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ABSTRACT

We propose Few-Class Arena (FCA), as a unified benchmark with focus on testing
efficient image classification models for few classes. A wide variety of benchmark
datasets with many classes (80-1000) have been created to assist Computer Vision
architectural evolution. An increasing number of vision models are evaluated with
these many-class datasets. However, real-world applications often involve sub-
stantially fewer classes of interest (2-10). This gap between many and few classes
makes it difficult to predict performance of the few-class applications using mod-
els trained on the available many-class datasets. To date, little has been offered
to evaluate models in this Few-Class Regime. We conduct a systematic evaluation
of the ResNet family trained on ImageNet subsets from 2 to 1000 classes, and
test a wide spectrum of Convolutional Neural Networks and Transformer archi-
tectures over ten datasets by using our newly proposed FCA tool. Furthermore,
to aid an up-front assessment of dataset difficulty and a more efficient selection
of models, we incorporate a difficulty measure as a function of class similarity.
FCA offers a new tool for efficient machine learning in the Few-Class Regime,
with goals ranging from a new efficient class similarity proposal, to lightweight
model architecture design, to a new scaling law. FCA is user-friendly and can be
easily extended to new models and datasets, facilitating future research work. Our
benchmark is available at https://github.com/bryanbocao/fca.

1 INTRODUCTION

The de-facto benchmarks for evaluating efficient vision models are large scale with many classes
(e.g. 1000 in ImageNet (Deng et al., 2009), 80 in COCO (Lin et al., 2014), etc.). Such benchmarks
have expedited the advance of vision neural networks toward efficiency (Tan & Le, 2019a; Tan & L.,
2021; Sinha & El-Sharkawy, 2019; Sandler et al., 2018; Howard et al., 2019; Iandola et al., 2016;
Ma et al., 2018; Mehta & Rastegari) with the hope of reducing the financial and environmental cost
of vision models (Patterson et al., 2021; Rae et al., 2021). More efficient computation is facilitated
by using quantization (Gysel et al., 2018; Han et al., 2015; Leng et al., 2018), pruning (Cheng et al.,
2017; Blalock et al., 2020; Li et al., 2016; Shen et al., 2022), and data saliency (Yeung et al., 2016).
Despite efficiency improvements such as these, many-class datasets are still the standard of model
evaluation.

∗Work done during an internship at Nokia Bell Labs.
tes †Corresponding authors.

1

https://github.com/bryanbocao/fca


Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
NCL

30
40
50
60
70
80
90

100

To
p-

1 
Ac

c.
 (%

)

18 NCL

18 1K
34 NCL

34 1K
50 NCL

50 1K
101 NCL

101 1K
152 NCL

152 1K

(a) Accuracies for sub-models (blue) and full
models (red).
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(b) Zoomed window shows accuracy values
and range for full and sub-models in the few-
class range.
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(c) Zoomed window shows (c.1) drop of accu-
racy as NCL decreases, (c.2) accuracy scales
with model size for full models in the few-class
range.
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(d) Zoomed window shows (d.1) rising accu-
racy as NCL decreases, (d.2) accuracy does
not scale with model size for sub-models in the
few-class range.

Figure 1: Top-1 accuracies of various scales of ResNet, whose model sizes are shown in the legend, and whose
plots vary from dark to light by decreasing size. Plots range along number of classes NCL from the full
ImageNet size (1000) down to the Few-Class Regime. Each model is tested on 5 subsets whose NCL classes
are randomly sampled from the original 1000 classes. (a) Plots for sub-models trained on subsets of classes
(blue) and full models trained on all 1000 classes (red). (b) Zoomed window shows the standard deviation
of subset’s accuracies is much smaller than for the full model. (c.1) Full model accuracies drop when NCL

decreases. (c.2) Full model accuracies increase as model scales up in the Few-Class Regime. (d.1) Sub-model
accuracies grow as NCL decreases. (d.2) Sub-model accuracies do not increase when model scales up in the
Few-Class Regime.

Real-world applications, however, typically comprise only a few number of classes (e.g, less than
10) (Shao et al., 2020; A. Delplanque, 2022; Cai et al., 2021) which we termed Few-Class Regime.
This introduces a crucial research question: what is the simplest baseline model capable of meet-
ing performance criteria within this Few-Class Regime? To deploy a vision model pre-trained on
large datasets in a specific environment, it requires the re-evaluation of published models or even
retraining to find an optimal model in an expensive architectural search space (Scheidegger et al.,
2019).

One major finding is that, apart from scaling down model and architectural design for efficiency,
dataset difficulty also plays a vital role in model selection (Scheidegger et al., 2021) (described in
Section 4.3).

Figure 1 summarizes several key findings under the Few-Class Regime. On the bottom left graph
in red are accuracy results for a range of number of classes NCL for what we call the “full model”,
that is ResNet models pre-trained on the full 1000 classes of ImageNet (generally available from
many websites). On the bottom right in blue are accuracy results for what we call “sub-models”,
each of which is trained and tested on the same NCL, where this number of classes is sampled from
the full dataset down to the Few-Class Regime. Findings include the following. (a) Sub-models
attain higher upper-bound accuracy than full models. (b) The range of accuracy widens for full
models at few-classes, which increases the uncertainty of a practitioner selecting a model for few
classes. In contrast, sub-models narrow the range. (c) Full models follow the scaling law (Kaplan
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et al., 2020) in the dimension of model size - larger models (darker red) have higher accuracy from
many to few classes. (d) Surprisingly, the scaling law is violated for sub-models in the Few-Class
Regime (see the zoomed-in subplot) where larger models (darker blue) do not necessarily perform
better than smaller ones (lighter blue). From these plots, our key insight is that, instead of using full
models, researchers and practitioners in the Few-Class Regime should use sub-models for selection
of more efficient models.

However, obtaining sub-models involves computationally expensive training and testing cycles since
they need to be converged on each of the few-class subsets. By carefully studying and comparing
the experiment and evaluation setup of these works in the literature, we observe that, how models
scale down to Few-Class Regime is rarely studied. The lack of comprehensive benchmarks for few-
class research impedes both researchers and practitioners from quickly finding models that are the
most efficient for their dataset size. To fill this need, we propose a new benchmark, Few-Class
Arena (FCA), with the goal of benchmarking vision models under few-class scenarios. To our best
knowledge, FCA is the first benchmark for such a purpose.

We formally define Few-Class Regime as a scenario where the dataset has a limited number of
classes. Real-world applications often comprise only a few number of classes (e.g. NCL < 10
or 10% classes of a dataset). Consequently, Few-Class Arena refers to a benchmark to conduct
research experiments to compare models in the Few-Class Regime. This paper focuses on the image
classification task, although Few-Class Regime can generalize to object detection (Chen et al., 2019),
segmentation (Contributors, 2020) and other visual tasks (described in the Appendix).

Statement of Contributions. Four contributions are listed below:

• To the best of our knowledge, we are the first to explore the problems in the Few-Class
Regime and develop a benchmark tool Few-Class Arena (FCA) to facilitate scientific re-
search, analysis, and discovery for this range of classes.

