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ABSTRACT

Contact forces introduce discontinuities into robot dynamics that severely limit the
use of simulators for gradient-based optimization. Penalty-based simulators such
as MuJoCo, soften contact resolution to enable gradient computation. However,
realistically simulating hard contacts requires stiff solver settings, which leads
to incorrect simulator gradients when using automatic differentiation. Contrarily,
using non-stiff settings strongly increases the sim-to-real gap. We analyze penalty-
based simulators to pinpoint why gradients degrade under hard contacts. Building
on these insights, we propose DiffMJX, which couples adaptive time integration
with penalty-based simulation to substantially improve gradient accuracy. A second
challenge is that contact gradients vanish when bodies separate. To address this, we
introduce contacts from distance (CFD) which combines penalty-based simulation
with straight-through estimation. By applying CFD exclusively in the backward
pass, we obtain informative pre-contact gradients while retaining physical realism.
Project page: Link to code and data will be made available here.

1 INTRODUCTION

Gradients have powered major advances in machine learning ranging from video language models
to robot control. In robotics, imitation and reinforcement learning widely rely on gradient-based
optimization. Yet, despite the dominance of sim-to-real techniques that leverage robot simulators for
policy learning (Tan et al., 2018; Lee et al., 2020; Andrychowicz et al., 2020; Radosavovic et al.,
2024; Li et al., 2022), most methods conspicuously avoid using simulator gradients. This is a missed
opportunity considering that simulator gradients offer a direct route to updating actions and learning
model parameters. If these gradients were accurate, we could fit simulators to real data significantly
narrowing the sim-to-real gap and accelerate policy learning – enabling policies for new tasks to be
trained in seconds rather than hours. Given the utility of simulator gradients, what prevents their
use in robot learning? In practice, two fundamental issues hinder the use of simulator gradients: (i)
discontinuities arising from contacts yield erroneous gradients, and (ii), if objects do not touch,
contact gradients are zero. In this work, we chart a path that tackles both challenges.

Differentiating through contacts. The choice of contact model has significant implications on a
simulator’s differentiability. Complementary-based solvers, such as Taylor et al. (2022), compute
contact forces exactly, such that sudden jumps in the dynamics aggravate gradient computation.
Hence, recent literature on differentiating through complementary-based solvers proposes analytical
reformulations of the dynamics, e.g. based on the implicit function theorem (Werling et al., 2021;
Taylor et al., 2022), or resorts to randomized smoothing (Tassa & Todorov, 2010; Duchi et al., 2012;
Suh et al., 2022; Bouyarmane et al., 2009; Xu et al., 2010). While differing in computational cost,
both approaches have similar empirical performance Pang et al. (2023); Schwarke et al. (2024). To
improve computational efficiency, MuJoCo (Todorov, 2014) reformulates complementary constraints
as a convex optimization problem, where a constraint’s ability to generate force grows proportionally
to the constraint violation. While such a penalty-based simulator can be made smooth, gradient
inaccuracies increase with the contact stiffness, the relative contact velocity, and the integration step
size. While common advice points to reducing the step size to improve gradient accuracy, using
sufficiently small step sizes results in prohibitively slow simulation.

Computing gradients of stiff simulations. In the sequel, we show that gradient errors in penalty-
based simulators arise from computing a discrete approximation of continuous physics – put simply,
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from numerically integrating stiff differential equations. Consequently, the gradients obtained via
automatic differentiation are “incorrect” insofar as they do not align with those of the underlying
continuous system. Although adaptive integration is well studied, it’s rarely used in robotics and to the
best of our knowledge its utility for differentiable simulation has not been explored. This perspective
complements prior proposals for time-of-impact correction (Hu et al., 2020; Schwarke et al., 2024)
in impulse-based simulators. We incorporate adaptive timestep integration into MuJoCo XLA,
incurring a slight computational overhead while obtaining correct gradients in the presence of hard
contacts, and remaining compatible with existing MuJoCo libraries.

Simulator

             /            /          

collision detection 
& contact solver

Loss

Target

Figure 1: Common computational graph
for robot control synthesis.

Computing gradients between non-colliding objects.
Another obstacle for gradient-based optimization for
policy generation and system identification is the non-
informativeness of gradients about unrealized contacts.
For example, when a robot’s hand is not in contact with an
object, then there is no gradient directing it to make contact
for task facilitation. Therefore, drawing inspiration from
prior works on contact-invariant optimization (Mordatch
et al., 2012b;a), we propose Contacts From Distance
(CFD) to address this challenge. However, naively intro-
ducing artificial contact forces considerably alters the simulation, resulting in a too large sim-to-real
gap. In order to preserve the simulation realism, we propose using the straight-through-trick to
introduce CFD solely in the gradient computation. We implement our changes in Mujoco XLA, and ad-
ditionally fix some low-level collision routines to be truly differentiable. CFD complements position-
based costs often used in robot learning by removing the need to specify exact contact locations.

In summary, DiffMJX and CFD provide additional tuning knobs to enable practitioners to set gradient
correctness and inform an optimization on how non-colliding objects would need to move to influence
each other’s state. In turn, this work provides a new perspective on how to obtain useful gradients in
penalty-based differentiable simulators thereby enabling parameter estimation and policy synthesis
for collision-rich and high-dimensional systems.

2 ROBOT SIMULATION

As illustrated in Fig. 1, we want to use automatic differentiation to obtain the correct gradients of
a loss functional L(x̃k+1, xk, ak, p) where the next state of the robotic system is governed by the
discrete-time dynamics xk+1 = step(xk, ak, p) with the state xk := x(tk) = [qk, vk] at time tk
consisting of the system’s generalized position qk ∈ Rnq and velocity vk ∈ Rnv , control actions
ak ∈ Rna , and model parameters p ∈ Rnp . Typically, multi-body dynamics simulators consist of
forward dynamics model and a numerical integration method. The forward dynamics govern the
system’s acceleration v̇ via the equations of motion

v̇ = M−1
(
τ − c+ J⊤f

)
(1)

with the joint-space inertia matrix M(q) ∈ Rnv×nv , applied forces τ(x, a) ∈ Rnv , bias force c(x) ∈
Rnv , constraint space Jacobian J(q) ∈ Rnc×nv , and constraint forces f(x) = fE + fF + fC ∈ Rnc

consisting of the equality constraint, the generalized friction, and the contact constraint forces. The
contact-free dynamics are typically derived via recursive multi-body algorithms (Featherstone, 2014)
while computing contacts are resolved through an intricate interplay of collision detection and contact
force optimization. As we will see throughout this work, numerical integration plays a pivotal role in
understanding how contact forces may hinder correct gradient computation. For that, we will resort
to MuJoCo XLA as a concrete example of a penalty-based simulator.

2.1 CONSTRAINT RESOLUTION IN MUJOCO XLA

MuJoCo XLA (MJX) is a reimplementation of MuJoCo using the Python library JAX (Bradbury
et al., 2018), which enables GPU-parallelizable gradient computation via automatic differentiation.
MuJoCo has become the de facto standard in robotics, alongside other widely used simulators such
as Bullet (Coumans & Bai, 2016), Drake (Russ Tedrake, 2019), DiffTaichi (Hu et al., 2020) and
Nvidia PhysX (Liang et al., 2018). MuJoCo ’s importance is underpinned by NVIDIA and Google
recently releasing MuJoCo Warp (Howell, 2025). In what follows, we provide a brief overview of
how MuJoCo resolves contacts, which serves as a hands-on example of a penalty-based simulator.
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Collision detection. Given the state x and geometry parameterizations of two bodies, a collision
detector returns the signed distance r between potential contact points alongside with their surface
normals. A contact is only considered active – that is, a contact point can exert contact force – if
r < 0. While collision detection is not the primary focus of this work, we later show how to remove
discontinuities from its functions to ensure differentiability.

contact	
inactive

r

r
contact	
active

00

0

Figure 2: The position-level
reference acceleration h(r)
and impedance d(r) deter-
mine the contact force magni-
tudes that the solver can apply.

