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Abstract

LLMs with in-context learning (ICL) obtain001
remarkable performance but are sensitive to the002
quality of ICL examples. Prior work on ICL ex-003
ample selection explored unsupervised heuris-004
tic methods and supervised LLM feedback-005
based methods, but they typically focus on the006
selection of individual examples, ignore corre-007
lations among examples. Recent researchers008
propose to use the determinantal point process009
(DPP) to model negative correlations among010
examples to select diverse example sets. How-011
ever, the DPP fails to model positive correla-012
tions among examples, but ICL still requires013
the positive correlations of examples to ensure014
the consistency of its examples that provide015
a clear instruction for LLMs. In this paper,016
we propose an ICL example selection frame-017
work based on the nonsymmetric determinantal018
point process (NDPP) to capture positive and019
negative correlations, consider both the diver-020
sity and the relevance among ICL examples.021
Specifically, we optimize NDPP via kernel022
decomposition-based MLE to fit a constructed023
pseudo-labeled dataset, where we also propose024
low-rank decomposition to reduce the compu-025
tational cost. Further, we perform query-aware026
kernel adaptation on our NDPP to customize027
the input query, and we select examples via028
a maximal-a-posteriori inference based on the029
adapted NDPP. Experiments show our model030
excels strong baselines in ICL example selec-031
tion.032

1 Introduction033

Large language models (LLMs) show good perfor-034

mance through in-context learning (ICL) (Brown035

et al., 2020; Wei et al., 2022b,a; Wen et al., 2024;036

Pan et al., 2024). ICL typically uses an example037

set and a task-specific instruction as a prompt and038

inputs a concatenation of the prompt and an user’s039

input query into LLMs. ICL allows LLMs to per-040

form tasks by observing a series of examples with-041

out the need to update parameters. However, the042

performance of ICL is sensitive to the selection of 043

examples (Liu et al., 2022; Zhang et al., 2022; Min 044

et al., 2022; An et al., 2023). Recent works (Lu 045

et al., 2022; Cheng et al., 2023) also show that dif- 046

ferent example sets exhibit significant differences 047

in performance. Thus, example selection is crucial 048

for exploiting the ICL capabilities of LLMs. 049

To select suitable examples for ICL, researchers 050

propose various context-dependent heuristic meth- 051

ods, where they select examples according to ex- 052

amples’ entropy (Lu et al., 2022), complexity (Fu 053

et al., 2022), perplexity (Gonen et al., 2023), and 054

diversity (Li and Qiu, 2023). These methods outper- 055

form random selection, but these methods ignore 056

characteristics of the specific input queries and thus 057

cannot customize the ICL example set for the input 058

queries. To consider the query, researchers propose 059

context-aware methods to retrieve similar exam- 060

ples for ICL (Liu et al., 2022; Agrawal et al., 2023; 061

Hongjin et al., 2022). They use off-the-shelf re- 062

trievers such as BM25 (Robertson et al., 2009) or 063

SBERT (Reimers and Gurevych, 2019) to select 064

examples based on their textual or semantic similar- 065

ity to the query. When applying LLMs to specific 066

tasks, they cannot customize the example selection 067

of ICL for the given task since the ICL example 068

selector (i.e., retriever) is not learnable and cannot 069

learn to tailor for the task-specific data. 070

To leverage task supervision, some recent work 071

(Rubin et al., 2022; Cheng et al., 2023; Li et al., 072

2023; Xiong et al., 2024) introduce LLMs feed- 073

back as the task-specific supervisory signal to train 074

the ICL example selectors (i.e. retriever), where 075

the signal is used to rank and label examples. In 076

these methods, the retrievers learn the LLMs’ pref- 077

erence for examples in different tasks, and adap- 078

tively select examples for each task. However, they 079

typically focus on the selection of each individ- 080

ual example, ignore the correlations (i.e., inter- 081

relationships) among a set of ICL examples. 082

To consider the correlations among examples for 083
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ICL, researchers (Levy et al., 2023; Ye et al., 2023a;084

