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Abstract

LLMs with in-context learning (ICL) obtain
remarkable performance but are sensitive to the
quality of ICL examples. Prior work on ICL ex-
ample selection explored unsupervised heuris-
tic methods and supervised LLM feedback-
based methods, but they typically focus on the
selection of individual examples, ignore corre-
lations among examples. Recent researchers
propose to use the determinantal point process
(DPP) to model negative correlations among
examples to select diverse example sets. How-
ever, the DPP fails to model positive correla-
tions among examples, but ICL still requires
the positive correlations of examples to ensure
the consistency of its examples that provide
a clear instruction for LLMs. In this paper,
we propose an ICL example selection frame-
work based on the nonsymmetric determinantal
point process (NDPP) to capture positive and
negative correlations, consider both the diver-
sity and the relevance among ICL examples.
Specifically, we optimize NDPP via kernel
decomposition-based MLE to fit a constructed
pseudo-labeled dataset, where we also propose
low-rank decomposition to reduce the compu-
tational cost. Further, we perform query-aware
kernel adaptation on our NDPP to customize
the input query, and we select examples via
a maximal-a-posteriori inference based on the
adapted NDPP. Experiments show our model
excels strong baselines in ICL example selec-
tion.

1 Introduction

Large language models (LLMs) show good perfor-
mance through in-context learning (ICL) (Brown
et al., 2020; Wei et al., 2022b,a; Wen et al., 2024,
Pan et al., 2024). ICL typically uses an example
set and a task-specific instruction as a prompt and
inputs a concatenation of the prompt and an user’s
input query into LLMs. ICL allows LLMs to per-
form tasks by observing a series of examples with-
out the need to update parameters. However, the

performance of ICL is sensitive to the selection of
examples (Liu et al., 2022; Zhang et al., 2022; Min
et al., 2022; An et al., 2023). Recent works (Lu
et al., 2022; Cheng et al., 2023) also show that dif-
ferent example sets exhibit significant differences
in performance. Thus, example selection is crucial
for exploiting the ICL capabilities of LLMs.

To select suitable examples for ICL, researchers
propose various context-dependent heuristic meth-
ods, where they select examples according to ex-
amples’ entropy (Lu et al., 2022), complexity (Fu
et al., 2022), perplexity (Gonen et al., 2023), and
diversity (Li and Qiu, 2023). These methods outper-
form random selection, but these methods ignore
characteristics of the specific input queries and thus
cannot customize the ICL example set for the input
queries. To consider the query, researchers propose
context-aware methods to retrieve similar exam-
ples for ICL (Liu et al., 2022; Agrawal et al., 2023;
Hongjin et al., 2022). They use off-the-shelf re-
trievers such as BM25 (Robertson et al., 2009) or
SBERT (Reimers and Gurevych, 2019) to select
examples based on their textual or semantic similar-
ity to the query. When applying LLMs to specific
tasks, they cannot customize the example selection
of ICL for the given task since the ICL example
selector (i.e., retriever) is not learnable and cannot
learn to tailor for the task-specific data.

To leverage task supervision, some recent work
(Rubin et al., 2022; Cheng et al., 2023; Li et al.,
2023; Xiong et al., 2024) introduce LLMs feed-
back as the task-specific supervisory signal to train
the ICL example selectors (i.e. retriever), where
the signal is used to rank and label examples. In
these methods, the retrievers learn the LLMs’ pref-
erence for examples in different tasks, and adap-
tively select examples for each task. However, they
typically focus on the selection of each individ-
ual example, ignore the correlations (i.e., inter-
relationships) among a set of ICL examples.

To consider the correlations among examples for



ICL, researchers (Levy et al., 2023; Ye et al., 2023a;
Yang et al., 2023) propose to use the determinantal
point process (DPP) (Kulesza and Taskar, 2012) to
select examples by balancing the relevance to input
queries and the diversity among examples. They
model the relevance to input queries by similar-
ity between queries and examples, and they model
the diversity among examples since DPP’s kernel
matrix L models the negative correlation of data
points. However, DPP’s kernel matrix L is a sym-
metric positive semi-definite (PSD) matrix. L re-
stricts DPP can only model negative correlation !
among examples rather than positive correlation.
It results in DPP ignoring the relevance among
candidate examples.