• We introduce a scalable few-class data loading approach to automatically load images and
labels in the Few-Class Regime from the full dataset, avoiding the need to duplicate data
points for every additional few-class subset.

• We incorporate dataset similarity as an inverse difficulty measurement in Few-Class Arena
and propose a novel Silhouette-Based Similarity Score named SimSS. By leveraging the
visual feature extraction power of CLIP and DINOv2, we show that SimSS is highly cor-
related with ResNet performance in the Few-Class Regime with high Pearson coefficient
scores ≥ 0.88.

• We conduct extensive experiments that comprise ten models on ten datasets and 2-1000
numbers of classes on ImageNet, totalling 1591 training and testing runs. In-depth analyses
on this large body of testing reveal new insights in the Few-Class Regime.

2 RELATED WORK

Visual Datasets and Benchmarks. To advance deep neural network research, a wealth of large-
scale many-class datasets has been developed for benchmarking visual neural networks over a va-
riety of tasks. Typical examples 1 include 1000 classes in ImageNet (Deng et al., 2009) for image
classification, and 80 object categories in COCO (Lin et al., 2014) for object detection. Previous
benchmarks also extend vision to multimodal research such as image-text (Lee et al., 2024; Le
et al., 2024; Laurençon et al., 2024; Bitton et al., 2022). While prior works often scale up the num-
ber of object categories for general purpose comparison, studies (Fang et al., 2024; Mayo et al.,
2023) raise a concern on whether models trained on datasets with such a large number of classes
(e.g. ImageNet) can be reliably transferred to real world applications often with far fewer classes. A
close work to ours is vision backbone comparison (Goldblum et al., 2024) whose focus is on model
architectures. Our perspective differs in a focus on cases with fewer number of classes, which often
better aligns with real-world scenarios.

Dataset Difficulty Measurement. Research has shown the existence of inherent dataset difficulty
(Mayo et al., 2023) for classification and other analytic tasks. Efficient measurement methods
are proposed to characterize dataset difficulty using Silhouette Score (Rousseeuw, 1987), K-means

1A detailed list of many-class datasets used in this paper can be found in the Appendix.
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Fréchet inception distance (Dowson & Landau, 1982; Heusel et al., 2017; Lucic et al., 2018), and
Probe nets (Scheidegger et al., 2021). Prior studies have proposed image quality metrics using
statistical heuristics, including peak signal-to-noise ratio (PSNR) (Hore & Ziou, 2010), structural
similarity (SSIM) Index (Wang et al., 2004), and visual information fidelity VIF (Sheikh & Bovik,
2006). A neuroscience-based image difficulty metric (Mayo et al., 2023) is defined as the minimum
viewing time related to object solution time (OST) (Kar et al., 2019). Another type of difficulty mea-
sure method consists of additional procedures such as c-score (Jiang et al., 2020), prediction depth
(Baldock et al., 2021), and adversarial robustness (Goodfellow et al., 2014). Our work aligns with
the line of research (Arun, 2012; Trick & Enns, 1998; Wolfe et al., 2010) involving similarity-based
difficulty measurements: similar images are harder to distinguish from each other while dissimilar
images are easier. Previous studies are mainly in the image retrieval context (Zhang & Lu, 2003;
Wang et al., 2014; Tudor Ionescu et al., 2016). Similarity score is used in (Cao et al., 2023) with
the limitation that a model serving similarity measurement has to be trained for one dataset. We
push beyond this limit by leveraging large vision models that learn general visual features using
CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023). The study (Mayo et al., 2023) shows
that CLIP generalizes well to both easy and hard images, making it a good candidate for measuring
image difficulty. Supported by the evidence that better classifiers can act as better perceptual feature
extractors (Kumar et al., 2022), in later sections we show how CLIP and DINOv2 will be used as
our similarity base function.

Despite the innovation of difficulty measure algorithms on many-class datasets, little attention has
been paid to leveraging these methods in the Few-Class Regime. We show that, as the number
of classes decreases, sub-dataset difficulty in the Few-Class Regime plays an increasingly critical
role in efficient model selection. To summarize, unlike previous work on many-class benchmarks
and difficulty measurements, our work takes few-class and similarity-based dataset difficulty into
consideration, and in doing so we believe the work pioneers the development of visual benchmark
dedicated to research in the Few-Class Regime.

3 FEW-CLASS ARENA (FCA)

We introduce the Few-Class Arena (FCA) benchmark in this section. In practice, we have integrated
FCA into the MMPreTrain framework (Contributors, 2023), implemented in Python and Pytorch2.
Our benchmark usage guidelines are detailed in A.2 of the Appendix.

3.1 FEW-CLASS DATASET PREPARATION

Few-Class Arena provides an easy way to prepare datasets in the Few-Class Regime. By leveraging
the MMPreTrain framework, users only need to specify the parameters of few-class subsets in the
configuration files, which includes the list of models, datasets, number of classes (NCL), and the
number of seeds (NS). Few-Class Arena generates the specific model and dataset configuration files
for each subset, where subset classes are randomly extracted from the full set of classes, as specified
by the seed number. Note that only one copy of the full, original dataset is maintained during the
whole benchmarking life cycle because few-class subsets are created through the lightweight con-
figurations, thus maximizing storage efficiency. We refer readers to the Appendix and the publicly
released link for detailed implementations and use instructions.

3.2 MANY-CLASS FULL DATASET TRAINED BENCHMARK

We conducted large-scale experiments spanning ten popular vision models (including CNN and ViT
architectures) and ten common datasets 3. Except for ImageNet1K, where pre-trained model weights

2Code is available at https://github.com/bryanbocao/fca, including detailed documentation
and long-term plans of maintenance.

3Models include: ResNet50 (RN50), VGG16, ConvNeXt V2 (CNv2), Inception V3 (INCv3), Efficient-
Net V2 (EFv2), ShuffleNet V2 (SNv2), MobileNet V3 (MNv3), Vision Transformer base (ViTb), Swin
Transformer V2 base (SWv2b) and MobileViT small (MViTs). Datasets include CalTech101 (CT101), Cal-
Tech256 (CT256), CIFAR100 (CF100), CUB200 (CB200), Food101 (FD101), GTSRB43, (GT43), Ima-
geNet1K (IN1K), Indoor67 (ID67), Quickdraw345 (QD345) and Textures47 (TT47).
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are available, we train models in other datasets from scratch. While different models’ training pro-
cedures may incur various levels of complexity (particularly in our case for MobileNet V3 and Swin
Transformer V2 base), we have endeavored to minimize changes in the existing training pipelines
from MMPreTrain. The rationale is that if a model exhibits challenges in adapting it to a dataset,
then it is often not a helpful choice for a practitioner to select for deployment.

Results are summarized in Table 1. We observe (1) models in different datasets (in rows) yield highly
variable levels of performance by Top-1 accuracy; (2) no single best model (bold, in columns) exists
across all datasets; and (3) model rankings vary across various datasets.

