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Abstract

We present Composable Diffusion (CoDi), a novel generative model capable of
generating any combination of output modalities, such as language, image, video,
or audio, from any combination of input modalities. Unlike existing generative
AI systems, CoDi can generate multiple modalities in parallel and its input is not
limited to a subset of modalities like text or image. Despite the absence of training
datasets for many combinations of modalities, we propose to align modalities in
both the input and output space. This allows CoDi to freely condition on any input
combination and generate any group of modalities, even if they are not present in
the training data. CoDi employs a novel composable generation strategy which
involves building a shared multimodal space by bridging alignment in the diffusion
process, enabling the synchronized generation of intertwined modalities, such
as temporally aligned video and audio. Highly customizable and flexible, CoDi
achieves strong joint-modality generation quality, and outperforms or is on par
with the unimodal state-of-the-art for single-modality synthesis. The project page
with demonstrations and code is at https://codi-gen.github.io/
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Figure 1: CoDi can generate various (joint) combinations of output modalities from diverse (joint)
sets of inputs: video, image, audio, and text (example combinations depicted by the colored arrows).
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1 Introduction

Recent years have seen the rise of powerful cross-modal models that can generate one modality
from another, e.g. text-to-text [6, 37], text-to-image [13, 19, 22, 41, 44], or text-to-audio [23, 33].
However, these models are restricted in their real-world applicability where multiple modalities
coexist and interact. While one can chain together modality-specific generative models in a multi-step
generation setting, the generation power of each step remains inherently limited, and a serial, multi-
step process can be cumbersome and slow. Moreover, independently generated unimodal streams
will not be consistent and aligned when stitched together in a post-processing way (e.g., synchronized
video and audio). The development of a comprehensive and versatile model that can generate any
combination of modalities from any set of input conditions has been eagerly anticipated, as it would
more accurately capture the multimodal nature of the world and human comprehension, seamlessly
consolidate information from a wide range of sources, and enable strong immersion in human-AI
interactions (for example, by generating coherent video, audio, and text description at the same time).

In pursuit of this goal, we propose Composable Diffusion, or CoDi, the first model capable of
simultaneously processing and generating arbitrary combinations of modalities as shown in Fig. 1.
Training a model to take any mixture of input modalities and flexibly generate any mixture of outputs
presents significant computational and data requirements, as the number of combinations for the
input and output modalities scales exponentially. Also aligned training data for many groups of
modalities is scarce or even non-existent, making it infeasible to train with all possible input-output
combinations. To address this challenge, we propose to align multiple modalities in both the input
conditioning (Section 3.2) and generation diffusion step (Section 3.4). Furthermore, a proposed
“Bridging Alignment” strategy for contrastive learning (Section 3.2) allows us to efficiently model the
exponential number of input-output combinations with a linear number of training objectives.

Building a model with any-to-any generation capacity with exceptional generation quality requires
comprehensive model design and training on diverse data resources. Therefore, we build CoDi in an
integrative way. First, we train a latent diffusion model (LDM) for each modality, e.g., text, image,
video, and audio. These models can be trained in parallel independently, ensuring exceptional single-
modality generation quality using widely available modality-specific training data (i.e., data with one
or more modalities as input and one modality as output). For conditional cross-modality generation,
such as generating images using audio+language prompts, the input modalities are projected into a
shared feature space (Section 3.2), and the output LDM attends to the combination of input features.
This multimodal conditioning mechanism prepares the diffusion model to condition on any modality
or combination of modalities without directly training for such settings.

The second stage of training enables the model to handle many-to-many generation strategies that
involve simultaneously generating arbitrary combinations of output modalities. To the best of our
knowledge, CoDi is the first AI model with this capability. This is achieved by adding a cross-
attention module to each diffuser, and an environment encoder V to project the latent variable of
different LDMs into a shared latent space (Section 3.4). Next, we freeze the parameters of the LDM,
training only the cross-attention parameters and V . Since the environment encoder of different
modalities are aligned, an LDM can cross-attend with any group of co-generated modalities by
interpolating the representation’s output by V . This enables CoDi to seamlessly generate any group
of modalities, without training on all possible generation combinations. This reduces the number of
training objectives from exponential to linear.

