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Abstract

Recently, it has been shown that adversarial training (AT) by injecting adversarial1

samples can improve the quality of recognition. However, the existing AT methods2

suffer from the performance degradation on the benign samples, leading to a3

gap between robustness and generalization. We argue that this gap is caused4

by the inaccurate estimation of the Batch Normalization (BN) layer, due to the5

distributional discrepancy between the training and test set. To bridge this gap, this6

paper identifies the adversarial robustness against the indispensable noise in BN7

statistics. In particular, we proposed a novel strategy that adversarially perturbs the8

BN layer, termed ARAPT. The ARAPT leverages the gradients to shift BN statistics9

and helps models resist the shifted statistics to enhance robustness to noise. Then,10

we introduce ARAPT into a new paradigm of AT called model-based AT, which11

strengthens models’ tolerance to noise in BN. Experiments indicate that the APART12

can improve model generalization, leading to significant improvements in accuracy13

on benchmarks like CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet.14

1 Introduction15

Recent works [1, 2, 3, 4] show that deep neural networks are sensitive to adversarial perturbations,16

which gives rise to the rapid development of adversarial training (AT) methods [5, 6, 7, 8]. These AT17

methods enhance models’ robustness against adversarial samples by solving a min-max optimization18

problem [5]. However, many efforts [6, 9, 10] have corroborated that there is a trade-off between19

standard and robust accuracy, in which AT usually degrades models’ performance on benign samples,20

though they enjoy the accuracy gains on adversarial samples.21

Xie et al. [11] challenges the widely accepted idea that AT hurts models’ generalization. They22

proposed adversarial propagation (AdvProp) to exploit the adversarial features via auxiliary Batch23

Normalization (BN) [12] layers. However, the huge computational overhead discourages more efforts24

in its applications. Thus, the further work proposed fast AdvProp [13] to reduce the computations by25

leveraging the acceleration of AT [14]. Nevertheless, leveraging adversarial samples to perform AT26

in non-safety tasks leads to the following question:27

What does the model defend against?28

Indeed, adversarially trained models appear closely tied to the robustness against adversarial attacks29

for safety concerns. However, in non-safety situations, there is an open question of what these30

models defend against. This question is essentially related to the gap between models’ generalization31

and adversarial robustness. Prior efforts [15, 16, 17] reposition the adversarial robustness as the32
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robustness against the worst-case unseen domains, in attempts to bridge the generalization-robustness33

gap. They usually enhance models’ robustness to adversarially generated domains to improve the34

generalization. Nonetheless, there is inevitably a mismatch between such generated domains and the35

actual domains. The mismatch hinders their further applications.36

In this paper, we answer this question by identifying the robustness against the noise of BN statistics37

that are the estimated mean and variance. The statistics noise is indispensable due to the distributional38

discrepancy between training and test domains [18, 19, 20, 21, 22, 23]. Moreover, insufficient batch39

size will cause the severer noise in some computation-demanding tasks [18, 19, 20]. In this study, we40

cast the statistics noise as a numerical problem to avoid the issue of how to match the adversarially41

generated domains with the actual ones. Since the noise degrades BN’s performance, numerically42

strengthening models’ tolerance to such noise will boost the generalization of BN-based models.43

In this work, we train models by Adversarially Perturbed bAtch noRmalizaTion (APART) that44

perturbs BN statistics and updates the model parameters to resist the perturbation on the fly. More45

concretely, APART performs backward passes twice over each batch of benign samples. The46

first backward pass produces two gradient computations: one is normal gradient that helps update47

parameters of model w.r.t. samples’ patterns, and the other one is statistics gradient that is used to48

perturb the statistics parameters in BN. Then, the second pass is performed to generate the defensive49

gradient that helps the model resist the adversarial statistics perturbation. The normal and defensive50

gradients are combined to improve both generalization and robustness of the model. All gradients are51

computed by the regular gradient descent algorithm. Note that APART combines the normal gradient52

with the defensive one without changing the update strategy and without crafting the adversarial53

samples. This process follows a paradigm of AT performing attacks and defense within models54

instead of on samples, hence the name model-based AT. Besides, as suggested by AdvProp [11], the55

BN statistics computed over the adversarial passes are dropped to avoid the corruption.56

