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Abstract

We consider the private ranking recovery problem, where a data collector seeks to estimate
the permutation/ranking of a data vector given a randomized (privatized) version of it. We
aim to establish fundamental trade-offs between the performance of the estimation task,
measured in terms of probability of error, and the level of privacy that can be guaranteed
when the noise mechanism consists of adding artificial noise. Towards this end, we show the
optimality of a low-complexity decision rule (referred to as linear decoder) for the estimation
task, under several noise distributions widely used in the privacy literature (e.g., Gaussian,
Laplace, and generalized normal model). We derive the Taylor series of the probability of
error, which yields its first and second-order approximations when such a linear decoder
is employed. We quantify the guaranteed level of privacy using differential privacy (DP)
types of metrics, such as ε-DP and (α, ε)-Rényi DP. Finally, we put together the results to
characterize trade-offs between privacy and probability of error.

1 Introduction

Today, ranking algorithms are of fundamental importance and are used in a large portfolio of applications, such
as search engines (Dwork et al., 2001), biomedical (Chanas & Kobylański, 1996), recommender systems (Baskin
& Krishnamurthi, 2009), and feature matching (Jeong et al., 2020). Broadly speaking, the goal of a ranking
algorithm is to sort a dataset – which, in the current Big Data era, is usually massive in size and complexity –
so that users/individuals are provided with accurate and relevant results. For instance, a recommender system
may suggest a new item to buy to a user based on their interests and previous purchases. Although modern
ranking algorithms promise efficient means of performing large-scale data processing, there are numerous
privacy considerations that must not be overlooked. For instance, the dataset might contain confidential
data, such as clinical/genomic health and banking records, or a user would not like to disclose their previous
purchases to a recommender system.

In this paper, we study the private ranking recovery problem, which consists of recovering the rank-
ing/permutation of an input data vector from a noisy version of it. The importance and timeliness of
this problem stems from two major considerations. First, many modern computing systems (e.g., recom-
mender systems) are often more interested in recovering the permutation, i.e., the relative ranking of data
points, rather than the values of the data itself. Second, because of privacy considerations, users might
decide to privatize their data (e.g., by adding some noise) before sharing it with an external party (e.g.,
recommender system). These facts give rise to the following practically relevant question: Which perturbation
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mechanisms allow for data privatization, while still allowing to correctly recover the permutation of the input
data vector with high probability?

1.1 Related Work

Recently, problems with a similar flavor to the private ranking recovery problem (studied in this paper)
have been analyzed. For instance, Jeong et al. (2020; 2021) focused on characterizing the probability of
error of estimating the original permutation of data perturbed by adding Gaussian noise. In particular,
they characterized sufficient and necessary conditions of the Gaussian noise covariance matrix that ensure
that the optimal (i.e., that minimizes the probability of error) decision rule consists of simply declaring a
permutation-independent linear function of the noisy observation. The rank aggregation problem was studied
under differential privacy constraints by Shang et al. (2014) and Hay et al. (2017), and under local differential
privacy by Yan et al. (2020) and Alabi et al. (2021). Differential privacy (DP), which is a statistical guarantee
introduced by Dwork et al. (2006b) for indistinguishability whether any data element exists or not in a
dataset, is one of the most common adopted privacy metrics. Several notions of DP have been introduced and
analyzed that range from the basic ε-DP metric (which can be guaranteed by using the Laplace randomized
mechanism) (Dwork, 2008), to more relaxed versions of it, such as the (ε, δ)-DP Dwork et al. (2006a), the
ε-mutual information DP and the ε-Kullback-Leibler (KL) DP Cuff & Yu (2016), and the (α, ε)-Rényi DP
(RDP) Mironov (2017). In particular, the (α, ε)-RDP encompasses: (i) the ε-DP if α → ∞, and (ii) the
ε-KL DP if α→ 1. Moreover, some important properties of the ε-DP, e.g., the composition theorem, remain
applicable in the RDP framework.

When data is confidential and hence, needs to be privatized before being shared with an external party
(which will perform some operations on it) a natural question arises: For a fixed target performance guarantee
(a.k.a. utility) required on the data, what is a randomized mechanism that achieves the maximum level
of privacy? To answer this question, one needs to understand the trade-off between privacy and utility.
Such a trade-off has been studied in the literature in several settings, where different utility measures have
been used. For instance, Wasserman & Zhou (2010) compared several randomized mechanisms (from a
statistical point of view) by using the Kolmogorov–Smirnov and the L2 distances among distributions and
densities. Wei et al. (2020) showed a trade-off between the convergence of a federated learning algorithm
(utility) and the level of privacy (measured in terms of DP) that can be guaranteed, hence suggesting the
amount of artificial noise that should be used in this context. Avent et al. (2019) studied the privacy-utility
trade-off for a hyperparameterized algorithm using multi-objective optimization and Pareto front. For a
single real-valued query, Geng et al. (2015) identified the staircase distribution (i.e., a geometric mixture of
uniform random variables) as a distribution that minimizes the L1 loss (utility) under a fixed given level of
ε-DP. The staircase distribution has also been shown to be the optimal ε-DP mechanism under other utility
constraints (Soria-Comas & Domingo-Ferrer, 2013). More recently, Geng et al. (2019) studied trade-offs
between (0, δ)-DP and the Lp loss function for a single real-valued query function.

1.2 Contributions and Paper Organization

In this paper, we study the private ranking recovery problem, where a confidential input data vector needs to
be privatized (by means of a randomized mechanism) before being shared with an external party. We seek to
retrieve the true ordering of the input data vector given the privatized data. Our main goal is to characterize
the trade-off between the performance of estimating the permutation of the input data vector (measured in
terms of error probability) and the level of privacy (measured in terms of ε-DP and (α, ε)-RDP) that the used
mechanism guarantees.

First, in Section 2, we formulate the private ranking recovery problem within a DP framework. In particular,
we adopt the (α, ε)-RDP as a privacy metric; our choice mainly stems from the fact that the (α, ε)-RDP
encompasses other widely employed DP metrics such as the ε-DP (Dwork, 2008) if α→∞, and the ε-KL
DP (Cuff & Yu, 2016) if α→ 1. Moreover, as pointed out in (Mironov, 2017, Proposition 3), (α, ε)-RDP can
be converted to (ε, δ)-DP.

Second, in Section 3, we show that under mild assumptions on the input data vector (i.e., the input data
distribution is exchangeable) and on the randomized mechanism (i.e., it has an `p-spherical distribution),

2



Published in Transactions on Machine Learning Research (07/2022)

Table 1: Trade-off between privacy and utility in the low-noise regime with i.i.d. noise components. Privacy
is measured by (α, ε)-RDP for the Gaussian and Laplace mechanisms and by ε-DP for the generalized normal
mechanism. The utility is quantified by Pe.

K(σ) Trade-off

N (0, 1) Pe ∝
(
α
ε

)1/2
Lap

(
0, 1√

2

)
Pe ∝ 1

ε

GN
(

0,
√

Γ(p−1)
Γ(3p−1) , p

)
Pe ∝

( 1
ε

)1/p

declaring the permutation of the observed noisy vector is an optimal decision rule for recovering the permutation
of the input data vector. Because of this, and using the terminology introduced in Jeong et al. (2020; 2021),
we refer to such a decision rule as linear decoder. This has complexity O(n logn), which is a significant
reduction with respect to the O(n!) complexity of a naive brute-force implementation of the optimal decoder.

Third, in Section 3, we characterize the error probability of the linear decoder, by deriving the Taylor series of
it. This result suggests that the private ranking recovery problem is noise dominated, i.e., the error probability
is large even for small values of the noise variance. Further, we derive the first-order approximation of the
error probability with respect to the noise standard deviation, and we verify through numerical simulations
that this approximation is indeed accurate. In particular, our first-order approximation expression decouples
the effects of the input data distribution and noise distribution on the error probability. We also derive the
exact expression for the linear slope of the error probability for the case of i.i.d. input data vector entries.

Finally, in Section 4 we derive the trade-off between privacy (measured by ε-DP and (α, ε)-RDP) and utility
(measured by the error probability Pe) in the low-noise regime. We consider widely used noise addition
mechanisms, i.e., the Laplace, the Gaussian, and the generalized normal. As indicated in Table 1, these
mechanisms have different relationships1 between ε and Pe. The trade-offs for N (0, 1) and Lap

(
0, 1√

2

)
are

obtained based on (α, ε)-RDP, and for the generalized normal mechanism with p ≤ 1, ε-DP is considered. We
observe that the generalized normal mechanism with p ≤ 1 offers the best trade-off.