Contact force solver. A detailed description of MuJoCo is given
in its documentation, here we provide a summary of key equations.
Given Eq. (1), MuJoCo resolves constraints via a relaxation of Gauss’
principle (Gauß, 1829) which in its primal formulation reads

(v̇, ω̇) = argmin
(x,y)

∥∥x−M−1(τ − c)
∥∥2
M

+ ∥y − aref∥HR−1

subject to JEx− ye = 0, JFx− yF = 0, JC x− yC ∈ K∗
(2)

with the friction cone (dual) K∗, the regularizer R > 0, and Huber
norm ∥ · ∥H. The reference acceleration aref denotes the solver’s
target for the constraint space acceleration ω̇. Drawing inspiration
from Baumgarte (1972), aref follows a damped harmonic oscillator

aref,i = −bi(Jv)i − kiri = − 2

dw · tc
(Jv)i −

d(ri)

d2w · t2c · ϕ2
d

ri (3)

whose dynamics are determined by the impedance d(r), and the
solref parameters consisting of the time constant tc and the damping
ratio ϕd. The impedance d(r) is the central function for determining constraint forces (such as contact
forces). As illustrated in Fig. 2, the impedance d ∈ [0, 1] is a function of the constraint violation r and
is specified by the solimp parameters (do, dw, w,midpoint, power) which define its shape as a poly-
nomial spline. MuJoCo’s documentation refers to the impedance as a “constraints ability to generate
force” as it determines aref and weights the cost for applying constraint forces in Eq. (2) via the diago-
nal matrix R, which is computed as Rii = Âii(1−di)/di, where Â denotes an approximation to A =
diag(JM−1J⊤). In turn, the constraint is hard if R → 0, and approaches an infinitely soft (i.e. non-
existent) constraint in the limit R → ∞. If K∗ solely contains pyramidal or elliptic cone constraints,
then problem (2) reduces to a convex problem that is solved efficiently via an exact Newton method.

3 CORRECTING THE CONTACT GRADIENTS OF PENALTY-BASED SIMULATION

To evaluate the correctness of gradients in the presence of contacts, as illustrated in the top row of
Fig. 3, we unroll the trajectory of several primitives bouncing against a plane to observe the final
position and its gradient with respect to the initial velocity. In Fig. 3 (MJX row), at the default
integration step of 0.002 s, we observe that the loss is oscillating at a high frequency, which results in
large fluctuations of the gradient. Similar oscillations have been discussed in previous works (Hu
et al., 2020; Schwarke et al., 2024). In particular, Hu et al. (2020) emphasizes that the “time-of-impact”
(TOI) causes gradient oscillations when using ideal elastic or complementary collisions. Yet, TOI
gradient errors differ in nature from errors observed in penalty-based simulators; as illustrated below.

Example – Point collision: As illustrated in Fig. 4 (left), a point mass starts at height q0 with
velocity v0 = −1 and is integrated for N steps with semi-implicit Euler in the absence of gravity.
It collides with a flat surface and bounces back up. Contact collision is either resolved via a
minimal version of a penalty-based contact model as found in MuJoCo or an ideal elastic collision
as in (Hu et al., 2020). The corresponding JAX code is shown in Fig. 15 in the Appendix. The loss
L = |qN − qT | is the distance between the point’s final state qN and the target height qT = 1. For
ideal-elastic collisions, we observe sawtooth-like loss oscillations in L, resulting in the gradient
∇q0L with the wrong sign, independently of the stepsize as observed by Hu et al. (2020). For the
penalty-based simulation, gradient oscillations notably reduce when lowering the stepsize.

We observe that state oscillations and the corresponding gradient artifacts are not a characteristic of
the specific simulator. Instead, more fundamentally, they arise from time-discretization errors in the
ODE integration. While this affects both penalty-based and ideal-elastic simulators, we will see that
the issue has to be addressed differently.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 2 1
Initial velocity vz

0.6

0.4

0.2

Graident scaled by 1.5

3 2 1
Initial velocity vz

Gradient scaled by 3
1

0

1

G
ra

d
ie

n
t 

L v z

0.75

0.50

0.25

Lo
ss

 /
 T

o
ss

 d
is

ta
n
ce

D
iff

M
JX

  
  
  
  
  
  
  
  
  
  
  
 M

JX

box

loss

Gradient scaled by 10

capsule

vz

Gradient scaled by 100 50

25

×103

0

G
ra

d
ie

n
t 

L v z

DiffMJX GradientMJX GradientCentral differences

Figure 3: Simulation of primitives
thrown onto a surface. For stiff con-
tacts, MJX’s gradients of the toss dis-
tance deviate from central differences,
while DiffMJX maintains agreement.
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Figure 4: Toy simulation of a point mass colliding with a
surface that either resorts to an ideal-elastic contact model
used in DiffTaichi or a penalty-based contact model similar
to MuJoCo. Decreasing the integration stepsize h solely
reduces errors in the penalty-based simulation, in the ideal-
elastic simulation the gradient sign remains wrong.

TOI correction does not fix gradients for penalty-based simulators, but small stepsizes do. For
an ideal elastic collision, the ODE of our minimal example is piecewise linear: The dynamics are
linear (due to the absence of gravity) before and after the contact, at which the velocity is inverted (see
also Fig. 15 in the Appendix). The TOI approach proposed by Hu et al. (2020) exploits this structure
by dynamically splitting the ODE into two linear segments at the time of contact. Integrating those
separately thereby eliminates the discretization error and yields correct gradients. In penalty-based
simulation, the ODE is linear before and after the collision, but is non-linear with variable stiffness
over the time of the collision. Therefore, it cannot be easily divided into large linear segments.

Luckily, for penalty-based simulation we can instead rely on a different technique for reducing
the gradient error. The simple solution is to reduce the stepsize, which does not work in the
ideal elastic case, as seen in Fig. 4. From an ODE perspective, this works because the penalty-
based ODE is smooth, allowing us to continuously control the integration error by reducing the
stepsize. Unfortunately, simply reducing the step size is not a practical solution, as it necessitates
extremely small steps that substantially increase the computational and memory demands of gradient
computation. This trade-off raises a critical question: Can we retain correct gradients of realistic
contacts while maintaining practical simulation speeds?

3.1 ADAPTIVE STEPSIZE INTEGRATION: NUMERICAL PRECISION ON DEMAND

10 1 100 101 102

Runtime (s)

10 7

10 5

10 3

10 1

101
Error

Figure 5: Pareto front of gra-
dient error vs forward runtime
(▶) and gradient error vs back-
ward runtime (◁) for standard
semi-implicit Euler in MJX
(black) and adaptive integra-
tion in DiffMJX (blue) on the
cube bounce toy-example.

A standard method for integrating ODEs with variable stiffness
is adaptive integration. The idea behind adaptive integration is
elegant: Two numerical integrators of different orders compute the
next state. Their difference provides an estimate of the error. If
the error is smaller than a given threshold, the step is accepted;
otherwise, the step is rejected and the procedure is repeated with a
different stepsize chosen by a feedback controller. For further details
on the rich history of adaptive stepsize integration, see e.g. Hairer
et al. (2008); Hairer & Wanner (2002); Söderlind (2002; 2003).

We use Diffrax (Kidger, 2021) for efficient numerical integration in
JAX, taking advantage of its solver flexibility and multiple backprop-
agation modes. Notably, as detailed in Appendix C.2, we devoted
substantial effort to seamlessly integrating quaternions and stateful
actuators, which enables seamless compatibility between Diffrax and
MJX while ensuring efficient adaptive integration and backwards
compatibility with other MuJoCo libraries. Testing our implemen-
tation on the cube bounce toy example, we observe in Fig. 5 that
adaptive integration reduces the error in the loss and gradient by
multiple orders of magnitude given the same computational budget;
more detailed analysis is in Fig. 16 in the Appendix.
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Figure 6: Contacts from dis-
tance (CFD): To let MuJoCo
create small contact forces be-
tween non-colliding objects,
reference acceleration h(r)
and impedance d(r) are ad-
justed to be nonzero for pos-
itive signed distances r > 0.
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Figure 7: Top: Applying contact
forces for r > 0 in the forward pass
of the simulation causes a robot
to hover. Bottom: The straight-
through-trick is used to replace the
original MJX derivative with the
derivative of MJX + CFD, evalu-
ated at the unaltered trajectory.
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Figure 8: Billiard simulation.
Top: Force F acts on the
white ball affecting the loss.
Bottom: Despite the loss
derivative being zero if the
balls do not collide, DiffMJX
with CFD provides informa-
tive non-zero gradients.