Experimentally, APART makes models less brittle to noisy BN statistics. As a consequence, the mod-57

els enjoy significant accuracy gains on CIFAR [24], Tiny-ImageNet [25] and ImageNet [26] datasets.58

Moreover, the improvement brought by APART only depends on BN, allowing the combination with59

other training methods, e.g. data augmentation [27] and sharpness-aware minimization [28].60

Summary of contributions:61

• We identify the adversarial robustness against the noise in BN statistics to bridge the gap between62

models’ generalization and robustness. Enhancing such robustness by AT improves models’63

generalization on benign samples.64

• We proposed APART to achieve the robustness against the statistics noise. APART follows a65

new paradigm of AT utilizing the gradients efficiently. By strengthening BN-based models’66

tolerance to BN statistics noise, APART significantly improves the models’ performance.67

• With its plug-and-play nature, APART allows the combination with other training methods and68

enjoys the further accuracy gains.69

2 Related Work70

2.1 Adversarial Training71

Adversarial training (AT) [1, 2, 5, 29] is empirically demonstrated to be one of the most effective72

defense methods for models’ safety concerns. Instead, many non-AT methods [30, 31, 32, 33] fail73

to defend against adaptive attacks [4]. However, AT sacrifices the standard accuracy on benign74

samples to increase models’ robustness [9]. Thus, there is a trade-off between the robustness and75

generalization [6]. Furthermore, many efforts [34, 9, 35, 36, 37] theoretically and experimentally76

corroborate the difficulty of achieving adversarial robustness over limited data. Besides adversarial77

robustness, other works [38, 14] focus on the efficiency of AT due to the high computational overhead78

of vanilla AT methods [5, 6]. The proposed fast AT method [14] accelerates the training in a79
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simple way, but suffers from catastrophic overfitting [39, 40]. This problem gives rise to more80

efforts [39, 40, 41, 42].81

Besides performing AT over samples, Adversarial Weight Perturbation [8] additionally perturbs82

parameters to enhance the generalization from a perspective of loss landscape. In non-safety tasks,83

some efforts [28, 43, 44, 45] have been devoted to such parameter-based AT and show promise84

in improving models’ generalization. In this study, the proposed method follows a more generic85

paradigm of AT that allows the attacks on each component of models even including the non-parameter86

BN statistics.87

2.2 Adversarial Robustness Beyond Safety88

Though the disadvantage of AT in models’ generalization discourages the efforts of its non-safety89

applications, Xie et al. [11] proposed AdvProp to challenge this issue. AdvProp utilizes auxiliary90

BN layers to avoid corrupting the BN statistics estimated over benign samples. In this manner,91

AdvProp improves models’ generalization and inspires the further studies [46, 16, 47, 15, 48, 49]92

of the adversarial robustness beyond safety. Indeed, AT provides the framework of crafting and93

countering the worse-case unseen domains [15, 16, 17], and enhances adversarial robustness varying94

in different contexts. Besides, Mei et al. [13] utilize the acceleration of fast AT [14] to significantly95

reduce the computational overhead of AdvProp [11].96

In this work, the proposed AT method, termed APART, increases models’ robustness against the97

noise of BN statistics. Though the perturbation formula of the statistics is somewhat similar to that98

of Adversarial Batch Normalization (AdvBN) [15], there are three major differences between them99

in implementations: 1) APART perturbs the entire network by slightly changing each BN layer,100

instead of perturbing the features generated from a specific non-BN layer [15]; 2) in each iteration,101

APART performs backward passes only twice to carry out the attack and defense efficiently, instead102

of performing multiple backward passes inefficiently [15]; 3) APART trains each model from the103

scratch, instead of fine-tuning a pre-trained model [15], which leads to incomparability between104