We demonstrate the any-to-any generation capability of CoDi, including single-to-single modality
generation, multi-condition generation, and the novel capacity of joint generation of multiple modali-
ties. For example, generating synchronized video and audio given the text input prompt; or generating
video given a prompt image and audio. We also provide a quantitative evaluation of CoDi using eight
multimodal datasets. As the latest work from Project i-Code [55] towards Composable AI, CoDi
exhibits exceptional generation quality across assorted scenarios, with synthesis quality on par or
even better than single to single modality SOTA, e.g., audio generation and audio captioning.

2 Related Works

Diffusion models (DMs) learn the data distribution by denoising and recovering the original data.
Deep Diffusion Process (DDP) [45] adopts a sequence of reversible diffusion steps to model image
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Figure 2: CoDi model architecture: (a) We first train individual diffusion model with aligned prompt
encoder by “Bridging Alignment”; (b) Diffusion models learn to attend with each other via “Latent
Alignment”; (c) CoDi achieves any-to-any generation with a linear number of training objectives.

probability distribution. It uses a reversible encoder to map the input image to a latent space and
a decoder to map the latent variables to an output image. Denoising diffusion probabilistic model
(DDPM) [20] uses a cascade of diffusion processes to gradually increase the complexity of the
probability density function model. At each step, the model adds noise to the input image and
estimates the corresponding noise level using an autoregressive model. This allows the model to
capture the dependencies between adjacent pixels and generate high-quality images. Score-based
generative models (SOG) [46] use the score function to model the diffusion process. [40] generates
high-fidelity images conditioned on CLIP representations of text prompts. Latent diffusion model
(LDM) [41] uses a VAE to encode inputs into latent space to reduce modeling dimension and
improves efficiency. The motivation is that image compression can be separated into semantic space
by a diffusion model and perceptual space by an autoencoder. By incorporating temporal modeling
modules and cascading model architectures, video diffusion models have been built upon image
diffusers to generate temporally consistent and inherent frames[14, 19, 21, 44]. Diffusion models have
also been applied to other domains, such as generating audio from text and vision prompts[23, 33].

Multimodal modeling has experienced rapid advancement recently, with researchers striving to build
uniform representations of multiple modalities using a single model to achieve more comprehensive
cross-modal understanding. Vision transformers [11], featuring diverse model architectures and
training techniques, have been applied to various downstream tasks such as vision Q&A and image
captioning. Multimodal encoders have also proven successful in vision-language [1, 8, 57], video-
audio [47] and video-speech-language [55, 56] domains. Aligning data from different modalities is
an active research area [12, 38], with promising applications in cross-modality retrieval and building
uniform multimodal representations [33, 35, 41].

3 Methodology

3.1 Preliminary: Latent Diffusion Model

Diffusion models (DM) represent a class of generative models that learn data distributions p(x) by
simulating the diffusion of information over time. During training, random noise is iteratively added
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to x, while the model learns to denoise the examples. For inference, the model denoises data points
sampled from simple distributions such as Gaussian. Latent diffusion models (LDM) [41] learn the
distribution of the latent variable z corresponding to x, significantly reducing computational cost by
decreasing the data dimension.

In LDM, an autoencoder is first trained to reconstruct x, i.e., x̂ = D(E(x)), where E and D denote
the encoder and decoder, respectively. The latent variable z = E(x) is iteratively diffused over
time steps t based on a variance schedule β1, . . . , βT , i.e., q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI)

[20, 45].

The forward process allows the random sampling of zt at any timestep in a closed form [20, 45]:
zt = αtz + σtε, where ε ∼ N (0, I), αt := 1− βt and σt := 1−

∏t
s=1 αs. The diffuser learns how

to denoise from {zt} to recover z. Following the reparameterization method proposed in [20], the
denoising training objective can be expressed as [41]:

LD = Ez,ε,t‖ε− εθ(zt, t, C(y))‖22. (1)

In data generation, the denoising process can be realized through reparameterized Gaussian sampling:

p(zt−1|zt) = N
(
zt−1;

1
√
αt

(
zt −

βt√
σt
εθ

)
, βtI

)
. (2)

In LD, the diffusion time step t ∼ U [1, T ]; εθ is a denoising model with UNet backbone parame-
terized by θ; y represents the conditional variable that can be used to control generation; C is the
prompt encoder. The conditioning mechanism is implemented by first featurizing y into C(y), then
the UNet εθ conditions on C(y) via cross-attention, as described in [41]. Distinct from previous
works, our model can condition on any combinations of modalities of text, image, video and audio.
Details are presented in the following section.

