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Abstract

Despite significant advances in Multimodal Large Language Models (MLLMs),
understanding complex temporal dynamics in videos remains a major challenge.
Our experiments show that current Video Large Language Model (Video-LLM)
architectures have critical limitations in temporal understanding, struggling with
tasks that require detailed comprehension of action sequences and temporal pro-
gression. In this work, we propose a Video-LLM architecture that introduces
stacked temporal attention modules directly within the vision encoder. This de-
sign incorporates a temporal attention in vision encoder, enabling the model to
better capture the progression of actions and the relationships between frames
before passing visual tokens to the LLM. Our results show that this approach
significantly improves temporal reasoning and outperforms existing models in
video question answering tasks, specifically in action recognition. We improve on
benchmarks including VITATECS, MVBench, and Video-MME by up to +5.5%.
By enhancing the vision encoder with temporal structure, we address a critical gap
in video understanding for Video-LLMs. Project page and code are available at:
https://alirasekh.github.io/STAVEQ2/

1 Introduction

Recent advances in Multimodal Large Language Models (MLLMs) have led to significant improve-
ments in performance across a wide range of tasks involving multimodal data, including video
question answering and image captioning – demonstrating impressive capabilities in integrating
both visual and textual information. However, despite these advancements, when it comes to videos,
current Video Large Language Models (Video-LLMs) still face major challenges in understanding
temporal dynamics.

In video question answering (VQA), the input is a video accompanied by a natural language question,
and the output is a textual answer to that question. While current models perform reasonably well on
spatially grounded questions (e.g., “What color is the ball?”), they struggle when the query requires
precise comprehension of temporal progression within the video. Notably, many existing benchmarks
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Qwen2-VL: A man is seen biking, he is wearing a
red T-shirt.

Video:

Question: What is happening in this video? +Options

(GT Action: Pulling from right to left)

Video:

Question: What is happening in this video?

(GT Action: Biking)

STAVEQ2: Someone is riding a bicycle, moving
from right to left while wearing a red shirt. 

Qwen2-VL: Pulling something from left to right

STAVEQ2: Pulling something from right to left

Figure 1: Responses from Qwen2-VL and our STAVEQ2. Left: For a temporally simple action (Bik-
ing), both models answer correctly. Right: For a temporally challenging action (pulling something
from right to left), Qwen2-VL provides an incorrect answer, while our STAVEQ2 succeeds.

and datasets are not particularly challenging in terms of temporal complexity, allowing some models
to answer questions by relying on a single frame. In contrast, tasks such as action recognition
necessitate understanding not only frame content but also how the frames change over time. An
example is given in Figure 1, where the action captured in the second video is identifiable only when
observing at least two frames.

In this work, we first analyze the limitations of current Video-LLMs such as Qwen2-VL [44] and
InternVideo2-Chat [47] in temporal modeling capabilities. Specifically, we observe that current
Video-LLMs struggle with fine-grained temporal reasoning tasks, such as distinguishing between
actions that differ subtly in their execution over time (e.g., pulling an object from left to right versus
right to left). Furthermore, despite attempts to improve performance through in-context learning
approaches, these models consistently fail to recognize similar temporal patterns across different
video instances, indicating a fundamental limitation in their temporal processing architecture rather
than merely a training data issue. Building upon our findings in the limitations of the current
state-of-the-art models, we propose our novel video-LLM model STAVEQ2.

With STAVEQ2, we propose an enhanced Video-LLM architecture that introduces stacked temporal
attention modules directly within the vision encoder. As detailed in Figure 3, this architectural change
explicitly equips a Video-LLM’s vision encoder with temporal attention, enabling it to better capture
the progression and dynamics of actions across frames before passing the visual tokens to the LLM
for final reasoning. In our evaluation, we demonstrate that this design significantly improves the
model’s temporal understanding, leading to superior performance on temporally challenging tasks
and benchmarks.

In summary, our contributions include: (i) We analyze how current Video-LLMs struggle in capturing
complex temporal dynamics, even with in-context examples and fine-tuning. (ii) We propose
STAVEQ2, our Video-LLM model, equipped with improved temporal video understanding. We show
that STAVEQ2 outperforms recent state-of-the-art Video-LLMs on several benchmarks. To the best
of our knowledge, with STAVEQ2, we are the first to efficiently include dedicated temporal attention
blocks into the vision encoder of Video-LLMs for video question answering. (iii) We achieve new
state-of-the-art results on the SSv2 action recognition benchmark by applying our proposed temporal
attention mechanism to previous state-of-the-art video foundation model (Vision-only).

2 Related Work

Video-LLMs The field of video understanding has witnessed significant advancements with the
emergence of Video-LLMs. Multimodal language models, which integrate additional modalities like
images [42, 31, 37, 20] or audio [11, 23, 8] into language models, have expanded the scope of LLMs
beyond text [12]. Extending this to the video domain, recent Video-LLMs have enabled tasks such as
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video captioning, question answering, and instruction following by aligning video content with natural
language. Models like Video-ChatGPT [33], Video-LLaMA[53], Video-LLaVA [30], LLaVA-NeXT-
Video[54], VideoChat [27], Otter [26], Gpt4Video [49], and InternVL 2.5 [9] demonstrate strong
performance in grounding text in visual inputs. While they effectively capture spatial semantics, many
still struggle with modeling long-range temporal dependencies and maintaining consistency across
frames. This challenge is underscored in some works [2], which show case that even state-of-the-art
video-language models lack an inherent understanding of temporal order, and proposes additional
temporal information is necessary to improve these lacks. Our work builds on these models by
focusing on improving temporal understanding in video-based reasoning tasks.

Temporal Understanding in Video-LLMs Despite the advancements in Video-LLMs, temporal
understanding is still an area that has not been fully explored, and unlike claims provoked by Liu et
al. [32], existing models appear to struggle with understanding temporally complex tasks. Several
works have made efforts to address this, such as those by [25, 35, 22], specifically targeting very
long videos [41, 40, 24, 18]. Also, some works have been trying to push temporal understanding
on models using methods such as temporal localization or boundary [6, 35, 22]. Others use Q-
formers to condition the temporal features on inputs in order to improve temporal understanding and
performance [36, 1]. TG-Vid [21] introduces a time gating mechanism aimed at enhancing temporal
modeling; however, its results remain modest and the method is not particularly efficient.