The first two observations are consistent with the findings in (Scheidegger et al., 2021; Fang et al.,
2024). For (1), it suggests there exists underlying dataset-specific difficulty. To capture this char-
acteristic, we adopt the reference dataset classification difficulty number (DCN) (Scheidegger et al.,
2021) to refer to the empirically highest accuracy achieved in a dataset from a finite number of mod-
els shown in Table 1 and Figure 2 (a). For observation (3), we can examine the rankings among the
ten datasets of ResNet50 and EfficientNet V2 in Figure 2 (b). ResNet50’s ranking varies dramati-
cally across different datasets, for instance ranking 7th on ImageNet1K and 1st on Quickdraw345.
This ranking variability is also observed in other models (see all models in the Appendix). How-
ever, a common practice is to benchmark models – even for efficiency – on large datasets, especially
ImageNet1K. The varied dataset rankings in our experiments expose the limitations of such a prac-
tice, further supporting our new benchmark paradigm, especially in the Few-Class Regime. In later
sections, we leverage DCN and image similarity for further analysis.

Dataset RN50 VGG16 CNv2 INCv3 EFv2 SNv2 MNv3 ViTb SWv2b MViTs DCN

GT43 99.85 96.60 99.83 99.78 99.86 99.87 99.83 99.31 99.78 99.69 99.87
CF100 74.56 71.12 85.89 75.97 77.05 77.89 74.35 32.65 78.49 76.51 85.89
IN1K 76.55 71.62 84.87 77.57 85.01 69.55 66.68 82.37 84.60 78.25 85.01
FD101 83.76 75.82 63.80 83.96 80.82 79.36 76.03 52.21 84.30 82.23 84.30
CT101 77.70 74.99 77.52 77.52 77.82 84.13 80.71 59.59 78.82 80.06 84.13
CT256 65.07 59.08 73.57 66.09 62.80 68.13 62.62 44.23 67.28 65.80 73.57
QD345 69.14 19.86 62.86 68.25 68.81 67.32 66.42 19.67 66.54 68.76 69.14
CB200 45.86 21.26 27.61 45.58 44.48 53.95 53.80 23.73 54.52 58.46 58.46
ID67 53.75 26.01 33.21 45.95 43.85 54.72 51.65 30.51 48.58 54.05 54.72
TT47 30.43 12.55 6.49 14.20 21.17 43.83 40.27 31.38 33.94 24.41 43.83

Table 1: Top-1 accuracy across ten models in ten datasets. Models are trained and tested on full
datasets with their original number of classes (e.g. 1K from ImageNet1K) denoted in the last few
digits of the abbreviation of the dataset name. The best score is highlighted in bold while the second
best is underlined for each dataset. References for all models and datasets are in the Appendix.
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Figure 2: Many-Class Full Dataset Benchmark.

In the next subsections, we introduce three new types of benchmarks: (1) Few-Class Full Dataset
Trained Benchmark (FC-Full), which benchmarks vision models trained on the full dataset with the
original number of classes; (2) Few-Class Subset Trained Benchmark (FC-Sub), which benchmarks
vision models trained on subsets of a fewer number of classes than the full dataset, and (3) Few-Class
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Similarity Benchmark (FC-Sim), which benchmarks image similarity methods and their correlation
with model performance.

3.3 FEW-CLASS FULL DATASET TRAINED BENCHMARK (FC-FULL)

Traditionally, a large number of models are trained and compared on many-class datasets. However,
such results cannot be directly transferred to the Few-Class Regime and many real-world scenar-
ios. Therefore, we introduce the Few-Class Full Dataset Trained Benchmark (FC-Full), with the
objective of effortlessly conducting large-scale experiments and analyses in the Few-Class Regime.

The procedure of FC-Full consists of two main stages. In the first stage, users select the models and
datasets upon which they would like to conduct experiments. They can choose to download pre-
trained model weights, which are usually available on popular model hubs (PyTorch Hub (Founda-
tion, 2024), TensorFlow Hub (Inc., 2024), Hugging Face (Face, 2024), MMPreTrain (Contributors,
2023) etc.). In case of no pre-trained weights available from public websites, users can resort to the
option of training from scratch. To that end, our tool is designed and implemented to generate bash
scripts for easily configurable and modifiable training through the use of configuration files.

In the second stage, users conduct benchmarking in the Few-Class Regime. By specifying the list
of classes, Few-Class Arena automatically loads pre-trained weights of the chosen models and eval-
uates performance of the models on the selected datasets. Note that this process is accomplished
through configuration files created by the user’s specifications, thus enabling hundreds of experi-
ments to be launched by a single command. This dramatically reduces the human effort that would
otherwise be expended to run these experiments without Few-Class Arena.

3.4 FEW-CLASS SUBSET TRAINED BENCHMARK (FC-SUB)

Our study in Figure 1 (red lines) reveals the limits of existing pre-trained models in the Few-Class
Regime. To facilitate further research and analyze the upper bound performance in the Few-Class
Regime, we introduce the Few-Class Subset Trained Benchmark (FC-Sub).

FC-Sub follows a similar procedure to FC-Full, except that, when evaluating a model in a subset with
a specific number of classes, that model should have been trained on that same subset. Specifically,
in Stage One (described for FC-Full), users specify models, datasets and the list of number of classes
in configuration files. Then Few-Class Arena generates bash scripts for model training on each
subset. In Stage two, Few-Class Arena tests each model in the same subset that it was trained on.

3.5 FEW-CLASS SIMILARITY BENCHMARK (FC-SIM)

One objective of our tool is to provide the Similarity Benchmark as a platform for researchers to
design custom similarity scores for efficient comparison of models and datasets.

The intrinsic image difficulty of a dataset affects a model’s classification performance (and human)
(Geirhos et al., 2017; Rajalingham et al., 2018; Mayo et al., 2023). We show – as is intuitive –
that the more similar two images are, the more difficult it is for a vision classifier to make a correct
prediction. This suggests that the level of similarity of images in a dataset can be used as a proxy
for a dataset difficulty measure. In this section, we first adopt and provide the basic formulation of
similarity, the baseline of a similarity metric. Then we propose a Similarity-Based Silhouette Score
to capture the characteristic of image similarity in a dataset.

We first adopt the basic similarity formulation from (Cao et al., 2023). Intra-Class Similarity S
(C)
α

is defined as a scalar describing the similarity of images within a class by taking the average of all
the distinct class pairs in C, while Inter-Class Similarity denotes a scalar describing the similarity
among images in two different classes C1 and C2. For a dataset D, these are defined as the mean of
their similarity scores over all classes, respectively:

S(D)
α =

1

|L|
∑
l∈L

S(Cl)
α =

1

|L| × |P (Cl)|
∑
l∈L

∑
i,j∈Cl; i ̸=j

cos(Zi,Zj), (1)

S
(D)
β =

1

|P (D)|
∑

a,b∈L;a ̸=b

S
(Ca,Cb)
β =

1

|P (D)| × |P (C1,C2)|
∑

a,b∈L; a̸=b

∑
i∈C1,j∈C2

cos(Zi,Zj), (2)
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where |L| is the number of classes in a dataset, Zi is the visual feature of an image i, |P (C)| is the
total number of distinct image pairs in class C, |P (D)| is the total number of distinct class pairs, and
|P (C1,C2)| is the total number of distinct image pairs excluding same-class pairs.