Yang et al., 2023) propose to use the determinantal085

point process (DPP) (Kulesza and Taskar, 2012) to086

select examples by balancing the relevance to input087

queries and the diversity among examples. They088

model the relevance to input queries by similar-089

ity between queries and examples, and they model090

the diversity among examples since DPP’s kernel091

matrix L models the negative correlation of data092

points. However, DPP’s kernel matrix L is a sym-093

metric positive semi-definite (PSD) matrix. L re-094

stricts DPP can only model negative correlation 1095

among examples rather than positive correlation.096

It results in DPP ignoring the relevance among097

candidate examples.098

We argue the ICL example selection should not099

only consider the relevance to input queries and the100

diversity among examples, but also cater to the rel-101

evance among examples. Ensuring the consistency102

of ICL examples contributes to providing a clear103

instruction to guide the LLMs (Liu et al., 2024a). 2104

In this paper, we propose an ICL example selec-105

tion method for LLM based on the nonsymmetric106

determinantal point process model (NDPP), which107

considers the relevance to input queries, the di-108

versity among ICL examples, and the relevance109

among ICL examples. NDPP’s nonsymmetric prop-110

erty makes the selection model relevance among111

ICL examples. Specifically, we construct an NDPP112

model with a kernel matrix to capture positive and113

negative correlations among ICL examples. In the114

training stage, we propose a kernel decomposition-115

based maximum likelihood estimation (KD-MLE)116

to train the NDPP by fitting the kernel matrix over117

our constructed pseudo-labeled datasets. To reduce118

the computational cost of KD-MLE, we propose a119

low-rank decomposition of the kernel matrix. In120

the inference stage, to consider the relevance to121

input queries, we propose a query-aware kernel122

adaptation, which adapts the trained NDPP to the123

given query by incorporating the embedding simi-124

larity between examples and queries into the kernel125

matrix. We finally perform maximal-a-posteriori126

(MAP) inference based on the adapted NDPP to127

select the ICL example set for LLMs. Experiments128

1In DPP, the correlation between examples i and j is ex-
pressed as −LijLji, where L is the kernel matrix. Due to the
symmetric property of PSD matrix, Lij and Lji are always
equal, making the correlation −LijLji always non-positive.

2The relevance and diversity are not conflicted since ICL
needs multiple examples, where some of them may be diverse
and others are relevant so as to provide a comprehensive and
consistent instruction to LLMs.

show that our method exceeds baselines on five 129

datasets, including open-domain QA, code genera- 130

tion, semantic parsing and story generation tasks. 131

Our code is released.3 132

Our contributions are: (1) We propose a novel 133

ICL example selection framework based on NDPP, 134

which captures positive and negative correlations 135

among examples and learns the composition of ICL 136

examples to select suitable ICL examples for LLM. 137

(2) We propose a query-aware kernel optimization 138

to consider the similarity between queries and ex- 139

amples, which enables our framework to select cus- 140

tomized ICL example sets for different queries. (3) 141

Experiments on five datasets show that our method 142

achieves SOTA on ICL example selection. 143

2 Related Work 144

2.1 Example Selection for ICL 145

The in-context learning (ICL) performance of 146

LLMs depends on the selection of examples. De- 147

pending on whether the query information and the 148

task supervision were considered, ICL example 149

selection methods can be divided into three cate- 150

gories: (1) In-context Insensitive Unsupervised 151

Methods. These approaches ignore the query infor- 152

mation and task supervision. Fu et al. (2022) pro- 153

pose a complexity-based example selection method. 154

Lu et al. (2022) Propose an entropy-based approach 155

to mitigate example order sensitivity. Li and Qiu 156

(2023) use a diversity-guided example search strat- 157

egy to select examples. (2) In-context Sensitive 158

Unsupervised Methods. This category considers 159

query information but ignores the task supervision. 160

Researchers find that selecting different examples 161

can reduce the redundancy of ICL example set (Liu 162

et al., 2022; Agrawal et al., 2023; Hongjin et al., 163

2022). Wang et al. (2024a) further propose a model- 164

specific example selection method based on feature 165

evaluation to improve ICL performance during in- 166

ference. Similarly, Liu et al. (2024b) select exam- 167

ples with multiple levels of similarity to queries 168

to improve ICL performance. (3) In-context Sen- 169

sitive Supervised Methods. By introducing task 170

supervision, these methods fine-tune the ICL ex- 171

ample selector (i.e. retriever) for more precise ex- 172

ample selection. Many studies have improved the 173

quality of ICL examples by iteratively training re- 174

trievers (Rubin et al., 2022; Wang et al., 2024b; Li 175

et al., 2023; Liu et al., 2024b). Besides, Xiong et al. 176

3anonymous.4open.science/r/ICL_example_selection_with_NDPP-
FE36
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(2024) use chain-of-thought generated by LLMs177