Resolving problems of Collision Detection. Using an adaptive integrator with MJX eliminates
oscillations in the bounce example. However, gradients for some object primitives (capsule, cylinder,
box) experience gradient artifacts due to non-differentiable operations in the collision detector arising
from discrete case distinctions. We smoothed them with standard proxies, finally leading to the results
in the bottom row of Fig. 3, where analytical gradients nearly match central differences. Henceforth,
we refer to MJX with the Diffrax integrator and smoothed collision detection as DiffMJX.

4 CONTACTS FROM DISTANCE WITH STRAIGHT-THROUGH ESTIMATION

While adaptive integration improves gradient accuracy, we now shift attention to computing infor-
mative gradients between objects that are not in contact. To illustrate why the computation of such
gradients is of fundamental importance for robot learning consider the following example.

Example – Billiard shot: A billiard table is set up as shown in Fig. 8 (top). At the first timestep, a
force F is exerted on the white ball such that it may hit the black ball. The optimization objective
is the distance L between the black ball and the target position. If the balls collide, MJX with
adaptive integration yields non-zero gradients ∇FL. However, if F does not cause the balls to
touch, then ∇FL is zero and therefore uninformative for optimization.

In the following, we propose contacts from distance (CFD), a method for computing contact forces
for positive signed distances r in the gradient computation of a penalty-based simulation that yields
informative gradients even if objects are not in contact. This is accomplished by (i) applying artificial
contact forces between non-colliding objects, and (ii) using artificial forces only in the gradient
computation to maintain simulation realism.

Creating artificial contact forces. How to generate artificial contact forces in a penalty-based
simulator depends on the respective contact model. Below, as a concrete example, we propose a
method tailored to MuJoCo. As discussed in Section 2, the magnitude of contact forces is determined
by the impedance d(r) and position-level reference acceleration h(r). To enable the solver to apply
CFD, d(r) is augmented as shown in Fig. 6. Here, d(r) remains unaltered for r < 0 and is extended
by an additional spline for r > 0. This continuation is parametrized by solimp-CFD parameters
(dc, d0, wc,mc, pc). By default, the curve smoothly continues MuJoCo’s impedance at d0 and
tapers off to dc = 0 to ensure smooth differentiability. The CFD-width wc specifies the distance
for which artificial contact forces are generated. Moreover, we soften the reference acceleration
h(r) by replacing the ReLU function on the signed distance with a softplus (Fig. 6). This yields
modified contact forces fCFD.
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Designing a surrogate gradient estimator. Naively adding CFD to a simulation produces non-
physical behaviors. As shown in Fig. 7 (top), the artificial contact forces would cause a quadruped
to hover above the ground as if a soft foam mat of thickness wc had been placed on the surface. As
significantly altering simulation realism is not an option, we are faced with the question: Can CFD
be used to obtain informative contact gradients without affecting simulation realism?

To positively answer this question, we resort to the straight-through-trick on the ODE level:

ẋ(t) = sg(Fθ(t, x(t))) + F̃θ(t, x(t))− sg(F̃θ(t, x(t))), (4)

where sg is the stop-gradient operator of an automatic differentiation library. Here F denotes the
original ODE obtained from MJX or DiffMJX and F̃ denotes the ODE using CFD via v̇CFD =
M−1

(
τ − c+ J⊤fCFD

)
. In JAX this reads as:

1 from jax.lax import stop_gradient
2 def forward(m: Model, d: Data) -> Data:
3 d_mjx = _forward(m, d, cfd=False) # Compute system acceleration without CFD
4 d_cfd = _forward(m, d, cfd=True) # Compute system acceleration using CFD
5 grad_replace_fn = lambda x_mjx, x_cfd: stop_gradient(x_mjx) + x_cfd - stop_gradient(x_cfd)
6 return jax.tree.map(grad_replace_fn, d_mjx, d_cfd) # Reroute gradient computation

As illustrated in Fig. 7 (bottom), the above code ensures that the forward pass uses Fθ(t, x(t)),
whereas the backward pass deploys ∂F̃θ

∂(x,θ) (t, x(t)). Crucially, the derivatives are evaluated at the
unmodified forward trajectory x(t). While our approach requires the simulator’s forward pass to be
computed twice, the gradient is only evaluated once. As the gradient computation dominates the
computational cost, CFD forms a practical method for improving contact gradients. Revisiting the
billiard toss example (Fig. 8), using CFD with the straight-through-trick yields informative gradients
while keeping the loss unaltered.

Note that the straight-through-trick is inspired by prior work on straight-through estimators (Bengio
et al., 2013); see also the related work in Appendix A. DiffMJX and CFD introduce easy-to-use
tuning knobs in MJX to control gradient quality. Appendix B explains how to tune these knobs. In
Appendix C.2, we evaluate the straight-through-trick with different autodiff techniques, including
“Discretize-then-optimize” and “Optimize-then-discretize.”

5 EVALUATION

In the following, we demonstrate the use of DiffMJX and CFD for learning physics parameters and
computing robot control actions using gradient descent with simulator gradients.

5.1 PARAMETER IDENTIFICATION

Parameter identification in the presence of hard contacts remains a laborious task. If contacts are hard,
learning the dynamics of a cube requires impractical amounts of data for “naive” neural network
regression (Parmar et al., 2021). In comparison, penalty-based simulators can capture hard contacts,
but the lack of correct gradients hinders efficient parameter estimation (Acosta et al., 2022). Therefore,
recent work introduced intricate analytical pipelines for cube geometry estimation (Pfrommer et al.,
2021; Bianchini et al., 2023) and graph-based networks for learning contact dynamics (Allen et al.,
2023). In what follows, we use the same real-world data as used in Pfrommer et al. (2021); Bianchini
et al. (2023); Allen et al. (2023). We demonstrate that DiffMJX with CDF enables simulator parameter
estimation via standard gradient-based optimization.

Dataset and training setup. We use the Contactnets dataset (Pfrommer et al., 2021) which consists
of 550 trajectories of a 10 cm acrylic cube that has been repeatedly tossed onto a wooden table. For
training, trajectories are split into segments of length five such that the simulator is tasked to unroll
four future steps starting from the initial state. Each segment and its prediction are fed to an L2

loss whose gradient is used for gradient-based optimization using Adam (Kingma & Ba, 2015). For
systems with stiff dynamics, we favor multi-step-ahead predictions over one-step-ahead predictions,
as they capture the cumulative effects of prediction errors over time. This setup enables a fairer
analysis of MJX without CFD, as even for too small side length estimates as illustrated in Fig. 10,
future state predictions can make contact to inform the optimization.
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Figure 9: Left: Estimation of a cube’s side length in
MJX via gradient descent using multi-step ahead pre-
dictions. Right: Experimental setup for collecting cube
toss data. Image adapted from Pfrommer et al. (2021).
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Figure 11: Comparison between real-world cube tosses (red) and DiffMJX cube simulations (black).

