ (x∗,x

′
∗) := k(x∗,x

′
∗) + σ2δx∗,x′

∗
− k(x∗,X :n)K

−1
:n,:nk(X :n,x

′
∗)

such that p(yn |y:n) = N (yn;m
(n)
∗ (xn),Σ

(n)
∗ (xn,xn)), which allows us to rewrite Equation (3)147

as148

log p(y) ∝
N∑

n=1

logΣ
(n−1)
∗ (xn,xn) +

N∑
n=1

(yn −m
(n−1)
∗ (xn))

2

Σ
(n−1)
∗ (xn,xn)

. (5)

This reveals that the log-determinant can be written as a sum of posterior variances and the quadratic149

form has an expression as normalized square errors. Other key ingredients for our bounds are150

estimates for average posterior variance and average covariance. Therefore define the shorthands151

V := Diag
[
Σ(s)

∗ (Xs:M ,Xs:M )
]

and C :=

M
2∑

i=1

Σ(s)
∗ (xs+2i,xs+2i−1)e2ie

⊤
2i ,

where ej ∈ Rm is the j-th standard basis vector. The matrix V is simply the diagonal of the posterior152

covariance matrix Σ∗. The matrix C consists of every second entry of the first off-diagonal of Σ∗.153

These elements are placed on the diagonal with every second element being 0. The reason for taking154

every second element is of theoretical nature, see Remark 2 in the appendix. In practice we use the155

full off-diagonal.156

3.3.1 Bounds on the log-determinant157

Both bounds, lower and upper, use that log det [K] = log det [K :s,:s] + log det
[
Σ(s)

∗ (Xs:,Xs:)
]

158

which follows from the matrix-determinant lemma. The first term is available from the already159

processed datapoints. It is the second addend that needs to be estimated, which we approach from the160

perspective of Equation (5). It is well-established that, for a fixed input, more observations decrease161

the posterior variance, and this decrease cannot cross the threshold σ2 (Rasmussen & Williams,162

2006, Question 2.9.4). This remains true when taking the expectation over the input. Hence, the163

average of the posterior variances for inputs Xs:M is with high probability an overestimate of the164

average posterior variance for inputs with higher index. This motivates our upper bound on the165

log-determinant:166

UD = log det [K :s,:s] + (N − s)µD (6)

µD :=
1

m

m∑
i=1

log (V ii) � average log posterior variance

To arrive at the lower bound on the log-determinant, we need an argument about how fast the167

average posterior variance could decrease which is governed by the covariance between inputs. The168

variable ρD measures the average covariance, and we show in Theorem 6 in the appendix that this169

overestimates the decrease per step with high probability. Since the decrease cannot exceed σ2, we170

introduce ψD to denote the step which would cross this threshold.171

LD = log det [K :s,:s] + (ψD − s)

(
µD − ψD − s− 1

2σ4
ρD

)
+ (N − ψD) log σ2. (7)

ρD :=
2

m

m∑
i=1

C2
2i,2i � average square covariance

ψD := max(N, ⌊s− 1 + 2/ρD

(
µD − log σ2

)
⌋) � steps µD can decrease by ρ (8)

Both bounds collapse to the exact solution when s = N . The bounds are close when the average172

covariance between inputs, ρD, is small. This occurs for example when the average variance is close173

to σ2 since the variance is an upper bound to the covariance. Another case where ρD is small is when174

points are not correlated to begin with.175
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3.3.2 Bounds on the quadratic term176

Denote with r∗ := ys: − m
(s)
∗ (Xs:) the prediction errors (the residuals), when considering the177

first s points as training set and the remaining inputs as test set. Analogous to the bounds on the178

log-determinant, one can show with the matrix inversion lemma that y⊤K−1y = y⊤
:sK

−1
:s,:sy:s +179

r⊤∗ (Σ
(s)
∗ (Xs:))