Prior works employ varied approaches to temporal modeling. For instance, Qwen2-VL relies solely
on spatial attention in its vision encoder, delegating temporal understanding to the language model.
In contrast, InternVideo2 incorporates joint spatiotemporal attention in its vision encoder. However,
our experiments in the next section demonstrate that both approaches are insufficient for capturing
fine-grained motion dynamics and temporal dependencies. However, another approach that has been
less explored in Video-LLMs is the divided space-time attention introduced in [5]. Our experiments
also explore multimodal in-context learning in VLMs, as studied in [16, 7, 38], revealing that existing
models lack sufficient in-context learning capability.

3 Problem Definition & Motivation

Before introducing our model, we begin by analyzing the performance limitations of current Video-
LLMs on temporally demanding video question answering (VQA) tasks. Through a series of
experiments, we reveal fundamental weaknesses in temporal reasoning, which motivate the need for
our proposed approach.

Problem Definition We address the task of video question answering (VQA), where the input
consists of a video V ∈ RT×H×W×3 with T RGB frames of height H and width W , and a natural-
language question Q. The goal is to produce a textual answer A that accurately responds to the
question based on the visual content of the video. This formulation generalizes to a variety of tasks
such as video captioning, action recognition, and similarity detection. For example, action recognition
can be cast as a VQA task by posing the question: “What action is happening in this video?” with
an answer such as “Pulling [something] from left to right.” Our focus is on temporally challenging
VQA tasks, where the correct answer depends not on static frames, but on modeling the sequence
and progression of visual elements over time. For instance, distinguishing an action such as moving
an object from left to right versus from right to left requires precise temporal reasoning.

We create a temporally challenging VQA dataset, specifically curated to stress temporal understanding.
We evaluate the performance of selected Video-LLMs (Qwen2-VL, InternVideo2-Chat, and LLaVA-
NeXT-Video; see Section 2) on this dataset under zero-shot settings. Then, we investigate whether
performance can be improved via conventional LLM improvement approaches such as through
in-context learning. Finally, we analyze the results to demonstrate the inherently temporal nature of
our dataset and the persistent limitations of current models in handling such tasks.

3.1 Temporally Challenging Dataset

Our experiments utilize the Something-Something v2 (SSv2) dataset [17, 34] – an action recognition
benchmark with over 220K videos, each annotated with one of 174 actions (e.g., “Pulling [something]
from left to right”). To examine temporal challenges, we select a subset of SSv2 with action classes

3



Table 1: Zero-shot and in-context action recognition performance of four Video-LLMs. We use a
different LLM to judge whether the generated answer matches the ground-truth action (LLM-as-a-
Judge). *We provide the 10 possible actions within the prompt.

# Examples Qwen2-VL
2B

Qwen2-VL
7B

InternVideo2
Chat 8B

LLaVA
NeXT-Video 7B

0 14.87% 21.91% 30.60% 19.38%
0* 24.01% 35.91% 46.11% 31.46%

1 9.24% 15.83% 23.86% 16.54%
3 9.56% 16.79% 17.04% 18.98%
5 8.92% 20.72% 10.41% 16.32%

that are opposites in how they change over time. This way, we create the dataset SSv2-T10, that
specifically targets at temporally-challenging cases by reducing SSv2 to 14,462 videos of 10 classes
that represent pairwise counterparts regarding their temporal characteristics. These classes were
chosen to create temporally challenging VQA tasks, where accurate action recognition depends on
modeling the sequence and progression of visual elements across frames, aligning with our goal
of evaluating Video-LLMs’ temporal reasoning capabilities. The list of selected action classes is
provided in Appendix B.

3.2 Zero-Shot & In-Context Performance

We analyze whether the performance of the tested Video-LLMs can be improved through few-shot
prompting, motivated by findings in multimodal LLMs showing that in-context learning enhances
performance [14, 52]. As shown in Table 1, they perform poorly in the pure zero-shot setting — with
accuracies as low as 14.87% for Qwen2-VL 2B and only 30.60% for InternVideo2-Chat. Even when
we provide the list of 10 candidate classes within the prompt, performance remains weak. Although
scores improve notably in this setting (e.g., 46.11% for InternVideo2-Chat and 35.91% for Qwen2-VL
7B), the models still often fail to select the correct class, despite knowing the task and being given the
exact set of possible answers. This indicates a limited understanding of the temporal aspects of video
content. Such a weakness is critical, as one of the most important cues in video-based tasks—namely,
the direction and progression of motion—is not reliably captured.

To improve performance, we provide examples of videos and their actions in the respective prompts
(see Appendix A for example prompts). However, the second part of Table 1 demonstrates that this
strategy does not help. In fact, all models show performance drops as examples are added. Notably,
all models except Qwen2-VL 7B drop in performance when the number of examples increase to 5.
These results suggest that current video-language models struggle with in-context learning for VQA,
failing to recognize actions across video instances even when given explicit examples. We provide
more experiments on different settings in Appendix F.

3.3 Temporally Challenging VQA

In this experiment, we focus on InternVideo2-Chat, as it achieves the best zero-shot performance
among the evaluated models–likely due to its spatiotemporal attention mechanisms in the vision
encoder. Figures 2a and 2b present confusion matrices for InternVideo2-Chat on SSv2-T10, treating
action recognition as a classification task. Without fine-tuning, the model struggles to distinguish be-
tween directional actions such as "Pulling [something] from left to right" versus "Pulling [something]
from right to left", which are different in their temporal aspects. After fine-tuning on SSv2-T10, its
performance improves, but significant confusion between temporally mirrored actions remains, it
still fails to reliably distinguish actions that have different temporal meanings. These are actions that
involve the same objects, actions and context and are visually very similar, but differ only in their
temporal direction or order.

This result highlights a critical limitation: although InternVideo2-Chat is architecturally better
equipped for temporal reasoning than other models, it still fails to reliably model directional informa-
tion, a fundamental aspect of video understanding. We attribute this to the lack of dedicated temporal
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(a) Zero-shot.
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(b) Fine-tuned on SSv2-T10.
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(c) Fine-tuned with stacked tempo-
ral attention.