APART and AdvBN.105

2.3 Normalization106

Batch Normalization (BN) [12] has successfully boosted a broad range of deep neural networks by107

accelerating the training. However, the noisy statistics of BN degrade its performance experimen-108

tally [20] and theoretically [50]. Many efforts have been devoted to more accurate estimators of the109

statistics [18, 19, 20, 21, 22, 23]. Some estimators perform the normalization along different axes,110

e.g. Layer Normalization [18], Instance Normalization [19] and Group Normalization [20]. They111

reduce the noise in the case of tiny batch but suffer from performance degradation under large batch112

as the alternative to BN. More efforts [21, 51, 52, 16] exploit the combination of these normalization113

methods. They selectively use the axis-specific statistics to perform normalization in response to114

different domains. Additionally, the on-the-fly estimation of BN statistics over adversarial samples is115

experimentally found to have negative impacts on the standard accuracy [11, 53]. This finding leads116

to more exploration in BN under AT [11, 13, 15, 46, 49].117

The noisy statistics result from a mismatch between the seen and unseen domains and are therefore118

indispensable without the domain-specific knowledge. Furthermore, tiny batch size caused by the119

computation-demanding tasks results in the severer noise. From an opposite perspective of these120

methods denoising the statistics, our method hardens BN-based models’ robustness against the noise.121

3 Method122

In this section, we firstly introduce a new paradigm of AT that allows us to perform attacks and123

defense within models rather than on samples. Then, we propose APART to implement this paradigm124

in a simple way. Finally, we discuss the enhancement of APART, which is derived from the potential125

link between APART and the other training method.126
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3.1 Model-Based Adversarial Training127

The vanilla AT formulates a min-max game [5] by adversarially crafting and defensively countering128

the imperceptible perturbations to samples. Specifically, given the ground truth y and sample x’s129

allowed neighborhood S(x), we minimize the expectation of a θ-parameterized loss L(x∗,y;θ)130

with x∗ ∈ S(x) maximizing L(·,y;θ), i.e.,131

min
θ

Ex,yL(x∗,y;θ), where x∗ := argmax
x′∈S(x)

L(x′,y;θ). (1)

Empirically, the maximization of Eq. (1) is achieved by a gradient ascent method for each sample.132

The gradient∇xL(x,y;θ) is iteratively computed by full forward and backward passes on the model.133

This process merely requires the inputs’ gradients∇xL(x,y;θ) and drops all the internal gradients134

∇θL(x,y;θ) without their further utilization after finishing the backward pass. Thus, such vanilla135

AT suffers from low efficiency of utilizing the gradients. Meanwhile, AT’s potency is limited by such136

sample-based attacks and defense. Therefore, we propose a paradigm of model-based AT to leverage137

internal gradients efficiently and allow the attacks and defense within models.138

To perform such AT, each component of a model is categorized into two types: one for the attacker, and139

one for the defender. Denoting by θ,ϕ the parameters of the adversarial and defensive components140

respectively, we formulate the model-based AT as follows141

min
ϕ

E(x,y)

[
R(x,y;ϕ) + max

θ∈Θ
L(x,y;θ,ϕ)

]
, (2)

where Θ is a parameter space that can be bounded to avoid trivial results; R(x,y;ϕ) is a task-142

specific loss allowing models to learn the normal patterns in samples, and L(x,y;θ,ϕ) can share143

a similar formulation of R to enable more pattern exploration in an adversarial manner. Overall,144

Eq. (2) provides a generic formulation of model-based AT. For example, Generative Adversarial145

Networks (GANs) [54] can be repositioned as a special case of such AT, in which the generator and146

discriminator are regarded as the attacker and defender respectively, and the discriminative losses are147

cast as properR and L in Eq. (2). Next, we introduce APART to implement this model-based AT in148

a simple way.149

3.2 Adversarially Perturbed Batch Normalization150

Model-based AT helps models harden their robustness against a specific problem. We shift our151

attention to the noisy BN statistics [20], and apply the proposed AT to address this problem.152

Firstly, we embed two temporary parameters δµ, δσ into each BN layer as the adversarial parameters153

θ in Eq. (2), which will be dropped after the training. Inspired by AdvBN [15], with δµ, δσ ← 0, we154

reformulate the BN mapping as155

BN(x; δµ, δσ) = γ(1+ δσ) ·
x− (1+ δµ)µ̂

σ̂
+ β, (3)

where each operator is element-wise; µ̂, σ̂ are the mean and standard deviation estimated over a batch156

of x respectively; γ,β are the parameters of BN’s affine mapping. We bound the d-dimensional157