Training results. The training results are shown in Fig. 9. Our version of MJX with smooth
collision detection and MJX with CFD both achieve good estimation results with an error of around
5% relative to the ground truth. If the side length is initialized at 60 mm or 140 mm, training either
stalls fully or convergence is severely limited for MJX. The incorporation of CFD into MJX addresses
convergence issues arising from poor initial parameters, while the integration of adaptive integration
via DiffMJX significantly enhances estimation accuracy. DiffMJX improves estimation accuracy
by dynamically adjusting the time steps during collisions, thereby mitigating time discretization
errors. Further details and additional experiments in which also the contact parameters were identified
are provided in E.2. Fig. 11 provides a comparison of DiffMJX’s predictions after estimating
contact and geometry parameters. To the best of our knowledge, we are the first to demonstrate
parameter estimation of real-world cube dynamics using an automatically differentiable penalty-based
simulator. While this represents a promising step forward, further experimentation is necessary to
fully characterize the scope and limitations of this approach.

5.2 MODEL PREDICTIVE CONTROL

Next, we conduct experiments on gradient-based model-predictive control. At every plan step in the
MPC loop, we refine a sequence of controls over a 256-step horizon. In the gradient-based planner,
we compute gradients by backpropagating the differentiable cost computed on the rollout of the
current plan through the MJX simulator. The plan is then iteratively optimized using the Adam
optimizer with a learning rate of 0.01 for 32 iterations. Finally, the resulting plan is executed for
16 steps in simulation, after which the planning procedure is repeated with the previous plan as a
warm start. As a baseline, we include a version of the predictive sampling planner from Mujoco MPC
(Howell et al., 2022), which at every plan step samples k = {64, 256, 1024} trajectories, and executes
the lowest-cost plan. For enabling a fair comparison, we significantly improved the performance of
this planner for muscular systems by resorting to brown noise for sampling (Pinneri et al., 2020).

Models. As physical systems, we resort to state-of-the-art muscle-tendon models provided by
MyoSuite (Caggiano et al., 2022; Wang et al., 2022). Models include the MyoHand (Fig. 12, right)
adapted from the MyoChallenge 2022, which is comprised of 29 bones, 23 joints, and 39 muscle-
tendon units. We also use a bionic model (Fig. 13) modified from the MyoChallenge 2024, which is
comprised of the MyoArm with 27 degrees of freedom and 63 muscle-tendon units, and the simulated
modular prosthetic limb with 26 degrees of freedom and 17 motor control units.
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Gradients (no CFD)
Gradients (CFD)
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Gradients with CFD

Sampling

goal

Time

Figure 12: Autodiff-driven MPC with and without CFD on the in-hand manipulation and bionic
tennis tasks (Fig. 13). In both tasks, only the distance between the ball and the respective goal
is used as cost. Left: Simulation cost evolution of gradient-based MPC, with and without contacts
from distance (CFD), vs sampling-based MPC. The number for sampling indicates the number of
samples used per planning step. Sampling has difficulties solving the dexterous in-hand manipulation
task; gradients without CFD cannot solve the bionic tennis task. Right: Rendering of sampling-based
MPC (1024 samples) vs gradient-based MPC with CFD on the in-hand manipulation task. The goal
is to swap the balls, with the cost computed as L2 distance of the ball centers to positions fixed in the
frame of the hand. The MyoHand model is actuated by 39 muscle-tendon units.

goal

catch

move to goal

hit

start

v0

loss

time

Figure 13: Autodiff-driven MPC with CFD on the bionic tennis task. Task completion requires the
racket to deflect the ball towards the MyoArm with 63 muscle-tendon actuators, which then catches
the ball and moves it to the goal position. Only the distance between ball and goal is used as cost.

Dexterous in-hand manipulation. First, we consider an in-hand manipulation task, where the
goal is to swap two balls in the MyoHand. The cost is given by the Euclidean distance between
each of the balls and the respective target location, fixed in the frame of the hand. Note that the
muscle actuator implementation caused gradient errors, which we corrected using smooth functions
as surrogates. The results are reported in Fig. 12. We find that gradient-based MPC can reliably
solve this task, in contrast to the sampling-based planner. Overparameterization in the muscle-tendon
model with at least two muscles per joint actually benefits the gradient-based planner by helping
escape local minima, similar to its role in optimizing overparametrized neural networks. In contrast,
RL and sampling-based planners struggle with scaling in overparametrized higher-dimensional
systems (Schumacher et al., 2023). Thus, first-order methods using differentiable simulation should
be able to tackle more complex control problems.

Notably, this task does not require contacts from distance because hand-ball interactions are frequent
due to gravity. Moreover, we identify two crucial components of the gradient-based MPC loop: First
is gradient clipping, which is important as the scale of gradients changes massively in the presence
of contacts, as illustrated in Fig. 10 (right). This technique has also been reported to be effective in
previous works on differentiable simulation (Xu et al., 2022; Georgiev et al., 2024). Second, we store
the rollout cost of all gradient iterations and select the one with minimal cost. This is important as the
cost landscape is highly non-convex, which is reflected in the non-monotonic cost evolution between
the iterations of a planning step.
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Bionic tennis: Using CFD to solve complex control tasks with minimal task supervision. Finally,
we test a more complex custom tennis task on the bionic model. The task is to move a ball that is
initially moving sideways to a target location below. This can be achieved by bouncing it back using a
racket that is welded to the prosthetic hand, and then catching it at the target location with the muscle
hand. In this task, the only cost supervision is again the Euclidean distance of the ball to the target,
the complicated sequential movement has to be discovered purely from this signal.

We report our findings in Fig. 12 (left), see Fig. 13 for a rendering. By design, the task initialization
is such that the ball misses both hands, hence this task is not solvable by purely gradient-based MPC
using vanilla MJX. On the other hand, we observe that adding the CFD mechanism allows solving
this task. The sampling-based planner is a strong baseline in this task and gets close to solving it.
Initially, bouncing the ball back to the target only requires controlling the prosthetic arm, which is
relatively low-dimensional. Hence, the sampling-based planner achieves this part easily. However,
as seen in the in-hand manipulation task, it struggles with precise control of the high-dimensional
MyoHand, leading to sub-optimal results in balancing the ball at the goal position.

6 CONCLUSION

In this work, we tackle two standing challenges of computing gradients of penalty-based simulations
with hard contacts, namely gradient errors due to time discretization and zero contact gradients
between non-colliding objects. A 1D toy example illustrates how gradient errors are a consequence
of time discretization and can be mitigated by reducing the integration stepsize. While reducing
the stepsize improves gradient accuracy, it comes at the cost of increased simulation time and GPU
memory usage. To address these limitations, we introduce DiffMJX, a JAX library that incorporates
the adaptive integration library Diffrax into MuJoCo XLA. The use of adaptive time integration
enables the reduction of discretization errors while significantly reducing memory overhead through
checkpointing. Complementing DiffMJX, we propose Contacts from Distance (CFD), an exten-
sion of penalty-based contact resolution that improves gradient utility by introducing small virtual
contact forces between near-interacting bodies, without affecting the forward simulation due to the
straight-through-trick. We validated our contributions in a real-world system identification study,
where DiffMJX accurately recovered a cube’s geometric parameters via gradient-based optimization.
Beyond this, we present the first evidence that automatic differentiation through CFD can outperform
sampling-based predictive planning on musculoskeletal manipulation tasks. We hope these results
will guide future work on mitigating discretization errors in differentiable simulators and establish
DiffMJX with CFD as a helpful toolbox for gradient-based robot learning.
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Igor Mordatch, Zoran Popović, and Emanuel Todorov. Contact-invariant optimization for hand
manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer
animation, pp. 137–144, 2012a.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex behaviors through
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A RELATED WORK

Differentiable simulators are an active area of research spanning multiple fields of physics, including
elastic object and fluids modeling Hu et al. (2019b); Macklin (2022); Hu et al. (2020); Liu et al.
(2024) and modeling rigid body collisions Todorov et al. (2012); Hu et al. (2020); Taylor et al. (2022);
Howell (2025) (see Newbury et al. (2024) for a recent overview). As outlined in Fig. 14, we focus on
robotics simulators involving hard contact collisions, with the hierarchical objectives of (i) accurately
simulating dynamics, (ii) computing correct simulator gradients, and (iii) obtaining informative
gradients between non-colliding objects.