We argue the ICL example selection should not
only consider the relevance to input queries and the
diversity among examples, but also cater to the rel-
evance among examples. Ensuring the consistency
of ICL examples contributes to providing a clear
instruction to guide the LLMs (Liu et al., 2024a). 2

In this paper, we propose an ICL example selec-
tion method for LLM based on the nonsymmetric
determinantal point process model (NDPP), which
considers the relevance to input queries, the di-
versity among ICL examples, and the relevance
among ICL examples. NDPP’s nonsymmetric prop-
erty makes the selection model relevance among
ICL examples. Specifically, we construct an NDPP
model with a kernel matrix to capture positive and
negative correlations among ICL examples. In the
training stage, we propose a kernel decomposition-
based maximum likelihood estimation (KD-MLE)
to train the NDPP by fitting the kernel matrix over
our constructed pseudo-labeled datasets. To reduce
the computational cost of KD-MLE, we propose a
low-rank decomposition of the kernel matrix. In
the inference stage, to consider the relevance to
input queries, we propose a query-aware kernel
adaptation, which adapts the trained NDPP to the
given query by incorporating the embedding simi-
larity between examples and queries into the kernel
matrix. We finally perform maximal-a-posteriori
(MAP) inference based on the adapted NDPP to
select the ICL example set for LLMs. Experiments

'In DPP, the correlation between examples ¢ and j is ex-
pressed as —L;; L j;, where L is the kernel matrix. Due to the
symmetric property of PSD matrix, L;; and Lj; are always
equal, making the correlation —L;; L j; always non-positive.

’The relevance and diversity are not conflicted since ICL
needs multiple examples, where some of them may be diverse
and others are relevant so as to provide a comprehensive and
consistent instruction to LLMs.

show that our method exceeds baselines on five
datasets, including open-domain QA, code genera-
tion, semantic parsing and story generation tasks.
Our code is released.’

Our contributions are: (1) We propose a novel
ICL example selection framework based on NDPP,
which captures positive and negative correlations
among examples and learns the composition of ICL
examples to select suitable ICL examples for LLM.
(2) We propose a query-aware kernel optimization
to consider the similarity between queries and ex-
amples, which enables our framework to select cus-
tomized ICL example sets for different queries. (3)
Experiments on five datasets show that our method
achieves SOTA on ICL example selection.

2 Related Work

2.1 Example Selection for ICL

The in-context learning (ICL) performance of
LLMs depends on the selection of examples. De-
pending on whether the query information and the
task supervision were considered, ICL example
selection methods can be divided into three cate-
gories: (1) In-context Insensitive Unsupervised
Methods. These approaches ignore the query infor-
mation and task supervision. Fu et al. (2022) pro-
pose a complexity-based example selection method.
Lu et al. (2022) Propose an entropy-based approach
to mitigate example order sensitivity. Li and Qiu
(2023) use a diversity-guided example search strat-
egy to select examples. (2) In-context Sensitive
Unsupervised Methods. This category considers
query information but ignores the task supervision.
Researchers find that selecting different examples
can reduce the redundancy of ICL example set (Liu
et al., 2022; Agrawal et al., 2023; Hongjin et al.,
2022). Wang et al. (2024a) further propose a model-
specific example selection method based on feature
evaluation to improve ICL performance during in-
ference. Similarly, Liu et al. (2024b) select exam-
ples with multiple levels of similarity to queries
to improve ICL performance. (3) In-context Sen-
sitive Supervised Methods. By introducing task
supervision, these methods fine-tune the ICL ex-
ample selector (i.e. retriever) for more precise ex-
ample selection. Many studies have improved the
quality of ICL examples by iteratively training re-
trievers (Rubin et al., 2022; Wang et al., 2024b; Li
etal., 2023; Liu et al., 2024b). Besides, Xiong et al.
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(2024) use chain-of-thought generated by LLMs
to refine the retriever. Fu et al. (2022) propose
to optimize the retriever by calculating semantic
similarity, example diversity, and event correlation.
To consider diversity among examples, Levy et al.
(2023); Yang et al. (2023); Ye et al. (2023b) em-
ploy DPP to select diverse example sets. These
works only consider relevance to input queries and
diversity among examples, our framework further
considers relevance among examples.

2.2 Determinantal Point Processes and Its
Applications

Determinantal Point Process (DPP) is a probabilis-
tic model that can select diverse subsets by captur-
ing negative correlations among items of the set.