−1r∗. Again, the first term will turn out to be already computed. With a slight abuse180

of notation let r∗ := ys:M −m
(s)
∗ (Xs:M ), that is, we consider only the first m entries. Our lower181

bound arises from another well-known lower bound: a⊤A−1a ≥ 2a⊤b − b⊤Ab for all b (see182

for example Kim & Teh (2018); Artemev et al. (2021)). We choose b := α1 where α is chosen183

to maximize the bound. The result, after some cancellations, is the following lower bound on the184

quadratic term:185

LQ = y⊤
:sK

−1
:s,:sy:s + (N − s)α (2µQ − αρQ) (9)

µQ :=
1

m
r⊤∗ r∗ � average square error

ρQ :=
1

m
r⊤∗ r∗ +

N − s− 1

m

M
2∑

j= s+2
2

r∗,2jr∗,2j−1C2j,2j

The α maximizing above bound is µQ/ρ2
Q, which is the value we chose in our implementation.186

However, note that LQ is an expected lower bound only if α depends on variables with index smaller187

than s.188

Our upper bound arises from the element-wise perspective of Equation (5). We assume that the189

expected mean square error (yn−m
(n−1)
∗ (xn))

2 decreases with more observations. However, though190

mean square error and variance decrease, their expected ratio may increase or decrease depending191

on the choice of kernel, dataset and number of processed points. Using the average error calibration192

with a correction for the decreasing variance, we arrive at our upper bound on the quadratic term:193

UQ = y⊤
:sK

−1
:s,:sy:s + (N − s)

(
µ′
Q + ρ′Q

)
(10)

µ′
Q :=

1

m
r⊤∗ V

−1r∗ � average error calibration

ρ′Q :=
N − s− 1

m

1

σ4
r⊤∗ CV −1Cr∗ � average increase in error calibration

In our implementation we use a slightly different upper bound. The estimate of the possible decrease194

of the variance uses the same technique as the lower bound for the log-determinant. Therefore we can195

define an analogue to Equation (8) determining the step when the variance estimate falls below σ2. In196

our implementation, addends of the quadratic after this step are estimated by the more conservative197

σ−2µQ. Again, the bounds collapse to the true quantity when s = N . The bounds will give good198

estimates when the average covariance between inputs, represented by the matrix C, is low or when199

the model can predict new data well, that is, when r∗ is close to 0.200

3.4 Validity of bounds and stopping condition201

For the upper bound on the quadratic form, we need to make a (technical) assumption. It expresses202

the intuition that the (expected) mean square error should not increase with more data—a model203

should not become worse as its training set increases.2204

Assumption 1. Assume that205

E
[
f(x,x′)(yj −m

(j−1)
∗ (x))2 | X :s,y:s

]
≤ E

[
f(x,x′)(yj −m

(s)
∗ (x))2 | X :s,y:s

]
for all s ∈ {1, . . . , N} and for all s < j ≤ N , where f(x,x′) is either 1

Σ
(s)
∗ (x,x)

or Σ(s)
∗ (x,x′)2

σ4Σ
(s)
∗ (x,x)

.206

Theorem 2. Assume that (x1, y1), . . . , (xN , yN ) are independent and identically distributed, assume207

that Assumption 1 holds, and assume that α in the definition of LQ depends only on x1, y1, . . .xs, ys.208

2Empirically, we confirmed this assumption for all experiments considered in Section 4.1 and in Appen-
dices B.3.1 to B.3.3.
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For any s ∈ {1, . . . , N}, the bounds defined in Equations (6), (7), (9) and (10) hold in expectation:209

E[LD | X :s,y:s] ≤ E[log det [K] | X :s,y:s] ≤ E[UD | X :s,y:s] and

E[LQ | X :s,y:s] ≤ E[y⊤K−1y | X :s,y:s] ≤ E[UQ | X :s,y:s] .