Goal 1: Realistic simulation

Goal 2: Accurate gradients

Goal 3: Contact invariance

Solution 1: 
Exact contact solving

Solution 1: 
Randomized smoothing

Solution 3: 
Finite differences

Solution 4 (ours): 
Adaptive integration

Solution 2: 
Analytic smoothing

Solution 1: 
Inter-body distances

Contact-invariant 
optimization

Straight-through
estimation

Solution 2 (ours): 
Contacts from distance

Solution 2: 
Compliant contacts
with stiff settings

Figure 14: Overview on hierarchi-
cal goals that need to be accom-
plished to use simulator gradients
for robot controller synthesis.

Simulating contact dynamics. Commonly deployed robot
simulators can be categorized according to their contact model
into impulse-based Catto (2018); Freeman et al. (2021); Hu
et al. (2020), complementary-based Taylor et al. (2022); Wer-
ling et al. (2021), and penalty-based Todorov et al. (2012)
approaches. Due to their simplicity and speed, impulse-based
simulators (Catto et al., 2009), such as those using DiffTaichi
(Hu et al., 2019a; 2020), are widely used in game development
but remain currently uncommon in robot controller synthe-
sis. Complementary-based contact models compute constraint
forces as a solution to a constrained optimization problem ei-
ther in the form of a nonlinear-complementary problem (NCP)
(Taylor et al., 2022) or linear-complementary problem (LCP)
(Russ Tedrake, 2019; Coumans & Bai, 2016; Heiden et al.,
2021; Yang et al., 2024). Exactly solving NCP is an NP-hard
problem Kaufman et al. (2008) that is considerably difficult
to solve even approximately. The NCP formulation in Dojo is
physically more accurate than LCP formulations Taylor et al.
(2022), but lacks support for parallel computation limiting its
utility for controller synthesis. That said, it is currently not clear
which complementary formulation is best suited for robotics.

To improve computational efficiency, MuJoCo (Todorov et al., 2012; Todorov, 2014) reformulates
the complementary constraint problem as a convex optimization problem. This reformulation builds
on prior work on complementarity-free approaches (Todorov, 2011; Drumwright & Shell, 2011).
Briefly, contact forces are computed by solving a global optimization problem, in which the ability of
a constraint to generate force is modulated by the geometric penetration depth at the contact interface.
As an alternative, Drake Russ Tedrake (2019) also adopts a soft patch contact model Elandt et al.
(2019); Pang et al. (2023). In turn, these approaches to contact resolution soften the dynamics.

Contact-invariant optimization. To guide an optimizer toward using body collisions for task
facilitation, recent works in controller synthesis and path planning incorporate inter-body distances
into the optimization objective. In RL, Zhang et al. (2023) added inter-point distances to rewards
using a softmax function. Alternatively, the algorithms in MuJoCo MPC (Howell et al., 2022) rely on
inter-point distances combined with trajectory samples establishing contact to inform the optimization.
However, depending on the task at hand, setting up distance-based loss terms to inform an optimizer
about the necessity for specific object collisions can quickly become cumbersome. As an alternative
approach, Mordatch et al. (2012a) proposed the framework of “contact-invariant optimization” (CIO)
in which a simulation is adjusted to also apply contact forces between non-colliding bodies. While
the simulation can apply non-physical contact forces, the optimization is encouraged through the
addition of several loss terms to minimize the usage of these forces. In Mordatch et al. (2012b),
CIO was extended to in-hand manipulation of objects. Our proposed extension of contacts from
distance (CFD) is inspired by CIO. Yet, while CIO applies artificial contact forces in the forward
simulation, CFD resorts to the straight-through-trick to only exert contact forces in a simulation that
is solely used for gradient computation. In turn, CFD does not require the addition of regularization
terms to a loss when used for planning. Recently, Beker et al. (2025) proposed soft signed distance
fields as an alternative geometry representation, while also adjusting collision detection and contact
force computation to be inherently soft. This approach which routes at the geometry level of robot
simulation can be seen as an alternative avenue towards CIO.
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Straight-through estimation. The use of the straight-through-trick in CFD is inspired by a plethora
of works in robotics and beyond (Bengio et al., 2013; Sahoo et al., 2023). The code underlying the
straight-through-trick is reported in JAX (DeepMind et al., 2020) documentation under the collective
heading of straight-through estimation. Straight-through estimation has been used in Gumbsch
et al. (2021), where the backward pass of a Heaviside function is replaced with an identity function
to obtain sparse RNNs for model-based RL. Horuz et al. (2025) demonstrate that using a ReLu
activation with a custom backward function rivals smooth ReLu surrogates. Recently, Song et al.
(2024) replaced simulator dynamics obtained from IsaacGym (Liang et al., 2018) with single-rigid
body dynamics for the gradient computation in the backward pass. This approach is closely related
to our work, but unlike CFD, Liang et al. (2018) does not utilize the forward pass simulation in the
backward pass, limiting its utility for complex control synthesis tasks and system identification.

JAX code for minimal collision simulation

surface

point mass
target

velocity change 
due to contact

Figure 15: Jax code for minimal collision simulation. The code simulates a minimal version of a
penalty-based or ideal-elastic simulator and is used in Fig. 4 to illustrate the TOI discretization errors
as shown in Fig. 4.
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MJX (Euler-SemiImplicit)
MJX (RK4)
MJX (ImplicitFast)

DiffMJX (Euler)
DiffMJX (Euler-SemiImplicit)

DiffMJX* (Heun2)
DiffMJX* (Bosh3)

DiffMJX* (Dopri5)
DiffMJX* (Tsit5) (recommended)

Figure 16: Error of loss and gradient vs runtime and compilation time for different integrators.
The loss and gradient are computed for the cube toss at an initial velocity of vx = −2.0 with contact
settings solref=[0.005 1.0] and solimp=[0.0 0.95 0.001 0.5 2] as depicted in Fig. 19 and the top of
this figure. The ground-truth gradients are computed from finite-differences using an adaptive solver
with very low tolerance (10−12) to simulate the rollout. Standard fixed-stepsize MJX integrators have
red colors, fixed-stepsize integrators in Diffrax have green color, and adaptive-stepsize integrators
in Diffrax have blue color (also marked by ∗). For adaptive stepsize control we use the Diffrax
PID controller with P = 0.2, I = 0.4, D = 0.0, as recommended for stiff ODEs. We observe
that the pareto-front of adaptive solvers is shifted, allowing lower loss and gradient errors with less
runtime. The best-performing solver is the Tsit5 solver (Tsitouras, 2011), which is a 5th order explicit
Runge–Kutta method with an embedded 4th order method for adaptive step sizing. This is also the
default solver used in other experiments.
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B TUNING DIFFMJX

Through Diffrax, DiffMJX provides a whole suite of additional tuning knobs that can be used to
improve gradient computation as shown in Fig. 17.

MJX

DiffMJX

Timestep dc wc mc power

solref
solimp

Set contact stiffness

Error tol.
Checkpoints

Adaptive 
integration

Soft collision detection

Adjoint
unroll / backsolve

CFD-solimp

Diffrax

CFD

Set gradient accuracy 

Artificial contacts 
for gradient-based 
optimization

Figure 17: DiffMJX and CFD add tuning knobs to MJX’s gradient computation. DiffMJX adds
support for adaptive integration atop MJX. The integrator’s error tolerances trades computational
speed for improved gradient accuracy. The number of checkpointing steps trades computation speed
with GPU memory consumption. CFD adds parameters that set the distance and magnitude at which
artificial contact forces between non-colliding objects are applied in the gradient computation.

Error tolerances set gradient accuracy. In this work, we showed that the errors of penalty-based
simulator gradients depends on

1. the simulation stiffness, aka the hardness of contacts and joint limits,
2. the contact velocities in normal direction, aka how fast objects collide into each other,
3. and the integration stepsize.

While simulation stiffness and contact velocities are system dependent, the integration stepsize is
a tuning parameter. To obtain accurate gradients, one can use a constant stepsize integrator with a
sufficiently small stepsize which inevitably results in slow integration.