3.2 Composable Multimodal Conditioning

To enable our model to condition on any combination of input/prompt modalities, we align the prompt
encoder of text, image, video and audio (denoted by Ct, Ci, Cv , and Ca, respectively) to project the
input from any modality into the same space. Multimodal conditioning can then be conveniently
achieved by interpolating the representations of each modalitym: C(xt, xi, xv, xa) =

∑
m αmC(m)

for m ∈ xt, xi, xv, xa, with
∑
m αm = 1. Through simple weighted interpolation of aligned

embeddings, we enable models trained with single-conditioning (i.e., with only one input) to perform
zero-shot multi-conditioning (i.e., with multiple inputs). This process is illustrated in Fig. 2 (a)(2).

Optimizing all four prompt encoders simultaneously in a combinatorial manner is computationally
heavy, with O(n2) pairs. Additionally, for certain dual modalities, well-aligned paired datasets are
limited or unavailable e.g., image-audio pairs. To address this challenge, we propose a simple and
effective technique called "Bridging Alignment" to efficiently align conditional encoders. As shown
in Fig. 2 (a)(1), we choose the text modality as the "bridging" modality due to its ubiquitous presence
in paired data, such as text-image, text-video, and text-audio pairs. We begin with a pretrained
text-image paired encoder, i.e., CLIP [38]. We then train audio and video prompt encoders on
audio-text and video-text paired datasets using contrastive learning, with text and image encoder
weights frozen.

In this way, all four modalities are aligned in the feature space. As shown in Section 5.2, CoDi
can effectively leverage and combine the complementary information present in any combination
of modalities to generate more accurate and comprehensive outputs. The high generation quality
remains unaffected with respect to the number of prompt modalities. As we will discuss in subsequent
sections, we continue to apply Bridging Alignment to align the latent space of LDMs with different
modalities to achieve joint multimodal generation.

3.3 Composable Diffusion

Training an end-to-end anything-to-anything model requires extensive learning on various data
resources. The model also needs to maintain generation quality for all synthesis flows. To address
these challenges, CoDi is designed to be composable and integrative, allowing individual modality-
specific models to be built independently and then smoothly integrated later. Specifically, we start by
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independently training image, video, audio, and text LDMs. These diffusion models then efficiently
learn to attend across modalities for joint multimodal generation (Section 3.4) by a novel mechanism
named “latent alignment”.

Image Diffusion Model. The image LDM follows the same structure as Stable Diffusion 1.5 [41]
and is initialized with the same weights. Reusing the weights transfers the knowledge and exceptional
generation fidelity of Stable Diffusion trained on large-scale high-quality image datasets to CoDi.

Video Diffusion Model. To model the temporal properties of videos and simultaneously maintain
vision generation quality, we construct the video diffuser by extending the image diffuser with
temporal modules. Specifically, we insert pseudo-temporal attention before the residual block [13].
However, we argue that pseudo-temporal attention only enables video frames to globally attend
to each other by flattening the pixels (height, width dimension) to batch dimension, resulting in
a lack of cross-frame interaction between local pixels. We argue that this results in the common
temporal-inconsistency issue in video generation that locations, shapes, colors, etc. of objects can
be inconsistent across generated frames. To address this problem, we propose adapting the latent
shift method [2] that performs temporal-spatial shifts on latent features in accordance with temporal
attention. We divide the video by the hidden dimension into k = 8 chunks, and for each chunk
i = 0 to 7, we shift the temporal dimension forward by i positions. Further details will be provided
in the appendix.

Audio Diffusion Model. To enable flexible cross-modality attention in joint generation, the audio
diffuser is designed to have a similar architecture to vision diffusers, where the mel-spectrogram
can be naturally viewed as an image with 1 channel. We use a VAE encoder to encode the mel-
spectrogram of audio to a compressed latent space. In audio synthesis, a VAE decoder maps the latent
variable to the mel-spectrogram, and a vocoder generates the audio sample from the mel-spectrogram.
We employ the audio VAE from [33] and the vocoder from [27].

Text Diffusion Model. The VAE of the text LDM is OPTIMUS [29], and its encoder and decoder
are [9] and GPT-2 [39], respectively. For the denoising UNet, unlike the one in image diffusion, the
2D convolution in residual blocks is replaced with 1D convolution [53].