1.3 Notation

Boldface upper case letters X denote random vectors; the boldface lower case letter x indicates a specific
realization of X; Xi:n denotes the i-th order statistics of X ∈ Rn; [n1 : n2] is the set of integers from n1
to n2 ≥ n1; In is the identity matrix of dimension n; 0n is the column vector of dimension n of all zeros;
‖x‖p denotes the `p-norm of x ∈ Rn; calligraphic letters indicate sets; |A| is the cardinality of A. XA is
the subvector of X where only the elements in A are retained. For two n-dimensional vectors x and y, if
for all i ∈ [1 : n], the i-th element of x is larger than or equal to the i-th element of y, then we use x ≥ y;
1S is the indicator function over the set S. For any x ∈ Rn and y ∈ Rn, the Hamming distance is defined
as dH(x,y) =

∑n
i=1 1{xi 6=yi};

d= denotes equality in distribution; N (µn,K) is the n-dimensional Gaussian
distribution with mean µn and covariance matrix K; Lap(µ, b) is the Laplace distribution with mean µ and
scale b; GN (µ, a, p) is the generalized normal distribution (Nadarajah, 2005; Dytso et al., 2018) with mean µ,
scale a, and shape p. We let P be the set of all permutations of an n-dimensional vector. For τ ∈ P, we
define

Hτ = {x ∈ Rn : xτ1 ≤ xτ2 ≤ · · · ≤ xτn}, (1)

1The probability of error Pe is proportional up to the first-order term
(

1
ε

)1/p
.
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Figure 1: Graphical representation of the considered private ranking recovery framework.

with xτi , i ∈ [1 : n] being the τi-th element of x, and τi, i ∈ [1 : n] being the i-th element of τ . For example,
in the 3-dimensional space there exist |P| = 6 permutations, and we have

H(1,2,3) : X1 ≤ X2 ≤ X3, H(1,3,2) : X1 ≤ X3 ≤ X2,

H(2,1,3) : X2 ≤ X1 ≤ X3, H(2,3,1) : X2 ≤ X3 ≤ X1,

H(3,1,2) : X3 ≤ X1 ≤ X2, H(3,2,1) : X3 ≤ X2 ≤ X1,

where Xi, i ∈ [1 : 3] is the i-th element of X.

2 Problem Formulation

We consider the private ranking recovery problem, as shown in Figure 1. In this setting, because of privacy
considerations, a randomized mechanism K(·) is applied on the confidential n-dimensional data vector X ∈ Rn,
before this data is collected by an external party (e.g., recommender system). In other words, K(·) is applied
so as to hide the values of X from the collector (i.e., privatize X). The goal of the data collector is then to
retrieve the permutation πX according to which X is sorted, i.e., to output the estimate π̂X.

In the framework described above, a natural trade-off arises between the performance of the estimation task,
referred to as utility function in the remaining of this paper, and the privacy level that can be guaranteed. In
particular, such a trade-off is dictated by the distribution of X, and K(·). In this work, we are interested in
characterizing such a trade-off for randomized mechanisms that consist of noise addition on the data vector
X, namely

K(σ,X) , X + σN, (2)
where N ∈ Rn is the n-dimensional noise random vector and σ ≥ 0 is a parameter controlling the power of
the noise.

Utility Function. As utility function, we consider the probability of error incurred in the estimation of πX.
With reference to Figure 1, we let φ(·) : Rn → P denote the decoder that the data collector uses to output
π̂X. Then, the probability of error of the estimation task depends both on φ(·) and K(·), that is

Pe(φ,K) = Pr (φ(K(σ,X)) 6= πX) . (3)

Privacy Metric. Given K(σ,X) in (2), it is important to quantify the privacy level guaranteed by
this mechanism. Towards this end, we leverage the ε-DP (Dwork, 2008) in Definition 2.1 and the (α, ε)-
RDP (Mironov, 2017) in Definition 2.2.
Definition 2.1. Let X be the set of possible n-dimensional real-valued data vectors. Let (X, X̃) ∈ X 2 be a
pair of adjacent data vectors, which differ in at most one element, i.e., dH(X, X̃) ≤ 1. Then, the randomized
mechanism K(·) gives ε-DP if, for any set S, we have that

Pr(K(σ,X) ∈ S) ≤ eε Pr(K(σ, X̃) ∈ S). (4)

Definition 2.2. Let X be the set of possible n-dimensional real-valued data vectors. Let (X, X̃) ∈ X 2 be a
pair of adjacent data vectors, which differ in at most one element, i.e., dH(X, X̃) ≤ 1. Then, for α ≥ 1, the
randomized mechanism K(·) gives (α, ε)-RDP if

RDPα(K) ≤ ε, (5a)

where
RDPα(K) = sup

(X,X̃)∈X 2:dH(X,X̃)≤1
Dα(K(σ,X)‖K(σ, X̃)), (5b)
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and, for X and Y with equal support,

Dα(X‖Y) = 1
α− 1 logE

[(
fX(Y)
fY(Y)

)α]
, (5c)

with fX(·) and fY(·) being the probability density functions (PDFs) of X and Y, respectively. Dα(·‖·) is the
Rényi divergence of order α.

Several rationales are behind our choice of using the (α, ε)-RDP as a privacy measure. First, the (α, ε)-RDP
encompasses other widely employed DP metrics, e.g., the ε-DP (Dwork, 2008) if α → ∞, and the ε-KL
DP (Cuff & Yu, 2016) if α→ 1. The (α, ε)-RDP also bypasses some limitations of the ε-DP (e.g., a Gaussian
noise adding mechanism is not ε-DP), while still retaining similar appealing properties (e.g., composition
properties (Mironov, 2017)) as those of the ε-DP.

Our goal in this paper is to characterize the privacy-utility trade-off when the randomized mechanism in (2) is
used. In other words, we seek to determine Pe(φ,K) in (3), subject to the constraint that RDPα(K) in (5) is
set to be equal to ε (for ε-DP we set α =∞). In particular, we will focus on scenarios where X is exchangeable
and N ∈ Sn,p, as defined below.
Definition 2.3. A sequence of random variables X1, . . . , Xn is said to be exchangeable if, for any permutation
π = (π1, . . . , πn) of [1 : n], we have

(X1, . . . , Xn) d= (Xπ1 , . . . , Xπn).
Definition 2.4. A function f is `p-spherically non-increasing if it can be written as

f(x) = g(‖x‖p), (6)
where g : R+ → R+ is a non-increasing function. We denote by Sn,p the set of n-dimensional distributions
which have an `p-spherically non-increasing density function.

Our assumption on X being exchangeable includes data that does not need to be necessarily i.i.d., but
can be correlated. For instance, any convex combination of i.i.d. random variables, and any spherically
contoured distribution are exchangeable2. We also highlight that N ∈ Sn,p implies that N is exchangeable;
this follows since the `p-norm is permutation invariant. Finally, we conclude this section with a few examples
(see Appendix A for the details), which show that distributions on N widely used in the DP literature are in
Sn,p. Thus, the assumption that N ∈ Sn,p can also be considered as mild.
Example 2.5. The following distributions belong to Sn,p:

• N ∼ N (0n, σ2In): in this case, p = 2;
• N consists of i.i.d. Lap(0, b): in this case, p = 1;
• N consists of i.i.d. GN (0, a, p);
• N has a staircase distribution (Geng et al., 2015): in this case, p = 1;
• N ∼ Unif (Bp(0n, r)) with r > 0, where Bp(0n, r) = {x ∈ Rn : ‖x‖p < r} is the `p-ball centered at 0n.

3 Accuracy of Ranking Recovery

In this section, we seek to derive an expression for the probability of error of estimating πX. In Section 3.1,
we first revisit a low-complexity decoder, and show its optimality under the assumptions of Section 2. Then,
in Section 3.2 we characterize Pe(φ,K) for this decoder. In Section 3.3, we derive an accurate first-order
approximation of Pe(φ,K), which we will leverage to characterize the privacy-utility trade-offs. Finally, in
Section 3.4, we evaluate the derived first-order approximation of Pe(φ,K) for the case when the data X is
i.i.d. and n is large (i.e., the high-dimensional regime).

2This restriction can be thought of as a limitation of our results. However, to make progress on this problem in a Bayesian
framework, making assumptions is eventually inevitable as otherwise, the problem becomes intractable, and one will not be able
to say much about the limits of permutation recovery. Assuming an exchangeable data distribution is reasonable whenever
the data has no natural order. A particular example is relational data such as social network users, ratings, and preference
data (Lloyd et al., 2012). The exchangeability assumption, in our opinion, strikes a good balance between how permutation
recovery would behave in practice and the problem theoretical solvability.
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3.1 Optimal Decoder with Low-Complexity

As illustrated in Section 2, the data collector uses a decoder φ(·) : Rn → P to output π̂X. In what follows,
we let φopt(·) denote the optimal decoder, i.e., the decoder that recovers π̂X such that the probability of error
defined in (3) is minimized. We also consider a (potentially sub-optimal) decoder to which (borrowing the
terminology used by Jeong et al. (2020; 2021)) we refer as linear decoder and formally define below.
Definition 3.1. Given the noisy data vector y ∈ Rn, the linear decoder is defined as

φlin(y) = πy, (7)

where πy denotes the permutation according to which y is sorted.

The decoder in (7) is a special case of a more general linear decoder πAy+b, where A ∈ Rn×n and b ∈ Rn;
such a linear decoder can be optimal when the noise has memory (Nomakuchi & Sakata, 1988a;b; Jeong
et al., 2020). In (7), we set A = In and b = 0n.

The linear decoder φlin(·) has several advantages, among which its low-complexity: it simply consists of a
sorting operation and hence, it has a complexity of O(n logn). This is a significant reduction with respect
to the O(n!) complexity of a naive brute-force implementation of the optimal decoder φopt(·) based on the
maximum a posteriori (MAP) decision rule (Kay, 1998). Moreover, as we will show in Theorem 3.3, the
linear decoder φlin(·) is indeed optimal (i.e., φlin(·) = φopt(·)) under the assumptions stated in Section 2. In
particular, to show this result we will leverage the following lemma (proof in Appendix B).
Lemma 3.2. For any two n-dimensional vectors x ∈ Hη and y ∈ Hτ , and p ≥ 1, we have that

τ ∈ argmin
ω∈P
‖y− Pη→ωx‖p, (8)

where Pη→ω is the permutation matrix that permutes x ∈ Hη into Pη→ωx ∈ Hω.