Figure 2: Confusion matrices of InternVideo2-Chat performing action recognition on SSv2-T10
showing results on the following classes: (1) Pulling [something] from left to right; (2) Pulling
[something] from right to left; (3) Throwing [something] in the air and catching it; (4) Throwing
[something] in the air and letting it fall; (5) [Something] falling like a rock.

modeling blocks in current Video-LLMs, which hinders their ability to reason about fine-grained
temporal structures, even when spatiotemporal cues are present in the architecture. As shown in
Figure 2c, after adding stacked temporal blocks, we can see that the model performs much better
and is able to distinguish the actions accurately. This improvement confirms the importance of
explicit temporal modeling in Video-LLMs. Corresponding quantitative results of this experiment are
provided in Appendix D (Table 8)

4 Model: STAVEQ2

Through our initial experiments in the previous section, we demonstrated the difficulties of state-of-
the-art Video-LLMs to deal with temporally challenging VQA tasks, even when in-context examples
were provided. To address these challenges, we introduce our approach for enhancing temporal
understanding in Video-LLMs in Video-LLMs: STAVEQ2 – Stacked Temporal Attention in Visual
Encoders for Qwen2-VL.

4.1 Preliminaries

MLLMs typically combine a vision encoder with an LLM to process visual and textual inputs [31].
The vision encoder extracts features from visual inputs (e.g., images or videos), which are then
transformed into token embeddings via trainable adapters. These embeddings are fed into the LLM
alongside textual inputs, enabling joint visual and linguistic understanding. For Video-LLMs, the
vision encoder must effectively capture both spatial and temporal information to model the dynamics
of video sequences.

Given a video V , following the vision transformer paradigm [13], a vision encoder typically divides
each frame into N = HW/P 2 non-overlapping patches of size P × P . These patches are projected
into an embedding space, yielding a sequence of patch embeddings X(0) ∈ RT×N×D, where
X

(0)
t,i ∈ RD denotes the embedding of the i-th patch in frame t, and D is the embedding dimension.

Each transformer block in the vision encoder applies multi-head self-attention across the N patches
within each frame, followed by a feed-forward multilayer perceptron (MLP), producing spatially
informed feature representations.

4.2 Overview

Our experiments show that relying entirely on the LLM to interpret temporal relationships between
frames as by Qwen2-VL is insufficient. Even the use of joint spatiotemporal attention in models
like InternVideo2-Chat cannot adequately resolve this issue, as shown in our temporal analysis
(Section 3.3). Furthermore, InternVideo2-Chat is architecturally constrained to processing 8 input
frames, which limits its applicability to short-video tasks and precludes its use on longer video
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Figure 3: Our proposed STAVEQ2 architecture. Video frames are processed through transformer
blocks with spatial and stacked temporal attention modules, capturing intra-frame and inter-frame
dynamics. The resulting visual tokens are fed into the LLM for answer generation.

benchmarks. Therefore, a more flexible Video-LLM must be developed to effectively process both
temporal and spatial information.

With STAVEQ2, we propose enhancing the Qwen2-VL Video-LLM by incorporating temporal
attention blocks. As illustrated in Figure 3, STAVEQ2 builds upon the standard vision encoder
architecture, by adding dedicated temporal attention mechanisms after spatial attention blocks. This
design generates token embeddings enriched with spatiotemporal information, which are aligned
with the LLM through a projector module for autoregressive answer generation in VQA tasks.

4.3 Stacked Temporal Attention in Vision Encoders

Each transformer block m, processes patch embeddings X(m−1) ∈ RT×N×D, where X(m−1)
t,i ∈ RD

represents the embedding of the i-th patch (i = 1, . . . , N ) in frame t (t = 1, . . . , T ) of the input video
V . The block consists of spatial self-attention, injected temporal self-attention, and a feed-forward
multilayer perceptron (MLP), with residual connections and layer normalization (LN) applied at
each stage. For clarity, we describe the formulation for a single attention head. For spatial attention,
queries, keys, and values are computed for each frame t as:

Q
(m)
t , K

(m)
t , V

(m)
t = LN

(
X

(m−1)
t

)
W

(m)
Q , LN

(
X

(m−1)
t

)
W

(m)
K , LN

(
X

(m−1)
t

)
W

(m)
V , (1)

where X
(m−1)
t ∈ RN×D is the embedding matrix for frame t, and W

(m)
Q ,W

(m)
K ,W

(m)
V ∈ RD×ds

are learnable projection matrices, with ds as the dimension of queries and keys. The spatial attention
weights are:

A
(m)
t = softmax

Q
(m)
t K

(m)
t

T

√
ds

 (2)

and the output is:
S
(m)
t = A

(m)
t V

(m)
t +X

(m−1)
t . (3)
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The spatial attention outputs are concatenated along the temporal dimension as S(m) =

[S
(m)
1 ; . . . ;S

(m)
T ] ∈ RT×N×D.

For temporal attention, we process the spatial features for each patch i across all frames, defined as
Y

(m)
i = [S

(m)
1,i , . . . , S

(m)
T,i ]

⊤ ∈ RT×D. The temporal attention mechanism computes:

Q
′(m)
i ,K

′(m)
i , V

′(m)
i = LN

(
Y

(m)
i

)
W

′(m)
Q ,LN

(
Y

(m)
i

)
W

′(m)
K ,LN

(
Y

(m)
i

)
W

′(m)
V , (4)

where W
′(m)
Q ,W

′(m)
K ,W

′(m)
V ∈ RD×dt are learnable projection matrices, and dt is the dimension of

queries and keys. The temporal attention weights are:

A
′(m)
i = softmax

Q
′(m)
i K

′(m)
i

T

√
dt

 (5)

and the output is:
Z

(m)
i = A

′(m)
i V

′(m)
i + Y

(m)
i . (6)

The temporal attention outputs are concatenated along the spatial dimension as Z(m) =

[Z
(m)
1 , . . . , Z

(m)
N ]⊤ ∈ RT×N×D. The block concludes with an MLP and residual connection:

X(m) = MLP
(

LN
(
Z(m)

))
+ Z(m), (7)

The feature representation X(M) of the video V output from the last transformer block M is projected
to the LLM’s embedding space, concatenated with the language embeddings of the question Q, and
passed to the LLM. This setup allows the LLM to reason jointly over visual and linguistic modalities
while benefiting from temporally-aware visual embeddings.