Proof and a proof sketch can be found in the appendix.210

Theorem 3. Let r > 0 be a desired relative error and set U := UD + UQ and L := LD + LQ. If211

the stopping conditions hold, that is, sign(U) = sign(L) and Equation (4) is true, then log p(y) can212

be estimated from (U + L)/2 such that, under the condition LD ≤ log(det [K]) ≤ UD and LQ ≤213

y⊤K−1y ≤ UQ, the relative error is smaller than r, formally:214

|log p(y)− (U + L)/2| ≤ r|log p(y)| . (11)

The proof follows from Lemma 16 in the appendix.215

Theorem 2 is a first step to obtain a probabilistic statement for Equation (11), that is, a statement of216

the form P
(∣∣∣ log p(y)− 1

2 (U+ϵU,δ+L−ϵL,δ)

log p(y)

∣∣∣ > r
)
≤ δ. Theoretically, we can obtain such a statement217

using standard concentration inequalities and a union bound over s. In practice, the error guarding218

constants ϵ would render the result trivial. A union bound can be avoided using Hoeffding’s inequality219

for martingales (Fan et al., 2012). However, this requires to replace s :=M −m by a stopping time220

independent of M , which we regard as future work.221

3.5 Practical implementation222

The proposed bounds turn out to be surprisingly cheap to compute. If we set the block-size of the223

Cholesky decomposition to be m, the matrix Σ(s)
∗ is exactly the downdated matrix in step 2 of224

the algorithm outlined in Section 2.2. Similarly, the expressions for the bounds on the quadratic225

form appear while solving the linear equation system L−1y. A slight modification to the Cholesky226

algorithm is enough to compute these bounds on the fly during the decomposition with little overhead.227

The stopping conditions can be checked before or after Step 3 of the Cholesky decomposition228

(Section 2.2). Here, we explore the former option since Step 3 is the bottleneck due to being less229

parallelizable than the other steps.230

Note that the definition of the bounds does not involve variables x, y which have not been processed.231

This allows an on-the-fly construction of the kernel matrix, avoiding potentially expensive kernel232

function evaluations. Furthermore, it is not necessary to allocate O(N2) memory in advance; a user233

can specify a maximal amount of processed datapoints, hoping that stopping occurs before hitting234

that limit. We provide the pseudo-code for this modified algorithm, our key algorithmic contribution,235

in the appendix. Additionally, we provide a PYTHON implementation of our modified Cholesky236

decomposition and scripts to replicate the experiments of this paper.3237

4 Experiments238

We now examine the bounds and stopping strategy for ACGP. When running experiments without239

GPU support, all linear algebra operations are substituted for direct calls to the OPENBLAS library240

(Wang et al., 2013), for efficient realization of in-place operations. To still benefit from automatic241

differentiation, we used PYTORCH (Paszke et al., 2019) with a custom backward function for log p(y)242

which wraps OPENBLAS. The details of our experimental setup can be found in Appendix A.243

4.1 Bound quality244

In this section we examine the bounds presented in Section 3 and compare them to those proposed by245

Artemev et al. (2021, Lemma 2 and Lemma 3) (CGLB). Specifically, for the determinant we compare246

to their O(N) upper bound (Artemev et al., 2021, Eq. 11) and their log(det [Q]) as lower bound.247

We set the number of inducing inputs M for CGLB to 512, 1024, 2048, and 4096. For ACGP, we248

define m := 40 · 256 = 10 240 which is the number of cores times the default OPENBLAS block249

3The code is available at the following repository: anonymized
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(b) Upper and lower bounds on the
log-determinant term.
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Figure 2: Comparison of the upper and lower bounds for ACGP and CGLB on the metro dataset
using the OU kernel with a length scale of log ℓ = 0 and the time it takes to compute them. The black
line indicates the result obtained using exact GP regression with points above and below it marking
the upper and lower bounds, respectively. The experiment was repeated five times with different
seeds to illustrate the variability in the computation time, shown here as multiple points of the same
color. For ACGP the number near the points shows M , the size of the used subset; for CGLB it is the
number of inducing inputs. The color of the points reflects these numbers to help discern the size of
the subset or number of inducing inputs from the repeated experiments.

size for our machines. We compare both methods using squared exponential kernel (SE) and the250

Ornstein-Uhlenbeck kernel (OU),251

kSE(x, z) := θ exp

(
−∥x− z∥2

2ℓ2

)
, kOU(x, z) := θ exp

(
−∥x− z∥

ℓ

)
,

where we fix σ2 := 10−3 and θ := 1, and we vary ℓ as log ℓ ∈ {−1, 0, 1, 2}. As benchmarking252

datasets we use the two datasets consisting of more than 20 000 instances used by Artemev et al.253

