
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FIXING INCOMPLETE VALUE FUNCTION DECOMPOSI-
TION FOR MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value function decomposition methods for cooperative multi-agent reinforcement
learning compose joint values from individual per-agent utilities, and train them
using a joint objective. To ensure that the action selection process between indi-
vidual utilities and joint values remains consistent, it is imperative for the com-
position to satisfy the individual-global max (IGM) property. Although satisfying
IGM itself is straightforward, most existing methods (e.g., VDN, QMIX) have
limited representation capabilities and are unable to represent the full class of
IGM values, and the one exception that has no such limitation (QPLEX) is unnec-
essarily complex. In this work, we present a simple formulation of the full class of
IGM values that naturally leads to the derivation of QFIX, a novel family of value
function decomposition models that expand the representation capabilities of prior
models via a thin “fixing” layer. We derive multiple variants of QFIX, and imple-
ment three variants in two well-known multi-agent frameworks. We perform an
empirical evaluation on multiple SMACv2 and Overcooked environments, which
confirms that QFIX (i) succeeds in enhancing the performance of prior methods,
(ii) learns more stably and performs better than its main competitor QPLEX, and
(iii) achieves this while employing the simplest and smallest mixing models.

1 INTRODUCTION

Centralized training for decentralized execution (CTDE) (Lowe et al., 2017; Rashid et al., 2020b;
Wang et al., 2020) is a powerful framework for cooperative multi-agent reinforcement learning
(MARL). CTDE is characterized by a centralized training phase where privileged information is
shared freely and used holistically to train the agents, and a decentralized execution phase where
agents act independently in adherence to the standard constraints of decentralized control. As a
consequence of a training phase that is informed by the full team’s behavior and experiences (and,
when feasible, the environment state), CTDE is commonly associated with increased coordination
between agents and superior performances.

Value function decomposition (Sunehag et al., 2017; Rashid et al., 2020b; Wang et al., 2020) is
a class of CTDE methods that construct a joint team value from individual per-agent utilities that
encode agent behaviors. By training the joint value on a joint centralized objective, the individual
utilities are also indirectly trained, resulting in decentralized agent policies that can be executed
independently. Since its inception, value function decomposition has become a topic of great interest
in cooperative MARL, with significant research effort put in both practical algorithms (Sunehag
et al., 2017; Son et al., 2019; Rashid et al., 2020a;b; Wang et al., 2020; Marchesini et al., 2024)
and theoretical understanding (Wang et al., 2021; Marchesini et al., 2024). Individual-global max
(IGM) (Son et al., 2019) has been identified as a key property that connects individual utilities and
joint values, ensuring that their associated decision making processes remain consistent.

In this work, we advance both theory and practice of value function decomposition. We formulate a
novel simple formulation of IGM-complete value function decomposition. Our formulation (i) cor-
rectly addresses general decentralized partially observable control (avoiding strong assumptions like
full observability or centralized control), and (ii) highlights the core mechanism that characterizes
the full IGM-complete function class. In contrast, prior methods fail to satisfy at least one of these
criteria (usually the first, which limits the expressive capabilities and performance of models). We
introduce QFIX, a novel family of value function decomposition methods inspired by our formu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

lation of IGM-complete decomposition. QFIX employs a simple “fixing” network to extend the
representation capabilities of prior methods. We derive two main specializations of QFIX called
QFIX-sum and QFIX-mono, respectively obtained by “fixing” VDN (Sunehag et al., 2017) and
QMIX (Rashid et al., 2020b). To provide further insights into the core mechanisms that make value
function decomposition so effective, we also derive QFIX-lin, a third variant that technically falls
just outside of the QFIX family, but combines QFIX-sum with a core component of QPLEX. Finally,
we extend prior work on state-based value function decomposition to QFIX. Empirical evaluations
on the StarCraft Multi-Agent Challenge v2 (SMACv2) (Ellis et al., 2023) and Overcooked (Carroll
et al., 2020) demonstrates that QFIX (i) is effective at enhancing prior non-IGM-complete methods
like VDN and QMIX, (ii) is simpler to implement and understand, and require smaller models than
QPLEX, a state-of-the-art method in IGM-complete value function decomposition, (iii) is competi-
tive or outperforms QPLEX while also showing more stable convergence. An additional evaluation
of model size confirms that the superior performance of QFIX is attributed to the intrinsic mixing
approach rather than by augmenting baseline parameters.