DPP has seen significant development. Johans-
son et al. (2023) proposed a semi-supervised k-
DPP method. Grosse et al. (2024) used a greedy
algorithm for k-DPP sampling. To reduce compu-
tational complexity, more efficient inference meth-
ods were proposed, such as LSMOEA-DPP (Okoth
et al., 2022) and Anisotropic DPP (Ghilotti et al.,
2024).

DPP is widely used in Al applications, especially
for tasks that require diversity sets, such as neural
network training (Sheikh et al., 2022), recommen-
dation systems (Liu et al., 2024c¢), video analysis
(Chen et al., 2023), and abstract summary (Shen
et al., 2023). DPP also been used to optimize GNN
on graph-structured data. (Duan et al., 2022).

Gartrell et al. (2019) propose an extension of
DPP called nonsymmetric determinantal point pro-
cesses (NDPP), which can model both positive and
negative correlations among a set of items. Gartrell
et al. (2021) reduce NDPP’s complexity via kernel
decomposition. Han et al. (2022) propose a scal-
able sampling method for NDPP. Song et al. (2024)
propose a fast dynamic algorithm for resampling
distributions of NDPP, which shortens the sampling
time.

While current works focus on the application of
the DPP, we explore the application of the NDPP
on ICL example selection.

3 Preliminary

In-Context Learning. In-context learning (ICL)
(Brown et al., 2020) prompts are usually sequences
of examples. Given test instance (Ziest, Ytest)s
LLMs predicts § with k-shot ICL prompt :

§J=LLM(e1®, ..., Der D Tiest) (D

Where e; = (x;,y;)%_; is the 4y, example, and @
is the concatenation operation. The objective of
ICL example selection task is to select k examples
from a pre-constructed example pool such that the
predicted value ¢ matches its ground truth yyes¢.

Nonsymmetric Determinantal Point Process.
Nonsymmetric determinantal point process
(NDPP) is a probabilistic model to model cor-
relations between items in a set (Gartrell et al.,
2019). It models a finite ground set D with a
kernel matrix L such that for any subset £ € D,
Pr(E) « det(Lg), where L, is the submatrix of
L indexed by E .Given the kernel matrix L, the
probability a subset E being selected from D is
defined as:

PL(E) . det(LE)

“ At + 1) @

where [ is the unit matrix.

4 Method

4.1 Overview

To provide high-quality ICL examples for LLMs,
we construct an ICL example selection framework
based on the NDPP model, where the NDPP con-
sists of a kernel matrix L to model correlations
among examples. We construct a pseudo-labeled
training set based on LLMs feedback (§ 4.2), and
use the pseudo-labeled training set to train the
NDPP model by kernel decomposition-based max-
imum likelihood estimation (KD-MLE) (§ 4.3).
In the inference stage, we perform query-aware
kernel-adaptation on the trained NDPP model to
consider the relevance to input queries, and select
ICL examples based on the adapted model through
MAP inference (§ 4.4).

4.2 Example Subsets Pseudo-labeling via
LLMs’ Feedback

Since there is no ground truth of ICL example sets
for each training instance, to train the NDPP model
in § 4.3 by MLE, we collect the feedback signals
from LLMs for scoring the example subsets to con-
struct a training set.

Given a task, we construct the pseudo-labeled
training set with three steps: (1) Candidate exam-
ple retrieval. For each instance (z;, y;) from our
training set, we retrieve a candidate example set
from the example pool D using the KNN retriever,
which considers the embedding similarity between
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Figure 1: The overview of our framework. In the training stage, we construct a pseudo-labeled training set Dy q;n
based on LLMs’ feedback (§ 4.2), and use Dy,.q;y, to optimize the kernel matrix L of the NDPP model by kernel
decomposition-based MLE (§ 4.3). In the inference stage, we perform query-aware kernel-adaptation on the trained
NDPP model, and select ICL examples based on the adapted model through MAP inference (§ 4.4).

the instance and examples. From the retrieved can-
didate example set, we randomly sample N non-
overlapping subsets, denoted as { £;; };V: 1 (2) Ex-
ample subset scoring. We measure the quality of
each candidate example subset E;; with a quality
score s;;, and the scores act as pseudo labels of the
subsets. To obtain the quality score s;;, we concate-
nate the query x; and examples in the subset E;;,
and input the concatenation into an LLM to obtain
the probability Pr,za(yi|Eij, ;) of predicting the
corresponding ground truth y; of the test query x;,
which is formalized as: s;; = Prra(yi| Eij, ).
(3) Pseudo training set construction. We rank
candidate example subsets based on the score s;;,
and select the top 10% high-scoring subsets for all
instances to construct a pseudo-labeled training set
Dyyain = (E;);_,, where n is the subset number.
Dyyqin 18 used to train the NDPP model in (§ 4.3).