Averaging these similarities provides a single scalar score at the class or dataset level. However,
this simplicity neglects other cluster-related information that can better reveal the underlying dataset
difficulty property of a dataset. In particular, the (1) tightness of a class cluster and (2) distance to
other classes of class clusters, are features that characterize the inherent class difficulty, but are not
captured by Sα or Sβ alone.

To compensate the aforementioned drawback, we adopt the Silhouette Score (SS) (Rousseeuw,
1987; Shahapure & Nicholas, 2020): SS(i) = b(i)−a(i)

max(a(i),b(i)) , where SS(i) is the Silhouette Score
of the data point i, a(i) is the average dissimilarity between i and other instances in the same class,
and b(i) is the average dissimilarity between i and other data points in the closest different class.

Observe that the above Intra-Class Similarity S
(C)
α already represents the tightness of the class (C),

therefore a(i) can be replaced with the inverse of Intra-Class Similarity a(i) = −Sα(i). For the
second term b(i), we adopt the previously defined Inter-Class Similarity S

(C1,C2)
β and introduce

a new similarity score as Nearest Inter-Class Similarity S′
β
(C), which is a scalar describing the

similarity among instances between class C and the closest class of each instance in C. The dataset-
level Nearest Inter-Class Similarity S′(D)

β is expressed as:

S′(D)
β =

1

|L|
∑
l∈L

S′(Cl)
β =

1

|L| × |P (Cl,Ĉl)|

∑
l∈L

∑
i∈Cl,j∈Ĉl

cos(Zi,Zj), (3)

where Ĉ is the nearest class to instance i (Ĉ ̸= C). To summarize, we introduce our novel
Similarity-Based Silhouette Score SimSS4 for dataset D:

SimSS(D) =
1

|L| × |Cl|
∑
i∈Cl

Sα(i)− S′
β(i)

max(Sα(i), S′
β(i))

. (4)

4 EXPERIMENTAL RESULTS

4.1 RESULTS ON FC-FULL

In this section, we present the results of FC-Full. A model trained on the dataset with its original
number of classes (e.g. 1000 in ImageNet1K) is referred to as a full-class model. These experiments
are designed to understand how full-class model performance changes when the number of classes
NCL decreases from many to few classes. We analyze the results of DCN-Full, shown in Figure 3
(details of all models are presented in the Appendix), and we make two key observations when NCL

reduces to the Few-Class Regime (from right to left). (1) The best performing models do not always
increase its accuracy for fewer classes, as shown by the solid red lines that represent the average of
DCN for each NCL. (2) The variance, depicted by the light red areas, of the best models broaden
dramatically for low NCL, especially for NCL < 10.

Both observations support evidence of the limitations of using the common many-class benchmark
for application model selection in the Few-Class Regime, since it is not consistent between datasets
that a model can be made smaller with higher accuracy. Furthermore, the large variance in accuracy
means that prediction of performance for few classes is unreliable for this approach.

4.2 RESULTS ON FC-SUB

In this section, we show how using Few-Class Arena can help reveal more insights in the Few-Class
Regime to mitigate the issues of Section 4.1.

FC-Sub results are displayed in Figure 4. Recall that a sub-class model is a model trained on a
subset of the dataset where NCL is smaller than the original number of classes in the full dataset.

4The extended derivation is detailed in the Appendix.
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Figure 3: DCN-Full by Top-1 Accuracy (%). NCL ranges from many to 2.

Observe that in the Few-Class Regime (when NCL decreases from 4 to 2) that: (1) DCN increases
as shown by the solid blue lines, and (2) variance reduces as displayed by the light blue areas.

The preceding observation for FC-Full 4.1 seems to contradict the common belief that, the fewer
the classes, the higher the accuracy a model can achieve. Conversely, the FC-Sub results do align
with this belief. We argue that a full-class model needs to accommodate many parameters to learn
features that will enable high performance across all classes in a many-class, full dataset. With the
same parameters, however, a sub-class model can adapt to finer and more discriminative features
that improve its performance when the number of target classes are much smaller.
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Figure 4: DCN-Sub (blue) and DCN-Full (red) by Top-1 Accuracy (%). NCL ranges from 2 to 4.
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4.3 RESULTS ON FC-SIM

In this section, we analyze the use of SimSS (Equation 4) as proxy for few-class dataset difficulty.
Experiments are conducted on ImageNet1K using the ResNet family for the lower NCL ≤ 10%
range of the original 1000 classes, NCL ∈ {2, 3, 4, 5, 10, 100}, and the results are shown in Figure 5.
Each datapoint of DCN-Full (diamond in red) or DCN-Sub (square in blue) represents an experiment
in a subset of a specific NCL, where classes are sampled from the full dataset. For reproducible
results, we use seed numbers from 0 to 4 to generate 5 subsets for one NCL by default. A similarity
base function (sim()) is defined as the atomic function that takes a pair of images as input and
outputs a scalar that represents their image similarity.

In our experiments, we leverage the general visual feature extraction ability of CLIP (image + text)
(Radford et al., 2021) and DINOv2 (image) (Oquab et al., 2023) by self-supervised learning. Specif-
ically, a pair of images are fed into its latent space from which the the cosine score is calculated and
normalized to 0 to 1. Note that we only use the Image Encoder in CLIP.

Comparing Accuracy and Similarity To evaluate SimSS, we compute the Pearson correlation
coefficient (PCC) (r) between model accuracy and SimSS. Results in Figure 5 (a) (b) show that
SimSS is poorly correlated with DCN-Full (r = 0.18 and r = 0.26 for CLIP and DINOv2) due to
the large variance shown in Section 4.1 , as well as the general features learned on a full dataset, those
of which can be extraneous to a much smaller set of target sub-class features. In contrast, SimSS
is highly correlated with DCN-Sub (shown in blue squares), with r = 0.90 and r = 0.88 using
CLIP (dashed) and DINOv2 (solid), respectively. We attribute the advantages of DCN-Sub to its
focus on the minimal features tailored to the target sub-classes, while maintaining the same number
of parameters as the DCN-Full architecture. The high PCC (Wicklin, 2024; Schober et al., 2018)
demonstrates that SimSS is a reliable metric to estimate few-class dataset difficulty, and this can
help predict the empirical upper-bound accuracy of a model in the Few-Class Regime. Comparison
between SimSS and all models can be found in the Appendix. Such a high correlation suggests this
offers a reliable scaling relationship to estimate model accuracy by similarity for other values of
NCL without an exhaustive search. Due to the dataset specificity of the dataset difficulty property,
this score is computed once and used for all times the same dataset is used. We have made available
difficulty scores for many datasets at the Few-Class Arena site.
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Figure 5: Pearson correlation coefficient (r) between DCN and SimSS when NCL ∈ {2, 3, 4, 5, 10, 100}.
DCN-Sub (blue squares) is more highly correlated than DCN-Full (red diamonds) with SimSS using both
similarity base functions of CLIP (dashed line) and DINOv2 (solid line) with r ≥ 0.88.