A = LLM
(

Projector(X(M)), Q
)

(8)

Our key innovation is the parameter-efficient temporal attention module. By using up to four times
fewer attention heads than spatial attention while maintaining the head dimension, we significantly
reduce parameters (See Appendix C for the ablation studies). We apply 1D rotary position embed-
dings (RoPE) in the temporal attention block to encode temporal structure, unlike the 2D RoPE
used for spatial position encoding in models like Qwen2-VL. This lightweight design enhances
temporal modeling with minimal computational overhead, improving the quality of video features for
temporally challenging VQA tasks.

5 Evaluation

We evaluate STAVEQ2 on several video understanding benchmarks, demonstrating that STAVEQ2
outperforms recent state-of-the-art Video-LLMs. We compare STAVEQ2 with the Qwen2-VL
2B/7B/72B and Qwen2.5-VL 7B/72B [3], as well as other state-of-the-art models. Furthermore,
by applying our proposed stacked temporal attention to the InternVideo2 video foundation model,
we achieve a new state-of-the-art result on the SSv2 action recognition dataset. We also conduct
experiments on a variation of the SSv2 dataset and try to see how well models can learn to match
similarities between videos and to see how STAVEQ2 can compare. The experiments are conducted
using 64 NVIDIA A100 GPUs.

5.1 Training STAVEQ2

To train our STAVEQ2 model, we use a two-stage process that integrates the injected temporal
attention blocks with minimal disruption to the pre-trained Qwen2-VL. We train on VQA datasets
using cross-entropy loss to optimize the generated textual answers for temporally challenging tasks.
To train STAVEQ2 while preserving the instruction-following capabilities of base instruction-tuned
models, we curate a subset of WebVid [4], a large-scale video-caption dataset, and generate multi-turn
question-answer pairs by prompting the Qwen2 7B [51] LLM. We refer to this dataset as WebVid-QA.
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Table 2: Performance for fine-tuning on SSv2 (full dataset). Our InternVideo2 1B + Stacked
Temporal Attention (STA) sets a new state-of-the-art on the full SSv2 dataset, outperforming the
larger InternVideo2 6B model by 0.5%.

Model Accuracy (%)
VideoMAE V2-H [43] 76.8
VideoMAE V2-g [43] 77.0
MVD-L [45] 76.7
MVD-H [45] 77.3
InternVideo2 1B [47] 77.1
InternVideo [46] 77.2
InternVideo2 6B [47] 77.5
InternVideo2 1B + STA 78.0 (↑ 0.5%)

In the first stage, we initialize the output projection layer of the temporal multi-head attention blocks
to zero, ensuring the vision encoder initially behaves like the original model and preserves its pre-
trained spatial modeling capabilities. We freeze all model parameters except the temporal attention
blocks and the associated layer normalizations. These are trained with a linear warmup over the first
steps, gradually integrating temporal attention into the encoder.

In the second stage, we introduce LoRA adapters [19] to the linear layers of both the vision encoder
(attention projections and MLP) and the LLM, using a small rank to maintain parameter efficiency.
The temporal attention blocks and LoRA adapters are jointly trained to align the enhanced spatiotem-
poral features with the LLM’s linguistic reasoning. This stage ensures that the model effectively
processes temporal dynamics for VQA tasks, enhancing feature quality for the LLM, as validated by
its performance on temporally challenging questions.

5.2 Selected Benchmarks

We evaluate our method on multiple tasks and benchmarks, including full SSv2 action recognition,
SSv2-VSM dataset for visual similarity matching, and three diverse video understanding benchmarks,
each testing different aspects of video comprehension: VITATECS [29]: A diagnostic dataset
disentangled from static information for temporal concept understanding of Video-LLMs across six
aspects: compositionality, direction, intensity, localization, sequence, and type. MVBench [28]:
A multimodal video understanding benchmark covering 20 challenging video tasks that cannot be
effectively solved with a single frame. Video-MME [15]: A comprehensive benchmark for evaluating
MLLMs on video understanding across 6 primary visual domains and various durations.

5.3 Temporal Performance Improvements

To analyze the temporal modeling capabilities of stacked temporal attention module, we enhanced
the InternVideo2 vision-only model with STA and fine-tuned it on the full SSv2 dataset for action
recognition. This experiment showcases STA’s ability to boost temporal understanding, even in
models with pre-existing joint spatiotemporal attention. The results, detailed in Table 2, reveal that
InternVideo2 1B with STA achieves a new state-of-the-art accuracy of 78.0%, outperforming the
larger InternVideo2 6B model by 0.5%, despite InternVideo2 1B + STA having only about 1.3B
parameters. This leap in performance underscores the efficiency of STA’s dedicated temporal focus,
proving that the gains arise from enhanced temporal modeling rather than just a modest parameter
increase. Comparisons with other models are also presented in Table 2.

5.4 Visual Similarity Understanding

To further investigate the temporal understanding of Video-LLMs, we also examine their ability to
perform visual similarity matching. Since transformer-based models operate using self-attention,
detecting similarity between tokens is a relatively straightforward task for them. Therefore, if the
vision encoder is effectively capturing and representing video content, the model should be able to
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Table 3: Evaluation results for fine-tuning on SSv2-VSM. The task is to decide which of two videos
is similar to a third video.

Model Accuracy (%)

Qwen2-VL 2B 68.65
STAVEQ2 2B 72.19 (↑ 3.5%)

Qwen2-VL 7B 73.15
STAVEQ2 7B 76.05 (↑ 2.9%)

Table 4: Accuracy (%) on video understanding benchmarks for our STAVEQ2 compared to other
models. For VITATECS, aspect-wise results are shown; other benchmarks report overall accuracy.
*(Video-MME without/with subtitles). † Results collected from the Video-MME leaderboard. –
indicates results not reported in the original paper and unavailable from other sources.