4.3 NDPP Model Optimization with
Pseudo-labeled Example Subsets

To select high-quality ICL example sets, we train
the NDPP model by kernel decomposition-based
maximum likelihood estimation (KD-MLE), which
allows the NDPP model to learn the kernel matrix
of high-scoring example subsets from the pseudo-
labeled training set. The process consists of three
steps: (1) we first define the NDPP optimization
objective, then (2) get the kernel decomposition for
NDPP, and finally, (3) we optimize NDPP via the
kernel decomposition-based MLE.

4.3.1 NDPP Optimization Objective: MLE
with Kernal Matrix

To capture correlations among examples in the ICL
example set, we optimize the kernel matrix of the

ICL example set to fit the pseudo-labeled training
set. The fitted kernel matrix represents the feature
of high-scoring ICL example sets so that the NDPP
model can select suitable examples with the fitted
kernel matrix.

In the NDPP, recall that the probability of se-
lecting a candidate example subset E; from the
example pool D is Pr(FE;) = 32((% (as shown
in Eq. 2), where L is the kernel matrix of D and
Lg, is the submatrix of L indexed by E;. The
base kernel matrix L is constructed by comput-
ing the pairwise embedding similarity between two
examples (e;, e;) in the example pool D, where
L;; = sim(e;, e;). Elements of L show correla-
tions among examples in the example pool. Given
different kernel matrices, the NDPP selects differ-
ent ICL example sets with the probability Pr,(-).

To select high-quality ICL example sets with
NDPP, we aim to find a kernel matrix L that max-
imizes the probability of selecting high-scoring
ICL example subsets. To achieve it, we opti-
mize the kernel matrix L of the ICL example set
to fit the pseudo-labeled training set Dyygin =
(Ei);—,. Specifically, we optimize L towards the
log-likelihood on the training set Dyyq4r as,

fa(L) = ZlogPL 3)
Because Pr(E;) = % we have:
fu(L) = % Z logdet(Lg,) — logdet(L +I) (4)

i=1
The optimized kernel matrix L is the kernel matrix
that maximizes the Eq. 4, denoted as:

L= arg max fn(L) (5)



The optimized kernel matrix L is the learnable op-
timal approximation of high-scoring ICL example
subsets’ kernel matrix, with its elements represent-
ing correlations among examples.

4.3.2 Kernel Decomposition of NDPP

To optimize the kernel matrix L conveniently, we
perform a two-step decomposition on the NDPP
kernel matrix: we first perform symmetric de-
composition on the kernel matrix, which enables
NDPP to learn the positive and negative correla-
tions among examples independently, and then per-
form a low-rank decomposition to reduce the com-
putational cost. Details are as follows:

Symmetric decomposition. To distinguish the
positive and negative correlations among exam-
ples (using NDPP’s nonsymmetric property), we
decompose the kernel matrix L into the sum of a
symmetric matrix .S and a skew-symmetric matrix
A as in Eq. 6, where A and S denote the positive
and negative correlations, respectively.

Low-rank decomposition. To reduce the com-
putational cost, inspired by Gartrell et al. (2021),
we further perform a low-rank decomposition on
the symmetric matrix S and the skew-symmetric
matrix A as in Eq. 6, which converts the high-
dimensional representation of the correlations into
a low-dimensional representation.

L=S+A,S=vVvT A=BcB" (6)

V, B € RM*K are low-rank matrices of S and A
respectively, where M is the example number in
the example pool D and K is the rank of the kernel
matrix L. V and B indicate the low-dimensional
representation of the negative and positive correla-
tions among examples, respectively. C € REXK
is a block-diagonal matrix with diagonal blocks X;
of the form [ (1\ )(ﬂ , where )\; > 0. C main-
—Aq
tains the skew-symmetric property of A.

4.3.3 Kernel Decomposition-based MLE

We perform MLE to fit the kernel matrix L with its
kernel decomposition form L = VVT + BCB”
obtained in the above step, where we also apply a
regularization term to the log-likelihood.