4.4 COMPARISON WITH FINE-TUNED MODELS

Fine-tuning a model through transfer learning from a pre-trained model has become as a common
practice in many real-world scenarios. We perform experiments on CNNs (ResNet18, 50) and Trans-
former architectures (MobileVit-small (Mehta & Rastegari, 2021), ViT-Base) summarized in Table
2. To fine-tune (FT) the ResNet18, 50 and MobileVit-small models for NCL ∈ {2, 4}, we first train
their full models NCL = {100} on CIFAR100 for 100 epochs, and subsequently fine-tune their
weights for the target NCL ∈ {2, 4} for another 20 epochs. For ViT, we fine-tune a ViT-B model
initialized with weights from the CLIP pre-trained backbone. A linear layer is added on top, and the
model is trained for 10 epochs. This setup is indicated by the star symbol (*). We conclude that the
fine-tuned models exhibit patterns and trends consistent with the observations presented in Fig. 1.
Note our focus of this work is to leverage the proposed difficult measurement method, FC-Sim, to
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efficiently estimate the achievable model accuracy, thereby assisting in model selection in the Few-
Class Regime. Sub-models can offer insights into the minimal visual features required for a specific
real-world scenario as they are trained exclusively on the target classes. In contrast, weights pre-
trained on large full datasets – whether through fully supervised manner or self-supervised – may
include extraneous features that are irrelevant to the target classes. We therefore prioritize sub-model
study in this work.

MT NCL ResNet18 ResNet50 MViT-S ViT-B

F 100 76.11 73.71 73.83 32.54

F 4 75.10 72.20 72.35 36.15
FT 4 87.60 90.55 90.00 91.16*
S 4 90.65 90.15 89.45 85.40

F 2 75.00 71.30 71.80 40.80
FT 2 87.90 93.70 90.50 95.20*
S 2 96.30 95.30 95.50 95.90

Table 2: Top-1 Accuracies for different configurations on CIFAR100. NCL ∈ {2, 4, 100}, MT:
Model Type, F: Full model, S: Sub-model, FT: Fine-tuned model, MViT-S: MobileViT-small, *:
fine-tuned from the CLIP pre-trained model. Best scores are highlighted in bold. The gray bar
indicates sub-models as the primary focus of this research.

5 CONCLUSION

We have proposed Few-Class Arena and a dataset difficulty measurement, which together form a
benchmark tool to compare and select efficient models in the Few-Class Regime. Extensive exper-
iments and analyses over 1500 experiments with ten models on ten datasets have helped identify
new behaviors specific to the Few-Class Regime as compared to many-classes setting. One finding
reveals a new NCL-scaling law whereby dataset difficulty must be taken into consideration for accu-
racy prediction. Such a benchmark will be valuable to the community by providing both researchers
and practitioners with a unified framework for future research and real applications.

Limitations and Future Work. The current difficulty benchmark supports image similarity while
in the future it can be expanded to other difficulty measurements (Scheidegger et al., 2021). CLIP
and DINOv2 are trained toward general visual features, it is unclear if they will be appropriate for
other types of images such as sketches without textures in Quickdraw (Ha & Eck, 2017). For this
reason, a universal similarity foundation model would be appealing that applies to any image type.
Moreover, integrating image similarity with representation similarity (AntixK, 2023; Nguyen et al.,
2020; Cao et al., 2024) could further enhance model efficiency, leveraging complementary insights
from both approaches. In summary, Few-Class Arena identifies a promising new path for achieving
efficiencies focused on the important and practical Few-Class Regime, establishing a baseline for
future work.
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A APPENDIX

A.1 GOALS

1. Generality. All vision models and existing datasets for classification should be compatible in
this framework. In addition, users can extend to custom models and datasets for their needs.

2. Efficiency. The benchmark should be time- and space-efficient for users. The experimental setup
for the few-class benchmark should be easily specified by a few hyper-parameters (e.g. number of
classes). Since the few-class regime usually includes sub-datasets extracted from the full dataset,
the benchmark should be able to locate those sub-datasets without generating redundant duplicates
for reasons of storage efficiency. For time-efficiency, it should conduct training and testing automat-
ically through use of user-specified configuration files, without users’ manual execution.

3. Large-Scale Benchmark. The tool should allow for large-scale benchmarking, including train-
ing and testing of different vision models on various datasets when the number of classes varies.

A.2 BENCHMARK USAGE GUIDELINE

Users should prepare the dataset detailed in 3.1 in the “CUSTOM“ format based on the MMPreTrain
(Contributors, 2023) documentation. The tool is designed for both practitioners and researchers.

Practitioner: Users select the target NCL and then execute the FC-Sim on the custom dataset. FC-
Sim calculates the image similarity score which can be used to index a narrow range of potential
target models, given the deployment accuracy requirement (e.g. accuracy). We provide the index
table covering ten models on ten datasets for the Few-Class Regime.

Researcher: Users specify the configurations for FC-Full, FC-Sub and FC-Sim, as well as a list
of NCL. In the next step, users can execute the scripts running on all benchmarks on the custom
dataset. The results for all benchmarks are then used for further analysis.

A.3 EXTENDED RELATED WORK

Few-Shot Learning. There has been a large body of research on Few-Short Learning (FSL) (Song
et al., 2023; Wang et al., 2020; Hu et al., 2022; Sung et al., 2018). However, the fundamental
research questions differ from ours in the Few-Class Regime. The FSL framework aims to address
the problem of data scarsity with the goal for a model to leverage the representations from very
few samples (or none, in the case of Zero-Shot Learning), or prior knowledge that can generalize
effectively to other tasks or domains.

Self-Supervised Learning. To leverage the knowledge from unlabled data, Self-Supervised Learn-
ing (SSL) has emerged as an effective learning framework to learn general vision features (Jaiswal
et al., 2020; Jing & Tian, 2020). This includes techniques such as Contrastive Learning, applied to
single modalities (Chen et al., 2020a; Chen & He, 2021; He et al., 2020; Chen et al., 2020b; 2021)
or multiple modalities (Radford et al., 2021), as well as mask-and-reconstruct methods (He et al.,
2022), among others.

In contrast to the advancements of the aforementioned learning frameworks, Few-Class Arena fo-
cuses on the research problem of selecting the most efficient model with minimal features (e.g.
model parameters, model multiplies) needed for the target application deployment.

A.4 FULL MODELS ON IMAGENET

In practice, ImageNet serves as a common benchmark for vision neural networks. We list the details
of ten pre-trained models from MMPreTrain (Contributors, 2023) in terms of Top-1 Accuracy and
scale (#Params) in Fig. 6.
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Figure 6: Top-1 Accuracy (%) vs. number of parameters and FLOPs (G) (size of circle) on Ima-
geNet.