3.4 Joint Multimodal Generation by Latent Alignment

The final step is to enable cross-attention between diffusion flows in joint generation, i.e., generating
two or more modalities simultaneously. This is achieved by adding cross-modal attention sublayers to
the UNet εθ (Fig. 2 (b)(2)). Specifically, consider a diffusion model of modality A that cross-attends
with another modality B. Let the latent variables of modalities mA and mB at diffusion step t be
denoted as zAt and zBt , respectively. The proposed “Latent Alignment” technique is such that a
modality-specific environment encoder VB first projects zBt into a shared latent space for different
modalities. Then, in each layer of the UNet for modality A, a cross-attention sublayer attends to
VB(z

B
t ). For the diffusion model of modality A, the training objective in Eq. (1) now becomes:

LACross = Ez,ε,t‖ε− εθc(zAt , VB(zBt ), t, C(y))‖22, (3)

where θc denotes the weights of cross-attention modules in the UNet.

The training objective of A+B joint generation is LACross+LBCross. V (·) of different modalities are
trained to be aligned with contrastive learning. Since zAt and zBt at any time step can be sampled with
closed form in the diffusion process Section 3.1, one can conveniently train the contrastive learning
together with LCross. The purpose of V is to achieve the generation of any combination of modalities
(in polynomial) by training on a linear number of joint-generation tasks. For example, if we have
trained the joint generation of modalities A, B, and B, C independently, then we have VA(zAt ),
VB(z

B
t ), and VC(zCt ) aligned. Therefore, CoDi can seamlessly achieve joint generation of modalities

A and C without any additional training. Moreover, such design automatically effortlessly enables
joint generation of modalities A, B, and C concurrently. Specifically, UNet of A can cross-attend
with the interpolation of VB(zBt ), and VC(zCt ), although CoDi has not been trained with such task.

As shown in Fig. 2(b)(3), we follow similar designs to the "Bridging Alignment" in training joint
generation: (1) We first train the cross-attention weights in the image and text diffusers, as well
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Table 1: Training tasks (CT stands for “contrastive learning” to align prompt encoders) and datasets
with corresponding statistics. * denotes the number of accessible examples in the original datasets.

Categories Tasks Datasets # of samples Domain

Image + Text Image→Text, Text→Image Laion400M [42] 400M OpenText→Image+Text

Audio + Text
Text→Audio, Audio→Text,
Text→Audio+Text, Audio-Text CT

AudioSet [16] 900K* YouTube
AudioCaps [24] 46K YouTube
Freesound 500K 2.5M Public audio samples
BBC Sound Effect 30K Authentic natural sound

Audiovisual Image→Audio, Image→Video+Audio AudioSet 900K* YouTube
SoundNet [3] 1.0M* Flickr, natural sound

Video
Text→Video, Image→Video,
Video-Text CT

Webvid10M [4] 10.7M Short videos
HD-Villa-100M [54] 100M YouTube

“Concept art by Sylvain 
Sarrailh of a haunted 

Japan temple in a forest”

“mountain view, 
sunset.”

(Subway ambient sound) 

“A beautiful ballet 
dancer spinning, 
view from top.”

Figure 3: Single-to-single modality generation. Clockwise from top left: text→image, image→text,
image→video, audio→image.

as their environment encoders V , on text-image paired data. (2) We freeze the weights of the text
diffuser and train the environment encoder and cross-attention weights of the audio diffuser on
text-audio paired data. (3) Finally we freeze the audio diffuser and its environment encoder, and
train the joint generation of the video modality on audio-video paired data. As demonstrated in
Section 5.3, although only trained on three paired joint generation tasks (i.e, Text+Audio, Text+Image,
and Video+Audio), CoDi is capable of generating assorted combinations of modalities simultaneously
that are unseen in training, e.g., joint image-text-audio generation in Fig. 5.

4 Experiments

4.1 Training Objectives and Datasets

We list training tasks of CoDi in Table 1, including single modality synthesis, joint multimodal
generation, and contrastive learning to align prompt encoders. Table 1 provides an overview of the
datasets, tasks, number of samples, and domain. Datasets are from the following domains: image
+ text (e.g. image with caption), audio + text (e.g. audio with description), audio + video (e.g.
video with sound), and video + text (e.g. video with description). As one may have noticed, the
language modality appears in most datasets and domains. This echos the idea of using text as the
bridge modality to be able to extrapolate and generate new unseen combinations such as audio
and image bridged by text, as mentioned in Section 3.2 and Section 3.4. Due to space limit, more
details on training datasets and can be found in Appendix C, model architecture details in Appendix
Appendix A.1, and training details in Appendix B.

Image + Text. We use a recently developed large-scale image caption dataset, Laion400M [42].
This image-text paired data allows us to train with tasks text→image, image→text, and the joint

6



Table 2: COCO-caption [32]
FID scores for text-to-image
generation.