(2021): kin40k and protein. We further consider two additional datasets from the UCI repository254

(Dua & Graff, 2019): metro and pm25 (Liang et al., 2015). We chose these datasets in addition as255

they are of similar size, they are marked as regression tasks and no data points are missing.256

Empirically, CGLB seems to better estimate the quadratic term, whereas ACGP is faster to identify257

the log-determinant. Figure 2 shows a typical example. Note that, for the quadratic form, the upper258

bounds tend to be less tight than the lower bounds. Generally, there is no clear winner; sometimes259

ACGP estimates both quantities faster and sometimes CGLB. For other results, see the appendix.260

The reason why CGLB has more difficulties to approximate the log-determinant is that the bound261

involves trace[K −Q] where Q is a low rank approximation to K. If Kff is of high rank, the gap262

in the trace can be large. For CGLB the time to compute the bounds is dominated by the pivoted263

Cholesky decomposition to select the inducing inputs. This overhead becomes irrelevant for the264

following hyper-parameter tuning experiments, since the selection is computed only once in the265

beginning. One conclusion from these experiments is to keep in mind that when high precision is266

required, simply computing the exact solution can be a hard-to-beat baseline.267

4.2 Application in hyper-parameter tuning268

We repeat the hyper-parameter tuning experiments performed by Artemev et al. (2021) using the269

same set-up, see Appendix A for details. We use the same kernel function, a Matérn3
2 , and the same270

optimizer: L-BFGS-B (Liu & Nocedal, 1989) with SCIPY (Virtanen et al., 2020) default parameters.271

Artemev et al. (2021) report their best results using M = 2048 inducing inputs. For reference,272

we also compare against Sparse Variational Gaussian process regression (SGPR) by Titsias (2009)273

initialized with the same 512, 1024 and 2048 inducing inputs as CGLB. We use root mean square274

error (RMSE), negative log predictive density (NLPD) and exact, marginal log-likelihood on the275

training set, log p(y), as performance metrics. The results for all experiments discussed in this section276

can be found in Appendix B.1. Here, we will focus on the behavior of each method during training.277

A possible application of ACGP is that an optimizer can decide how precise function evaluations278

need to be. To explore this possibility, we successively decrease the “relative change in function279
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Figure 3: Typical examples of the evolution of the exact log marginal likelihood p(y) while optimizing
hyper-parameters. See Appendix B.1 for additional plots for all datasets, as well as for SVGP runs.

value” (ftol) convergence criterion of L-BFGS-B as (2/3)restart+1 and set this as value for r. With280

this choice, ACGP does not have any more free parameters than a standard optimizer. The block size281

is a problem independent parameter and it is set to the same value as in Section 4.1.282

We explore two different computing environments. For datasets smaller than 20 000 data points, we283

ran our experiments on a single GPU. The results can be summarized in one paragraph: all methods284

converge the latest after two minutes. The time difference between methods is less than twenty285

seconds. Exact Gaussian process regression is fastest, more often than not. The results can be found286

in Appendix B.1. We conclude that in an environment with significantly more processing resources287

than memory, approximation may just cause overhead.288

For datasets larger than 20 000 datapoints, our setup differs from Artemev et al. (2021) in that we use289

only CPUs on machines where the kernel matrix still fits fully into memory. On all datasets, ACGP290

is essentially exhibiting the same optimization behavior as the exact Gaussian process regressor,291

just stretched out. ACGP can provide results faster than exact optimization but may be slower in292

convergence as Figure 3a shows for the protein dataset. This observation is as expected. However,293

approximation can also hinder fast convergence as Figure 3b reveals on for the metro dataset. CGLB294

benefits from caching the chosen inducing inputs and reusing the solution from the last solved linear295

equation system. The algorithm is faster, though it often plateaus at higher objective function values.296

The results for kin40k are similar to protein and the results for pm25 are similar to metro. These297

results and the evolution of the root mean square error over time can be found in the appendix. Again,298

when the available memory permits, the exact computation is a hard-to-beat baseline. However,299

the Cholesky as a standard numerical routine has been engineered over decades, whereas for the300

implementations of CGLB and ACGP there is opportunity for improvement.301

5 Conclusions302

In this paper we have revisited the use of Cholesky decompositions in Gaussian process regression.303