Model Ref. Model Ref.
Conformer (Peng et al., 2021) ConvNeXt (Liu et al., 2022b)
EfficientFormer (Li et al., 2022b) EfficientNet (Tan & Le, 2019b)
RepVGG (Ding et al., 2021) ResNet (He et al., 2016)
ShuffleNet (Zhang et al., 2017) Swin (Liu et al., 2021)
VGG (Simonyan & Zisserman, 2014a) ViT (Dosovitskiy et al., 2020)

Table 3: Full models pre-trained on ImageNet.

A.5 EXTENDED MANY-CLASS FULL DATASET TRAINED BENCHMARK RESULTS

A complete ranking of ten models in ten datasets is depicted in Fig. 7. Observe that the ten models’
rankings differ dramatically among ten different datasets where each line changes from ImageNet1K
(IN1K) to other datasets. This poses some questions whether rankings in existing benchmarks can
be a reliable indicator for a practitioner to select an efficient neural network, especially when the
deployed environment changes from application to application. A major variable in this process is
the reduced number of classes from benchmark datasets to deployed environments in the Few-Class
Regime. As such, our tool is developed to facilitate research in the Few-Class Regime.
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Figure 7: Extended Details of Fig. 2 (b) in the main paper. Full Ranking of ten models across ten
datasets by Top-1 acc.

A.6 DATASETS

Dataset information is presented in Table 4.

Dataset
Name

Abbrev. Ref. Homepage Path in FCA

Caltech 101 CT101 (Li et al.,
2022a)

data.caltech.edu/records/mzrjq-6wc02 tools/ncls/datasets/caltech101.py

Caltech 256 CT256 (Griffin et al.,
2022)

data.caltech.edu/records/nyy15-4j048 tools/ncls/datasets/caltech256.py

CIFAR-100 CF100 (Krizhevsky
et al., 2009)

cs.toronto.edu/ kriz/cifar.html tools/ncls/datasets/cifar100.py

github.com/knjcode/cifar2png

Caltech-
UCSD

CB200 (Wah et al.,
2011)

vision.caltech.edu/visipedia/CUB-200-2011.html tools/ncls/datasets/cub200.py

Birds-200-
2011

data.caltech.edu/records/65de6-vp158/files/CUB 200 2011.tgz

Food 101 FD101 (Bossard et al.,
2014)

vision.ee.ethz.ch/datasets extra/food-101/ tools/ncls/datasets/food101.py

huggingface.co/datasets/food101

German
Traffic Sign

GT43 (Stallkamp
et al., 2012)

benchmark.ini.rub.de/ tools/ncls/datasets/gtsrb43.py

ImageNet IN1K (Deng et al.,
2009)

image-net.org/challenges/LSVRC/2012/index.php *

Indoor
Scene
Recognition

ID67 (Quattoni
& Torralba,
2009)

web.mit.edu/torralba/www/indoor.html tools/ncls/datasets/indoor67.py

Quickdraw QD345 (Ha & Eck,
2017)

github.com/googlecreativelab/quickdraw-dataset tools/ncls/datasets/quickdraw345.py

tensorflow.org/datasets/community catalog/huggingface/quickdraw

Describable
Textures
Dataset

TT47 (Cimpoi et al.,
2014)

robots.ox.ac.uk/ vgg/data/dtd/index.html tools/ncls/datasets/textures47.py

Table 4: Dataset information. * Note that ImageNet dataset format is used as the reference for other
datasets. Therefore, the Path in FCA is not required for ImageNet.

License. We have searched available online resources and list the license of each dataset in Table
5. For licenses not found in the datasets or websites denoted as “*”, we assume they are non-
commercial research use only.
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Dataset License Dataset License
CT101 CC BY 4.0 CT256 CC BY 4.0
CF100 MIT CB200 CC BY 4.0
FD101 CC BY-SA 4.0 GT43 GPLv2
IN1K * ID67 *
QD345 CC BY 4.0 TT47 *

Table 5: Licenses of ten datasets.

Train/val splits. The dataset format follows the convention of ImageNet:

imagenet1k/
meta

train.txt
val.txt

train
<IMAGE_ID>.jpeg
...

val
<IMAGE_ID>.jpeg
...

where a .txt file stores a pair of image id and and class number in each row in the following format:

<IMAGE_ID>.jpeg <CLASS_NUM>

We follow the same train/val splits when the original dataset has already provided. If the dataset
does not have explicit splits, we first assign image IDs to all images, starting from 0. We then select
4/5 of the images as the training set and place the rest in the validation set. Specifially, if an image’s
ID satisfies the condition ID % 5 == 0, it is moved to the validation set; otherwise, it is assigned
as a training sample.
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A.7 MODEL TRAINING DETAILS

Model training details are presented in Table 6.

Model Abbrev. Ref. Optimizer LR Weight Other Params
Decay

ResNet50 RN50 (He et al., 2016) SGD 0.1 1e-4 momentum=0.9

VGG16 VGG16 (Simonyan & Zisserman,
2014b)

SGD 0.01 1e-4 momentum=0.9

ConvNeXt V2 CNv2 (Woo et al., 2023) AdamW 2.5e-3 0.05 eps=1e-8
Base betas=(0.9, 0.999)

Inception V3 INCv3 (Szegedy et al., 2016) SGD 0.1 1e-4 momentum=0.9

EfficientNet V2 EFv2 (Tan & L., 2021) SGD 4e-3 0.1 momentum=0.9
Medium clip grad:

max norm=5.0

ShuffleNet V2 SNv2 (Ma et al., 2018) SGD 0.5 0.9 momentum=4e-5

MobileNet V3 MNv3 (Howard et al., 2019) RMSprop 6.4e-4 1e-5 alpha=0.9
Small momentum=0.9

eps=0.0316

Vision Transformer ViTb (Dosovitskiy et al., 2020) AdamW 3e-3 0.3 -
Base

Swin Transformer V2 SWv2b (Liu et al., 2022a) AdamW 1e-4 0.05 eps=1e-8
Base betas=(0.9, 0.999)

MobileViT MViTs (Mehta & Rastegari) SGD 0.1 1e-4 momentum=0.9
Small

Table 6: Model Training detials. LR: Learning rate. SGD: Stochastic gradient descent. AdamW:
Adam with weight decay. RMSprop: Root mean square propagation.
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A.8 EXTENDED FEW-CLASS FULL DATASET TRAINED BENCHMARK (FC-FULL) RESULTS

We present the details of FC-Full results for each experiment model, including ResNet50, VGG16,
ConNeXt V2 Base, Inception V3, EfficientNet V2 Medium, ShuffleNet V2, MobileNet V3 Small,
ViT Base, Swin Transformer V2 Base, MobileViT Small in Fig. 8-17, respectively.
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Figure 8: FC-Full Top-1 Accuracy (%) for ResNet50.
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Figure 9: FC-Full Top-1 Accuracy (%) for VGG16.
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Figure 10: FC-Full Top-1 Accuracy (%) for ConNeXt V2 Base.
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Figure 11: FC-Full Top-1 Accuracy (%) for Inception V3.
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Figure 12: FC-Full Top-1 Accuracy (%) for EfficientNet V2 Medium.
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Figure 13: FC-Full Top-1 Accuracy (%) for ShuffleNet V2.
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Figure 14: FC-Full Top-1 Accuracy (%) for MobileNet V3 Small.
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Figure 15: FC-Full Top-1 Accuracy (%) for ViT Base.
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Figure 16: FC-Full Top-1 Accuracy (%) for Swin V2 Base.
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Figure 17: FC-Full Top-1 Accuracy (%) for MobileNetViT Small.
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A.9 EXTENDED FEW-CLASS SIMILARITY BENCHMARK (FC-SIM) DETAILS

We present the extended mathematical details of Section 3.5 Few-Class Similarity Benchmark (FC-
Sim) in the main paper.