Method FID ↓
CogView [10] 27.10
GLIDE [36] 12.24
Make-a-Scene [15] 11.84
LDM [41] 12.63
Stable Diffusion-1.4 11.21
Stable Diffusion-1.5 11.12
Versatile Diffusion [53] 11.10

CoDi (Ours) 11.26

Table 3: MSR-VTT text-to-video
generation performance.

Method Zero-Shot CLIPSIM ↑
GODIVA [50] No 0.2402
NÜWA [51] No 0.2439
CogVideo [22] Yes 0.2631
Make-A-Video [44] Yes 0.3049
Video LDM [5] Yes 0.2929

CoDi (Ours) Yes 0.2890

Table 4: UCF-101 text-to-video
generation performance.

Method IS (↑) FVD (↑)
CogVideo (Chinese) 23.55 751.34
CogVideo (English) 25.27 701.59

Make-A-Video 33.00 367.23
Video LDM 33.45 550.61

CoDi (Ours) 32.88 596.34

Table 5: The comparison between our audio diffuser and baseline TTA generation models. Evaluation
is conducted on AudioCaps test set. AS, AC, FSD, BBC, and SDN stand for AudioSet, AudioCaps,
Freesound, BBC Sound Effect, and Soundnet.

Model Datasets FD ↓ IS ↑ KL ↓ FAD ↓ OVL ↑ REL ↑
Ground truth - - - - - 83.61 80.11
DiffSound AS + AC 47.68 4.01 2.52 7.75 45.00 43.83
AudioGen AS + AC+ 8 others - - 2.09 3.13 - -

AudioLDM-L-Full AS + AC+ FSD + BBC 23.31 8.13 1.59 1.96 65.91 65.97

CoDi (Ours) AS + AC+ FSD + BBC+ SDN 22.90 8.77 1.40 1.80 66.87 67.60

Table 6: COCO image caption-
ing scores comparison.

Model B@4 METEOR CIDEr
Autoregressive Model

Oscar [31] 36.58 30.4 124.12
ClipCap [35] 32.15 27.1 108.35
OFA [49] 44.9 32.5 154.9
BLIP2 [30] 43.7 - 145.8

Diffusion Model

DDCap [59] 35.0 28.2 117.8
SCD-Net [34] 39.4 29.2 131.6
CoDi (Ours) 40.2 31.0 149.9

Table 7: AudioCaps audio cap-
tioning scores comparison.

Model SPIDEr CIDEr SPICE
AudioCaps [24] 0.369 0.593 0.144
BART-Finetune [17] 0.465 0.753 0.176
VALOR [7] - 0.741 -
AL-MixGen [25] 0.466 0.755 0.177

CoDi (Ours) 0.480 0.789 0.182

Table 8: MSRVTT video cap-
tioning scores comparison.

Model B@4 METEOR CIDEr
ORG-TRL [58] 43.6 28.8 50.9
MV-GPT [43] 48.9 38.7 60.0
GIT [48] 54.8 33.1 75.9
mPLUG-2 [52] 57.8 34.9 80.3

CoDi (Ours) 52.1 32.5 74.4

generation of image and text. For the joint generation task, we propose to train with text→image+text,
where the prompt text is the truncated image caption, and the output text is the original caption. Since
the condition information is incomplete, the text and image diffuser will need to learn to attend with
each other through the joint generation process.

Audio + Text. We curated a new dataset, Freesound 500K, by crawling 500K audio samples together
with tags and descriptions from the Freesound website. We also use AudioSet [42] with 2 million
human-labeled 10-second sound clips from YouTube videos and AudioCaps [24] with 46K audio-
text pairs derived from the AudioSet dataset. Audio samples are clipped into 10-second segments
for training purposes. The paired audio + text data enables us to train text→audio, audio→text,
text→audio + text generation, and audio-text contrastive learning. Similar to image + text joint
generation, in text→audio + text, text prompt is the truncated text, and the output is the original text.

Video. We use the following diverse and high-quality video datasets to train video generation and
video prompt encoder. WebVid [4], a large-scale dataset of web videos together with descriptions;
HD-Villa-100M [54] with high resolution YouTube videos of at least 720P. We perform text→video
and video-text contrastive learning task with WebVid. We use HD-Villa-100M for image→video
generation where the middle frame is the input image.