to refine the retriever. Fu et al. (2022) propose178

to optimize the retriever by calculating semantic179

similarity, example diversity, and event correlation.180

To consider diversity among examples, Levy et al.181

(2023); Yang et al. (2023); Ye et al. (2023b) em-182

ploy DPP to select diverse example sets. These183

works only consider relevance to input queries and184

diversity among examples, our framework further185

considers relevance among examples.186

2.2 Determinantal Point Processes and Its187

Applications188

Determinantal Point Process (DPP) is a probabilis-189

tic model that can select diverse subsets by captur-190

ing negative correlations among items of the set.191

DPP has seen significant development. Johans-192

son et al. (2023) proposed a semi-supervised k-193

DPP method. Grosse et al. (2024) used a greedy194

algorithm for k-DPP sampling. To reduce compu-195

tational complexity, more efficient inference meth-196

ods were proposed, such as LSMOEA-DPP (Okoth197

et al., 2022) and Anisotropic DPP (Ghilotti et al.,198

2024).199

DPP is widely used in AI applications, especially200

for tasks that require diversity sets, such as neural201

network training (Sheikh et al., 2022), recommen-202

dation systems (Liu et al., 2024c), video analysis203

(Chen et al., 2023), and abstract summary (Shen204

et al., 2023). DPP also been used to optimize GNN205

on graph-structured data. (Duan et al., 2022).206

Gartrell et al. (2019) propose an extension of207

DPP called nonsymmetric determinantal point pro-208

cesses (NDPP), which can model both positive and209

negative correlations among a set of items. Gartrell210

et al. (2021) reduce NDPP’s complexity via kernel211

decomposition. Han et al. (2022) propose a scal-212

able sampling method for NDPP. Song et al. (2024)213

propose a fast dynamic algorithm for resampling214

distributions of NDPP, which shortens the sampling215

time.216

While current works focus on the application of217

the DPP, we explore the application of the NDPP218

on ICL example selection.219

3 Preliminary220

In-Context Learning. In-context learning (ICL)221

(Brown et al., 2020) prompts are usually sequences222

of examples. Given test instance (xtest, ytest),223

LLMs predicts ŷ with k-shot ICL prompt :224

ŷ = LLM(e1⊕, ...,⊕ek ⊕ xtest) (1)225

Where ei = (xi, yi)
k
i=1 is the ith example, and ⊕ 226

is the concatenation operation. The objective of 227

ICL example selection task is to select k examples 228

from a pre-constructed example pool such that the 229

predicted value ŷ matches its ground truth ytest. 230

Nonsymmetric Determinantal Point Process. 231

Nonsymmetric determinantal point process 232

(NDPP) is a probabilistic model to model cor- 233

relations between items in a set (Gartrell et al., 234

2019). It models a finite ground set D with a 235

kernel matrix L such that for any subset E ∈ D, 236

Pr(E) ∝ det(LE), where LE is the submatrix of 237

L indexed by E .Given the kernel matrix L, the 238

probability a subset E being selected from D is 239

defined as: 240

PL(E) =
det(LE)

det(L+ I)
(2) 241

where I is the unit matrix. 242

4 Method 243

4.1 Overview 244

To provide high-quality ICL examples for LLMs, 245

we construct an ICL example selection framework 246

based on the NDPP model, where the NDPP con- 247

sists of a kernel matrix L to model correlations 248

among examples. We construct a pseudo-labeled 249

training set based on LLMs feedback (§ 4.2), and 250

use the pseudo-labeled training set to train the 251

NDPP model by kernel decomposition-based max- 252

imum likelihood estimation (KD-MLE) (§ 4.3). 253

In the inference stage, we perform query-aware 254

kernel-adaptation on the trained NDPP model to 255

consider the relevance to input queries, and select 256

ICL examples based on the adapted model through 257

MAP inference (§ 4.4). 258

4.2 Example Subsets Pseudo-labeling via 259

LLMs’ Feedback 260

Since there is no ground truth of ICL example sets 261

for each training instance, to train the NDPP model 262

in § 4.3 by MLE, we collect the feedback signals 263

from LLMs for scoring the example subsets to con- 264

struct a training set. 265

Given a task, we construct the pseudo-labeled 266

training set with three steps: (1) Candidate exam- 267

ple retrieval. For each instance (xi, yi) from our 268

training set, we retrieve a candidate example set 269

from the example pool D using the KNN retriever, 270

which considers the embedding similarity between 271
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Figure 1: The overview of our framework. In the training stage, we construct a pseudo-labeled training set Dtrain

based on LLMs’ feedback (§ 4.2), and use Dtrain to optimize the kernel matrix L of the NDPP model by kernel
decomposition-based MLE (§ 4.3). In the inference stage, we perform query-aware kernel-adaptation on the trained
NDPP model, and select ICL examples based on the adapted model through MAP inference (§ 4.4).