Model VITATECS MVBench *VMME (wo/w)
Comp. Dir. Int. Loc. Seq. Type

Qwen2-VL 2B 80.8 82.1 69.6 76.1 72.2 85.9 63.2 55.6 / 60.4
STAVEQ2 2B (Ours) 81.3 83.0 70.1 76.9 72.9 86.6 65.1 56.2 / 61.3
ST-LLM 7B [32] – – – – – – 54.9 –
TG-Vid 7B [21] – – – – – – 56.4 –
LLaVA-OneVision 7B [9] – – – – – – 56.7 58.2 / –
Qwen2-VL 7B 88.9 86.6 78.2 80.6 82.8 88.8 67.0 63.3 / 69.0
Qwen2.5-VL 7B 86.1 80.0 73.0 77.3 78.8 88.2 69.6 65.1 / 71.6
STAVEQ2 7B (Ours) 89.8 87.6 78.7 80.9 83.9 88.9 70.1 66.8 / 71.8
LLaVA-OneVision 72B [9] – – – – – – 59.4 66.2 / 69.5
VideoLLaMA2 72B [10] – – – – – – 62.0 61.4 / 63.1
LLaVA-Video 72B† [55] – – – – – – – 70.6 / 76.9
Qwen2-VL 72B 89.8 87.8 77.9 85.3 84.8 90.4 73.6 71.2 / 77.8
Qwen2.5-VL 72B 92.1 88.9 81.9 87.1 89.4 91.8 70.4 73.3 / 79.1
STAVEQ2 72B (Ours) 92.8 90.1 82.3 87.9 90.3 92.8 74.5 73.9 / 79.9
GPT-4o† – – – – – – – 71.9 / 77.2

solve visual matching problems quite well. This makes visual similarity tasks a good way to check
whether the model is learning useful video representations.

Based on this idea, we create the SSv2-VSM (Visual-Similarity-Matching) subset, a variation of
SSv2-T10 designed to evaluate whether Video-LLMs can recognize visual similarity between actions.
The dataset contains 8,471 samples, each consisting of two reference videos (with different actions)
and a third query video. The task is to determine whether the action in the query video matches the
first, the second, or neither video. See Appendix A for prompt examples and Appendix E for further
details on the subset’s composition.

We evaluate Qwen2-VL 2B and 7B, along with their STAVEQ2-fine-tuned versions, on SSv2-VSM.
Because this task emphasizes visual comparison rather than open-ended text generation (like action
recognition), it allows us to isolate the quality of the model’s video representations. As shown in
Table 3, our STAVEQ2 variants outperform the base models by 2.9% and 3.54%, respectively. This
suggests that temporal features can improve performance even in tasks focused on visual similarity.

5.5 STAVEQ2 Evaluation on Benchmarks

We evaluate the performance of STAVEQ2 on standard video understanding benchmarks to assess
general video understanding capabilities in temporally challenging scenarios. Results in Table 4 show
that STAVEQ2 consistently outperforms recent state-of-the-art Video-LLMs in all of the benchmarks,
demonstrating the robustness and general applicability of our method.
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We conducted the VITATECS benchmark results for the Qwen2-VL and Qwen2.5-VL family, as they
do not provide results for this benchmark themselves. In the VITATECS benchmark, we observe that
the STAVEQ2 models outperform both their Qwen2-VL counterparts and the newer Qwen2.5-VL
models, achieving the highest scores in all aspects, including direction and sequence understanding.
On the Video-MME dataset, we outperform other models, including GPT-4o by 2/2.7 and LLaVA-
Video 72B by 3.3/3 regarding accuracy. Our STAVEQ2 72B also outperforms other models on
MVBench. Notably, STAVEQ2 7B surpasses ST-LLM 7B, a model which attempts to delegate
the task of modeling spatiotemporal sequences to the LLM, by 15.2 on MVBench. Additionally,
STAVEQ2 7B outperforms TG-Vid 7B by 13.7.

6 Conclusions

We introduced STAVEQ2, our Video-LLM architecture with stacked temporal attention modules in
the vision encoder, enabling more accurate modeling of temporal relationships and action progression
across video frames. Our analysis showed that existing models struggle with temporal reasoning.
By enhancing temporal modeling directly at the visual encoding stage, our model improves video
question answering performance. These findings suggest that temporal attention at the encoder level
is crucial for better generalization and temporal understanding in Video-LLMs.

Limitations and Future Work Due to resource constraints, we did not pretrain the model or train
from scratch, and our experiments were limited to models up to 72B parameters. Future work can
explore full pretraining and scaling beyond 72B to further evaluate the architecture’s potential.
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A Prompt Examples

This section provides example prompts used for our experiments.

Box 1: Example prompt with in-context examples for SSv2-T10 dataset

Instruction: Look at the provided examples and answer the last question.

Example 1 - <video> The action happening in this video is:
Moving [something] from left to right.

Example 2 - <video> The action happening in this video is:
Moving [something] from right to left.

Final Prompt - <video> Now considering the previous examples, what action is
happening in this video?

Box 2: Example prompt for SSv2-VSM dataset

Instruction: Look at the provided examples and identify which example is related
to the final video.

Example 1 - <video> The action happening in this video is:
Moving [something] away from [something].

Example 2 - <video> The action happening in this video is:
Moving [something] closer to [something].

Final Prompt - <video> Now considering the previous examples, is there any
action related to this video? If not, respond with "No related action" and if there is,
respond with the example number and action.

Box 3: Example Prompt for Evaluation

Instruction: Look at the ground truth and the LLM’s answer. Decide whether the
LLM’s answer matches the ground truth.

Ground Truth: Pulling [something] from left to right

LLM Answer: The action is moving something from right to left on the floor

Question: Based on the ground truth, is the LLM answer correct? Answer with a
simple "Yes" or "No".

Box 1 illustrates the prompt structure used in our few-shot experiments on the SSv2-T10 dataset. In
this setup, the model is presented with one or more in-context examples, each consisting of a video
and its corresponding action label. After reviewing these examples, the model is tasked with inferring
the action occurring in a new query video. This format encourages the model to generalize from the
provided samples and demonstrate its capability to recognize similar actions.

Box 2 presents the prompt format used for the SSv2-VSM dataset, which is designed to evaluate the
model’s ability to perform similarity matching. The model is provided with multiple labeled video
examples and a final query video, and it must determine whether any of the examples depict an action
related to the one shown in the query. If a related action exists, the model is expected to return the
example number along with the action label; otherwise, it should respond with "No related action."
This task format emphasizes fine-grained action discrimination and serves as a valuable test of the
model’s capacity for visual-semantic matching.
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Table 5: Action categories and their relative frequencies in SSv2-T10.
Action Frequency (%)
Pulling [something] from left to right 14.68
Pulling [something] from right to left 14.97
[Something] falling like a rock 13.12
Picking [something] up 9.26
Throwing [something] in the air and letting it fall 7.31
Throwing [something] in the air and catching it 8.90
Moving [something] away from [something] 8.61
Moving [something] closer to [something] 8.55
Rolling [something] on a flat surface 11.85
Poking a stack of [something] so the stack collapses 2.74

Table 6: Ablation study results on order of spatial and temporal attention and head scaling in
STAVEQ2 2B on SSv2-T10. Accuracy (%) is reported, with the best result in bold.