δµ, δσ such that δµ, δσ ∈ [−ϵ, ϵ]d for a small sufficient perturbation radius ϵ > 0. The bound avoids158

trivial results, e.g. BN(x; δµ, δσ)|δσ=−1 ≡ 0. Now all the other trainable parameters within the159

entire model including γ,β are naturally the defensive parameters ϕ. The lossesR,L in Eq. (2) are160

both the same task-specific loss, i.e., the cross entropy in recognition. Therefore, Eq. (3) implies (θ161

indicates all BN layers’ δµ, δσ)162

L(x,y;θ,ϕ)|θ=0 = R(x,y;ϕ) ∇ϕL(x,y;θ,ϕ)|θ=0 = ∇ϕR(x,y;ϕ), (4)

by which we can get both ∇θL(x,y;θ,ϕ)|θ=0 and ∇ϕR(x,y;ϕ) in a single backward pass with163

L(x,y;θ,ϕ)|θ=0 as the loss.164

Secondly, we propose APART that follows a gradient accumulation strategy, instead of the alternative165

update strategy used by GANs [54]. Specifically, in each iteration of a normal gradient descent166

algorithm over a batch of samples D := {(xi,yi), 1 ≤ i ≤M},167
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Algorithm 1: Pseudo code of APART getting the gradient for a batch of samples, given some
perturbation radius ϵ, number of samples in the second pass N , and group number n
Data: A batch of samples D := {(xi,yi), 1 ≤ i ≤M}
Result: The gradient g for this batch of samples

1 θ ← 0
2 Perform forward and backward passes once over D, generating gθ and gϕ simultaneously
3 gθ ← E(xi,yi)∈D∇θL(xi,yi;θ,ϕ)|θ=0

4 gϕ ← E(xi,yi)∈D∇ϕR(xi,yi;ϕ)
5 θ ← ϵsign(gθ)
6 Randomly draw N samples S ⊆ D
7 Group S into n equally sized subsets S1,S2, . . . ,Sn
8 hϕ ← 0
9 for j ← 1 to n do

10 hϕ ← hϕ + 1
nE(xi,yi)∈Sj

∇ϕL(xi,yi;θ,ϕ)|θ=ϵsign(gθ)

11 end
12 g ← M

M+N gϕ + N
M+Nhϕ

• Step 1: With θ ← 0, APART performs the forward and backward passes once over this168

batch of samples to generate the gradients w.r.t. the adversarial and defensive parameters, i.e.,169

gθ := E(xi,yi)∈D∇θL(xi,yi;θ,ϕ)|θ=0 and gϕ := E(xi,yi)∈D∇ϕR(xi,yi;ϕ) according170

to Eq. (4). Like Fast Gradient Sign Method [2], APART uses ϵsign(gθ) to assign θ, which171

empirically performs the inner maximization of Eq. (2) and generates the adversarially perturbed172

statistics in each BN layer.173

• Step 2: With the adversarial BN statistics, APART performs the forward and backward passes174

again, over a full/incomplete batch of the same samples S ⊆ D. This backward pass yields175

the gradient resisting the attack, i.e., hϕ := E(xi,yi)∈S∇ϕL(xi,yi;θ,ϕ)|θ=ϵsign(gθ)
. The176

weighted gradient g := (1− r)gϕ + rhϕ is finally used in the outer minimization of Eq. (2) for177

this batch of samples, where r ∈ [0, 0.5] re-balances the gradients.178

Apparently, using a full batch of the samples in the second pass leads to the best performance,179

but results in more computational overhead. Instead, using the incomplete batch of these samples180

allows the less computation but suffers from insufficient defense against the attack. Thus, the ratio181

r = N/(M +N) is introduced to re-balance the gradients with N = |S| the number of the samples182

used in the second pass. Additionally, the on-the-fly BN statistics estimated in the second pass are183

completely dropped to avoid corrupting the statistics at inference, like the auxiliary BN layers [11].184

Note that stronger attacks in AT indirectly enhance the adversarial robustness [5]. Thus, we slightly185

modify the process of the second pass to strengthen the attack. The modification increases the noise186

in the adversarial BN statistics without additional computation. In details, we group the samples into187

equally sized sets and stop their group-to-group communications in BN layers during the second188

forward pass. This is inspired by the fact that smaller batch size results in larger noise in the statistics.189