Lemma 3.2 states that, when p ≥ 1, the `p-norm of the difference between two given vectors is minimized
when the two vectors are sorted according to the same permutation. Lemma 3.2 allows us to prove our first
main result, which is given by the next theorem.
Theorem 3.3. Let X ∈ Rn be exchangeable, and assume that the randomized mechanism K(σ,X) adopts
N ∈ Sn,p, p ≥ 1. Then, given any noisy data vector y ∈ Rn, we have that

φopt(y) = φlin(y). (9)

Proof. Since X is exchangeable, all hypotheses are equally-likely (i.e., Pr(X ∈ Hτ ) = 1
n! , ∀τ ∈ P), and the

maximum likelihood decoder is optimal (Kay, 1998). This can be shown as follows,

φopt(y) = argmax
τ∈P

Pr(X ∈ Hτ | K(σ,X) = y)

= argmax
τ∈P

Pr(X ∈ Hτ )
fK(σ,X)(y) fK(σ,X)(y | X ∈ Hτ )

= argmax
τ∈P

fK(σ,X)(y | X ∈ Hτ ), (10)

where fK(σ,X) is the PDF of K(σ,X). We note that the second equality follows by the Bayes’ rule, and
the last equality follows by the facts that Pr(X ∈ Hτ ) is a constant for all τ ∈ P and that fK(σ,X)(y) is
independent of τ . Therefore, given y ∈ Rn for K(σ,X), an optimal decoder is given by

φopt(y) = argmax
τ∈P

fK(σ,X)(y | X ∈ Hτ ). (11)

Since X and N are independent, the conditional density function in (11) can be written as

fK(σ,X)(y | X ∈ Hτ ) =
∫
fX(x | Hτ )fN(y− x) dx

= n!
∫
1{x∈Hτ}fX(x)g(‖y− x‖p) dx, (12)
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where in the last equality we used Definition 2.4 with g(·) being a non-increasing function. Similarly, we have

fK(σ,X)(y | X ∈ Hη) = n!
∫
1{x∈Hη}fX(x)g(‖y− x‖p) dx

= n!
∫
1{u∈Hτ}fX(u)g(‖y− Pτ→ηu‖p) du, (13)

where (13) follows by substituting x = Pτ→ηu.

Now, by taking the difference between (12) and (13), we obtain

1
n!
(
fK(σ,X)(y | X ∈ Hτ )− fK(σ,X)(y | X ∈ Hη)

)
=
∫

x∈Hτ
fX(x) (g(‖y− x‖p)− g(‖y− Pτ→ηx‖p)) dx. (14)

Using Lemma 3.2, we have that if y ∈ Hτ , then the integrand in (14) is always non-negative. Hence, for any
y sorted according to πy, we have

φopt(y) = argmax
τ∈P

fK(σ,X)(y | X ∈ Hτ ) = πy = φlin(y),

where the last equality follows from Definition 3.1. This concludes the proof of Theorem 3.3.

Remark 3.4. We highlight that Jeong et al. (2020; 2021) showed a similar result as in Theorem 3.3 for the
case of Gaussian noise, under some specific conditions on the noise covariance matrix. Theorem 3.3 extends
the result on the optimality of the linear decoder beyond Gaussian noise, i.e., whenever N ∈ Sn,p, p ≥ 1. In
particular, to show this result we have leveraged a completely new proof which uses a generalized version of
the rearrangement inequality needed in the proof of Lemma 3.2 (see Appendix B).

3.2 Error Analysis for φlin(·)

We here characterize the error probability of the low-complexity and optimal (as proved in Theorem 3.3 under
some assumptions) decoder φlin(·) in Definition 3.1. From (3), the error probability when φlin(·) is used is

Pe(φlin,K) = Pr(φlin(K(σ,X)) 6= πX).

Before deriving Pe(φlin,K), we first introduce the matrix Tτ ∈ R(n−1)×n, for all τ ∈ P, as follows

(Tτ )i,j = 1{j=τi+1} − 1{j=τi}. (15)

For instance, let n = 4 and τ = (4, 2, 1, 3); then,

T(4,2,1,3) =

 0 1 0 −1
1 −1 0 0
−1 0 1 0

 .
Remark 3.5. For any exchangeable X ∈ Rn, we have that (Pyke, 1965)

TτX | X ∈ Hτ
d= W, ∀τ ∈ P, (16a)

where W ∈ Rn−1 is known as the spacing vector (David & Nagaraja, 2004) with

Wi
d= Xi+1:n −Xi:n, i ∈ [1 : n− 1], (16b)

where Xi:n is the i-th order statistics of X.

The theorem below provides an expression for the error probability of the private ranking recovery problem
when the linear decoder φlin(·) in Definition 3.1 is used. In particular, this expression is derived by considering
the Taylor series of the error probability at σ = 0.
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Theorem 3.6. Assume that limσ→0+ |f (i)
WI

(σw)| <∞, for all I ⊆ [1 : n−1] where f (i)
WI

(σw) := ∂i

∂σi fWI (σw).
Then, the Taylor series of Pe(φlin,K) is given by

Pe(φlin,K) =
∞∑
i=0

P
(i)
e

i! σi, (17)

where

P (i)
e =

min{i,n−1}∑
k=1

(−1)k−1
(
i

k

)
k!α(i−k)

k (0+),

and

α
(i−k)
k (ω) =

∑
I⊆[1:n−1]
|I|=k

∫
u∈Rk+

FVI (−u)f (i−k)
WI

(ωu)du,

where FVI (·) is the cumulative distribution function (CDF) of VI with Vi = Ni+1 −Ni for i ∈ [1 : n− 1].

We defer the proof of Theorem 3.6 to Appendix C. Note that Theorem 3.6 (and also the following Corollary 3.7)
generalizes the result in Jeong et al. (2021) under two aspects: (i) from the first-order coefficient to an
arbitrary order coefficient; and (ii) beyond Gaussian noise.

As an application of Theorem 3.6, we next present a corollary (proof in Appendix D), which provides the
second-order approximation of Pe(φlin,K) for N ∼ N (0n, σ2In) and any exchangeable distribution of X.
Corollary 3.7. Let N ∼ N (0n, σ2In). Assume that, for i, j ∈ [1 : n − 1], |f ′Wi

(w)| < ∞, ∀w and
fWi,Wj

(u, v) <∞, ∀(u, v). Then, a second order approximation of Pe in the low-noise regime is given by

Pe(φlin,KN) = c1σ + c2σ
2 +O(σ3), (18)

where 3

c1 =
n−1∑
i=1

fWi(0+)√
π

,

c2 ≈
1
2

n−1∑
i=1

f ′Wi
(0+)− 0.108998

n−2∑
i=1

fWi,Wi+1(0+
2 )− 1

π

∑
(i,j)∈[1:n−1]2

j>i+1

fWi,Wj
(0+

2 ).

We note that the constants c1 and c2 in Corollary 3.7 depend on the distribution of X. Next, as an example,
we derive closed-form expressions for c1 and c2 for Xi ∼ Unif(0, 1) and Xi ∼ Exp(λ). The detailed proof of
these examples can be found in Appendix E, where we also provide various simulation results that graphically
showcase the accuracy of the result in Corollary 3.7.
Example 3.8. Let Xi ∼ Unif(0, 1) and N ∼ N (0n, σ2In). Then, the constants c1 and c2 in Corollary 3.7 are

c1 = n(n− 1)√
π

,

c2 ≈ −
1
2n(n− 1)2 − 0.108998n(n− 1)(n− 2)− 1

2πn(n− 1)(n− 2)(n− 3).

Example 3.9. Let Xi ∼ Exp(λ) and N ∼ N (0n, σ2In). Then, the constants c1 and c2 in Corollary 3.7 are

c1 = n(n− 1)λ
2
√
π

,

c2 ≈ −
λ2n(2n2 − 3n+ 1)

12 − 0.108998λ
2n(n− 1)(n− 2)

3 − λ2n(n− 1)(n− 2)(n− 3)
8π .

Remark 3.10. If X is exchangeable and N ∈ Sn,p, p ≥ 1 in Theorem 3.6, then Pe(φlin,K) = Pe(φopt,K). This
follows since under these conditions, from Theorem 3.3 we have φopt(·) = φlin(·).

3The approximation of c2 can be made exact by replacing 0.108998 with its exact value E[max{0, V1} max{0, V2}] where Vi’s
are defined in Thereom 3.6.
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Figure 2: Pe(φlin,K) vs. its first-order approximation.

3.3 First-Order Approximation for Pe

From Section 3.2, one can infer that the private ranking recovery problem is noise dominated, i.e., the error
probability is large even when σ is small. For instance, Example 3.8 and Example 3.9 suggest that the
first-order coefficient c1 grows quadratically with n. Thus, it becomes important to analyze the problem in
the low-noise regime, where a reliable permutation recovery can be possible (i.e., Pe � 1). Towards this end,
we next derive the first-order expansion of Pe(φlin,K) with respect to σ for any exchangeable N (note that
Corollary 3.7 assumed N ∼ N (0n, σ2In)). The proof of the corollary below can be found in Appendix F.