To speed up computation, an adaptive integrator solely reduces the stepsize if necessary as a function
of the integrator’s error tolerances. In turn, as the integrator’s error tolerances directly determines the
gradient errors, it forms the most important hyperparameter.

To speed up computation, use the largest error tolerance that still produces suffi-
ciently accurate gradients.

Figure 16 shows the error vs runtime trade-off for different integrators in MJX and DiffMJX. We
observe that in the case of the cube toss, the adaptive integrators reduce the runtime required to
achieve gradients with low error.

Number of checkpoint trades GPU memory for compute time. Thanks to Diffrax’s advanced
techniques for checkpointing, DiffMJX memory consumption is significantly reduced compared to
MJX. As noted in Diffrax’s documentation, the memory used approximately equals the number of
checkpoints multiplied by the size of the ODE’s state.

Increasing the number of checkpoints speeds up computation. Therefore, use as
many checkpoints as possible given the available GPU memory.

By reducing the number of checkpoints, we were able to run DiffMJX simulations that MJX could
not, because MJX exceeded the available GPU memory.

Maximum number of ODE steps affects JIT compilation time. As shown in Fig. 16, there is a
notable increase in JIT compilation time when using Diffrax compared to MuJoCo’s semi-implicit
Euler integrator. This is due to the program being compiled for the maximum number of ODE steps
that is set by the user. Therefore, this parameter should be chosen as small as possible.
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C METHOD DETAILS

C.1 REMOVING DISCONTINUITIES FROM COLLISION DETECTION AND MUSCLE ACTUATORS

The collision checking in MJX is implemented for pairs of several different geometries. Many of the
collision check implementations rely on several case distinctions, e.g. the collision of a cylinder and
a plane is separated into the case of the cylinder being parallel to the plane vs not. These hard case
distinctions can lead to errors in the gradients, as they introduce discontinuities in the dynamics and
its gradient. We adopt the typical approach for smoothing such non-differentiabilities by replacing
any hard case distinctions by smoothly interpolating between the cases with weights computed
from a sigmoid. Specifically, we end up modifying the collision detection between plane-cylinder,
sphere-capsule, capsule-capsule, plane-capsule and plane-box pairs. More complicated collisions like
mesh-mesh collisions are currently not modified as they are not relevant in our experiments, but we
plan on supporting these in a future version.

We also encountered differentiation errors in MJX environments with muscle–tendon units. The
source of these issues is that the functions for computing wrapping of muscles around objects rely on
nonlinearities such as arcsin, which has an undefined gradient at some points. A practical remedy is
the “double-where” trick, which prevents gradient flow at those singularities.

Concurrently with our work, La Barbera et al. (2025) employed MJPC Howell et al. (2022) – a library
for CPU-based MPC in MuJoCo via finite differences – to compute ideal controls of a musculoskeletal
dog model. This seminal work also reports that modifying the muscle dynamics to be differentiable
was a key contribution for improving MPC performance.

C.2 ODE DIFFERENTIATION IN DIFFRAX

Diffrax: Numerical integration with JAX The ODE solved by the Mujoco simulator can be
written as

x(0) = x0 ẋ(t) = Fθ(t, x(t)), (5)

where θ incorporates all model parameters and x is the full state of the system.

In this work, we resort to the Diffrax library (Kidger, 2021; Kidger & Garcia, 2021) for numerical
integration in Jax to solve the above ODE. This powerful library provides efficient implementations
of many fixed and adaptive timestep solvers (Tsitouras, 2011; Dormand & Prince, 1980). It also
allows easily switching between different modes for backpropagation: Discretize-then-optimize
(also referred to as unrolling) and optimize-then-discretize (also referred to as backsolving) (Chen
et al., 2018; Kidger, 2021). Overall, the choice of solver, stepsize controller and differentiation
technique is typically application-dependent. Hence, we implement the general Diffrax integrator as
an easy-to-use alternative for the existing fixed-stepsize integrators in MJX, offering the full flexibility
of the Diffrax library to the user. Notably, we adjust the Diffrax solvers to accommodate for exact
integration of quaternions and stateful actuators, similar to the Runge-Kutta implementation of MJX,
which reduces the number of required integration steps.

Discretize-then-optimize. The first notable differentiation mode is discretize-then-optimize. It
is the result of discretizing the forward ODE with a numerical integrator and then computing the
gradients of the discretized forward ODE by unrolling the computation graph. This approach
aligns with the paradigm of differentiable programming used in autodifferentiation libraries such as
JAX, hence this is also the approach taken in standard MJX. The problem here is that the memory
requirements scale linearly with the number of solver steps. For many applications this is a serious
bottleneck in standard MJX, and the problem is exacerbated when relying on adaptive integration, as
it typically involves storing even more substeps. Fortunately, Diffrax implements an optimal gradient
checkpointing scheme that allows reducing memory requirements from O(n) to O(1) in exchange
for increasing runtime from O(n) to O(n log n), where n is the maximum number of solver steps.

Another potential issue is that discretize-then-optimize inherently computes gradients of the dis-
cretized dynamics, rather than the true continuous dynamics. This can lead to interesting failure cases
in which even in the limit of the stepsize going to zero, the computed gradient is different from the
true gradient of the continuous dynamics. This is the result of the basic fact that the convergence
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Figure 18: Optimize-then-discretize vs discretize-then-optimize in the presence of CFD. Results
are for a reduced billiard example as in Fig. 8 without table-ball contacts and gravity. Left: DiffMJX
adaptive integration results in well-behaved gradients, but gradient is zero if objects do not collide.
Middle: Using CFD with discretize-then-optimize results in small gradient oscillations. The adaptive
integrator selects large stepsizes as no contacts are happening (forward ODE is non-stiff), whereas
in the gradient computation the CFD are added (adjoint ODE is stiff). In turn, unrolling the large
stepsizes cause discretization errors. Note that this phenomenon persists no matter how low the
tolerance of the forward ODE solver is set, as the stepsize controller is unaware of the CFD mechanism
that is only used in the gradient computation. Right: Using optimize-then-discretize allows the solver
for the adjoint ODE to select small stepsizes when the adjoint ODE is stiff due to CFD. This fixes the
gradient oscillations.

of a parameterized function (the discretized ODE) to a limit (the continuous ODE) does not imply
the convergence of its gradient. Note that this is not a mere mathematical corner case, instead it is
the underlying reason for time-of-impact oscillations as described in Fig. 4 and Hu et al. (2020);
Schwarke et al. (2024).

Optimize-then-discretize. Fixing this requires (approximately) computing the gradients of the true
continuous forward ODE. This is achieved by analytically computing the gradient as the solution to
the continuous adjoint equations. Assuming a loss L = L(x(T )) only on the final state w.l.o.g., the
continuous adjoint equations (Kidger, 2021, Theorem 5.2) can be written as:

ax(T ) =
dL

dx(T )
ȧx(t) = −ax(t)

⊤ ∂Fθ

∂x
(t, x(t)) (6)

aθ(T ) = 0 ȧθ(t) = −ax(t)
⊤ ∂Fθ

dθ
(t, x(t)). (7)

Solving these using any numerical solver on the backward pass, as offered readily by the Diffrax
library, yields the desired gradients dL

dx(t) = ax(t) and dL
dθ = aθ(0).

This approach is called “optimize-then-discretize” or BacksolveAdjoint in Diffrax. Note also that
the memory requirements can again be reduced to constant in the number of solver steps, by solving
the forward ODE “backwards in time” together with the adjoint ODE. Optimize-then-discretize, in
contrast to unrolling, allows to directly specify tolerances on the error in the gradients.