The basic similarity formulation is adopted from (Cao et al., 2023). Notations are defined as follows:

Dataset D: a set of image instances in a dataset.

Class C: a set of image instances in a class and |C| is the number of instances within class C.

Class Label L: a set of class labels in a dataset and |L| is the number of classes in a dataset.

Feature Zi: visual feature of an image and i is the instance index.

Class Pair P (D): a set of distinct class pairs in a dataset D; |P (D)| is the total number of distinct
class pairs.

Intra-Class Image Pair P (C): a set of distinct image pairs in a class C; |P (C)| is the total number
of distinct image pairs.

Inter-Class Image Pair P (C1,C2): a set of distinct image pairs in two classes C1, C2; |P (C1,C2)| is
the total number of distinct image pairs. Note that this does not include same-class pairs.

Intra-Class Similarity S
(C)
α : a scalar describing the similarity of images within a class by taking

the average of all the distinct class pairs in C:

S(C)
α =

1

|P (C)|
∑

i,j∈C; i ̸=j

cos(Zi,Zj). (5)

Inter-Class Similarity S
(C1,C2)
β : a scalar describing the similarity among images in two different

classes C1 and C2:

S
(C1,C2)
β =

1

|P (C1,C2)|
∑

i∈C1,j∈C2

cos(Zi,Zj), (6)

where C1 and C2 are distinct classes, i and j are the image instance indices in C1 and C2, respec-
tively. P (C1,C2) is the set of distinct pairs of images between C1 and C2.

The above equations formulate class-level similarity scores. For dataset-level, Intra-Class Simi-
larity and Inter-Class Similarity of a dataset D are defined as the mean of their similarity scores,
respectively:

S(D)
α =

1

|L|
∑
l∈L

S(Cl)
α =

1

|L| × |P (Cl)|
∑
l∈L

∑
i,j∈Cl; i ̸=j

cos(Zi,Zj), (7)

S
(D)
β =

1

|P (D)|
∑

a,b∈L;a ̸=b

S
(Ca,Cb)
β =

1

|P (D)| × |P (C1,C2)|
∑

a,b∈L; a̸=b

∑
i∈C1,j∈C2

cos(Zi,Zj). (8)

Averaging these similarities can provide a summary of score in class or dataset levels by a single
scalar. However, this simplicity neglects other cluster-related information that can better reveal the
underlying dataset difficulty property of a dataset. In particular, the (1) tightness of a class cluster
and (2) distance to other classes of class clusters, are features that characterize the inherent class
difficulty, but are not captured by Sα or Sβ alone.

To compensate the aforementioned drawback, we adopt the Silhouette Score (SS) (also called Sil-
houette Coefficient in the literature) (Rousseeuw, 1987; Shahapure & Nicholas, 2020):

SS(i) =
b(i)− a(i)

max(a(i), b(i))
, (9)

where SS(i) is the Silhouette Score of the data point i, a(i) is the average dissimilarity between i
and other instances in the same class, and b(i) is the average dissimilarity between i and other data
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points in the closest different class. Intuitively, this metric summarizes the quality of clusters by
jointly considering the distance between instances of the same class and distinct clusters, normalized
by the longest distance of a(i) and b(i). By this definition, we can see that −1 ≤ SS(i) ≤ 1 where
−1 indicates a dataset is poorly clustered (data points with different classes are scattered around)
while 1 represents a well-clustered dataset.

Euclidean Distance is commonly used to measure two data points’ differences; in contrast, we incor-
porate the inverse of similarity (dissimilarity) as data points’ differences into the existing Silhouette
Score. Observe that the above Intra-Class Similarity S

(C)
α already represents the tightness of the

class (C), therefore a(i) can be replaced with the inverse of Intra-Class Similarity a(i) = −Sα(i).
For the second term b(i), we adopt the previously defined Inter-Class Similarity S

(C1,C2)
β and intro-

duce a new similarity score as follows:

Nearest Inter-Class Similarity S
′(C)
β : a scalar describing the similarity among instances between

class C and the closest class of each instance in C:

S′(C)
β =

1

|P (C,Ĉ)|

∑
i∈C,j∈Ĉ

cos(Zi,Zj), (10)

where Ĉ is the nearest class to instance i (Ĉ ̸= C). To determine Ĉ, we first iterate over all other
classes C ′ that are different from C. For each C ′, we compute the average similarity between i and
all samples in C ′. The class C ′ with the highest average similarity score is then chosen as Ĉ.

Consequently, the dataset-level Nearest Inter-Class Similarity S′(D)
β is expressed as:

S′(D)
β =

1

|L|
∑
l∈L

S′(Cl)
β =

1

|L| × |P (Cl,Ĉl)|

∑
l∈L

∑
i∈Cl,j∈Ĉl

cos(Zi,Zj). (11)

The second term of SS(i) can be written as b(i) = −S′
β(i).

Replacing a(i) and b(i) from equation 9 with these similarity terms, we introduce our novel similar-
ity metric:

Similarity-Based Silhouette Score SimSS:

SimSS(i) =
Sα(i)− S′

β(i)

max(Sα(i), S′
β(i))

, for instance i (12)

SimSS(C) =
1

|C|
∑
i∈C

SimSS(i) =
1

|C|
∑
i∈C

Sα(i)− S′
β(i)

max(Sα(i), S′
β(i))

, for class C (13)

SimSS(D) =
1

|L|
∑
l∈L

SimSS(Cl) =
1

|L| × |Cl|
∑

l∈L,i∈Cl

SimSS(i)

=
1

|L| × |Cl|
∑
i∈Cl

Sα(i)− S′
β(i)

max(Sα(i), S′
β(i))

, for dataset D.

(14)
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A.10 EXTENDED FEW-CLASS SIMILARITY BENCHMARK (FC-SIM) RESULTS

We present the relationship of similarity scores using our proposed SimSS and number of classes
NCL in ten datasets. CLIP and DINOv2 are used as similarity base functions of SimSS shown in
Fig. 18 (a) and (b), respectively.