Audiovisual. Web videos are a natural aligned audio-video data resource. However, many existing
datasets, e.g., ACAV100M [28], feature heavily on videos of human speech rather than natural sounds.
Therefore, we leverage sound-oriented datasets AudioSet and SoundNet [3] for joint audio-video
generation. For image→audio + video, we use the middle frame of the target video as the input
prompt image. We also use the middle frame as the prompt input to train the model to generate the
audio, i.e., image→audio.
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Figure 4: Generation with multiple input modality conditions. Top to bottom: text+audio→image,
text+audio→video, video+audio→text.

5 Evaluation Results

In this section, we will evaluate the model generation quality in different settings including single
modality generation, multi-condition generation, and multi-output joint generation. We provide both
quantitative benchmarking on evaluation datasets as well as qualitative visualization demonstrations.

5.1 Single Modality Generation Results

We first show example demo in Fig. 3, where we present various single to single modality generation.
Then, we evaluate the synthesis quality of the unimodal generation on text, image, video, and
audio. CoDi achieves SOTA on audio captions and audio generation, as shown in Table 7 and
Table 5. Notably for the first time in the field, CoDi, a diffusion-base model, exhibits comparable
performance on image captioning with autoregressive transformer-based SOTA (Table 6). CoDi is
the first diffusion-model based for video captioning Table 8. On image and video generation, CoDi
performs competitively with state-of-the-art (Tables 2 to 4). This gives us strong starting points for
multi-condition and multi-output generation that will be presented next in Section 5.2 and Section 5.3.

We demonstrate in Section 3.2 that CoDi is capable of integrating representation from different
modalities in the generation. Thus, we first show multi-condition generation demo as shown in Fig. 4.

5.2 Multi-Condition Generation Results

For quantitative evaluation, we focus on multiple inputs to image synthesis output since the evaluation
metric for this case (FID) does not require specific modality inputs like text. We test with several
input combinations including text + image, text + audio, image + audio, text + video, as well as three
inputs text + audio + image. We test on the validation set of AudioCaps [24] since all four modalities
are present in this dataset. The prompt image input is the middle frame of the video. As shown in
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Table 9: CoDi is capable of generating high quality
output (image in this case) from various combina-
tions of prompt modalities.

Inputs FID ↓
Single-modality Prompt
Text 14.2
Audio 14.3

Dual-modality Prompt
Text + Audio 14.9

Table 10: MSR-VTT text-to-video generation per-
formance.

Inputs CLIPSIM ↑
Single-modality Prompt
Text 0.2890

Dual-modality Prompt
Text+Audio 0.2912
Text+Image 0.2891
Text+Audio+Image 0.2923

“Sea shore sound 
ambience."

“Fireworks in the sky.”

(Sound of firework 
synchronized with 

video) 

Generated Video
(Sample frames)

“Wave crashes the 
shore, seagulls”

(Sound of seagulls 
and wave crashing 

the shore) 

“Teddy bear on a
skateboard, 4k.”

(Raining ambience) 

(Skateboarding sound, street noise, raining ambience) 

Figure 5: Joint generation of multiple output modalities by CoDi. From top to bottom:
text→video+audio, text→image+text+audio, text+audio+image→video+audio.

Table 9, CoDi achieves high image generation quality given assorted groups of input modalities. We
also test with several input combinations with video as output including text, text + audio, image +
image, as well as text + audio + image. We also test on MSRVTT [24] since all four modalities are
present in this dataset. Similarly, the prompt image input is the middle frame of the video. As shown
in Table 10, CoDi achieves high video and ground truth text similarity given assorted groups of input
modalities. Again our model does not need to train on multi-condition generation like text + audio or
text + image. Through bridging alignment and composable multimodal conditioning as proposed in
Section 3.2, our model trained on single condition can zero-shot infer on multiple conditions.

5.3 Multi-Output Joint Generation Results

For joint multimodal generation, we first demonstrate high-quality multimodal output joint generation
demo as shown in Fig. 5. For quantitative evaluation, there is no existing evaluation metric since we
are the first model that can simultaneously generate across all 4 modalities. Therefore, we propose
the following metric SIM that quantifies the coherence and consistency between the two generated
modalities by cosine similarity of embeddings:

SIM(A,B) = cos (CA(A), CB(B)) (4)

9



Table 11: Similarity scores between generated modalities. The number on the left of “/” represents
the similarity score of independent generation, and the right it represents the case of joint generation.
Jointly generated outputs consistently show stronger coherence.