2 RELATED WORK

Value Decomposition Networks (VDN) (Sunehag et al., 2017) are a precursor to value decomposi-
tion methods that employ a simple additive composition of individual utilities. QMIX (Rashid et al.,
2020b) employs a monotonic composition that generalizes the function class of VDN resulting in
significant performance improvements. Both VDN and QMIX have restricted function classes, and
several methods have attempted to overcome the limits of purely additive or monotonic composition
and achieve broader expressiveness. Weighted-QMIX (WQMIX) (Rashid et al., 2020a) aims to ex-
pand the function class of QMIX to non-monotonic cases so as to include optimal values Q∗. How-
ever, WQMIX is specifically developed for fully observable multi-agent environments (MMDPs),
and its theory does not generalize to partially observable DecPOMDPs. In contrast, QFIX is fully
consistent with the general case of partially observable decentralized control. Son et al. (2019) iden-
tify individual-global max (IGM) as a core property that corresponds to consistency between the
individual and joint decision making processes. Notably, VDN and QMIX satisfy IGM, but are un-
able to represent the entire IGM-complete function class. QTRAN (Son et al., 2019) identifies a set
of constraints that are sufficient to imply IGM, and employs auxiliary objectives that softly enforce
those constraints. Son et al. (2019) argue that their constraints are also necessary for IGM under
affine transformations, however they only show that one such affine transformation exists, rather
than IGM being satisfied for all affine transformations. In contrast, QFIX is both sufficient and nec-
essary to imply IGM, thus directly achieving the full IGM-complete function class. QPLEX (Wang
et al., 2020) employs a dueling network decomposition and multiple layers of transformations to
achieve the IGM-complete function class. However, QPLEX employs complex transformations that
are superfluous in relation to its representation capabilities, and falls short of identifying the core
underlying mechanism that is singularly responsible to achieve the IGM function class. In contrast,
QFIX is both simpler to understand and to implement, and achieves the IGM function class with
fewer smaller models. QPLEX is one instance in the space of IGM-complete models, and our work
opens a path to explore other instances that can further improve performance while satisfying IGM.

3 BACKGROUND

3.1 DECENTRALIZED MULTI-AGENT CONTROL

A decentralized POMDP (Dec-POMDP) (Oliehoek & Amato, 2016) generalizes single-agent
partially observable control by accounting for multiple decentralized agents acting con-
currently to solve a shared cooperative task. A Dec-POMDP is defined by a tuple
⟨N,S, {A1, . . . ,AN} , {O1, . . . ,ON} , p, T,R,O, γ⟩ composed of: (i) number of agents N ≥ 2;
(ii) state space S; (iii) individual action and observation spaces Ai and Oi; (iv) starting state dis-
tribution p ∈ ∆S; (v) state transition function T : S × A → ∆S; (vi) joint observation func-
tion O : A × S → ∆O; (vii) joint reward function R : S × A → R; and (viii) discount factor
γ ∈ [0, 1). The number of agents N induces a set of agent indices I .

= [N]. Agent behaviors are
generally modeled as stochastic policies πi : Hi → ∆Ai that act based on their respective history
hi ∈ Hi

.
= Oi × (Ai ×Oi)

∗. Joint action, observation, and history spaces are defined as the re-
spective Cartesian products A .