Corollary 3.11. Let N be exchangeable and V = N1 −N2. Assume that fWi(w) <∞, ∀w. Then, in the
low-noise regime, the first-order approximation of Pe is given by

Pe(φlin,K) = CXE [|V |]
2 σ +O(σ2), (19)

with

CX =
n−1∑
i=1

fWi(0+). (20)

Remark 3.12. The first-order approximation of Pe(φlin,K) in (19) decouples the effects of the input data
distribution (captured by CX) and of the noise distribution (captured by E[|V |]). The assumptions of
Corollary 3.11 are not too restrictive: as shown in Jeong et al. (2021), fWi

(·) is bounded if X is i.i.d., and the
PDF of X is bounded.
Remark 3.13. For the expansion of Pe(φlin,K) in (19), a natural question arises: How accurate is this?
Figure 2 (see more figures in Appendix E.1) shows that this approximation is indeed accurate when N ∈ Rn
is i.i.d. according to three different distributions, namely Gaussian (red curve), Laplace (blue curve), and
generalized normal with p = 0.5 (green curve). Our rationale for choosing such distributions is because in
Section 4, we will establish privacy-utility trade-offs for them. In Figure 2, the components of X were chosen
to be i.i.d. according to Unif(0, 100) with n = 20. The solid curves (probability of error) were obtained by
Monte-Carlo simulation with 106 iterations, while the dashed curves (first order approximation of the error
probability) where obtained by simply evaluating (19).
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3.4 Input Data Vector with i.i.d. Entries

We here show that, for i.i.d. Xi ∼ X, the dependence of the first-order approximation of Pe(φlin,K) in (19)
on the distribution of X is rather weak (i.e., it only needs the L2 norm of the PDF of X, and not the exact
distribution). The approximation of Pe(φlin,K) in (19) depends on the distribution of X only through CX,
and this term can be expressed in closed-form as stated in the following proposition (proof in Appendix G).
Proposition 3.14. Let X consist of i.i.d. random variables with PDF fX(·). Then,

CX = n(n− 1)‖fX‖22, where ‖fX‖2 =
√∫ ∞
−∞

f2
X(x)dx. (21)

According to Proposition 3.14 the first-order approximation of Pe(φlin,K) depends on the distribution of X
only through the L2 norm of its PDF. The significance of this result is that we do not need to know the exact
distribution of the data vector to analyze Pe(φlin,K).
Remark 3.15. Proposition 3.14 shows that CX grows quadratically in n. We now provide a few evaluations of
CX in (21):

• If X ∼ Unif(a, b), CX = n(n−1)
b−a ;

• If X ∼ Exp(λ), CX = λn(n−1)
2 ;

• If X ∼ N (0, 1), CX = n(n−1)
2
√
π

.

4 Privacy and Utility Trade-off

In this section, we investigate the relationship between privacy (measured by the (α, ε)-RDP in Definition 2.2)
and utility measured by Pe(φlin,K). In particular, we focus on the low-noise regime where, as highlighted in
Section 3.3, a reliable permutation recovery is possible.

For a proper definition of DP, we need to consider “well-behaved” query functions (Dwork, 2008). This is the
so-called sensitivity property which, for a query function q(·), requires that the sensitivity (formally defined
below) is finite.
Definition 4.1 (`p sensitivity (Liu, 2018)). For all (X, X̃) ∈ X 2 such that dH(X, X̃) ≤ 1, the `p sensitivity
of a query q is defined as

∆p(q) = max
(X,X̃)∈X 2:dH(X,X̃)≤1

‖q(X)− q(X̃)‖p, (22)

where p > 0.

The `p sensitivity is a generalized version of the `1 sensitivity for the Laplace mechanism (Dwork et al., 2006b)
and of the `2 sensitivity for the Gaussian mechanism (Dwork & Roth, 2014). In our framework, we have that
the query function q(·) is the identity function, i.e., q(x) = x. Thus, in order to have a finite `p sensitivity
in (22), we need to have a domain constraint on the data input, namely X ∈ X where X = {x : x ∈ [0, `]n}.
With this, from (22), we have that the `p sensitivity is given by

∆p(q) = ∆(X) = max
(X,X̃)∈X 2:dH(X,X̃)≤1

‖X− X̃‖p = `, ∀p > 0, (23)

and is finite. In what follows, we let ∆(X) = ` denote the `p sensitivity for any p > 0, i.e., this notation
indicates that the `p sensitivity is independent of p > 0. Next, in Section 4.1, we derive a general expression
for the privacy-utility trade-off, which holds for any additive noise mechanism. Then, we evaluate it for
practically relevant additive noise mechanisms, such as the Laplace (Section 4.2), the Gaussian (Section 4.3),
and the generalized normal (Section 4.4) mechanisms.

10
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4.1 On the General Trade-off

For the additive noise mechanism in (2), given (α, ε) and the sensitivity ∆(X) = ` in (23), we define the
following operation,

RDP−1
α (ε, `) = inf{σ : RDPα (K(σ,X)) ≤ ε,∆(X) = `}. (24)

In words, RDP−1
α (ε, `) is the smallest standard deviation of K(·, ·) that ensures that we meet the (α, ε)-RDP

constraint when the query sensitivity is equal to `. If the set in (24) is empty, then we set RDP−1
α (ε, `) =∞.

With the definition in (24) in mind and by using the first-order expansion of Pe(φlin,K) in Corollary 3.11, we
arrive at the following general privacy-utility trade-off.
Proposition 4.2. Consider an additive noise mechanism K(σ,X) as in (2) that adopts N ∈ Sn,p. Let the
assumptions in Corollary 3.11 hold. Then, the privacy-utility trade-off for the ranking recovery problem is
given by

Pe(φlin,K) = E[|V |]CX

2 RDP−1
α (ε, `) +O

((
RDP−1

α (ε, `)
)2)

, (25)

where V and CX are defined in Corollary 3.11.
Remark 4.3. The Taylor series of the error probability in Theorem 3.6 allows to characterize higher order
approximations for Pe(φlin,K), which in principle can lead to more accurate trade-offs in (25). The error
term O((RDP−1

α (ε, `))2) in (25) arises from the approximation error in the Taylor expansion of Pe.

The expression in (25) can, in principle, be used to find a privacy-utility trade-off for any additive noise
mechanism. As expected, from (25) we note that Pe(φlin,K): (i) decreases as ε increases, and (ii) increases
with the data size n. Moreover, for i.i.d. data, by using the closed-form expression in (21), we obtain the
following trade-off,

Pe(φlin,K) = n(n− 1)E [|V |] ‖fX‖22
2 RDP−1

α (ε, `) +O
((

RDP−1
α (ε, `)

)2)
. (26)

In the rest of this section, we seek to evaluate Proposition 4.2 and provide results in terms of ε instead of the
implicit function RDP−1

α (ε, `). Towards this end, we consider several important mechanisms for which the
behavior of RDP−1

α (ε, `) can be determined as a function of ε and `. For some mechanisms, the expression for
RDP−1

α (ε, `) is already known and simply needs to be remapped to our notation (e.g., Gaussian mechanism).
For other mechanisms, the expression for ε exists in closed-form, but the inverse RDP−1

α (ε, `) does not have a
closed-form (e.g., Laplace mechanism). In such a case, we provide upper and lower bounds on RDP−1

α (ε, `)
that indicate its behavior. Yet, in other cases, we find new expressions for RDP−1

α (ε, `) (e.g., generalized
normal mechanisms for α =∞).

4.2 Laplace Mechanism

We consider a randomized mechanism KL(σ,X) that consists of adding Laplace noise. Such a mechanism
gives (α, ε)-RDP as shown in the next result, the proof of which uses the results by Gil et al. (2013) (proof in
Appendix H).
Proposition 4.4. For α > 1, the randomized mechanism KL(σ,X) in (2) with N being i.i.d. according to
Lap(0, b) gives (α, ε)-RDP with ε given by

ε = 1
α− 1 ln αe

−(1−α)`/(σb) − (1− α)e−α`/(σb)
2α− 1 . (27)

Moreover, letting cα = 1
α−1 ln α

2α−1 , we have that

`

σb
+ cα ≤ ε ≤

`

σb
+ cα + 1

α
e−

(2α−1)`
σb . (28)

We note that Proposition 4.4 is a generalization of the RDP analysis for the Laplace mechanism in (Mironov,
2017) that considered the 1-dimensional case. Although the generalization under the i.i.d. assumption is

11



Published in Transactions on Machine Learning Research (07/2022)

straightforward and follows a similar proof, we here reported the proof of Proposition 4.4 for completeness.
In addition, the upper and lower bounds on ε are also provided, which we leverage next to provide the
privacy-utility trade-off. Furthremore, the gap (i.e., difference) between the upper bound and the lower bound
in (28) is given by 1

αe
− (2α−1)`

σb . Thus, we can conclude that the bounds in (28) are moderately tight when α
is not too small, and the bounds become tight as α→∞.

We now combine Proposition 4.4 and Corollary 4.2 and obtain an explicit first-order approximation of Pe in
terms of ε and `4 for the Laplace mechanism in the following corollary (proof in Appendix I).

Corollary 4.5. Let KL(σ,X) be such that N is i.i.d. according to Lap
(

0, 1√
2

)
. Let the assumptions in

Corollary 3.11 hold. Then, for α > 1, the privacy-utility trade-off is given by

Pe(φlin,KL) = 3CX

4
√

2
RDP−1

α (ε, `) +O

(
1
ε2

)
, (29)

where √
2`(

ε+ 1
α−1 ln 2α−1

α

) ≤ RDP−1
α (ε, `) ≤

√
2`
ε
. (30)

Although Corollary 4.5 provides the trade-off in terms of upper and lower bounds, it implies that the trade-off
is at least Pe ∝ 1

ε by considering the lower bound on RDP−1
α (ε, `). We note that for the case of α =∞, which

is equivalent to ε-DP, the bound in (30) becomes exact and RDP−1
α (ε, `) =

√
2`
ε .