Inputs SIM-IT SIM-AT SIM-VT SIM-VA
Two Joint Outputs
Audio→ Image+Text 0.251 / 0.260 - - -
Image→ Audio+Text - 0.244 / 0.256 - -
Text→ Video+Audio - - - 0.240 / 0.255
Audio→ Video+Text - - 0.256 / 0.261 -

Three Joint Outputs
Text→ Video+Image+Audio 0.256 / 0.270 0.240 / 0.257 - 0.240 / 0.257
Multi-Inputs-Outputs
Text+Image→ Video+Audio - - - 0.247 / 0.259

where A, B are the generated modalities, and CA and CB are aligned encoders that project A and
B to the same space. We use the prompt encoder as described in Section 3.2. This metric aims to
compute the cosine similarity of the embedding of two modalities using contrastive learned prompt
encoders. Thus, the higher the metric, the more aligned and similar the generated modalities are.

To demonstrate the effectiveness of joint generation, assume the prompt modality is P , we compare
SIM(A,B) of A and B generated separately vs. jointly, i.e., {P → A, P → B} vs. {P →
A+B}. The benchmark is the validation set of AudioCaps [24]. We test on the following settings,
audio→image+text, image→audio+text, and text→video+audio, image→video+audio. audio→
video+text, audio→ text+video+image, text→video+image+audio, where the image prompt is the
middle frame of the video clip. As shown in Table 11, joint generation (similarity shown on the right
side of “/”) consistently outperforms independent generation (on the left side of “/”).

6 Conclusion

In this paper, we present Composable Diffusion (CoDi), a groundbreaking model in multimodal
generation that is capable of processing and simultaneously generating modalities across text, image,
video, and audio. Our approach enables the synergistic generation of high-quality and coherent
outputs spanning various modalities, from assorted combinations of input modalities. Through
extensive experiments, we demonstrate CoDi’s remarkable capabilities in flexibly generating single
or multiple modalities from a wide range of inputs. Our work marks a significant step towards
more engaging and holistic human-computer interactions, establishing a solid foundation for future
investigations in generative artificial intelligence.

Limitations & Broader Impacts. See Appendix D for the discussion.
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A Model Architecture and Configuration

A.1 Overview

In this section, we provide more details on the model architecture as shown in Table 12, where each
modality specific diffuser is based on UNet architecture with different variations detailed in the table.
Another notable difference is the video architecture where we add temporal attention and temporal
shift as discussed in Section 3.3 and we will discuss its detail in the next section.

Table 12: Hyperparameters for our diffusion models. Note the video and image generation uses the
same diffuser.

Modality Video (Image) LDM Audio LDM Text LDM
Hyperparameter
Architecture LDM LDM LDM
z-shape 4 × #frames × 64 × 64 8 × 256 × 16 768 × 1 × 1
Channels 320 320 320
Depth 4 2 2
Channel multiplier 1,2,4,4 1,2,4,4 1,2,4,4
Attention resolutions 64,32,16 64,32,16 64,32,16
Head channels 32 32 32
Number of heads 8 8 8
CA embed dim 768 768 768
CA resolutions 64,32,16 64,32,16 64,32,16
Autoencoders AutoKL AudioLDM Optimus
Weight initialization Stable Diffusion-1.4 - Versatile Diffusion
Parameterization ε ε ε
Learning rate 2e− 5 5e− 6 5e− 5
Total batch size 256 1024 1024

Diffusion Setup
Diffusion steps 1000 1000 1000
Noise schedule Linear Linear Linear
β0 0.00085 0.00085 0.00085
βT 0.0120 0.0120 0.0120

Sampling Parameters
Sampler DDIM DDIM DDIM
Steps 50 50 50
η 1.0 1.0 1.0
Guidance scale 2.0 7.5 2.0

A.2 Video LDM Architecture

Except for the base image UNet architecture, we also add temporal attention and temporal shift [2]
before each residual block. Following VDM [21], the temporal attention is a transformer attention
module where we flatten the height and width dimension to batch size dimension and the self-attention
is performed on the time dimension. The temporal shift is illustrated in Fig. 6 where we first split
channels into k chunks. Then, we shift the channel dimension numbered 0 to k − 1 by temporal
dimension from 0 to k − 1 times respectively. Eventually, we concatenate the shifted chunks by
the hidden dimension. Note that we use k = 3 in the illustration for simplicity but k = 8 in our
implementation. We then add a convolution layer before the temporal shift module. Finally, we use
residual connection [18] and add the output to the input before the convolution layer. The complete
video UNet layer is shown in Fig. 7.