One of the intuitive potential benefits of optimize-then-discretize is that the adaptive stepsize controller
for solving the adjoint ODE now has the ability to adapt the stepsize when computing the adjoint
derivatives, rather than being constrained to unrolling the steps that were taken during the forward
solve. However, in practice it is typically the case that the forward ODE and the adjoint ODE are stiff
“in the same regions”, i.e. the state derivative changes quickly when the state itself changes quickly.
Hence, when unrolling the forward solve, the steps are already small in the regions where the adjoint
ODE is also stiff. Therefore it typically suffices to use the less complicated discretize-then-optimize,
which has a less complex computational graph and therefore comes with lower compilation times.
The above explanation of course only holds when the forward ODE and the adjoint ODE “match”;
when modifying the adjoint ODE (as will be discussed in the following section) it may be beneficial
to use optimize-then-discretize.
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C.3 CONTACTS FROM DISTANCE WITH THE STRAIGHT-THROUGH-TRICK

In discretize-then-optimize, automatic differentiation automaticaly uses the vector-jacobian-products
derived from F̃θ instead of Fθ. In optimize-then-discretize, with the straight-through-trick applied to
F , we replace the vector-jacobian-products in the adjoint equations Eq. (6) as follows

ãx(T ) =
dL

dx(T )
˙̃ax(t) = −ãx(t)

⊤ ∂F̃θ

∂x
(t, x(t)) (8)

ãθ(T ) = 0 ˙̃aθ(t) = −ãx(t)
⊤ ∂F̃θ

dθ
(t, x(t)). (9)

Solving these altered adjoint equations gives replacements for the respective gradients, which in
our case incorporate gradient information on contacts from distance. Again, this approach does
not require any additional implementation effort, as the straight-through-trick allows to just use the
existing Diffrax implementation of optimize-then-discretize.

Optimize-then-discretize vs Discretize-then-optimize in the presence of CFD. As discussed
in the previous section, adding contacts from distance may change the preferred choice of gradient
computation, as the forward and adjoint ODE may have different stiffness values in different regions.

To illustrate this, we again consider a version of the billiard-toy example from Fig. 8. This time, we
turn gravity off and disable the table-ball contacts to isolate the ball-ball contact, which means that
the ODE is linear before and after the collision. We again compute the loss and gradient over a range
of initial parameters, the results are reported in Fig. 18. As before, we observe that with the DiffMJX
adaptive integrator, we get well-behaved gradients, but the gradient becomes zero when the two balls
do not collide.

Now, we activate the CFD mechanism and repeat the experiment. In this case, the gradient show
oscillations due to the different stiffness settings of the forward and adjoint ODE: The solver
for the forward ODE takes very large steps when no ball-ball collision happens, but the adjoint
ODE incorporates the collision signal and hence is stiff. Simply unrolling the forward integration
therefore makes a discretization error, resulting in the oscillations. Note, that we did not observe
this phenomenon in Fig. 8, as this experiment includes ball-table collisions which cause the adaptive
solver of the forward ODE to take small steps even when no ball-ball collision is happening. The
solution is to use optimize-then-discretize. Here, the adaptive solver for the adjoint ODE can select
stepsizes according to the stiffness of the adjoint ODE. This is also confirmed by the results in Fig. 18
(right).

This experiments highlights a specific corner case, and we did not observe issues in our other
experiments when using discretize-then-optimize with CFD, as we typically do not have such extreme
variations of the stiffness in the forward ODE. However, we believe it is beneficial to be aware of this
potential caveat and how one can resolve it with the tools available in DiffMJX.

D DIFFMJX & CFD: THE SHARP BITS

CFD adds additional contacts to the solver which can slow down computation. The documen-
tation of MuJoCo XLA1 advises to use meshes with 200 vertices or fewer due to computational
limitations on the current implementation of collision detection. If MJX is used with CFD, then
every contact is added to the contact solver for which r < wc. In turn, for dense meshes and large
wc, computation time notably increases. The parameter wc can be made arbitrarily small such that,
in its limit for wc = 0, we retain vanilla MJX with our improvements on the differentiability of
the collision detector. That said, for in-hand manipulation tasks and robot locomotion tasks, the
number of objects colliding at one instance is small enough to render CFD a useful tool for easing
optimization with penalty-based simulators.

Adaptive integration slows down training if tolerances are set too small. For the very large
initial cube side length initial value of 140 mm, DiffMJX saw a significant drop in computation
speed forcing us to abort these runs. This is not surprising as penetrations amounting to 40% of the

1https://mujoco.readthedocs.io/en/stable/mjx.html#mjx-the-sharp-bits
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total cube’s width cause huge contact forces that significantly stiffen the ODE. In Appendix E.2,
we reduce the integration error tolerance which allowed optimization to converge even for large
initial parameters. Alternatively, one could speed up training for these too large geometry parameter
initializations by first using soft impedance settings that during training becomes annealed to become
increasingly stiff. The same principle applies to scenes with multiple objects: overly tight integration
error tolerances can substantially slow down the simulation. As integration error scales with relative
contact velocity, scenarios involving large state changes along contact normals trigger smaller step
sizes. Notably, while the ball in the billiard shot example (Fig. 8) was rolling over the table, the
integration stepsize did only marginally decrease. Whereas during the collision between balls, the
integrator adjusted the stepsize notably.

Finite differences can be a viable alternative for computing low-dimensional gradients. In
general, gradient computation with MJX via automatic differentiation is notably slower than running
only the forward simulation. This makes zeroth-order methods such as predictive sampling favorable
whenever the task can be solved with them. This is usually the case for low-dimensional systems or
computing gradients of only a few parameters, e.g. compting gradients via finite differences for less
then ten parameters seems to work well in practice. As sampling suffers from the curse of dimension-
ality, automatic differentiation for computing gradients scales to extremely high-dimensional control
problems which enabled us to do gradient-based MPC on the musculoskeletal systems.

CFD should be combined with sampling to solve nonconvex optimizations. For MPC, our
CFD mechanism tends to be effective when the object needs to be pushed in a specific direction
by the hand, but it performs poorly in grasping tasks. This limitation arises because, at a distance,
the cumulative force arising from the hand’s CFDs conglomerate into a force that pushes objects
away. However, the gradient does not encode the possibility of grasping, as this signal only emerges
when the object is inside the hand. Fundamentally, this issue reflects the non-convex nature of the
optimization landscape. However, we do not believe that this is a problem that should be solved
using a CFD mechanism; rather, in such tasks, the best approach would be to combine CFD with
sampling to overcome the non-convexity while maintaining the favorable scaling of gradients with
dimensionality.

Parallelizing DiffMJX simulations. Locomotion policies trained with reinforcement learning
typically rely on domain randomization with many environments executed in parallel. DiffMJX
supports such batched execution via JAX’s vmap, analogous to MJX. However, if a single policy
induces large contact forces, then this may trigger very small integration steps, which results in the
other simulations to wait for a slow simulation to finish. This slowdown is mitigated by increasing
the integration error tolerances or by early-terminating the respective simulation once a predefined
solver-step budget is exceeded.

E EVALUATION DETAILS AND FURTHER EXPERIMENTS

E.1 GRADIENT ANALYSIS OF MJX

In Fig. 4, the time discretization errors arising in penalty-based simulators are first illustrated on a
minimal toy example. The code to generate this toy example is shown in Fig. 15. After illustrating on
this toy example that time discretization errors can be mitigated by reducing the stepsize, it is shown
in Fig. 3 that these errors also occur in MuJoCo. Fig. 19 is an extended version of Fig. 3 containing
all of MuJoCo’s basic shape primitives.

E.2 SYSTEM IDENTIFICATION EXPERIMENTS

Contactnet dataset The contactnet dataset2 consists of 550 trajectories of an acrylic cube that has
been repeatedly tossed onto a wooden table. As reported in Pfrommer et al. (2021); Acosta et al.
(2022), data has been collected at 1480 Hz and the cube’s physical parameters amount to a side length
of 10 cm, mass of 0.37 kg, inertia of 0.0081 kgm2, a friction coefficient of 0.18, and restitution of
0.125.

2https://github.com/DAIRLab/contact-nets
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Figure 19: Simulation of geometric primitives thrown onto a surface using MJX or DiffMJX.
Contacts at default stepsize 0.002 s, solref=[0.005 1.0], and solimp=[0.0 0.95 0.001 0.5 2] cause
MJX’s gradients of the toss distance to deviate significantly from central difference gradients, while
DiffMJX maintains close agreement.