Overall, a key observation is that the general trend among all ten datasets unveils the inverse rela-
tionship between similarity and the number of classes. Specifically, image similarities, which act
as proxy of inverse subset difficulty score increases as the number of classes NCL decreases. This
reveals that similarity plays a more important role in the Few-Class Regime than for datasets with
more classes. Therefore, for real applications with few classes, simply downscaling a model blindly
without considering class similarity may yield a model selection with sub-optimal efficiency. We
propose, therefore, that image similarity must be taken into consideration for existing scaling laws
(Kaplan et al., 2020; Rae et al., 2021; Zhai et al., 2022). To that end, Few-Class Arena is developed
to facilitate future research in this direction.
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(a) SimSS using CLIP as similarity base function vs NCL curve.
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(b) SimSS using DINOv2 as similarity base function vs NCL curve.

Figure 18: Relation of SimSS[CLIP,DINOv2] and NCL.

Note that both CLIP and DINOv2 are trained on images from the Internet similar to ImageNet.
Therefore to what extent they can capture image similarity in different types is an open research
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question. Examples include drawings without textures in the Quickdraw dataset (QD345), textures
without shapes in the Describable Textures Dataset (TT47), etc. We mentioned this limitation also
in the main manuscript.

Effect of ResNet Scales on Similarity. We present the details of FC-Sim results of the
ResNet family in different scales in the Few-Class Regime of ImageNet1K, specifically (NCL ∈
{2, 3, 4, 5, 10, 100}) shown in Fig. 19. In particular, we analyze the relationship between each full
and sub-model’s Top-1 accuracy and SimSS by Pearson correlation coefficient (PCC) denoted as r
in the plots. The ResNet family scales from ResNet18 to ResNet152. We experiment both CLIP
(dash line in the 1st and 3rd rows) and DINOv2 (solid line in the 2nd and 4th rows) as similarity
base functions.
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Figure 19: Top-1 Accuracy of different ResNet scales vs SimSS on ImageNet1K. NCL ∈
{2, 3, 4, 5, 10, 100}.

In general, ResNet presents high correlation (r ≥ 0.80) between sub-models’ performances and
SimSS (blue in the last two rows), compared to full models’ performances and SimSS (r ≤ 0.26,
red in the first two rows). This high correlation indicates that SimSS can be used as a reliable tool
to estimate upper bound accuracies of ResNet sub-models. Comparing CLIP (r in the 1st row) with
DINOv2 (r in the 2nd row) as similarity base functions, observe that PCC is slightly higher for
DINOv2 on full models than CLIP, while these differences are subtle for sub-models (r in the 3rd
row vs 4th row). Regarding sub-models of ResNet in different scales, the two smallest models’
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accuracies (ResNet18 and ResNet34) have higher correlation with SimSS (r ≥ 0.88), compared to
larger models with (ResNet50, ResNet101 and ResNet152) r ≥ 0.80. We opens a new direction of
novel scaling law considering image similarity for efficient models in Few-Class Regime.

A.11 COMPARING VARIOUS ARCHITECTURES

We perform experiments on CNNs (ResNet18, 50) and Vision Transformer-Base (ViT-B). Results
are summarized in Table 7. The overall trend of ViT-B exhibits behavior consistent with the obser-
vations for ResNet described in Fig. 1.

MT NCL
ResNet18 ResNet50 ViT-B

Top-1 Acc.↑ STDEV↓ Top-1 Acc.↑ STDEV↓ Top-1 Acc.↑ STDEV↓
F 1000 69.90 0 76.55 0 82.37 0
F 10 66.68 4.372 73.76 3.675 79.52 2.704
F 5 65.68 9.680 72.16 9.302 79.12 8.146
F 2 62.80 14.18 70.60 14.67 78.00 14.47

S 10 91.88 1.640 91.48 2.265 82.16 3.508
S 5 93.68 1.213 92.96 3.170 89.60 2.227
S 2 96.80 1.304 94.80 2.168 95.60 1.949

Table 7: Performance results for different models and configurations on ImageNet1K. NCL ∈
{2, 5, 10, 1000}, MT: Model Type, F: Full model, S: Sub-model.

A.12 EXTENSION TO OBJECT DETECTION AND SEGMENTATION

To assess the generalization of the few-class properties to Object Detection (OD) and Segmentation
(Seg), we conducted validation experiments using YOLOv8. The procedure is consistent with the
method outlined in Section 3.3 and 3.4. Specifically, for a specific NCL (2 in this example), we
randomly sample the NCL classes from the full dataset of COCO, where each consists of five subsets
with seed numbers from 0 to 4. We performed experiments with 2, 5, 80. The YOLOv8-nano model
was chosen since we focus on efficiency. Image size of 320x320 was used. Model performance was
evaluated using the standard metric, mean average precision at an IoU threshold of 0.5 (mAP@50).
Table 8 summarizes our results:

MT NCL
OD Seg

mAP@50↑ STDEV↓ mAP@50↑ STDEV↓
F 80 0.405 0.195 0.378 0.200

F 5 0.456 0.090 0.435 0.098
FT 5 0.488 0.069 0.465 0.082
S 5 0.503 0.069 0.474 0.084

F 2 0.488 0.161 0.475 0.180
FT 2 0.505 0.127 0.457 0.159
S 2 0.538 0.106 0.482 0.152

Table 8: Performance results for different tasks and configurations on COCO. NCL ∈ {2, 5, 80},
MT: Model Type, OD: Object Detection, Seg: Segmentation, F: Full model, S: Sub-model, FT:
Fine-tuned model. Best scores are highlighted in bold. The gray bar indicates sub-models as the
primary focus of this research.

We also include a comparison with fine-tuned pre-trained models (denoted as F). These models are
initialized with weights from the pre-trained YOLOv8-nano on the full dataset with 80 classes, and
subsequently fine-tuned for a limited number of epochs (five in this example). We conclude that OD
and Seg task exhibit similar observations to those we make in Fig. 1.
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A.13 EXPERIMENTS COMPUTE RESOURCES

Experiments are conducted on two internal clusters with the following hardware specifications: (1) 8
NVIDIA RTX A5000 GPUs (24GB), an AMD EPYC 7513 32-Core Processor, and 882GB of RAM;
and (2) 8 NVIDIA TITAN Xp GPUs (12GB), an Intel(R) Xeon(R) CPU E5-2650 v4 @2.20GHz,
and 126GB of RAM. When GPUs in two clusters are fully utilized, training ten models in nine
datasets takes two weeks; obtaining a single experiment result for FC-Full usually takes less than
one minute since it only involves inference without training; getting one FC-Sub experiment result
takes approximately two days on average depending on the size of subset and model, which includes
both training and testing; computing the SimSS in the Few-Class Regime for ten datasets takes
around three weeks. Additional experiments are conducted on a gaming desktop with the following
hardware specifications: 2 NVIDIA RTX 3090 Ti GPUs (24GB), an AMD Ryzen 5 3600 6-Core
Processor, and 78.5GB of RAM.
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