Step 1: Kernel-decomposed MLE. When we
optimize the kernel matrix L towards the MLE ob-
jective, we need to perform the decomposition of L
to ensure that L captures both positive and negative
correlations. We recall that the log-likelihood of

the kernel matrix L (Eq. 4). Specifically, we use
the decomposition form L = VV' + BCB” in
Eq. 6 to decompose L and Lg, in the objective
function (Eq. 4) to obtain the kernel-decomposed
log-likelihood (Eq. 7),

¢(V,B,C)
1< T T

= Zlogdet(VEiVEi +BEiCBE,;> )
=1

-
— logdet (VVT +BCB” + I)

Eq. 7 allows us to optimize the log-likelihood with
the decomposed components V', B, C'. The ma-
trices B and V can capture positive and negative
correlations among examples respectively.

Step 2: Regularized log-likelihood. To pre-
vent overfitting, we define a regularization term as
shown in Eq. 8. We perform L2 regularization for
each row vector v; and b; of the matrices V' and
B separately, and use hyperparameters « and (5 to
control the regularization strength of the matrices
V and B, respectively. In addition, we define a
weight parameter & to control the regularization
strength for each I‘O\ZN vector, where ~y; denotes the
occurrences of the i;, element appears in Dyy.qip,.
The regularization term is formally denoted as:

M 1 M 1
R(V,B)=-a) ol 3-8 ol I3 ®
i=1 " i=1 '*

Adding the regularization term (Eq. 8) to the kernel-
decomposed log-likelihood (Eq. 7), we obtain the
regularized log-likelihood (Eq. 9):
¢(V,B,C)
1< T T
== logdet (VEiVEi + Bp,CBr, )
[t ©)
— logdet (VVT +BCB” + 1)
+ R(V,B)

In summary of the processing of § 4.3, we first
train the NDPP model on the pseudo-labeled train-
ing set Dyyq4n collected in § 4.2, where we optimize
Eq. 9 to find the optimized kernel matrix (§ 4.3.1)
L through its kernel decomposition form (§ 4.3.2
and§ 4.3.3) as Eq. 6. Then, the optimized kernel
matrix can assist the NDPP model to select high-
quality ICL example sets.

4.4 ICL Example Selection via NDPP for
LLMs Inference

In the inference stage, to provide customized high-
quality ICL examples for different queries, we pro-
pose query-aware kernel adaptation to adapt the



trained NDPP to specific input queries so as to se-
lect ICL examples. To achieve it, we adapt the
NDPP to input queries by modeling the similar-
ity between examples and queries (§ 4.4.1), and
then select ICL examples by maximum-a-posteriori
(MAP) inference using the adapted NDPP (§ 4.4.2).
The above operations consider both the relevance
to input queries and the relevance among examples.

4.4.1 Adapting NDPP to Input Queries

To adapt the NDPP to input queries, we update the
kernel matrix of NDPP by introducing the similar-
ity between examples and input queries into the
kernel matrix.

For each query, we update that kernel matrix
with three steps: (1) Similarity Score Computa-
tion. We encode the query z via a query encoder
Eg(-) and encode the example e; via an exam-
ple encoder Ep(-). We obtain the similarity score
r; via the inner product of their encoder outputs:
r; = sim(z,e;) = Eg(z)T Ep(e;). (2) Similar-
ity Matrix Construction. Using similarity scores
r = [r1,re,...,ra) for all M examples in the ex-
ample pool D, we construct a diagonal similar-
ity matrix R € RM*M: R = Diag(r), where
Diag(+) is the diagonal matrix operator. The di-
agonal of R consists of r, while all off-diagonal
elements are 0. (3) Kernel Matrix Adaptation.
We adapt the optimized kernel matrix to the given
input query by incorporating the above similarity
matrix ]2 with the optimized kernel matrix L ob-
tained in 4.3. That is, we obtain the adapted kernel
matrix L' as: L' = R- L - R.