the instance and examples. From the retrieved can-272

didate example set, we randomly sample N non-273

overlapping subsets, denoted as {Eij}Nj=1. (2) Ex-274

ample subset scoring. We measure the quality of275

each candidate example subset Eij with a quality276

score sij , and the scores act as pseudo labels of the277

subsets. To obtain the quality score sij , we concate-278

nate the query xi and examples in the subset Eij ,279

and input the concatenation into an LLM to obtain280

the probability PLLM (yi|Eij , xi) of predicting the281

corresponding ground truth yi of the test query xi,282

which is formalized as: sij = PLLM (yi|Eij , xi).283

(3) Pseudo training set construction. We rank284

candidate example subsets based on the score sij ,285

and select the top 10% high-scoring subsets for all286

instances to construct a pseudo-labeled training set287

Dtrain = (Ei)
n
i=1, where n is the subset number.288

Dtrain is used to train the NDPP model in (§ 4.3).289

4.3 NDPP Model Optimization with290

Pseudo-labeled Example Subsets291

To select high-quality ICL example sets, we train292

the NDPP model by kernel decomposition-based293

maximum likelihood estimation (KD-MLE), which294

allows the NDPP model to learn the kernel matrix295

of high-scoring example subsets from the pseudo-296

labeled training set. The process consists of three297

steps: (1) we first define the NDPP optimization298

objective, then (2) get the kernel decomposition for299

NDPP, and finally, (3) we optimize NDPP via the300

kernel decomposition-based MLE.301

4.3.1 NDPP Optimization Objective: MLE302

with Kernal Matrix303

To capture correlations among examples in the ICL304

example set, we optimize the kernel matrix of the305

ICL example set to fit the pseudo-labeled training 306

set. The fitted kernel matrix represents the feature 307

of high-scoring ICL example sets so that the NDPP 308

model can select suitable examples with the fitted 309

kernel matrix. 310

In the NDPP, recall that the probability of se- 311

lecting a candidate example subset Ei from the 312

example pool D is PL(Ei) =
det(LEi

)

det(L+I) (as shown 313

in Eq. 2), where L is the kernel matrix of D and 314

LEi is the submatrix of L indexed by Ei. The 315

base kernel matrix L is constructed by comput- 316

ing the pairwise embedding similarity between two 317

examples ⟨ei, ej⟩ in the example pool D, where 318

Lij = sim(ei, ej). Elements of L show correla- 319

tions among examples in the example pool. Given 320

different kernel matrices, the NDPP selects differ- 321

ent ICL example sets with the probability PL(·). 322

To select high-quality ICL example sets with 323

NDPP, we aim to find a kernel matrix L that max- 324

imizes the probability of selecting high-scoring 325

ICL example subsets. To achieve it, we opti- 326

mize the kernel matrix L of the ICL example set 327

to fit the pseudo-labeled training set Dtrain = 328

(Ei)
n
i=1. Specifically, we optimize L towards the 329

log-likelihood on the training set Dtrain as, 330

f̂n(L) =
1

n

n∑
i=1

logPL(Ei) (3) 331

Because PL(Ei) =
det(LEi

)

det(L+I) , we have: 332

f̂n(L) =
1

n

n∑
i=1

logdet(LEi)− logdet(L+ I) (4) 333

The optimized kernel matrix L̂ is the kernel matrix 334

that maximizes the Eq. 4, denoted as: 335

L̂ = argmax
L

f̂n(L) (5) 336
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The optimized kernel matrix L̂ is the learnable op-337