Training setup The trajectories are split into segments of length five. In the supervised train loop,
given a trajectory segment’s initial state, each simulator is unrolled for four steps. Subsequently,
an mean square error (MSE) loss between the segment’s states and predicted states is computed.
Before being fed to the loss function, each state’s quaternion is converted to a rotation matrix to
avoid representation singularities negatively affecting training Geist et al. (2024); Brégier (2021). For
adaptive integration, DiffMJX is set to use “RecursiveCheckpointing” and a 5th order explicit Runge–
Kutta method (“Tsit5” in Diffrax) with PID error tolerances of 1e-5. We use the Adam Kingma
& Ba (2015) implementation from the Optax library DeepMind et al. (2020) for gradient-based
optimization with parameters [b1 = 0.5, b2 = 0.9, eps = 1e-6]. MuJoCo’s parameter are set to a
timestep of 0.006767 s (the data collection sampling time), iterations=4 (contact solver iterations),
ls_iterations=10 (solver steps), tolerance=1e-8, impratio=1.0, solref=[0.02 1], solimp=[0.05 0.95

0.01 0.5 2], and friction solimp=[0.4 0.01 0.1]. The cube’s mass is set to the reported groundtruth
value and its inertia is computed by MuJoCo’s default equal density approximation. DiffMJX uses
the same MuJoCo settings with the exception of iterations=2 (adaptive integration does not require
as many solver iterations). The CFD impedance function is set [0.0, 0.01, 0.01, 1.0, 4.0] that is
dc = 0.01, d0 = 0 with wc = 1m.

E.2.1 IDENTIFICATION OF ADDITIONAL MUJOCO PARAMETERS

In this section, we extend the experiment from Section 5.1 and use DiffMJX to estimate MuJoCo’s
simulation parameters alongside the cube’s side length. In these experiments, the same setup is used
for DiffMJX as detailed in the previous section. In comparison to the experiment in Section 5.1, the
integration error tolerance is increased to 1e-4 to reduce computation time. Moreover, the parameters
are constrained using either a softplus function or a softclip function where the softening hyper-
parameter has been carefully tuned. While the models are trained on an MSE between trajectory
segments, we evaluate the model on the “trajectory error” being the mean absolute error between the
first forty trajectories in the dataset and DiffMJX’s trajectory prediction. In the these experiments,
DiffMJX estimates the following parameters simultaneously:

• sidelength as also estimated in Section 5.1,

• mass from which MuJoCo automatically computes the cube’s inertia,

• solref parameters (time constant tc, damping ratio ϕd) determining the constraint stiffness,

• solimp parameters determining the constraint’s ability to generate force,

• friction parameters determining the extend of the contact friction cone.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 200
gradient step

0.27

0.38

Trajectory error

0 200
gradient step

3.26

25.39
Computation time

0 200
gradient step

0

120
Sidelength

0 200
gradient step

0.34

0.38

Mass

0.30

0.35

Tr
aj

ec
to

ry
 e

rro
r

0 200
gradient step

0.00

0.02
solref[0]

0 200
gradient step

0.97
1.00

solref[1]

0 200
gradient step

0.00

0.04
solimp[0] (d0)

0 200
gradient step

0.92
0.95

solimp[1] (dw)

0.30

0.35

Tr
aj

ec
to

ry
 e

rro
r

0 200
gradient step

0.01

0.06

solimp[2] (width)

0 200
gradient step

0.50

0.56

solimp[3] (mid)

0 200
gradient step

0.36

0.40

friction[0]

0 200
gradient step

0.00

0.02
friction[1]

0 200
gradient step

0.01

0.06

friction[2]

0.30

0.35

Tr
aj

ec
to

ry
 e

rro
r

0 100
gradient step

0.26

0.67

Trajectory error

0 100
gradient step

0.10

31.91
Computation time

0 100
gradient step

0.0

180.7
Sidelength

0 100
gradient step

0.28

0.45

Mass

0.30

0.35

0.40

0.45

Tr
aj

ec
to

ry
 e

rro
r

0 100
gradient step

0

1
solref[0]

0 100
gradient step

0.1

1.0
solref[1]

0 100
gradient step

0.00

0.09
solimp[0] (d0)

0 100
gradient step

0.80

0.99

solimp[1] (dw)

0.30

0.35

0.40

0.45
Tr

aj
ec

to
ry

 e
rro

r

0 100
gradient step

0.00

0.05
solimp[2] (width)

0 100
gradient step

0.01

0.99
solimp[3] (mid)

0 100
gradient step

0.0

0.9
friction[0]

0 100
gradient step

0.00

0.05
friction[1]

0 100
gradient step

0.00

0.06
friction[2]

0.30

0.35

0.40

0.45

Tr
aj

ec
to

ry
 e

rro
r

Figure 20: Top: Identification of MuJoCo parameters with DiffMJX on Contactnets cube toss
dataset starting from pre-tuned inital conditions. Bottom: Identification starting from random
initial parameters. The cube’s geometry has a significant effect on the time of impact such that
the optimization converges to a sidelength close to 100 mm to reduce the train loss. The effect of
other model parameters on the system dynamics is more inter-twined. For example, a too large
mass resulting in larger penetrations during impact can be compensated by increasing the constraint
stiffness via solref[0] or solimp[0].

In total, we conduct two additional experiments with the Contactnets dataset:

Starting from pre-tuned initial conditions: The optimization is started from the same pre-tuned
initial conditions as used in Section 5.1. The prediction horizon is set to N = 10. The training results
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are shown in Fig. 20 (Center). Each model requires around 10 seconds of computation time per
gradient step.

Starting from random initial conditions: The optimization is started with random initial parame-
ters. The prediction horizon is set to N = 4 such that the majority of runs require around 5 seconds
for a gradient step. The training results are shown in Fig. 20 (Bottom).

In both experiments, the trajectory error remains above 0.25. As noted by Parmar et al. (2021),
the dynamics of a hard cube exhibit a degree of chaotic behavior. Consequently, small variations
in initial conditions – potentially arising from sensor noise or external disturbances such as wind –
can substantially alter the cube’s trajectory after one of its corners hits the table. Nevertheless, the
reduction in trajectory error from approximately 0.32 to 0.26 results in the simulated cube notably
more closely matching the real-world data, as shown in Fig. 20.

E.3 MPC EXPERIMENT

Experimental setup. The MyoHand and MyoArm collision parameters are set to solref=[0.02

1.0], and solimp=[0.0 0.95 0.001 0.5 2], the racket collision parameters are set to solref=[-100000 0]

for elastic collision. When using CFD, we set solimp=[0.1 0.95 0.001 0.5 2] and use solimp-CFD

=[0.0 0.1 1.0 1.0 4]. The timestep of the simulation is set to 0.0025, the constraint solver is the
Newton solver with 4 iterations and 16 linesearch iterations. All models use our refinements for
improving differentiability of MuJoCo’s collision detector.

All MPC experiments are performed on a NVIDIA GeForce RTX 3060. In the in-hand manipulation
task the runtimes for the gradient-based MPC are 2.9h (+2.2h JIT) without CFD and 6.4h (+2.1h
JIT) with CFD. The sampling with 1024 samples takes 35min (+3min JIT). In the bionic tennis task,
the runtimes for the gradient-based MPC are 9.7h (+1.2h JIT) with CFD. The sampling based MPC
runs for 1.4h with 2048 samples.

Note, that we did not optimize any of the methods for speed in this experiment, i.e. in baoding with
gradients the task was solved after less than half the total timesteps. The main point here is that we
can solve the challenging task using a purely gradient-based method that scales to high-dimensional
systems. The large runtime of the gradient-based approach is mainly due to inefficient automatic
differentiation of the MJX simulation, which remains the strongest limitation on gradient-based
approaches at this point. One potential improvement could be to implement implicit differentiation of
the constraint solver in MJX, which could allow for much more efficient gradient computation.
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