4.4.2 Query-Oriented Example Selection via
MAP Inference

To select the ICL example set for the query with the
adapted NDPP, rather than selecting the most rel-
evant k examples (Rubin et al., 2022; Wang et al.,
2024b), we conduct the MAP inference, the stan-
dard subset sampling method for NDPP, to select
examples one by one from the example pool via
greedy algorithm. The goal of MAP inference is
to select the high-quality ICL example set S,qp
of size k from the example pool D for the cur-
rent query. In the adapted NDPP, given the kernel
matrix L', Smap 18 the example subset of size &k
from the example pool D that maximizes Py (.S)
among all possible subsets S of size k. Recall that
the probability Pr/(S) is proportional to the deter-
minant of the sub-kernel matrix L’S, Smap 18 the
example subset from the example pool D that max-

imizes det(L's) among all possible subsets S of
size k. Formally, we define the MAP inference of

the example selection with adapted NDPP as:
Smap = argmax logdet(L's) (10)

SCD,|S|=k
However, the MAP inference above has been
proved to be N P-hard* (Koetal., 1995; Kulesza and
Taskar, 2012). To reduce the computational cost, a
common approach is to approximate the MAP in-
ference using greedy algorithms (Nemhauser et al.,
1978; Gillenwater et al., 2012; Chen et al., 2018).
To reduce the cost, we first select a candidate exam-
pleset Z,|Z| = K, K < M with KNN retriever
to reduce the size of candidate examples. Then,
following Gartrell et al. (2021), we approximate
MAP inference using the greedy algorithm: start-
ing from an empty set Sy,,p, We iteratively select
examples one by one until we obtained k£ examples,
approximating the global optimum by solving local
optima at each iteration. At each iteration, for all
examples 7 in the candidate example set Z that are
not included in Sy,4p, we compute the increment of
the log-determinant logdet(-) of the sub-kernel ma-
trix Ly, after adding example i to the set Synqp.
We select the example j with the largest increment
as the local optima and add it into Sy,qp:
7 = argmax logdet (L/Sma,, U{i})
i€Z\Smap (11)
— logdet (Llsmap)

Finally, we concatenate the query and the ICL ex-
ample set Sy,,qp as the input prompt of LLMs.

S Experiments

5.1 Experiments Settings

Dataset. Following (Ye et al., 2023b; Li et al.,
2023), we use five datasets: (1) GeoQuery (Shaw
et al., 2020) has 880 geography questions. (2)
NL2Bash (Lin et al., 2018) contains 9% Bash com-
mand pairs. (3) MTOP (Li et al., 2020) is a multilin-
gual parsing dataset with 6 languages. (4) WebQs
(Berant et al., 2013) covers 6,642 QA pairs using
Freebase. (5) Roc Ending (Mostafazadeh et al.,
2016) is a corpus with 100k stories.

*Such MAP inference requires finding all subsets S, |S| =
k of the example pool D, |D| = M and computing their de-
terminants. The example pool D, |D| = M has C(M, k)
subsets S, |\S| = k in total, and the computational complex-
ity of each subset determinant is O(k*). The cost of the
MAP inference is O(M" - k®) in total, which is unafford-
able as the size of the example pool D increases. And the
function logdet(L’s) is proved to be submodular, and the un-
constrained optimization problem for submodular is NP-hard.



GeoQuery MTOP NL2Bash WebQs Roc Ending
Model Method (EM) (EM) (BLEU-4) (EM) (BLEU-1)
Random 33.57 0.67 3435 487 57.58
BM25 62.36 53.04 58.08 16.68 5865
GPT-Neo (2.7B) EPR 71.07 60.36 56.82 17.91 59.12
CEIL* 7071 63.4 53.66 17.08 5972
TTF* 68.93 54.05 56.11 16.14 ]
Our 7321 65.37 61.01 18.9 60.33
Random 71.43 2148 67.45 34.49 58 34
GPTA EPR 88.93 7861 73.63 50.32 547
CEIL 91.07 78.7 73.95 46.75 56.24
Our 91.43 79.02 73.96 52.95 62.81

Table 1: ICL example selection experiment results. "/" indicates that the method is not open source and does not
give results of the dataset in the corresponding paper and "Bold" indicates optimal results. All results are averaged
over 3 runs.We reference results from the previous work (Liu et al., 2024b), marked by *. Our improvements are
significant under the t-test with p < 0.05 (See details in Appendix B).

Metrics. Following (Ye et al., 2023b; Li et al.,
2023), we use those metrics: (1) Exact Match (EM)
(Rajpurkar et al., 2016) for GeoQuery, MTOP, and
WebQs to assess the accuracy of the generated out-
put. (2) BLEU-1 (Papineni et al., 2002) for Roc
Ending to evaluate alignment in story generation.
(3) BLEU-4 (Papineni et al., 2002) for NL2Bash
to capture longer sequence structure in command
generation.