We have shown that the Cholesky decomposition almost computes expected lower and upper bounds304

on the marginal log-likelihood associated with GP regression. With only small modifications to305

this classic matrix decomposition, we can use these bounds to stop the decomposition before all306

observations have been processed. This has the practical benefit that the kernel matrix K does not307

have to computed prior to performing the decomposition, but can rather be computed on-the-fly.308

Empirical results indicate that the approach carries significant promise, but no clear winner can309

be crowned from our experiments. In general, we find that exact GP inference leads to better310

behaved optimization than approximations such as CGLB and inducing point methods, and that a311

well-optimized Cholesky implementation is surprisingly competitive in terms of performance. An312

advantage of our approach is that it is essentially parameter-free. The user has to specify a requested313

numerical accuracy and the computational demands will be scaled accordingly. Finally, we note that314

ACGP is complementary to much existing work, and should be seen as an addition to the GP toolbox,315

rather than a substitute for all existing tools.316
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Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,392

E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy393

1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature394

Methods, 17:261–272, 2020.395

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K. Q., and Wilson, A. G. Exact gaussian396

processes on a million data points. Advances in Neural Information Processing Systems, 32:397

14648–14659, 2019.398

Wang, Q., Zhang, X., Zhang, Y., and Yi, Q. AUGEM: Automatically generate high performance Dense399

Linear Algebra kernels on x86 CPUs. In SC ’13: Proceedings of the International Conference on400

High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2013.401

Wilson, A. and Nickisch, H. Kernel interpolation for scalable structured gaussian processes (kiss-gp).402

In International Conference on Machine Learning, pp. 1775–1784. PMLR, 2015.403

Checklist404

1. For all authors...405

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s406

contributions and scope? [Yes]407

(b) Did you describe the limitations of your work? [Yes]408

11



(c) Did you discuss any potential negative societal impacts of your work? [N/A]409

(d) Have you read the ethics review guidelines and ensured that your paper conforms to410

them? [Yes]411

2. If you are including theoretical results...412

(a) Did you state the full set of assumptions of all theoretical results? [Yes]413

(b) Did you include complete proofs of all theoretical results? [Yes]414

3. If you ran experiments...415

(a) Did you include the code, data, and instructions needed to reproduce the main exper-416

imental results (either in the supplemental material or as a URL)? [Yes] The 50MB417

file size limit of OpenReview, may prevent us from providing everything during the418

reviewing phase. In any case, all data, code and results will be available from a github419

repository after acceptance.420

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they421

were chosen)? [Yes]422

(c) Did you report error bars (e.g., with respect to the random seed after running experi-423

ments multiple times)? [Yes]424

(d) Did you include the total amount of compute and the type of resources used (e.g., type425

of GPUs, internal cluster, or cloud provider)? [Yes]426

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...427

(a) If your work uses existing assets, did you cite the creators? [Yes]428

(b) Did you mention the license of the assets? [Yes]429

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]430

The URL to our github repository is currently anonymized but will be made available431

after acceptance.432

(d) Did you discuss whether and how consent was obtained from people whose data you’re433

using/curating? [No] This questions seems not applicable.434

(e) Did you discuss whether the data you are using/curating contains personally identifiable435

information or offensive content? [No] We do not process sensitive information.436

5. If you used crowdsourcing or conducted research with human subjects...437

(a) Did you include the full text of instructions given to participants and screenshots, if438

applicable? [N/A]439

(b) Did you describe any potential participant risks, with links to Institutional Review440

Board (IRB) approvals, if applicable? [N/A]441

(c) Did you include the estimated hourly wage paid to participants and the total amount442

spent on participant compensation? [N/A]443

12


	Introduction
	Background
	Gaussian Process Regression
	Background on the Cholesky decomposition
	Related work

	Methodology
	Intuition on the linear extrapolation
	Stopping strategy
	Bounds
	Bounds on the log-determinant
	Bounds on the quadratic term

	Validity of bounds and stopping condition
	Practical implementation

	Experiments
	Bound quality
	Application in hyper-parameter tuning

	Conclusions