Remark 4.6. Since RDP−1
α (ε, `) does not have a closed-form, the bounds on RDP−1

α (ε, `) in (30) were provided
to indicate its behavior with respect to ε and `. However, if one needs an exact value of RDP−1

α (ε, `) for a
given (ε, `), this can easily be done numerically by inverting (27).

As an example, we next evaluate (29) when X is i.i.d. and has a uniform distribution.
Example 4.7. If X ∼ Unif([0, `]n), then CX = n(n−1)

` and the trade-off in Corollary 4.5 becomes

Pe(φlin,KL) = 3n(n− 1)
4 R−1

α (ε) +O

(
1
ε2

)
,

where
1

ε+ 1
α−1 ln 2α−1

α

≤ R−1
α (ε) ≤ 1

ε
.

4.3 Gaussian Mechanism

We here analyze a mechanism KG(σ,X) that consists of adding Gaussian noise. This gives (α, ε)-RDP as
shown in the next result, the proof of which can be found in Appendix J and uses the results in Gil et al.
(2013). We note that this result was already derived by Mironov (2017), but we report it here for completeness.

Proposition 4.8. KG(σ,X) in (2) with N being i.i.d. according to N (0, 1) gives
(
α, α`

2

2σ2

)
-RDP. Consequently,

RDP−1
α (ε, `) =

√
α`2

2ε . (31)

We now evaluate the trade-off stated in Proposition 4.2. For independent standard Gaussian random variables
N1 and N2, we have that E[|V |] = E[|N1 −N2|] = 2√

π
. By leveraging Proposition 4.8 and Corollary 3.11, we

then obtain the privacy-utility trade-off for the Gaussian mechanism as shown in the following corollary.
Corollary 4.9. Consider the Gaussian mechanism KG(σ,X) with N being i.i.d. according to N (0, 1). Let
the assumptions in Corollary 3.11 hold. Then, for α ≥ 1, the privacy-utility trade-off is given by

Pe(φlin,KG) = `CX√
2π

√
α

ε
+O

(
1
ε

)
. (32)

4The approximation arises from the Taylor series of Pe in Corollary 3.11.
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From (32) we observe that the Gaussian mechanism gives a Pe that is inversely proportional to
√
ε, while the

Laplace mechanism in (29) offers a Pe that scales inversely proportional to ε as shown in Corollary 4.5. Thus,
we can conclude that the Laplace mechanism outperforms the Gaussian mechanism in terms of the rate of
the privacy-utility trade-off. We complete this subsection by giving an example when X is i.i.d. and has a
uniform distribution.
Example 4.10. If X ∼ Unif([0, `]n), then CX = n(n−1)

` and the trade-off in Corollary 4.9 becomes

Pe(φlin,KG) = n(n− 1)√
2π

√
α

ε
+O

(
1
ε

)
.

4.4 Generalized Normal Mechanism

Corollary 4.5 and Corollary 4.9 suggest that Pe ∝ (1/ε)1/p, where p is the power of the exponent in the
noise PDF. In other words, the smaller the p is, the better the trade-off appears to be. Motivated by this
observation, we consider a generalized normal mechanism (Liu, 2018) denoted by KGN where N is i.i.d.
according to GN (0, a, p) with p ≤ 1. Although p can be greater than 1, we only consider p ≤ 1 as motivated
by the trade-off Pe ∝ (1/ε)1/p. Different from the previous RDP analysis for the Laplace and Gaussian
mechanisms, we here study only ε-DP for KGN (i.e., α = ∞). Recall that ε-DP offers a stronger privacy
guarantee than RDP. The ε-DP of KGN is given in the next proposition (proof in Appendix K).

Proposition 4.11. Let N be i.i.d. according to N ∼ GN (0, h(p), p) with p ≤ 1 and h(p) =
√

Γ(p−1)
Γ(3p−1) , where

Γ(·) is the gamma function. Then, the generalized normal mechanism KGN (σ) gives ε-DP with

ε =
(

`

σh(p)

)p
. (33)

Consequently,

RDP−1
∞ (ε, `) = `

h(p)

(
1
ε

) 1
p

. (34)

Remark 4.12. We note that the work of (Liu, 2018) only considered integer values for the parameter p. The
above result extends the work of (Liu, 2018) to any p ∈ (0, 1].

We combine Proposition 4.2 and Proposition 4.11 and obtain the trade-off in the corollary below.
Corollary 4.13. Consider the generalized normal mechanism KGN (σ,X) with p ≤ 1. Let the assumptions in
Corollary 3.11 hold. Then, the privacy-utility trade-off is given by

Pe(φlin,KGN ) = E[|N −N ′|]`CX

2h(p)

(
1
ε

) 1
p

+O

(
1
ε

2
p

)
, (35)

where Nand N ′ are independent and N ′ d= N .
Remark 4.14. Corollary 4.13 confirms our observation that the smaller the p is, the better the trade-off is.
Thus, for α = ∞ (or ε-DP), the generalized normal distribution with p ≤ 1 offers a better privacy-utility
trade-off than the Laplace and Gaussian mechanisms. In addition, note that the constant in the first-order
term of (35) can be upper bound by using Jensen’s inequality as follows,

E[|N −N ′|] ≤
√
E[|N −N ′|2] =

√
2Var(N) =

√
2,

where we have used the fact that Var(N) = 1. Furthermore, we seek to minimize (35) with respect to p in
order to find the best generalized normal mechanism given an ε-DP constraint. We refer to Appendix L,
where we discuss this and provide the best p.
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5 Conclusions

We studied the private ranking recovery problem within the DP framework. We designed a low-complexity
decoder and characterized sufficient conditions for its optimality. We derived the Taylor series of the error
probability when such a decoder is used, as well as the first-order approximation of it. We leveraged the
first-order approximation of the error probability, along with the (α, ε)-RDP, to obtain utility-privacy trade-offs
for the Gaussian, Laplace, and generalized normal mechanisms. These results allow us to compare different
noise mechanisms in order to determine the best utility-privacy trade-off. In addition, our results show that
the problem of private ranking recovery is noise dominated, i.e., the error probability is large even for small
values of the noise variance. This suggests that the exact recovery imposed in our work might need to be
relaxed. Finally, possible future directions include the following: (i) partial recovery in which we seek to
recover the permutation of only part of the input data; (ii) approximate recovery in which we allow a fixed
number of errors given a ranking distance function (Kumar & Vassilvitskii, 2010) (e.g., Hamming distance,
Kendall’s tau distance); (iii) investigating or generalizing the results in this paper to hold universally, for any
distribution on the input data vector.
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A Proof of Example 2.5

A.1 Gaussian Noise

If N ∼ N (0n, σ2In), its PDF is

fN(z) = 1
(2π)n/2σn e

−
‖z‖2

2
2σ2 = g(‖z‖2), (36)

with g(t) = 1
(2π)n/2σn

e−
t2

2σ2 . Since g(t) is a non-increasing function in t > 0, then N (0n, σ2In) ∈ Sn,2.

A.2 Laplace Noise

If N consists of i.i.d. Ni ∼ Lap(0, b), its PDF is

fN(z) =
n∏
i=1

1
2be
− |zi|b = 1

(2b)n e
− ‖z‖1

b = g(‖z‖1), (37)

with g(t) = 1
(2b)n e

− tb , which is a non-increasing function in t > 0. Thus, a joint distribution of i.i.d. Lap(0, b)
is a member of Sn,1.

A.3 Generalized Normal Noise

If N consists of i.i.d. Ni ∼ GN (0, a, p), its PDF is Nadarajah (2005)

fN(z) =
n∏
i=1

Kexp
(
−
∣∣∣zi
a

∣∣∣p) = Knexp
(
−
∑n
i=1 |zi|

p

ap

)
= g(‖z‖p), (38)

where K = p
2aΓ(1/p) is the normalization factor, and g(t) = Knexp

(
− tp

ap

)
, which is a non-increasing function

in t > 0. Thus, a joint distribution of i.i.d. GN (0, a, p) is a member of Sn,p.
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A.4 Staircase Noise

If N has a staircase distribution with (λ, γ,∆), its PDF is of the form Geng et al. (2015)

fN(z) = βe−λh(z), (39)

with

h(z)=
{
k if ‖z‖1 ∈ [k∆, (k + γ)∆],
k + 1 if ‖z‖1 ∈ [(k + γ)∆, (k + 1)∆],

(40)

where γ ∈ [0, 1] and ∆ > 0 are given, and β is a normalization parameter.

Since h(z) is a non-decreasing function in ‖z‖1, then fN(z) is non-increasing in ‖z‖1. Thus, a staircase
distribution is a member of Sn,1.

A.5 Uniform Noise

If N ∼ Unif(Bp(0n, r)) with r > 0, its PDF is given by

fN(z) = 1
Vol(Bp(0n, r))

1{z∈Bp(0n,r)}

= 1
Vol(Bp(0n, r))

1{‖z‖p≤r}, (41)

where Vol(S) denotes the volume of the set S. Clearly, the PDF in (41) is a non-increasing function in ‖z‖p
and hence, Unif(Bp(0n, r)) is Sn,p.