timal approximation of high-scoring ICL example338

subsets’ kernel matrix, with its elements represent-339

ing correlations among examples.340

4.3.2 Kernel Decomposition of NDPP341

To optimize the kernel matrix L conveniently, we342

perform a two-step decomposition on the NDPP343

kernel matrix: we first perform symmetric de-344

composition on the kernel matrix, which enables345

NDPP to learn the positive and negative correla-346

tions among examples independently, and then per-347

form a low-rank decomposition to reduce the com-348

putational cost. Details are as follows:349

Symmetric decomposition. To distinguish the350

positive and negative correlations among exam-351

ples (using NDPP’s nonsymmetric property), we352

decompose the kernel matrix L into the sum of a353

symmetric matrix S and a skew-symmetric matrix354

A as in Eq. 6, where A and S denote the positive355

and negative correlations, respectively.356

Low-rank decomposition. To reduce the com-357

putational cost, inspired by Gartrell et al. (2021),358

we further perform a low-rank decomposition on359

the symmetric matrix S and the skew-symmetric360

matrix A as in Eq. 6, which converts the high-361

dimensional representation of the correlations into362

a low-dimensional representation.363

L = S +A,S = V V T ,A = BCBT (6)364

V ,B ∈ RM×K are low-rank matrices of S and A365

respectively, where M is the example number in366

the example pool D and K is the rank of the kernel367

matrix L. V and B indicate the low-dimensional368

representation of the negative and positive correla-369

tions among examples, respectively. C ∈ RK×K370

is a block-diagonal matrix with diagonal blocks Σi371

of the form
[

0 λi

−λi 0

]
, where λi > 0. C main-372

tains the skew-symmetric property of A.373

4.3.3 Kernel Decomposition-based MLE374

We perform MLE to fit the kernel matrix L with its375

kernel decomposition form L = V V T +BCBT376

obtained in the above step, where we also apply a377

regularization term to the log-likelihood.378

Step 1: Kernel-decomposed MLE. When we379

optimize the kernel matrix L towards the MLE ob-380

jective, we need to perform the decomposition of L381

to ensure that L captures both positive and negative382

correlations. We recall that the log-likelihood of383

the kernel matrix L (Eq. 4). Specifically, we use 384

the decomposition form L = V V T +BCBT in 385

Eq. 6 to decompose L and LEi in the objective 386

function (Eq. 4) to obtain the kernel-decomposed 387

log-likelihood (Eq. 7), 388

ϕ(V ,B,C)

=
1

n

n∑
i=1

logdet
(
V EiV Ei

T +BEiCBEi

T
)

− logdet
(
V V T +BCBT + I

) (7) 389

Eq. 7 allows us to optimize the log-likelihood with 390

the decomposed components V , B, C. The ma- 391

trices B and V can capture positive and negative 392

correlations among examples respectively. 393

Step 2: Regularized log-likelihood. To pre- 394

vent overfitting, we define a regularization term as 395

shown in Eq. 8. We perform L2 regularization for 396

each row vector vi and bi of the matrices V and 397

B separately, and use hyperparameters α and β to 398

control the regularization strength of the matrices 399

V and B, respectively. In addition, we define a 400

weight parameter 1
γi

to control the regularization 401

strength for each row vector, where γi denotes the 402

occurrences of the ith element appears in Dtrain. 403

The regularization term is formally denoted as: 404

R(V ,B) = −α

M∑
i=1

1

γi
∥ vi ∥22 −β

M∑
i=1

1

γi
∥ bi ∥22 (8) 405

Adding the regularization term (Eq. 8) to the kernel- 406

decomposed log-likelihood (Eq. 7), we obtain the 407

regularized log-likelihood (Eq. 9): 408

ϕ(V ,B,C)

=
1

n

n∑
i=1

logdet
(
V EiV Ei

T +BEiCBEi

T
)

− logdet
(
V V T +BCBT + I

)
+R(V ,B)

(9) 409

In summary of the processing of § 4.3, we first 410

train the NDPP model on the pseudo-labeled train- 411

ing set Dtrain collected in § 4.2, where we optimize 412

Eq. 9 to find the optimized kernel matrix (§ 4.3.1) 413

L̂ through its kernel decomposition form (§ 4.3.2 414

and§ 4.3.3) as Eq. 6. Then, the optimized kernel 415

matrix can assist the NDPP model to select high- 416

quality ICL example sets. 417

4.4 ICL Example Selection via NDPP for 418

LLMs Inference 419

In the inference stage, to provide customized high- 420

quality ICL examples for different queries, we pro- 421

pose query-aware kernel adaptation to adapt the 422
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trained NDPP to specific input queries so as to se-423