Model Attention Order Head Scale Acc (%)
Qwen2-VL 2B – 1.0 73.14

STAVEQ2 2B Spatial First 1.0 58.34
STAVEQ2 2B Spatial First 0.5 71.18
STAVEQ2 2B Temporal First 0.25 73.20
STAVEQ2 2B Spatial First 0.25 76.04

In open-ended generation, the model’s output may not precisely match the expected action name. To
address this, we employ another LLM, Qwen2-7B, as a judge to evaluate the responses generated
by Video-LLMs. Box 3 provides the evaluation prompt. Given a ground truth label and the model’s
predicted answer, the judge determines whether the prediction is correct, returning a binary “Yes” or
“No” response.

B SSv2-T10 Composition

Table 5 lists the action categories in the SSv2-T10 split and their relative frequencies (percentage
of examples). These ten actions were used both to select representative in-context examples and to
design the prompts used in our experiments.

C Ablation Studies on STA Architecture

To investigate the design of our stacked temporal attention, we conduct ablation studies on STAVEQ2
2B, fine-tuned on the SSv2-T10 dataset. The first study examines the internal configuration of
STA-enhanced transformer blocks, including the order of spatial and temporal attentions (i.e. whether
temporal attention should be placed either before or after spatial attention) and the number of temporal
attention heads. The second study investigates the placement of STA-enhanced transformer blocks
across the vision encoder.

As summarized in Table 6, positioning temporal attention after spatial attention with a head scaling
factor of 0.25 achieves the highest accuracy (76.04%), outperforming the baseline Qwen2-VL 2B
(73.14%) by 2.90%. Reducing the number of temporal attention heads (e.g., 0.25 vs. 1.0 relative
to the baseline number of heads) enhances performance, likely due to improved regularization
and focus on critical temporal features, particularly when there is limited data, aligning with our
emphasis on parameter efficiency. Placing temporal attention before spatial attention (73.20% at 0.25
scale) yields slightly lower performance, indicating that processing spatial context first enhances
temporal modeling. These results validate the design of our stacked temporal attention, especially for
fine-grained temporal understanding tasks.
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Table 7: Ablation study results on number and placement of STA-enhanced transformer blocks in
STAVEQ2 2B on SSv2-T10. Accuracy (%) is reported, with the best result in bold.

Model # Temporal Blocks Placement Acc (%)
Qwen2-VL 2B – – 73.14

STAVEQ2 2B 16 Uniform 74.73
STAVEQ2 2B 16 First blocks 74.97
STAVEQ2 2B 32 All blocks 76.04

Table 8: Performance of InternVideo2-Chat, fine-tuned on SSv2-T10. Adding stacked temporal
attention (STA) leads to a significant accuracy gain.

Method Acc (%)

InternVideo2-Chat 8B 84.17
InternVideo2-Chat 8B + STA 95.18 (↑ 11.01%)

Building on the optimal internal configuration from Table 6, we assess the impact of the number and
placement of STA-enhanced transformer blocks across the vision encoder in STAVEQ2. According
to the results summarized in Table 7, using 32 STA-enhanced transformer blocks across all layers
achieves the highest accuracy (76.04%), outperforming the baseline Qwen2-VL 2B (73.14%) by
2.90%. Reducing the number of STA-enhanced blocks to 16, whether distributed uniformly (74.73%)
or concentrated in early layers (74.97%), results in a lower performance. The minimal difference
between uniform and early-layer placement indicates that strategic block positioning has less impact
than the total number of blocks.

D STA Enhancement Effect on InternVideo2-Chat

To complement the qualitative analysis in Section 3.3 (Figures 2a–2c), Table 8 provides the corre-
sponding quantitative performance metrics for InternVideo2-Chat 8B on SSv2-T10, both before and
after applying stacked temporal attention (STA). Note that InternVideo2-Chat is limited to processing
up to 8 input frames, making it suitable only for short-video benchmarks like SSv2-T10 and excluding
it from evaluations on longer-video datasets such as those in Table 4. The baseline InternVideo2-Chat
8B model achieves an accuracy of 84.17%. With the integration of STA, the performance improves
significantly, reaching 95.18%—a substantial gain of 11.01%. These results underscore the effec-
tiveness of STA in boosting the temporal understanding capabilities of Video-LLMs, particularly for
fine-grained action recognition tasks.

E SSv2-VSM Dataset Composition

As described in the paper, each sample in SSv2-VSM dataset consists of two reference videos (with
different actions) and a third query video. The task is to determine whether the action in the query
video matches the first, the second, or neither video. For the SSv2-VSM dataset, we explored the
optimal ratio of positive to negative samples for fine-tuning the models. Positive samples consist
of reference videos where one matches the query video’s action, while negative samples have no
matching actions with the query video.

Table 9 shows that increasing the proportion of positive samples generally enhances performance,
with similarity matching accuracy improving from 25.52% at 50% positive samples to a peak of
71.25% at 80% positive samples. However, accuracy drops to 49.18% at 91% positive samples,
indicating that an excessively high proportion of positive samples may reduce dataset diversity and
hinder generalization.

In our experiments reported in Table 9, we include textual descriptions of the actions happening in
each reference video. However, removing these textual descriptions increases task difficulty, as the
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Table 9: Context-Selection fine-tuning results with varying positive-negative sample ratios. Similarity
Matching evaluates whether the model can correctly identify a relevant context sample among
distractors when such a sample is present.

Dataset Composition Accuracy (%)
50% positive 25.52
80% positive 71.25
91% positive 49.18

similarity matching accuracy at 80% positive samples drops from 71.25% to 68.65% by removing the
descriptions. Consequently, to evaluate the models on a more challenging task, we excluded textual
descriptions for reference videos in the main experiments reported in the paper.

F Prompting Experiments

Recent work [39] systematically investigated the factors affecting multi-modal in-context learning
performance in image and text modalities, demonstrating that instruction placement and modality
ordering can impact performance. To understand if these findings generalize to the video domain, we
conducted a parallel set of controlled experiments on the SSv2-VSM dataset.