In this manner, the BN statistics are estimated over less samples without reducing the entire batch190

size, giving rise to the less adversarial accuracy.191

Overall, APART only changes the way of getting gradients in each iteration, without involving in192

data augmentation or network modification. Therefore, APART has plug-and-play nature that allows193

the combination with a broad range of training methods. We summarize APART in Algorithm 1, and194

then introduce the enhancement of APART.195

3.3 Enhancement by Combination with Sharpness-Aware Minimization196

Besides APART, Sharpness-Aware Minimization (SAM) [28] also belongs to and use the proposed197

model-based AT paradigm. SAM improves network training from a perspective of loss landscape198

relating to models’ generalization. Given the empirical loss function LD estimated over a dataset D,199
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SAM minimizes LD with a sharpness measure:200

min
w

[
max

||δ||2≤ρ
LD(w + δ)− LD(w)

]
+ LD(w) +

λ

2
||w||22, (5)

where w is the model’s trainable parameters; ρ > 0 is small sufficient to restrict the perturbation201

δ; λ > 0 is used to control the regularizer ||w||22; the term in the square bracket measures LD’s202

sharpness. Obviously, Eq. (5) is equivalent to203

min
w

max
||δ||2≤ρ

LD(w + δ) +
λ

2
||w||22. (6)

Actually, Eq.(6) performs the model-based AT formulated by Eq. (2), in which we treat δ,w204

as the adversarial and defensive parameters θ,ϕ respectively, and let L(x,y;θ,ϕ) = LD(w +205

δ),R(x,y;ϕ) ≡ 0 with the regularizer λ
2 ||w||

2
2 included in the empirical optimization. Therefore,206

SAM and APART essentially share the same training paradigm. Surprisingly, these two methods207

implement this paradigm in a complementary way: SAM focuses on the trainable parameters208

optimized by gradient descent, while APART concentrates on the non-trainable BN statistics requiring209

estimation instead of optimization. The training paradigm enables them to enhance models’ robustness210

in different contexts, which inspires a combination of them.211

Note that the inner maximization in Eq. (6) is approximately achieved by one-step gradient ascent.212

Then, the outer minimization is performed by estimating the gradient w.r.t. the adversarially shifted213

parameters w ← w+δ [28]. Thus, SAM shares a similar two-step strategy of APART. Such similarity214

allows us to perform APART and SAM simultaneously by a slight modification of Algorithm 1,215

termed APART-SAM. Specifically, we adopt the weights’ perturbations, i.e., Eq. (2) therein [28],216

reformulated as217

δ̂(ϕ) = ρsign (∇ϕR(x,y;ϕ)) |∇ϕR(x,y;ϕ)|q−1
/
(
||∇ϕR(x,y;ϕ)||qq

)1/p

, (7)

where 1/p + 1/q = 1 and experimentally let p = 2 as suggested by [28]. Then, we modify218

APART’s first step by additionally perturbing the defensive parameters ϕ← ϕ+ δ̂(ϕ) to enhance the219

attacks with the second step unchanged. The additional perturbation δ̂(ϕ) just employs the gradient220

∇ϕR(x,y;ϕ) previously computed by APART’s first step, and normalizes them with ignorable extra221

computations. Therefore, APART-SAM is computation-friendly enhancement of APART.222

4 Experiments223

4.1 Experimental Setup224

Datasets and Models. We evaluate APART on CIFAR-10, CIFAR-100 [24], Tiny-ImageNet [25] and225

ImageNet [26]. On CIFAR datasets, we employ a WideResNet-40-2 [55] (as implemented in [56]),226

PreAct-ResNet-18 [57] (as implemented in [58]). We use a PreAct-ResNet-18 on Tiny-ImageNet,227

and ResNet-18 [59] (as implemented in torchvision library [60]) on ImageNet.228

Implementation Details. On CIFAR-10 and CIFAR-100, we run all experiments by five different229

random seeds and report the mean and standard derivation of test accuracy. We employ SGD230

with initial learning rate 0.1, momentum 0.9 and weight decay 0.0005. We train models for 200231

epochs and reduce the learning rate by 0.1 at the 100-th and 150-th epoch with batch size of232