B Model Training

Prompt Encoders Training. As discussed in Section 3.2, we use bridging alignment to perform
contrastive learning between all prompt encoders. We use Adam [26] optimizer with learning rate
1e-4 and weight decay 1e-4.
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Figure 6: Temporal shift [2] illustration. C, H , W represent channel, height, width, respectively. The
vertical line represents time steps from t− 1, t, and t+ 1. The grey blocks denote “padding tensors”.

Video UNet Layer

Temporal
Attention

Temporal
Shift

2D Spatial
Convolution Block

Figure 7: Video UNet layer architecture details including normalization & activation, 2D temporal
attention, followed by temporal shift and 1D spatial convolution.

Diffusion Model Training. We train diffusion model with training objectives and hyperparameters
detailed in Table 1 and Table 12. For video LDM, we adopt a more specific training curriculum.
We adopt curriculum learning on frame resolution and frames-per-second (FPS). First, the diffuser
is trained on the WebVid dataset of a 256-frame resolution, with the training objective being text-
conditioned video generation. The training clips are sampled from 2-second video chunks with 4 FPS.
Second, the model is further trained on HDVILLA and ACAV datasets, with a 512-frame resolution
and 8 FPS, and the training objective is image-conditioned video generation (the image is a randomly
sampled frame of the clip). Each training clip contains 16 frames sampled from a 2-second video
chunk with 8 FPS.

Joint Generation Training. As discussed in Section 3.2, we train joint generation by aligning
environment encoders and optimize cross-attention layers only in the diffusion models. We use Adam
optimizer with learning rate 1e-5 and weight decay 1e-4.

C Training Datasets

In this section, we introduce more details about the video and audiovisual training datasets.

Video. WebVid [4] is a large-scale dataset of web videos with diverse content, spanning over 40
categories such as sports, cooking, and travel. It contains over 1.2 million video clips (all without
sound) that are all at least 30 seconds in duration with video descriptions. We perform text→video
and video-text contrastive learning task with this dataset. HD-Villa-100M [54] is a large-scale video
dataset with over 100 million video clips sourced from YouTube. The dataset covers a wide range of
video categories and includes high-quality videos with a resolution of at least 720P. Since it lacks
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curated video description and we use the middle frame as image input to perform image→video
generation.

Audiovisual. SoundNet originally contains over two million sounds and spans a wide range of
categories including music, animal sounds, natural sounds, and environmental sounds. We collected
all currently accessible 1M videos.

D Limitations & Broader Impacts

While the paper primarily focuses on the technical advancements and potential applications of
CoDi, we also consider potential negative social impacts that could arise from the development and
deployment of such technology. These impacts can include:

Deepfakes and Misinformation. As part of a common issue for generative AI models, the ability
of CoDi to generate realistic and synchronized multimodal outputs also raises concerns about the
creation and dissemination of deepfakes. Malicious actors could exploit this technology to create
highly convincing fake content, such as fabricated videos or audio clips, which can be used for
misinformation, fraud, or other harmful purposes.

Bias and Stereotyping. If the training data used for CoDi is biased or contains stereotypes, the
generated multimodal outputs may also reflect these.

E License

We will publicly release our code and checkpoints. We cite licenses from the individual dataset or
package we use from the community and provide the following links for references.

LAION-400M: Creative Common CC-BY 4.0

AudioSet: Creative Common CC-BY 4.0

AudioCaps: MIT

Freesound: Creative Commons

BBC Sound Effect: The BBC’s Content Licence

SoundNet: MIT

Webvid10M: Webvid

HD-Villa-100M: Research Use of Data Agreement v1.0

PyTorch: BSD-style

Huggingface Transformers: Apache

Torchvision: BSD 3-Clause

Torchaudio: BSD 2-Clause
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https://laion.ai/blog/laion-400-open-dataset/
https://research.google.com/audioset/download.html
https://github.com/cdjkim/audiocaps/blob/master/LICENSE
https://freesound.org/help/tos_web/
https://sound-effects.bbcrewind.co.uk/licensing
https://github.com/cvondrick/soundnet/blob/master/LICENSE
https://github.com/m-bain/webvid/blob/main/TERMS.md
https://github.com/microsoft/XPretrain/blob/main/hd-vila-100m/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/pytorch/vision/blob/master/LICENSE
https://github.com/pytorch/audio/blob/main/LICENSE
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