First, we evaluated the impact of instruction placement by testing four prompting strategies, adapting
the methodology from [39]: No-Instruction, where the prompt contains no explicit task instruc-
tion; Introductive, where a task description appears once at the start of the prompt, before the
context examples; Introductive-Summative, where an introductory instruction is used, along with a
summary instruction that appears after the context examples but before the final query; and Intra-
demonstration, where the task instruction is repeated within each demonstration example. As shown
in Table 10, the choice of instruction style had a minimal effect on the performance of most models.
However, we observed a notable exception: InternVideo2-Chat’s performance improved significantly
(by 9%) with the Introductive-Summative strategy. Sample prompts illustrating each strategy are
provided in Box 4–7.

Second, we tested the effect of intra-demonstration modality ordering—that is, whether the sequence
of the video and its corresponding text tag within each context sample affects model understanding.
We compared two formats: Text-Video (where text precedes the <video> tag) and Video-Text
(where the <video> tag appears first). The results in Table 11 again show a strong model-dependent
sensitivity. While the ordering had minimal impact on the performance of most models, it was a
critical factor for InternVideo2-Chat. This model performed significantly better (37.06% vs. 15.98%)
when the video was presented first (Video-Text), aligning with findings for image-based models in
[39].

Box 4: No-Instruction example prompt for SSv2-VSM

Instruction:

Example 1 - <video> The action happening in this video is: Throwing [something]
in the air and catching it.

Example 2 - <video> The action happening in this video is: Pulling [something]
from left to right.

Final Prompt - <video> now considering the previous examples, is there any
action related to this video? If not, respond with No related action and if there
is, respond with the example number and action.
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Box 5: Introductive example prompt for SSv2-VSM

Instruction: Look at the provided videos and identify which video is related to the
final video.

Example 1 - <video> The action happening in this video is: Throwing [something]
in the air and catching it.

Example 2 - <video> The action happening in this video is: Pulling [something]
from left to right.

Final Prompt - <video> now considering the previous examples, is there any
action related to this video? If not, respond with No related action and if there
is, respond with the example number and action.

Box 6: Introductive-Summative example prompt for SSv2-VSM

Instruction: Look at the provided videos and identify which video is related to the
final video.

Example 1 - <video> The action happening in this video is: Throwing [something]
in the air and catching it.

Example 2 - <video> The action happening in this video is: Pulling [something]
from left to right.

Summary: In summary, the two given videos each contain an action taking place,
which has been provided to you. You need to recognize these actions and keep
them in mind for the next question.

Final Prompt - <video> now considering the previous examples, is there any
action related to this video? If not, respond with No related action and if there
is, respond with the example number and action.

Box 7: Intra-demonstration example prompt for SSv2-VSM

Instruction:

Example 1 - <video> The action happening in this video is: Throwing [something]
in the air and catching it. So this is the video number 1, remember the video and
the action taking place, you need to see if another video has a similar action later.

Example 2 - <video> The action happening in this video is: Pulling [something]
from left to right. So this is the video number 2, remember the video and the action
taking place, you need to see if another video has a similar action later.

Final Prompt - <video> now considering the previous examples, is there any
action related to this video? If not, respond with No related action and if there
is, respond with the example number and action.

G Attention Visualization

To qualitatively evaluate the impact of stacked temporal attention (STA), we visualized the attention
maps generated by InternVideo2 1B vision only model before and after applying STA. Figure 4 shows
a person poking a lighter so that it falls, labeled with the class poking [something] so that it falls over.
Before applying STA, the attention maps show that the model places minimal focus on the lighter,
despite the fact that the action class is primarily defined by the lighter’s movement and fall. After
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Table 10: Prompt structure impact on SSv2-VSM performance. We compare four prompting styles:
No-Instruction, Introductive (task instruction at the beginning), Introductive-Summative (instructions
both at the beginning and after context), and Intra-demonstration (instruction repeated before each
context sample).

Model No-Instruction Introductive Introductive-
Summative

Intra-
demonstration

LLaVA-NeXT-Video 7B 20.08% 20.11% 20.11% 20.11%

Qwen2-VL 2B 22.76% 21.29% 21.46% 24.97%

Qwen2-VL 7B 20.14% 20.11% 20.22% 20.28%

InternVideo2-Chat 8B 35.94% 37.06% 45.02% 34.94%

Table 11: Effect of intra-context tag ordering on SSv2-VSM performance. We compare two context
formats: Text-Video, where the text appears before the video tag in each context item, and Video-Text,
where the video tag comes first.

Model Text-Video Video-Text
LLaVA-NeXT-Video 7B 20.11% 20.11%

Qwen2-VL 2B 24.09% 21.29%

Qwen2-VL 7B 22.32% 20.11%

InternVideo2-Chat 8B 15.98% 37.06%

incorporating STA, the model’s attention shifts significantly toward the lighter, especially as it begins
to fall, indicating improved temporal modeling and relevance attribution.

These visualizations underscore the effectiveness of stacked temporal attention in helping the model
focus on temporally relevant regions of the video. Especially in cases where the action depends on
subtle object movements over time, STA enhances the model’s ability to localize and interpret key
interactions, thereby improving classification performance.

H Extra Models

While our primary contributions center on enhancing the Qwen2-VL architecture with stacked
temporal attention in STAVEQ2, we further validate the broad applicability of this mechanism by
extending it to several very recent and competitive Video-LLM architectures. These extensions
demonstrate that STA is not tied to a specific base model but provides consistent improvements in
temporal understanding across diverse design paradigms—including those that already incorporate
advanced temporal modeling techniques. Due to resource constraints, we focused on representative
recent models that align closely with our evaluation benchmarks.

For the newer Qwen2.5-VL, we introduce STAVEQ2.5, which integrates dedicated temporal attention
blocks into its vision encoder. Qwen2.5-VL employs windowed attention in most layers and full
spatial self-attention in only four layers; however, our approach remains unaffected, as each patch in
the STA block attends to corresponding patches across all frames, bypassing the limitations imposed
by windowed attention. This design preserves the temporal attention mechanism of STAVEQ2,
ensuring consistent temporal modeling. We train STAVEQ2.5 using the same two-stage strategy
employed for STAVEQ2, leveraging the WebVid-QA dataset.