128. We use only the standard augmentations (i.e., random flipping and translation) in the basic233

experiments, and additionally leverage mixup [27] for further comparison. The hyperparameter α234

of mixup is set to 1 in the baseline as suggested by [27] and is properly chosen for APART. For235

comparison, we report the empirical results of SAM-trained WideResNet-40-2 and PreAct-ResNet-18236

under standard augmentation, where we set ρ = 0.05 and ρ = 0.1 on CIFAR-10 and CIFAR-100237

respectively, as suggested by [28]. On Tiny-ImageNet, we use batch size of 256 and set other238

hyperparameters in the same way of the CIFAR experiments; under mixup, we set α = 0.2 for239

both the standard method and APART. On ImageNet, We employ SGD with initial learning rate240

0.1, momentum 0.9 and weight decay 0.0001. We train models with batch size of 256 for 105241

epochs, where the learning rate is reduced by 0.1 at the 30-th, 60-th, 90-th and 100-th epoch. We242

randomly resize and crop images to 224 × 224 resolution with random flipping to perform the243
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standard augmentation. For the hyperparameters of APART and APART-SAM, we evaluate a few244

combinations and show the best performance in the main results. More results of these combinations245

are reported in the ablation studies and appendix A.1. Considering the 2× training budget of246

APART, we also conduct the experiments of the standard training with 2× total and decay epochs247

to show APART’s non-trivial performance. Our implementations use Pytorch [61], and all models248

are trained on a server with three NVIDIA RTX 3090 GPUs. Please see appendix B and the code at249

https://github.com/unknown9567/apart.git for more details.250

4.2 Main Results251
Table 1: Results on CIFAR-10 and CIFAR-100.

Method (Augmentation) Budget CIFAR-10 CIFAR-100

WideResNet-40-2

Standard (Standard) 1× 94.67±0.10(+0.00) 76.10±0.24(+0.00)
Standard (Standard) 2× 94.99±0.11(+0.32) 76.73±0.27(+0.63)
SAM (Standard) 2× 95.39±0.14(+0.72) 77.47±0.09(+1.37)
APART (Standard) 2× 95.69±0.13(+1.02) 79.05±0.25(+2.95)
APART-SAM (Standard) 2× 95.81±0.27(+1.14) 79.21±0.23(+3.11)

Standard (Mixup) 1× 95.43±0.11(+0.76) 76.63±0.34(+0.53)
Standard (Mixup) 2× 96.03±0.11(+1.36) 77.96±0.43(+1.86)
APART (Mixup) 2× 95.86±0.05(+1.19) 79.22±0.22(+3.12)
APART-SAM (Mixup) 2× 95.78±0.08(+1.11) 79.00±0.09(+2.90)

PreAct-ResNet-18

Standard (Standard) 1× 94.60±0.17(+0.00) 76.30±0.11(+0.00)
Standard (Standard) 2× 94.76±0.12(+0.16) 75.34±0.21(−0.96)
SAM (Standard) 2× 95.56±0.16(+0.96) 78.57±0.17(+2.27)
APART (Standard) 2× 95.84±0.16(+1.24) 79.48±0.15(+3.18)
APART-SAM (Standard) 2× 96.12±0.06(+1.52) 80.07±0.18(+3.77)

Standard (Mixup) 1× 95.76±0.11(+1.16) 77.30±0.50(+1.00)
Standard (Mixup) 2× 96.19±0.12(+1.59) 78.81±0.45(+2.51)
APART (Mixup) 2× 96.28±0.09(+1.68) 80.07±0.17(+3.77)
APART-SAM (Mixup) 2× 96.08±0.18(+1.48) 80.19±0.15(+3.89)

Table 2: Results on Tiny-ImageNet and ImageNet.
Method (Augmentation) Budget Accuracy (%)

Tiny-ImageNet

Standard (Standard) 1× 63.52 (+0.00)
Standard (Mixup) 1× 64.34 (+0.82)
Standard (Standard) 2× 63.94 (+0.42)
Standard (Mixup) 2× 64.54 (+1.02)
APART (Standard) 2× 67.00 (+3.48)
APART (Mixup) 2× 67.26 (+3.74)
APART-SAM (Standard) 2× 67.53 (+4.01)
APART-SAM (Mixup) 2× 68.66 (+5.14)