Baselines. We compare with two types of methods:
(1) Unsupervised Methods: Random, which ran-
domly selects non-repeating ICL examples from
the example pool. BM25 (Robertson et al., 2009),
which extends TF-IDF to rank relevant examples
for the test input and select the top-k highest scor-
ing ICL examples for each test input. (2) Super-
vised Methods: EPR (Rubin et al., 2022), which
uses the LLM itself as a scoring model to retrieve
good ICL examples. CEIL (Ye et al., 2023b) mod-
els ICL example sets with DPP and trains DPP by
contrastive learning. TTF (Liu et al., 2024b) fine-
tunes the ICL example selector with labeled data,
adding task-specific modules.

See the implementation details in Appendix A.

5.2 Overall Performance

Table 1 shows the overall results of ICL example
selection methods across five datasets. Notably,
while prior studies (Rubin et al., 2022; Ye et al.,
2023a) primarily focus on smaller models like GPT-
Neo (2.7B), we extend the evaluation to the SOTA
LLM GPT-4°. The results demonstrate that our

>Due to the limitations of black-box models like GPT-4
(which only expose log probabilities for the first five tokens),
our framework cannot directly construct pseudo-labeled train-
ing sets based on full token probabilities. To address this,
we transfer the retriever trained on GPT-Neo-2.7B directly to
GPT-4 for ICL example selection

method outperforms all baseline methods on both
GPT-neo-2.7B and GPT-4 models.

Compared to random selection, our method
shows over 20% average improvement on both
models. All designed selection methods outper-
form random selection except for GPT-4 on the Roc
Ending dataset, highlighting the value of careful ex-
ample selection. We observe that the performance
improvement of our method is more pronounced on
GPT-neo-2.7B compared to GPT-4, likely due to
the latter’s inherently stronger inference capability.
This finding is consistent with previous research
(Zhang et al., 2022). However, on the Geoquery,
Mtop, and Roc Ending datasets, our method on
GPT-neo-2.7B outperforms random example se-
lection on GPT-4, demonstrating the effectiveness
of our approach in enhancing the ICL capability
of LLMs. Furthermore, our method consistently
outperforms CEIL on all datasets, suggesting the
benefits of capturing positive correlations among
examples for ICL example selection.

5.3 Ablation Study

Table 2 presents the ablation study conducted on
our model. Our complete model performs excel-
lently across all five datasets, and removing any sin-
gle module leads to a decrease in performance, vali-
dating the effectiveness of each component. Specif-
ically: (1) w/o Scoring: We remove the step of scor-
ing with LLM and instead use all the example sub-
sets as the training set. We observe that although
performance slightly declined, our model still main-
tains relatively good performance on some tasks.
This suggests that our model is still able to model
correlations among examples to some extent, but
is disturbed by noise in low-scoring ICL example
subsets. (2) w/o Regularization: We removed the



Setti GeoQuery MTOP NL2Bash WebQs Roc Ending
etlings (EM) (EM) (BLEU-4) (EM) (BLEU-1)
Ours(Full Model) 73.21 65.37 61.01 18.9 60.33
w/o Scoring 72.36 65.19 59.32 17.91 59.09
w/o Regularization 71.43 65.28 60.25 18.75 59.94
w/o Adaptation 71.64 65.28 59.56 18.45 60.33

Table 2: Ablation study. w/o Scoring: remove the LLM scoring when construct the training set; w/o Regularization:
remove the regularization term in the log-likelihood; w/o Adaptation: remove query-aware kernel adaptation on the

trained NDPP.

GeoQuery MTOP WebQs Roc Ending

Best Random-Order 69.29 62.64 14.86 59.50
Worst Random-Order 66.43  61.48 13.24 58.10
VAR 0.78 0.13 0.21 0.19

Table 3: The effect of different example orders.

regularization term in Eq. 9, and the performance
of our model deteriorates on certain tasks. Without
regularization, our model exhibits a tendency to
overfit, which results in a decrease in generaliza-
tion ability on test data. (3) w/o Adaptation: We
remove the query-aware kernel adaptation and ob-
serve a performance drop, which demonstrates the
importance of considering the relevance between
queries and examples.