We also apply STA to VideoRoPE 7B [50], a state-of-the-art model based on Qwen2-VL that enhances
temporal awareness through improved positional embeddings for output feature tokens fed to the
LLM. In contrast, our STA targets token-level temporal interactions directly within the vision encoder,
making the two approaches complementary rather than competing. Our experiments confirm this
synergy: integrating STA with VideoRoPE yields further gains, highlighting how dedicated temporal
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(a) Before STA

(b) After STA

Figure 4: Attention maps for the action poking [something] so that it falls over.

Table 12: Accuracy (%) on video understanding benchmarks for our STAVEQ2.5 compared to
other models. For VITATECS, aspect-wise results are shown; other benchmarks report overall
accuracy. IV2.5-Chat refers to InternVideo2.5-Chat. *(Video-MME without/with subtitles). † Results
collected from the Video-MME leaderboard. – indicates results not reported in the original paper and
unavailable from other sources.

Model VITATECS MVBench *VMME (wo/w)
Comp. Dir. Int. Loc. Seq. Type

Qwen2-VL 2B 80.8 82.1 69.6 76.1 72.2 85.9 63.2 55.6 / 60.4
STAVEQ2 2B (Ours) 81.3 83.0 70.1 76.9 72.9 86.6 65.1 56.2 / 61.3
ST-LLM 7B – – – – – – 54.9 –
TG-Vid 7B – – – – – – 56.4 –
LLaVA-OneVision 7B – – – – – – 56.7 58.2 / –
VideoRoPE 81.1 81.8 60.9 79.4 80.7 85.8 57.3 61.6 / –
VideoRoPE + STA (Ours) 81.9 82.9 61.8 79.9 81.3 86.3 59.2 62.5 / –
Qwen2-VL 7B 88.9 86.6 78.2 80.6 82.8 88.8 67.0 63.3 / 69.0
Qwen2.5-VL 7B 86.1 80.0 73.0 77.3 78.8 88.2 69.6 65.1 / 71.6
STAVEQ2 7B (Ours) 89.8 87.6 78.7 80.9 83.9 88.9 70.1 66.8 / 71.8
STAVEQ2.5 7B (Ours) 88.0 82.1 74.2 77.9 79.7 88.9 70.3 66.2 / 72.5
InternVideo2.5-Chat 8B 91.3 88.7 82.0 84.8 84.7 91.0 75.7 65.1 / –
IV2.5-Chat 8B + STA (Ours) 91.6 89.7 82.7 85.6 85.8 91.3 76.8 65.9 / –
LLaVA-OneVision 72B – – – – – – 59.4 66.2 / 69.5
VideoLLaMA2 72B – – – – – – 62.0 61.4 / 63.1
LLaVA-Video 72B – – – – – – – 70.6 / 76.9
Qwen2-VL 72B 89.8 87.8 77.9 85.3 84.8 90.4 73.6 71.2 / 77.8
Qwen2.5-VL 72B 92.1 88.9 81.9 87.1 89.4 91.8 70.4 73.3 / 79.1
STAVEQ2 72B (Ours) 92.8 90.1 82.3 87.9 90.3 92.8 74.5 73.9 / 79.9
STAVEQ2.5 72B (Ours) 93.1 90.9 82.1 88.0 90.8 93.3 72.4 74.2 / 79.8

GPT-4o† – – – – – – – 71.9 / 77.2

attention can amplify existing enhancements. Finally, we extend STA to InternVideo2.5-Chat 8B [48],
a recent evolution of the InternVideo family that supports longer video inputs (unlike InternVideo2-
Chat that is limited to processing 8 input frames). InternVideo2.5-Chat is trained using the same
approach as other models and evaluated on the full set of benchmarks.

Evaluation on video understanding benchmarks—VITATECS, MVBench, and Video-MME—
demonstrates the effectiveness of these extensions in handling temporally complex scenarios. The
results show that our STA approach not only enhances Qwen2-VL but also improves these newer
architectures, confirming its wide applicability.

As shown in Table 12, STAVEQ2.5 consistently outperforms its base model, Qwen2.5-VL, across
VITATECS, MVBench, and Video-MME, validating the effectiveness of our stacked temporal
attention approach in enhancing video understanding. Notably, STAVEQ2.5 72B surpasses STAVEQ2
72B on most benchmarks, demonstrating superior performance of our approach when applied to the
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newer Qwen2.5-VL architecture. Similarly, applying STA to VideoRoPE and InternVideo2.5-Chat
yields consistent gains, further highlighting the method’s robustness and its ability to synergize with
orthogonal temporal enhancements. These results underscore the adaptability of our stacked temporal
attention mechanism, which drives performance improvements across Video-LLMs of varying scales
and architectures, excelling in tasks that demand sophisticated temporal understanding.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We have stated the contributions and scope of the paper in the abstract and
introduction of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations of the work caused by limited computation resources
in Section 6, as well as the future works that we have not done and are potential ideas for
future research papers.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: Our paper does not focus on the theoretical aspect. We provide extensive
evaluation on our method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We have explained our method in Section Method. Since we have used open-
source models and datasets, everyone can easily reproduce our experiments and results. We
have also provided the supplementary materials, including our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code of our paper is provided as supplementary material and will be made
available in a GitHub repository upon paper publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of the experiment setups are included with our code as supplementary
material. Also, the most important and general setups of our training and test are mentioned
in the paper.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the large size of video datasets and the high computational cost,
repeating experiments to report statistical significance is generally not feasible in this field.
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report such significance tests for similar reasons.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have mentioned the experiments setups and compute resources in most
important parts of the experiments, for example in Section 5. But according to the number
of experiments and the page limit of the template we couldn’t report them for all of the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conform with the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
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Justification: Our paper is a foundational research and there is no societal impact of this
work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We can’t assume any misuse of our model which can be used for video-question
answering and we have used open-source models and dataset that this criteria has been
already considered in them.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: Yes, they are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: We have not released any new assets or datasets. However, we provide different
derivates of an existing dataset (Something-Something V2) that we use for training and
evaluation. We make these available in supplementary material, using IDs to refer to the
videos in the original dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: We have not done any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
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Justification: We have not done any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes] .
Justification: The paper’s topic is Large Multimodal Language Models with the focus on
videos. So LLMs are a core component of our studied architecture and we have described
the usage of LLMs for tasks such as video question answering.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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