ImageNet

Standard (Standard) 1× 70.24 (+0.00)
Standard (Standard) 2× 71.25 (+1.01)
Standard (Standard) 4× 71.45 (+1.21)
APART (Standard) 2× 70.86 (+0.62)
APART (Standard) 4× 72.14 (+1.90)
APART-SAM (Standard) 2× 70.82 (+0.58)

Evaluation on CIFAR-10 and CIFAR-100.252

As is shown in Table 1, APART helps mod-253

els significantly outperform their counter-254

parts trained by the standard method. Under255

standard augmentation, without considering256

the training budget, APART improves the257

accuracy by over 1.02% on CIFAR-10 and258

2.95% on CIFAR-100 for each model; con-259

sidering the training budget leads to the accu-260

racy gains of over 0.70% on CIFAR-10 and261

2.32% on CIFAR-100; enhanced by SAM,262

APART-SAM further improves the accuracy263

of APART-trained models by over 0.12%264

on CIFAR-10 and 0.16% on CIFAR-100.265

In addition, APART and APART-SAM out-266

perform SAM under this experimental set-267

ting. Under mixup [27], the improvements268

achieved by APART are generally consistent,269

though the APART-trained WideResNet-40-2 is somewhat inferior to the standard counterpart with270

2× budget on CIFAR-10; on the other hand, APART-SAM slightly degenerates due to the potential271

conflicts between SAM and mixup on CIFAR datasets. Besides, mixup with sufficient training272

budgets boosts the standard models more significantly, reducing the accuracy gap between them and273

the APART-trained counterparts.274
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Evaluation on Tiny-ImageNet and ImageNet. As is shown in Table 2, APART and APART-SAM275

consistently improve the accuracy on ImageNet and its variant. On Tiny-ImageNet, the accuracy276

gains are significant, e.g. the models trained by APART-SAM outperforms the standard counterparts277

by over 4% and 3.5% for 1× and 2× training budgets respectively under standard augmentation.278

Furthermore, APART-SAM enjoys the combination with mixup and improves the accuracy by over279

5%. On ImageNet, APART with 2× budget outperforms the baseline with 1× budget, but is inferior280

to the standard training with 2× budget. However, scaling the training budgets leads to a different281

result: APART with 4× budget outperforms the standard method with both 2× and 4× training282

budgets. It seems that APART employed on the large-scale dataset requires more steps to show283

its promise. Besides, APART-SAM slightly degenerates due to the insufficient tuning of its more284

hyperparameters.285

4.3 Ablation Study286

Table 3: Ablation studies of APART’s hyperparameters.
Budget N ϵ n Accuracy (%)

Standard Training

1.00×
NA NA NA

76.10±0.24(+0.00)
1.20× 76.24±0.30(+0.14)
2.00× 76.73±0.27(+0.63)

APART

1.19× 24
0.1 1 77.58±0.17(+1.48)
0.1 2 77.50±0.17(+1.40)
0.1 8 77.35±0.36(+1.25)

2.00× 128

0.05 8 78.45±0.12(+2.35)
0.1 8 78.80±0.23(+2.70)
0.2 8 77.95±0.30(+1.85)
0.4 8 71.86±0.12(−4.24)

0.1 1 78.36±0.22(+2.26)
0.1 2 78.54±0.39(+2.44)
0.1 16 79.05±0.25(+2.95)
0.1 32 78.69±0.19(+2.59)

Table 3 shows the performance of the287

WideResNet-40-2 trained by APART with288

different hyperparameters in Algorithm 1289

on CIFAR-100. Overall, APART-trained290

models outperform all standard models de-291

spite training budgets and hyperparameters.292

For example, even the model trained by293

APART with 1.19× budget performs better294

than the standard model with 2.00× budget.295

On the other hand, APART’s hyperparam-296

eters have impacts at different levels on its297

performance.298

Impact of N . The number of samples used299

in APART’s second step has a significant300

impact on its performance. Indeed, models301

with APART’s adversarial BN statistics implicitly generate adversarial features within the models302

in the second pass. Therefore, more samples in this pass lead to more diversity required by models’303

robustness against the noisy BN statistics and improve the performance more significantly.304

Impact of ϵ. Large perturbation radii (e.g. ϵ = 0.4) degenerate models’ performance, since strong305

attacks caused by such radii force the models to sacrifice their generalization for more robustness. In306

contrast, smaller radii reduce both the robustness and accuracy, which illustrates the link between the307

generalization and robustness of APART-trained models.308

Impact of n. The group number has a relatively slight impact on the accuracy, since it implicitly309

enhances the attack. A properly chosen n can help APART achieve the best performance.310

4.4 Evaluation on APART’s Attacks311

Figure 1: Evaluation on APART’s Attacks.