B Proof of Lemma 3.2

Our goal is to show that a solution κ̂ for the following optimization problem,

argmin
κ∈P
‖y− Pη→κx‖p, (42)

for any η ∈ P , y ∈ Hτ and x ∈ Hη, is given by κ̂ = τ . We start by noting that, by the property of permutation
invariance of the `p-norm, without loss of generality, we can consider τ = (1, 2, . . . , n) which indicates that y
is sorted in ascending order. In addition, a solution to (42) does not depend on the permutation of x, i.e.,
we can start the problem with any x ∈ Hη. This is beause we consider every possible permutation matrix
Pη→κ’s with κ ∈ P . Hence, we set η = τ , which implies that x is also sorted according to the ascending order,
i.e., x and y are sorted according to the same permutation τ .

The key tool that will enable our proof is the following generalized version of the rearrangement inequal-
ity Holstermann (2017).
Lemma B.1. Consider a sequence of real numbers a1 ≤ . . . ≤ an and a collection of functions fi(·) :
[a1, an] 7→ R for i ∈ [1 : n] and for some fixed n. Suppose that for all x ∈ [a1, an] we have that

f ′1(x) ≤ . . . ≤ f ′n(x). (43)

Then, for any permutation κ ∈ P, we have that

n∑
i=1

fi(an−i+1) ≤
n∑
i=1

fi(aκn−i+1), (44)

where aκi = (Pτ→κa)i, i ∈ [1 : n].
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For the given y ∈ Hτ , in order to apply Lemma B.1, we define a sequence of functions

fi(t) , |yn−i+1 − t|p, i ∈ [1 : n]. (45)

Note that y1 ≤ y2 ≤ · · · ≤ yn. For the time being assume that

f ′i(t) ≤ f ′j(t), ∀t ∈ R, (46)

for all i < j. The claim in (46), which will be shown later, guarantees that we can use Lemma B.1. Therefore,
by setting ai = xi in Lemma B.1, and recalling that x and y are sorted according to the same permutation τ ,
we arrive at

‖y− x‖pp =
n∑
i=1
|yn−i+1 − xn−i+1|p

=
n∑
i=1

fi(xn−i+1)

≤
n∑
i=1

fi(xκn−i+1)

=
n∑
i=1
|yn−i+1 − xκn−i+1 |p

=
n∑
i=1
|yn−i+1 − (Pτ→κx)n−i+1|p

= ‖y− Pτ→κx‖pp,

for all κ ∈ P. This indeed shows that, under the assumption in (46), a solution κ̂ for the optimization
problem in (42) is given by κ̂ = τ .

To complete the proof it remains to verify that the condition in (46) holds. Towards this end, we observe that

f ′i(t) = p(t− yn−i+1)|t− yn−i+1|p−2,

for all i ∈ [1 : n]. We now show that f ′i(t) ≤ f ′j(t) for all t ∈ R and i < j. This follows by a simple comparison,
which consists of subtracting f ′j(t) from f ′i(t), namely

f ′i(t)− f ′j(t) = p(t− yn−i+1)|t− yn−i+1|p−2 − p(t− yn−j+1)|t− yn−j+1|p−2, (47)

where yn−i+1 ≥ yn−j+1 since y by assumption is sorted in ascending order. If (47) is less than or equal to
zero, then (46) holds. We now show that (47) is indeed always less than or equal to zero.

• t ∈ [−∞, yn−j+1]: In this case, (47) becomes

f ′i(t)− f ′j(t) = −p (yn−i+1 − t)p−1 + p (yn−j+1 − t)p−1
,

which is always less than or equal to zero;

• t ∈ [yn−j+1, yn−i+1]: In this case, (47) becomes

f ′i(t)− f ′j(t) = −p (yn−i+1 − t)p−1 − p (t− yn−j+1)p−1
,

which is always less than or equal to zero;

• t ∈ [yn−i+1,∞]: In this case, (47) becomes

f ′i(t)− f ′j(t) = −p (t− yn−i+1)p−1 − p (t− yn−j+1)p−1
,

which is always less than or equal to zero.

The above three cases imply that the inequality in (46) holds for any i < j and hence, the sequence of
functions in (45) satisfies (43). This concludes the proof of the desired claim and the proof of Lemma 3.2.
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C Proof of Theorem 3.6

The probability of error is given by Jeong et al. (2021, Corollary 1),

Pe(φlin,K) = 1−E
[
Pr
(

V ≥ −TτX
σ

∣∣∣∣ X
) ∣∣∣∣ X ∈ Hτ

]
, (48)

where Tτ is defined in (15). We now note that, from Remark 3.5, we can write TτX|X ∈ Hτ as a spacing
vector W and hence, we can equivalently rewrite (48) as

Pe(φlin,K) = 1− Pr
(
n−1⋂
i=1

{
Vi ≥

−Wi

σ

})

= Pr
(
n−1⋃
i=1

{
Vi <

−Wi

σ

})

=
n−1∑
k=1

(−1)k−1
∑

I⊆[1:n−1]
|I|=k

Pr (AI)

 , (49)

where the last equality follows from the inclusion-exclusion principle where AI = ∩i∈IAi with Ai = {Vi <
−σ−1Wi}.

For any set |I| = k, we have

Pr(AI) = Pr
(⋂
i∈I

{
Vi <

−Wi

σ

})

=
∫

w∈Rk+
FVI

(
−w
σ

)
fWI (w)dw

=
∫

u∈Rk+
FVI (−u) fWI (σu)σkdu, (50)

where the last equality follows from a change of variable. By substituting (50) into (49), we obtain

Pe(φlin,K) =
n−1∑
k=1

(−1)k−1αk(σ)σk, (51)

where

αk(σ) =
∑

I⊆[1:n−1]
|I|=k

∫
u∈Rk+

FVI (−u)fWI (σu)du. (52)

Let f (m)
WI

(σu) = ∂m

∂σm fWI (σu). By the Leibniz integral rule, the m-th derivative of αk(σ) w.r.t. σ is

α
(m)
k (σ) =

∑
I⊆[1:n−1]
|I|=k

∫
u∈Rk+

FVI (−u)f (m)
WI

(σu)du. (53)

Since (53) is bounded at σ → 0+ (i.e., limσ→0+ |α(m)
k (σ)| <∞), after some trivial algebra, we obtain that

the m-th derivative of Pe(φlin,K) in (51) at σ → 0+ is

P (m)
e (σ)

∣∣∣
σ→0+

=
min{m,n−1}∑

k=1
(−1)k−1

(
m

k

)
k!α(m−k)

k (0+). (54)

We conclude the proof of Theorem 3.6 by plugging (54) into the Taylor series of Pe(φlin,K) at σ = 0+.
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D Proof of Corollary 3.7

Since Pe(φlin,K)→ 0 as σ → 0+, the first order rate is given from Theorem 3.6 by

P (1)
e = lim

σ→0+

∑
I⊆[1:n−1]
|I|=1

∫
u∈R+

FVI (−u)fWI (σu) du

= lim
σ→0+

n−1∑
i=1

∫
u∈R+

Pr(Vi ≤ −u)fWi(σu) du

(a)= lim
σ→0+

n−1∑
i=1

∫
v∈R+

Q(v)fWi
(
√

2σv)
√

2 dv

(b)=
n−1∑
i=1

fWi
(0+)

∫
v∈R+

Q(v)
√

2 dv

=
n−1∑
i=1

fWi
(0+)√
π

, (55)

where (a) follows using the change of variable u =
√

2v toegther with the fact that Vi ∼ N (0, 2) with Q(·)
being the Q function of the standard normal distribution; and (b) follows by the dominated convergence
theorem.

The second order rate is also given from Theorem 3.6 by

1
2P

(2)
e = 1

2

2∑
k=1

(−1)k−1
(

2
k

)
k!α(2−k)

k (0+) = α
(1)
1 (0+)− α2(0+). (56)

We need to compute α(1)
1 (0+) and α2(0+). Firstly, we have

α
(1)
1 (0+) = lim

σ→0+

n−1∑
i=1

∫ ∞
0

FVi(−u)f (1)
Wi

(σu) du

(a)= lim
σ→0+

n−1∑
i=1

∫
u∈R+

Pr(Vi ≤ −u)uf ′Wi
(σu) du

(b)=
n−1∑
i=1

f ′Wi
(0+)

∫
u∈R+

Pr(Vi ≤ −u)u du

(c)=
n−1∑
i=1

f ′Wi
(0+)

∫
v∈R+

Q(v)2v dv

= 1
2

n−1∑
i=1

f ′Wi
(0+), (57)

where the labeled equalities follow from: (a) letting f ′Wi
(σu) = ∂

∂wfWi
(w)
∣∣
w=σu; (b) using the dominated

convergence theorem; and (c) using the change of variable u =
√

2v similar to the step (a) in (55).
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The second term in (56) is given from Theorem 3.6 by

α2(0+) = lim
σ→0+

∑
I⊆[1:n−1]
|I|=2

∫
u∈R2

+

Pr(VI ≤ −u)fWI (σu) du

(a)=
∑

I⊆[1:n−1]
|I|=2

fWI (0+
2 )
∫

u∈R2
+

Pr(VI ≤ −u) du

=
n−2∑
i=1

fWi,Wi+1(0+
2 )
∫

u∈R2
+

Pr(Vi ≤ −u1, Vi+1 ≤ −u2) du

+
∑

(i,j)∈[1:n−1]2
j>i+1

fWi,Wj
(0+

2 )
∫

u∈R2
+

Pr(Vi ≤ −u1, Vj ≤ −u2) du

(b)=
n−2∑
i=1

fWi,Wi+1(0+
2 )
∫

u∈R2
+

QVi,Vi+1(u) du +
∑

(i,j)∈[1:n−1]2
j>i+1

fWi,Wj
(0+

2 )
(∫

u∈R+

QV (u) du
)2

= E[max{0, V1}max{0, V2}]
n−2∑
i=1

fWi,Wi+1(0+
2 ) + E2[max{0, V1}]

∑
(i,j)∈[1:n−1]2

j>i+1

fWi,Wj
(0+

2 )

(c)
≈ 0.108998

n−2∑
i=1

fWi,Wi+1(0+
2 ) + 1

π

∑
(i,j)∈[1:n−1]2

j>i+1

fWi,Wj
(0+

2 ), (58)

where (a) follows by the dominated convergence theorem; (b) is due to the independence of Vi and Vj
if |i − j| > 1 (since Vi = Ni+1 − Ni and Vj = Nj+1 − Nj with i.i.d. N); (c) follows by noting that
E[max{0, V1}max{0, V2}] ≈ 0.108998 and E2[max{0, V1}] = 1

π .