5.4 Analysis Study of ICL Example Order

Previous work (Lu et al., 2022) showed that ICL
is sensitive to the order of examples when using
Randomly selected examples. We conduct experi-
ments to investigate the effect of ordering on ICL
examples retrieved by our method. Specifically, we
provide 8 examples with 10 different random or-
derings for each dataset. We present the best (Best
Random-Order) and worst (Worst Random-Order)
results and the variance of the results over 10 runs.
The results are shown in Table 3.

We find that performance fluctuates somewhat
across different random orderings, but the varia-
tion is relatively small and within a controllable
range. This suggests that although example order
does have some impact on the performance of our
model, the effect is limited. This finding is con-
sistent with previous research (Li and Qiu, 2023),
which indicates that high-quality examples can re-
duce ICL sensitivity to the order of examples.

5.5 Analysis Study of ICL Example Numbers

Many LLMs are constrained by limited input
lengths, which restricts the maximum number of
in-context learning (ICL) examples that can be pro-
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Figure 2: The effect of different example numbers.

vided. To analyze the impact of example quantity
on ICL performance, we compared three methods
across four tasks, and the results are shown in fig-
ure 2. Our key observations are as follows: (1)
Increasing the number of examples enhances ICL
performance, as additional examples enable LLMs
to better understand the task objectives and output
patterns. (2) Beyond a certain point (e.g., 16 or 32),
the performance gains plateau. This is because the
marginal utility of additional examples diminishes,
as LLMs’ capacity to extract useful information
from further demonstrations becomes saturated.

6 Conclusion

In summary, we proposed an NDPP-based frame-
work for ICL example selection. Our framework
first constructs a pseudo-labeled training set based
on LLM feedback, and then uses the set to train
the NDPP model by kernel decomposition-based
MLE. Finally, in the inference stage, we perform
query adaptation on the NDPP model, followed by
MAP inference to select suitable and customized
ICL example sets for different queries. Our exper-
iments on five datasets across four domains show
that our framework achieves SOTA performance in
ICL example selection.



Limitations

The pseudo-labeled training dataset we construct
relies on LLM feedback, which may be subject to
inherent biases within the LLM. To address this
limitation, future work could explore integrating
fairness-aware mechanisms into the LLM feedback
process, such as debiasing techniques, fairness con-
straints, or adversarial training, to mitigate poten-
tial biases.

Our framework constructs pseudo-labeled
datasets based on token probabilities from LLM
feedback, which inherently limits its compatibil-
ity with black-box models (e.g., GPT-4), as they
only expose log probabilities for the top five to-
kens. However, our experiments demonstrate that
a retriever trained on white-box models (e.g., GPT-
Neo) can be effectively transferred to black-box
models, achieving competitive performance. In
future work, we plan to explore alternative ap-
proaches for constructing pseudo-labeled datasets
that are universally applicable, including black-box
LLMs.
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A Implementation Details.

We used GPT-neo-2.7B and GPT-4 as LLLM for our
study. The maximum context length for the input
of the LLM was set at 2048 tokens and the number
of context examples per task was set to 50. If the
context size limit of the LLM is exceeded, it will
be truncated. We adopted the Adam optimizer with
a learning rate of 0.01, and the hyperparameters o
and 3 were both set to 0.01. The training was con-
ducted on two NVIDIA A100 GPUs. We initialize
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the encoder E(-) and Eg(-) with CEIL (Ye et al.,
2023a). We employ the implementation from Ye
et al. (2023a) for random, BM25, and EPR. For
CEIL, we use the result from Liu et al. (2024b)
except the result of Roc Ending. We also employ
the implementation from Ye et al. (2023a) to obtain
the result of Roc Ending for CEIL.

B Significance Test.

We conduct the t-test (Bartlett, 1937) to examine
whether the improvements of our method are sig-
nificant. The p values in Table 4 are all smaller
than 0.05, demonstrating the significance of our
improvements.
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Dataset Dataset GeoQuery NL2Bash MTOP WebQs Roc Ending

GPT-Neo (2.7B) Bartlett’s Test 0 5.73e-61 0 7.29e-05 0
GPT-4 Bartlett’s Test 6.92e-03 0.0052 4.01e-12 0.0116 0.0251

Table 4: The p values of t-test on our method with baselines. The p values are all smaller than 0.05, indicating our
improvements are significant.
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