Experimental Setup. We evaluate312

APART’s attacks to provide a basic insight313

of its effectiveness. We use a WideResNet-314

40-2 [55] pretrained on CIFAR-100. We315

perform APART’s first step to adversarially316

shift its BN statistics without changing the317

other parameters. We use only a batch of318

training samples for the attack, but eval-319

uate the accuracy over the entire training320

dataset. For comparison, we provides the321

accuracy in the cases of random perturba-322

tions, i.e., δµ, δσ ∼ Uniform[−ϵ, ϵ]d or323
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randomly drawing δµ, δσ from {−ϵ, ϵ}d formed by the binary values. Besides, we test different324

group numbers of APART to substantiate our insight of this trick.325

Results. As is shown in Figure 1, the uniform random perturbations result in almost no reduction in326

the accuracy despite the radii, while the binary random perturbations require sufficient large radii for327

the attack. In contrast, APART uses only a batch of samples to generate the effective perturbations328

that reduce the accuracy even under a small radius. Additionally, the larger group numbers of APART329

provide more significant accuracy reduction especially when the radii are more limited, demonstrating330

our insight.331

4.5 Robustness against Perturbed BN Statistics332

Experimental Setup. We evaluate the robustness of the APART-trained models against perturbed BN333

statistics to provide the insight of APART’s effectiveness. We employ the WideResNet-40-2 trained334

by the standard method with 1× and 2× training budgets and APART with different perturbation335

radii and group numbers on CIFAR-100. First, we randomly draw a direction v from {−1, 1}d for336

each BN statistics with the same initial random seed shared across each experiment. Second, we337

scale v by different perturbation radii ϵ to perturb the estimated BN statistics, i.e., µ̂← (1 + ϵv)µ̂ or338

σ̂ ← (1 + ϵv)σ̂. Then, each model with the perturbed statistics is evaluated over the test samples.339

Figure 2: Robustness of WideResNet-40-2 against per-
turbed BN statistics on CIFAR-100.

Results. As is shown in Figure 2, mod-340

els’ generalization is measured by the non-341

perturbed accuracy, and their robustness342

is illustrated by the accuracy reduction re-343

sulting from the perturbations. APART-344

trained models generally outperform the345

standard models for both the generaliza-346

tion and robustness. Specifically, the stan-347

dard models (dashed lines) yield lower non-348

perturbed accuracy and suffers from more349

accuracy reduction as the perturbations in-350

crease. Meanwhile, more training epochs351

(dashed orange line) slightly improve the352

performance of the standard methods. On353

the other hand, APART performs better but354

requires a trade-off between the generaliza-355

tion and robustness. Increasing APART’s radii improves both the robustness and generalization to356

some extent. However, a large radius (ϵ = 0.4) results in the severe degeneration (solid pink line)357

in the generalization. Additionally, different group numbers of APART lead to improvement of358

the generalization and robustness to varying degrees but have no clear trend. In summary, APART359

consolidates models’ robustness against noisy BN statistics to boost models’ performance but requires360

a further generalization-robustness trade-off achieved by tuning the hyperparameters.361

5 Conclusion and Discussion362

In this paper, we identify the robustness against the noise in BN statistics to bridge the generalization-363

robustness gap. Then, we proposed APART that implements a new AT paradigm, termed model-364

based AT, to achieve such robustness. APART performs attacks and defense within models by two365

backward passes over each batch of benign samples, utilizing gradients efficiently. The empirical366

results demonstrate APART’s effectiveness in improving the robustness, which further boosts model367

generalization on benign samples.368

Limitations. Though APART improves models by solving a BN-specific problem, it and its variant369

suffer from the potential degeneration in case of the combination with other training methods370

implicitly involving BN, which results in more demand for fine-tuning the hyperparameters.371
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