=×i
Ai, O

.
=×i

Oi, and H .
=×i

Hi. Therefore, joint actions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a = (a1, . . . , aN), observations o = (o1, . . . , oN), and histories h = (h1, . . . , hN) are tuples of the
respective individual actions, observations, and histories. The combined behavior of all policies is
represented as a joint (but still decentralized) policy π(h,a)

.
=

∏
i πi(hi, ai) that factorizes accord-

ingly. Decentralized multi-agent control aims to find independent policies that jointly maximize the
expected sum of discounted rewards Jπ .

= E [
∑

t γ
tR(st,at)].

We focus on approaches that model policies implicitly via parametric utilities Q̂i : Hi × Ai → R,
typically via (ϵ-)greedy action selection. Individual utilities can be decomposed into correspond-
ing values V̂i(hi)

.
= maxai

Q̂i(hi, ai) and advantages Âi(hi, ai)
.
= Q̂i(hi, ai) − V̂i(hi). When

convenient, we employ shorthand notation for individual values qi
.
= Q̂i(hi, ai), vi

.
= V̂i(hi), and

ui
.
= Âi(hi, ai), and their joint tuples q .

= (q1, . . . , qN), v .
= (v1, . . . , vN), and u

.
= (u1, . . . , uN).

3.2 VALUE FUNCTION DECOMPOSITION

Value function decomposition methods (Sunehag et al., 2017; Rashid et al., 2020b; Wang et al.,
2020) construct joint values Q̂(h,a) from individual per-agent utilities Q̂i(hi, ai). We specifically
use the term utility to underscore the fact that Q̂i(hi) ∈ RAi merely represents an ordering over
actions, rather than any notion of expected performance. Notably, Q̂i is not directly trained for
policy evaluation or optimization, and neither Q̂i(hi, ai) ≈ Qπ

i (hi, ai) nor Q̂i(hi, ai) ≈ Q∗
i (hi, ai)

are expected interpretations of well-trained utilities.

Value function decomposition methods employ joint models Q̂(h,a) that are a function of the in-
dividual utilities Q̂i(hi, ai), and mainly differ in terms of the relationship that is enforced and the
corresponding emergent properties. The joint model Q̂(h,a) is trained on a joint objective that
optimizes the joint values and behavior, and indirectly trains the individual utilities and behaviors,

LQ̂(h,a, r,o)
.
=

1

2

(
r + γmax

a′
Q̂−(hao,a′)− Q̂(h,a)

)2

. (1)

Individual-global max Son et al. (2019) identify individual-global max (IGM) as a useful prop-
erty of decomposition models to achieve decentralized action selection and address scaling concerns.
Definition 1 (Individual-Global Max). Individual utilities {Qi(hi, ai)}i∈I and joint values Q(h,a)
satisfy individual-global max (IGM) iff×i

argmaxai
Qi(hi, ai) = argmaxa Q(h,a).1

IGM denotes whether the individual and global decision making processes are equivalent, and re-
duces the complexity of finding the maximal joint action from exponential to linear in the number
of agents: For a given joint history h, the full search over the joint action space A can be replaced
with N independent searches over the individual action spaces Ai. VDN and QMIX are well-known
models that satisfy IGM; however, their function classes do not span the full class of IGM values.
Definition 2 (IGM Function Class). We say a function class of individual utilities {Qi(hi, ai)}i∈I
and joint values Q(h,a) is IGM-complete if it contains all and only functions that satisfy IGM.

VDN: additive decomposition Value Decomposition Network (VDN) (Sunehag et al., 2017) is a
precursor to value function decomposition that uses a simple sum Q̂VDN(h,a)

.
=

∑
i Q̂i(hi, ai).

QMIX: monotonic decomposition QMIX (Rashid et al., 2020b) constructs joint values as a
monotonic function of individual utilities, Q̂MIX(h,a)

.
= fmono(q1, . . . , qN), with fmono : RN → R

a parametric mixing network that satisfies monotonicity, ∂qifmono ≥ 0. Although the monotonic
composition of QMIX generalizes VDN, it still falls short of the full IGM function class.