By substituting (57) and (58) into (56), we obtain

1
2P

(2)
e ≈ 1

2

n−1∑
i=1

f ′Wi
(0+)− 0.108998

n−2∑
i=1

fWi,Wi+1(0+
2 )− 1

π

∑
(i,j)∈[1:n−1]2

j>i+1

fWi,Wj
(0+

2 ). (59)

This concludes the proof of Corollary 3.7.

E Simulation Results and Proof of Example 3.8 and 3.9

E.1 Simulation Results shown in Figure 3

For the simulations illustrated in Figure 3, we set Unif(0, 1) and Exp(1) forXi, i ∈ [1 : n] and N ∼ N (0n, σ2In).
The curves for the true error probability Pe(φlin) were obtained by Monte-Carlo simulation using 106 iterations,
whereas we obtained the curves for the first and second order approximations by evaluating the expression
in Corollary 3.7. The data dimension is set to n = 10 for (a) and (b), and to n = 20 for (c) and (d). It is
shown from (a) and (c) that the first and second-order approximations well fit the true Pe(φlin) around σ = 0.
Further, (b) and (d) show the approximations in the low-noise regime and illustrate that, if the targeted
error probability is small, then the first-order approximation is very close to the true error probability.
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Figure 3: Comparison between Pe(φlin), the first-order approximation P̂ 1st
e (φlin), and the second-order

approximation P̂ 2nd
e (φlin). We set Xi ∼ Unif(0, 1) and Xi ∼ Exp(1) for i ∈ [1 : n]: (a) n = 10; (b) n = 10 in

low-noise; (c) n = 20; (d) n = 20 in low-noise.

E.2 Proof of Example 3.8

To evaluate the expression in Corollary 3.7, we need fWi
(0+), f ′Wi

(0+) and fWi,Wj
(0+

2 ). For Xi ∼ Unif(0, 1),
the PDF of the spacing Wi and Wj ,Wi are given by Pyke (1965)

fWi
(w) = n(1− w)n−1, ∀i ∈ [1 : n− 1], (60)

fWi,Wj
(u, v) = n(n− 1)(1− u− v)n−2, ∀i 6= j, (61)

which gives

fWi
(0+) = n, ∀i,

fWi,Wj
(0+

2 ) = n(n− 1), ∀i 6= j.

By differentiating (60) with respect to w, we also obtain

f ′Wi
(w) = −n(n− 1)(1− w)n−2,

=⇒ f ′Wi
(0+) = −n(n− 1), ∀i.
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This concludes the proof of Example 3.8

E.3 Proof of Example 3.9

To evaluate c1 and c2, we make use of the fact Pyke (1965) that the spacings of Exp(λ) random variables are
independent exponential random variables with parameters depending on the dimension n and λ. Specifically,
for i.i.d. Xi ∼ Exp(λ) the spacings become independent Wi’s that are distributed as

Wi ∼ Exp(λ(n− i)), ∀i ∈ [1 : n− 1]. (62)
It then follows that

fWi(0+) = lim
w→0+

λ(n− i)e−λ(n−i)w = λ(n− i), ∀i, (63)

fWi,Wj
(0+

2 ) = fWi
(0+)fWj

(0+) = λ2(n− i)(n− j), ∀i 6= j. (64)
It is also easy to evaluate

f ′Wi
(0+) = lim

w→0+
−λ2(n− i)2e−λ(n−i)w = −λ2(n− i)2, ∀i. (65)

By substituting (63) and (65) into c1 and c2 in Corollay (3.7) with some algebras, we conclude the proof of
Example 3.9.

F Proof of Corollary 3.11

Since Pe(φlin,K)→ 0 as σ → 0+, the first order rate is given from Theorem 3.6 by
Pe(φlin,K) = P (1)

e σ +O(σ2), (66)
where

P (1)
e = α1(0+)

= lim
σ→0+

∑
I⊆[1:n−1]
|I|=1

∫
u∈Rk+

FVI (−u)fWI (σu) du

= lim
σ→0+

n−1∑
i=1

∫ ∞
0

Pr(Vi ≤ −u)fWi(σu) du

(a)= lim
σ→0+

n−1∑
i=1

∫ ∞
0

Pr(V1 ≥ u)fWi
(σu) du

(b)=
n−1∑
i=1

fWi
(0+)

∫ ∞
0

Pr(V1 ≥ u) du

=
n−1∑
i=1

fWi

(
0+) ∫ ∞

0
E
[
1{V1>u}

]
du

(c)=
n−1∑
i=1

fWi

(
0+)E [∫ ∞

0
1{V1>u} du

]

=
n−1∑
i=1

fWi

(
0+)E[∫ max{V1,0}

0
1 du

]

=
n−1∑
i=1

fWi

(
0+)E [max{V1, 0}]

(d)= 1
2

n−1∑
i=1

fWi
(0+)E [|V1|] , (67)
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where the labeled equalities follow from: (a) the exchangeability of N (i.e., Vi = Ni+1−Ni
d= Ni−Ni+1 = −Vi

and Vi
d= Vj , ∀(i, j); (b) the dominated convergence theorem; (c) the Fubini-Tonelli theorem; and (d) the

symmetry of V as we have used in step (a). We conclude the proof of Corollary 3.11 by substituting (67)
into (66).

G Proof of Proposition 3.14

For i.i.d. Xi ∼ FX , where FX is the CDF of X, we observe that Pyke (1965)
n−1∑
i=1

fWi
(0+) =

n−1∑
i=1

n!
(i− 1)!(n− i− 1)!

∫ ∞
−∞

(FX(x))i−1(1− FX(x))n−i−1f2
X(x) dx

(a)=
∫ ∞
−∞

n−1∑
i=1

n!
(i− 1)!(n− i− 1)! (FX(x))i−1(1− FX(x))n−i−1f2

X(x) dx

=
∫ ∞
−∞

n−1∑
i=1

(
n

i− 1

)
(n− i+ 1)(n− i)(FX(x))i−1(1− FX(x))n−i−1f2

X(x) dx

(b)=
∫ ∞
−∞

n−2∑
j=0

(
n

j

)
(n− j)(n− j − 1)(FX(x))j(1− FX(x))n−j−2f2

X(x) dx, (68)

where (a) follows by using the Fubini-Tonelli theorem, and (b) follows from the change of variable j = i− 1.
To simplify the integrand in (68), we make use of the following,

n−2∑
j=0

(
n

j

)
(n− j)(n− j − 1)(FX(x))j(1− FX(x))n−j−2

=
n∑
j=0

(
n

j

)
(n− j)(n− j − 1)(FX(x))j(1− FX(x))n−j−2

(c)= E [(n−B)(n−B − 1)] (1− FX(x))−2

= E
[
n2 − 2nB +B2 − n+B

]
(1− FX(x))−2

= (n2 − 2n2FX(x) + nFX(x)(1− FX(x)) + n2F 2
X(x)− n+ nFX(x))(1− FX(x))−2

= n(n− 2nFX(x) + 2FX(x)− F 2
X(x) + nF 2

X(x)− 1)(1− FX(x))−2

= n(n− 1)(1− 2FX(x) + F 2
X(x))(1− FX(x))−2

= n(n− 1), (69)

where in (c) we let B ∼ Bin(n, FX(x)) be the binomial random variable with parameters n and FX(x), and
the expectation is with respect to B.

Then, we have
n−1∑
i=1

fWi(0+) =
∫ ∞
−∞

n(n− 1)f2
X(x)dx

= n(n− 1)
∫ ∞
−∞

f2
X(x)dx.

This concludes the proof of Proposition 3.14.

H Proof of Proposition 4.4

We consider the Laplace mechanism such that

KL(σ,X) = X + σN,
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where N is i.i.d. according to Lap(0, b). This result has already been shown by Mironov (2017) and we
present it here for completeness. By using the definition of RDPα(KL) in Definition 2.2, we obtain

RDPα(KL) = sup
(X,X̃)∈X 2:dH(X,X̃)≤1

Dα(K(X)‖K(X̃))

(a)= sup
|x1−x2|≤`

Dα(Lap(x1, σb)‖Lap(x2, σb))

= sup
r∈[0,`]

Dα(Lap(0, σb)‖Lap(r, σb))

(b)= sup
r∈[0,`]

1
α− 1 ln αe

−(1−α)r/(σb) − (1− α)e−αr/(σb)
2α− 1

(c)= 1
α− 1 ln αe

−(1−α)`/(σb) − (1− α)e−α`/(σb)
2α− 1 , (70)

where the labeled equalities follow from: (a) the fact that K(X) and K(X̃) have nearly identical distributions
that differ at only one coordinate; (b) the closed-form expression by Gil et al. (2013); and (c) the fact that
Dα(Lap(0, σb)‖Lap(r, σb)) is an increasing function in r. Therefore, KL(σ,X) gives (α, ε)-RDP with ε given
in (70).