lect ICL examples. To achieve it, we adapt the424

NDPP to input queries by modeling the similar-425

ity between examples and queries (§ 4.4.1), and426

then select ICL examples by maximum-a-posteriori427

(MAP) inference using the adapted NDPP (§ 4.4.2).428

The above operations consider both the relevance429

to input queries and the relevance among examples.430

4.4.1 Adapting NDPP to Input Queries431

To adapt the NDPP to input queries, we update the432

kernel matrix of NDPP by introducing the similar-433

ity between examples and input queries into the434

kernel matrix.435

For each query, we update that kernel matrix436

with three steps: (1) Similarity Score Computa-437

tion. We encode the query x via a query encoder438

EQ(·) and encode the example ei via an exam-439

ple encoder EP (·). We obtain the similarity score440

ri via the inner product of their encoder outputs:441

ri = sim(x, ei) = EQ(x)
TEP (ei). (2) Similar-442

ity Matrix Construction. Using similarity scores443

r = [r1, r2, ..., rM ] for all M examples in the ex-444

ample pool D, we construct a diagonal similar-445

ity matrix R ∈ RM×M : R = Diag(r), where446

Diag(·) is the diagonal matrix operator. The di-447

agonal of R consists of r, while all off-diagonal448

elements are 0. (3) Kernel Matrix Adaptation.449

We adapt the optimized kernel matrix to the given450

input query by incorporating the above similarity451

matrix R with the optimized kernel matrix L̂ ob-452

tained in 4.3. That is, we obtain the adapted kernel453

matrix L′ as: L′ = R · L̂ ·R.454

4.4.2 Query-Oriented Example Selection via455

MAP Inference456

To select the ICL example set for the query with the457

adapted NDPP, rather than selecting the most rel-458

evant k examples (Rubin et al., 2022; Wang et al.,459

2024b), we conduct the MAP inference, the stan-460

dard subset sampling method for NDPP, to select461

examples one by one from the example pool via462

greedy algorithm. The goal of MAP inference is463

to select the high-quality ICL example set Smap464

of size k from the example pool D for the cur-465

rent query. In the adapted NDPP, given the kernel466

matrix L′, Smap is the example subset of size k467

from the example pool D that maximizes PL′(S)468

among all possible subsets S of size k. Recall that469

the probability PL′(S) is proportional to the deter-470

minant of the sub-kernel matrix L′
S , Smap is the471

example subset from the example pool D that max-472

imizes det(L′
S) among all possible subsets S of 473

size k. Formally, we define the MAP inference of 474

the example selection with adapted NDPP as: 475

Smap = argmax
S⊆D,|S|=k

logdet(L′
S) (10) 476

However, the MAP inference above has been 477

proved to be NP-hard4 (Ko et al., 1995; Kulesza and 478

Taskar, 2012). To reduce the computational cost, a 479

common approach is to approximate the MAP in- 480

ference using greedy algorithms (Nemhauser et al., 481

1978; Gillenwater et al., 2012; Chen et al., 2018). 482

To reduce the cost, we first select a candidate exam- 483

ple set Z, |Z| = K,K < M with KNN retriever 484

to reduce the size of candidate examples. Then, 485

following Gartrell et al. (2021), we approximate 486

MAP inference using the greedy algorithm: start- 487

ing from an empty set Smap, we iteratively select 488

examples one by one until we obtained k examples, 489

approximating the global optimum by solving local 490

optima at each iteration. At each iteration, for all 491

examples i in the candidate example set Z that are 492

not included in Smap, we compute the increment of 493

the log-determinant logdet(·) of the sub-kernel ma- 494

trix L′
Smap

after adding example i to the set Smap. 495

We select the example j with the largest increment 496

as the local optima and add it into Smap: 497

j = argmax
i∈Z\Smap

logdet
(
L′

Smap
⋃
{i}

)
− logdet

(
L′

Smap

) (11) 498

Finally, we concatenate the query and the ICL ex- 499

ample set Smap as the input prompt of LLMs. 500

5 Experiments 501

5.1 Experiments Settings 502

Dataset. Following (Ye et al., 2023b; Li et al., 503

2023), we use five datasets: (1) GeoQuery (Shaw 504

et al., 2020) has 880 geography questions. (2) 505

NL2Bash (Lin et al., 2018) contains 9k Bash com- 506

mand pairs. (3) MTOP (Li et al., 2020) is a multilin- 507

gual parsing dataset with 6 languages. (4) WebQs 508

(Berant et al., 2013) covers 6,642 QA pairs using 509

Freebase. (5) Roc Ending (Mostafazadeh et al., 510

2016) is a corpus with 100k stories. 511

4Such MAP inference requires finding all subsets S, |S| =
k of the example pool D, |D| = M and computing their de-
terminants. The example pool D, |D| = M has C(M,k)
subsets S, |S| = k in total, and the computational complex-
ity of each subset determinant is O(k3). The cost of the
MAP inference is O(Mk · k3) in total, which is unafford-
able as the size of the example pool D increases. And the
function logdet(L′

S) is proved to be submodular, and the un-
constrained optimization problem for submodular is NP-hard.
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Model Method GeoQuery
(EM)

MTOP
(EM)

NL2Bash
(BLEU-4)

WebQs
(EM)

Roc Ending
(BLEU-1)

GPT-Neo (2.7B)

Random 33.57 0.67 34.35 4.87 57.58
BM25 62.86 53.24 58.98 16.68 58.65
EPR 71.07 60.36 56.82 17.91 59.12
CEIL* 70.71 63.4 53.66 17.08 59.72
TTF* 68.93 54.05 56.11 16.14 /
Our 73.21 65.37 61.01 18.9 60.33

GPT-4
Random 71.43 21.48 67.45 34.49 58.34
EPR 88.93 78.61 73.63 50.32 54.7
CEIL 91.07 78.7 73.95 46.75 56.24
Our 91.43 79.02 73.96 52.95 62.81

Table 1: ICL example selection experiment results. "/" indicates that the method is not open source and does not
give results of the dataset in the corresponding paper and "Bold" indicates optimal results. All results are averaged
over 3 runs.We reference results from the previous work (Liu et al., 2024b), marked by *. Our improvements are
significant under the t-test with p < 0.05 (See details in Appendix B).

Metrics. Following (Ye et al., 2023b; Li et al.,512

2023), we use those metrics: (1) Exact Match (EM)513

(Rajpurkar et al., 2016) for GeoQuery, MTOP, and514

WebQs to assess the accuracy of the generated out-515

put. (2) BLEU-1 (Papineni et al., 2002) for Roc516

Ending to evaluate alignment in story generation.517

(3) BLEU-4 (Papineni et al., 2002) for NL2Bash518

to capture longer sequence structure in command519

generation.520

Baselines. We compare with two types of methods:521

(1) Unsupervised Methods: Random, which ran-522

domly selects non-repeating ICL examples from523

the example pool. BM25 (Robertson et al., 2009),524

which extends TF-IDF to rank relevant examples525

for the test input and select the top-k highest scor-526

ing ICL examples for each test input. (2) Super-527

vised Methods: EPR (Rubin et al., 2022), which528

uses the LLM itself as a scoring model to retrieve529

good ICL examples. CEIL (Ye et al., 2023b) mod-530

els ICL example sets with DPP and trains DPP by531

contrastive learning. TTF (Liu et al., 2024b) fine-532

tunes the ICL example selector with labeled data,533

adding task-specific modules.534

See the implementation details in Appendix A.535

5.2 Overall Performance536

Table 1 shows the overall results of ICL example537

selection methods across five datasets. Notably,538

while prior studies (Rubin et al., 2022; Ye et al.,539

2023a) primarily focus on smaller models like GPT-540

Neo (2.7B), we extend the evaluation to the SOTA541

LLM GPT-45. The results demonstrate that our542

5Due to the limitations of black-box models like GPT-4
(which only expose log probabilities for the first five tokens),
our framework cannot directly construct pseudo-labeled train-
ing sets based on full token probabilities. To address this,
we transfer the retriever trained on GPT-Neo-2.7B directly to
GPT-4 for ICL example selection

method outperforms all baseline methods on both 543

GPT-neo-2.7B and GPT-4 models. 544

Compared to random selection, our method 545

shows over 20% average improvement on both 546

models. All designed selection methods outper- 547

form random selection except for GPT-4 on the Roc 548

Ending dataset, highlighting the value of careful ex- 549

ample selection. We observe that the performance 550

improvement of our method is more pronounced on 551

GPT-neo-2.7B compared to GPT-4, likely due to 552

the latter’s inherently stronger inference capability. 553

This finding is consistent with previous research 554

(Zhang et al., 2022). However, on the Geoquery, 555

Mtop, and Roc Ending datasets, our method on 556

GPT-neo-2.7B outperforms random example se- 557

lection on GPT-4, demonstrating the effectiveness 558

of our approach in enhancing the ICL capability 559

of LLMs. Furthermore, our method consistently 560

outperforms CEIL on all datasets, suggesting the 561

benefits of capturing positive correlations among 562

examples for ICL example selection. 563

5.3 Ablation Study 564

Table 2 presents the ablation study conducted on 565

our model. Our complete model performs excel- 566

lently across all five datasets, and removing any sin- 567

gle module leads to a decrease in performance, vali- 568

dating the effectiveness of each component. Specif- 569

ically: (1) w/o Scoring: We remove the step of scor- 570

ing with LLM and instead use all the example sub- 571

sets as the training set. We observe that although 572

performance slightly declined, our model still main- 573

tains relatively good performance on some tasks. 574

This suggests that our model is still able to model 575

correlations among examples to some extent, but 576

is disturbed by noise in low-scoring ICL example 577

subsets. (2) w/o Regularization: We removed the 578
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Settings GeoQuery
(EM)

MTOP
(EM)

NL2Bash
(BLEU-4)

WebQs
(EM)

Roc Ending
(BLEU-1)

Ours(Full Model) 73.21 65.37 61.01 18.9 60.33
w/o Scoring 72.36 65.19 59.32 17.91 59.09
w/o Regularization 71.43 65.28 60.25 18.75 59.94
w/o Adaptation 71.64 65.28 59.56 18.45 60.33

Table 2: Ablation study. w/o Scoring: remove the LLM scoring when construct the training set; w/o Regularization:
remove the regularization term in the log-likelihood; w/o Adaptation: remove query-aware kernel adaptation on the
trained NDPP.