For the upper and lower bounds, we first obtain an upper bound by using the concavity property of the
logarithm and its first-order condition (Boyd et al., 2004), i.e.,

ln(x+ y) ≤ ln(x) + y

x
, ∀y, x > 0. (71)

Using the above inequality, we can upper bound (70) as

ε = 1
α− 1 ln αe

−(1−α)`/(σb) − (1− α)e−α`/(σb)
2α− 1

≤ 1
α− 1

(
ln αe

(α−1)`/(σb)

2α− 1 + (α− 1)e−α`/(σb)
αe(α−1)`/(σb)

)
= 1
α− 1 ln αe

(α−1)`/(σb)

2α− 1 + 1
α
e−

(2α−1)`
σb

= `

σb
+ 1
α− 1 ln α

2α− 1 + 1
α
e−

(2α−1)`
σb . (72)

A lower bound can be obtained by dropping the second exponential term in (70) as

ε ≥ 1
α− 1 ln αe

−(1−α)`/(σb)

2α− 1

= `

σb
+ 1
α− 1 ln α

2α− 1 . (73)

This concludes the proof of Proposition 4.4.

I Proof of Corollary 4.5

From the lower bound in (28) in Proposition 4.4, we directly obtain the lower bound of σ as
`

b
(
ε+ 1

α−1 ln 2α−1
α

) ≤ σ. (74)

In addition, the upper bound in (28) can be further bounded by

ε ≤ `

σb
, (75)
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which follows from the fact that 1
α−1 ln α

2α−1 + 1
αe
− (2α−1)`

σb is increasing in α > 1 for any values of σ > 0, b > 0,
and ` ≥ 0, and the limit is 0, i.e.,

lim
α→∞

1
α− 1 ln α

2α− 1 + 1
α
e−

(2α−1)`
σb = 0.

The bound in (75) gives the upper bound on σ as

σ ≤ `

bε
, (76)

and hence, with (74) we have that, for the Laplace mechanism,

`

b
(
ε+ 1

α−1 ln 2α−1
α

) ≤ RDP−1
α (ε, `) ≤ `

bε
. (77)

We now leverage Proposition 4.2, which requires E[|V |]. In order to have Var(N) = 1 for N ∼ Lap(0, b), we
set b = 1√

2 , and we evaluate E[|V |] as follows. The PDF of V = N1 −N2, where N1 and N2 are independent

Lap
(

0, 1√
2

)
, is given by

fV (v) =
∫ ∞
−∞

fN1(z)fN2(v − z) dz

=
∫ ∞
−∞

1√
2
e−
√

2|z| 1√
2
e−
√

2|v−z| dz

= 1
2
√

2
e−
√

2|v| + 1
2 |v|e

−
√

2|v|. (78)

Then, by the symmetry of V we have

E[|V |] = 2
∫ ∞

0
vfV (v) dv = 3

2
√

2
. (79)

We obtain the trade-off expression by combining (77) and (25) as

Pe(φlin,K) = 3CX

4
√

2
RDP−1

α (ε, `) +O

(
1
ε2

)
, (80)

where
√

2`
ε+ 1

α−1 ln 2α−1
α

≤ RDP−1
α (ε, `) ≤

√
2`
ε
. (81)

This concludes the proof of Corollary 4.5.

J Proof of Proposition 4.8

Consider the Gaussian mechanism such that

KG(σ,X) = X + σN,
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where N is i.i.d. according to N (0, 1). By using the definition of RDPα(KG) in Definition 2.2, we obtain

RDPα(KG) = sup
(X,X̃)∈X 2:dH(X,X̃)≤1

Dα(K(X)‖K(X̃))

(a)= sup
|x1−x2|≤`

Dα(N (x1, σ
2)‖N (x2, σ

2))

= sup
r∈[0,`]

Dα(N (0, σ2)‖N (r, σ2))

(b)= sup
r∈[0,`]

1
2
αr2

σ2

(c)= 1
2
α`2

σ2 , (82)

where the labeled equalities follow from: (a) the fact that K(X) and K(X̃) have nearly identical distributions
that differ at only one coordinate; (b) the closed-form expression by Gil et al. (2013); and (c) the fact that
αr2

σ2 is an increasing function in r. Using (24), we obtain

RDP−1
α (ε, `) =

√
α`2

2ε . (83)

This concludes the proof of Proposition 4.8.

K Proof of Proposition 4.11

We start by noting that σN with N ∼ GN (0, h(p), p) has variance equal to σ2 and PDF given by Nadarajah
(2005),

fσN (z) = Kexp
(
−
∣∣∣∣ z

σh(p)

∣∣∣∣p) , (84)

where h(p) =
√

Γ(p−1)
Γ(3p−1) and K = p

2σh(p)Γ(p−1) .

Since (∞, ε)-RDP is equivalent to ε-DP, we evaluate the Rènyi divergence of order α =∞. From Definition 2.2,
the Rényi divergence of order α =∞ between x + σN and x̃ + σN with dH(x, x̃) ≤ 1 is

D∞(K(x + σN)‖K(x̃ + σN)) (a)= D∞(K(r + σN)‖K(σN))
(b)= sup

z∈R
log fσN (z − r)

fσN (z)

= sup
z∈R

{
−
∣∣∣∣ z − rσh(p)

∣∣∣∣p +
∣∣∣∣ z

σh(p)

∣∣∣∣p}
(c)=
∣∣∣∣ r

σh(p)

∣∣∣∣p , (85)

where the labeled equalities follow from: (a) the fact that r ∈ [−`, `] is the difference between x and x̃, and
without loss of generality we consider positive r ∈ [0, `] due to the symmetry of N ; (b) the definition of the
Rényi divergence of order α =∞; and (c) the fact that the maximum of the function t 7→ |t|p − |t− r|p is
obtained at t = r for 0 < p < 1.

Since (85) is an increasing function in r ∈ [0, `], we obtain

RDP∞(KGN ) = sup
r∈[0,`]

∣∣∣∣ r

σh(p)

∣∣∣∣p = 1
σp

(
`

h(p)

)p
. (86)

This concludes the proof of Proposition 4.11.
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L Minimizing (35) with respect to 0 < p ≤ 1

To find the minimum value (or minimizer) of 1
h(p)

( 1
ε

) 1
p with respect to 0 < p ≤ 1, we differentiate it with

respect to p and obtain

∂

∂p

{
1

h(p)

(
1
ε

) 1
p

}
= ∂

∂p

{√
Γ(3p−1)
Γ(p−1)

(
1
ε

) 1
p

}

= ∂p−1

∂p

∂

∂p−1

{√
Γ(3p−1)
Γ(p−1)

(
1
ε

) 1
p

}
(a)= ∂p−1

∂p

∂

∂x

{√
eln Γ(3x)−ln Γ(x)

(
1
ε

)x}
(b)= − 1

p2
(3ψ(3x)− ψ(x)− 2 ln ε)

2

√
Γ(3x)
Γ(x)

(
1
ε

)x

= − 1
2p2

√√√√Γ( 3
p )

Γ( 1
p )

(
1
ε

) 1
p (

3ψ(3p−1)− ψ(p−1)− 2 ln ε
)
, (87)

where the labeled equalities follow from: (a) the change of variable x = p−1; and (b) letting ψ(x) =
d

dx ln Γ(x) = Γ′(x)
Γ(x) be the digamma function (Abramowitz & Stegun, 1964, p.258).

By using the change of variable x = p−1 ∈ [1,∞), we have an equivalent expression for the derivative,

−x
2

2

√
Γ(3x)
Γ(x)

(
1
ε

)x
(3ψ(3x)− ψ(x)− 2 ln ε) . (88)

Since the sign of −x2

2

√
Γ(3x)
Γ(x)

( 1
ε

)x is negative for all x ∈ [1,∞), it is sufficient to consider the last term
(3ψ(3x)− ψ(x)− 2 ln ε). The digamma function ψ(x) does not have a closed-form expression and hence,
we instead use the approximation ψ(x) ≈ ln x − 1

cx , where 1 ≤ c ≤ 2 is a constant. This approximation
expression comes from the following bounds (Minc & Sathre, 1964, Lemma 2) for x ≥ 1,

ln x− 1
x
≤ ψ(x) ≤ ln x− 1

2x. (89)

Using ψ(x) ≈ ln x− 1
cx , we have that

3ψ(3x)− ψ(x)− 2 ln ε ≈ ln(27x2)− ln ε2, (90)

which is increasing in x. Hence, (88) is negative if ε
3
√

3 < x and is positive otherwise, which implies that the

minimum value of 1
h(p)

( 1
ε

) 1
p can be obtained by choosing p such that 1

p = x ≈ ε
3
√

3 . Due to the condition

p ≤ 1, we finally obtain the approximed minimizer p for 1
h(p)

( 1
ε

) 1
p given by

p̂ = min
{

3
√

3
ε
, 1
}
. (91)

Note that an exact expression for the minimizer is p = min{p′, 1} where p′ is such that

3ψ
(

3
p′

)
− ψ

(
1
p′

)
− 2 ln ε = 0, (92)

which can be obtained numerically.
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