GeoQuery MTOP WebQs Roc Ending

Best Random-Order 69.29 62.64 14.86 59.50
Worst Random-Order 66.43 61.48 13.24 58.10
VAR 0.78 0.13 0.21 0.19

Table 3: The effect of different example orders.

regularization term in Eq. 9, and the performance579

of our model deteriorates on certain tasks. Without580

regularization, our model exhibits a tendency to581

overfit, which results in a decrease in generaliza-582

tion ability on test data. (3) w/o Adaptation: We583

remove the query-aware kernel adaptation and ob-584

serve a performance drop, which demonstrates the585

importance of considering the relevance between586

queries and examples.587

5.4 Analysis Study of ICL Example Order588

Previous work (Lu et al., 2022) showed that ICL589

is sensitive to the order of examples when using590

Randomly selected examples. We conduct experi-591

ments to investigate the effect of ordering on ICL592

examples retrieved by our method. Specifically, we593

provide 8 examples with 10 different random or-594

derings for each dataset. We present the best (Best595

Random-Order) and worst (Worst Random-Order)596

results and the variance of the results over 10 runs.597

The results are shown in Table 3.598

We find that performance fluctuates somewhat599

across different random orderings, but the varia-600

tion is relatively small and within a controllable601

range. This suggests that although example order602

does have some impact on the performance of our603

model, the effect is limited. This finding is con-604

sistent with previous research (Li and Qiu, 2023),605

which indicates that high-quality examples can re-606

duce ICL sensitivity to the order of examples.607

5.5 Analysis Study of ICL Example Numbers608

Many LLMs are constrained by limited input609

lengths, which restricts the maximum number of610

in-context learning (ICL) examples that can be pro-611

Figure 2: The effect of different example numbers.

vided. To analyze the impact of example quantity 612

on ICL performance, we compared three methods 613

across four tasks, and the results are shown in fig- 614

ure 2. Our key observations are as follows: (1) 615

Increasing the number of examples enhances ICL 616

performance, as additional examples enable LLMs 617

to better understand the task objectives and output 618

patterns. (2) Beyond a certain point (e.g., 16 or 32), 619

the performance gains plateau. This is because the 620

marginal utility of additional examples diminishes, 621

as LLMs’ capacity to extract useful information 622

from further demonstrations becomes saturated. 623

6 Conclusion 624

In summary, we proposed an NDPP-based frame- 625

work for ICL example selection. Our framework 626

first constructs a pseudo-labeled training set based 627

on LLM feedback, and then uses the set to train 628

the NDPP model by kernel decomposition-based 629

MLE. Finally, in the inference stage, we perform 630

query adaptation on the NDPP model, followed by 631

MAP inference to select suitable and customized 632

ICL example sets for different queries. Our exper- 633

iments on five datasets across four domains show 634

that our framework achieves SOTA performance in 635

ICL example selection. 636

8



Limitations637

The pseudo-labeled training dataset we construct638

relies on LLM feedback, which may be subject to639

inherent biases within the LLM. To address this640

limitation, future work could explore integrating641

fairness-aware mechanisms into the LLM feedback642

process, such as debiasing techniques, fairness con-643

straints, or adversarial training, to mitigate poten-644

tial biases.645

Our framework constructs pseudo-labeled646

datasets based on token probabilities from LLM647

feedback, which inherently limits its compatibil-648

ity with black-box models (e.g., GPT-4), as they649

only expose log probabilities for the top five to-650

kens. However, our experiments demonstrate that651

a retriever trained on white-box models (e.g., GPT-652

Neo) can be effectively transferred to black-box653

models, achieving competitive performance. In654

future work, we plan to explore alternative ap-655

proaches for constructing pseudo-labeled datasets656

that are universally applicable, including black-box657

LLMs.658
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A Implementation Details. 959

We used GPT-neo-2.7B and GPT-4 as LLM for our 960

study. The maximum context length for the input 961

of the LLM was set at 2048 tokens and the number 962

of context examples per task was set to 50. If the 963

context size limit of the LLM is exceeded, it will 964
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a learning rate of 0.01, and the hyperparameters α 966

and β were both set to 0.01. The training was con- 967

ducted on two NVIDIA A100 GPUs. We initialize 968
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the encoder EQ(·) and EQ(·) with CEIL (Ye et al.,969

2023a). We employ the implementation from Ye970

et al. (2023a) for random, BM25, and EPR. For971

CEIL, we use the result from Liu et al. (2024b)972

except the result of Roc Ending. We also employ973

the implementation from Ye et al. (2023a) to obtain974

the result of Roc Ending for CEIL.975

B Significance Test.976

We conduct the t-test (Bartlett, 1937) to examine977

whether the improvements of our method are sig-978

nificant. The p values in Table 4 are all smaller979

than 0.05, demonstrating the significance of our980

improvements.981
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Dataset Dataset GeoQuery NL2Bash MTOP WebQs Roc Ending

GPT-Neo (2.7B) Bartlett’s Test 0 5.73e-61 0 7.29e-05 0
GPT-4 Bartlett’s Test 6.92e-03 0.0052 4.01e-12 0.0116 0.0251

Table 4: The p values of t-test on our method with baselines. The p values are all smaller than 0.05, indicating our
improvements are significant.
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