QPLEX: IGM-complete decomposition QPLEX (Wang et al., 2020) reframes IGM in terms of
advantages, and employs dueling network decomposition to the IGM function class. Given utilities
Qi(hi, ai) and joint action-values Q(h,a), corresponding values and advantages are defined,

Vi(hi)
.
= max

ai

Qi(hi, ai) , Ai(hi, ai)
.
= Qi(hi, ai)− Vi(hi) , (2)

V (h)
.
= max

a
Q(h,a) , A(h,a)

.
= Q(h,a)− V (h) . (3)

1We employ set notation and Cartesian products to highlight that maximal actions may not be unique.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Wang et al. (2020) reformulate IGM as a set of constraints between individual and joint advantages.
Proposition 1 (Advantage Constraints). Individual utilities {Qi(hi, ai)}i∈I and joint values
Q(h,a) satisfy IGM iff, ∀h ∈ H, ∀a∗ ∈ A∗(h), and ∀a ∈ A \A∗(h),

A(h,a∗) = 0 , Ai(hi, a
∗
i) = 0 , (4)

A(h,a) < 0 , Ai(hi, ai) ≤ 0 , (5)

where A∗(h)
.
= argmaxa Q(h,a) is the set of maximal joint actions according to the joint values.

QPLEX employs a mixing structure that enforces Proposition 1. Individual utilities Q̂i(hi, ai) are
decomposed into V̂i(hi) and Âi(hi, ai) and transformed using centralized information,

V̂i(h)
.
= wi(h)V̂i(hi) + bi(h) , Âi(h, ai)

.
= wi(h)Âi(hi, ai) , (6)

where wi : H → R>0 are parametric positive weights and bi : H → R are parametric biases. These
transformed values are aggregated as weighted sums,

V̂PLEX(h)
.
=

∑
i

V̂i(h) , ÂPLEX(h,a)
.
=

∑
i

λi(h,a)Âi(h, ai) , (7)

where λi : H ×A → R>0 are parametric positive weights. The QPLEX joint values are obtained
by recombining aggregate values and advantages, Q̂PLEX(h,a)

.
= V̂PLEX(h) + ÂPLEX(h,a).

This sequence of decomposition, transformations, and recomposition, combined with positive
weights wi and λi, results in the constraint from Proposition 1 being satisfied. Consequently, Wang
et al. (2020) appeal to the universal approximation theorem (UAT) to argue that the function class of
QPLEX is IGM-complete. In Appendix A, we address technical concerns and conclude that, based
on a weaker form of UAT, the function class realizable by QPLEX is that of measurable IGM values.

State-based value function decomposition Practical implementations of value function decom-
position methods often employ state-based joint values Q(h, s,a) and diverge from the stateless
theoretical derivations in ways that may undermine core IGM properties, e.g., as seen for QMIX in
Pymarl Rashid et al. (2020b), QMIX in Pymarl2 Ellis et al. (2023), and both QMIX and QPLEX
in JaxMARL Rutherford et al. (2024)) To address the effects of state in value function decomposi-
tion, Marchesini et al. (2024) formulate a state-compliant version of IGM.
Definition 3 (State-based IGM). Individual utilities {Qi(hi, ai)}i∈I and state-based joint values
Q(h, s,a) satisfy state-based IGM iff×i

argmaxai
Qi(hi, ai) = argmaxa Es|h [Q(h, s,a)].

Marchesini et al. (2024) show that the state-based implementations of QMIX and QPLEX continue
to satisfy IGM, while the state-based implementation of QPLEX (which employs historyless state-
based weights wi(s), λi(s,a)) fails to achieve the full IGM function class. Nonetheless, state-based
implementations often perform well in practice, and remain a common occurrence.

4 FIXING INCOMPLETE VALUE FUNCTION DECOMPOSITION

Although QPLEX is IGM-complete, it is expressed as a convoluted sequence of transformations that
are never fully motivated or justified. Fully unrolling the QPLEX values in terms of the individual
utilities, we get Q̂PLEX(h,a) =

∑
i wi(h)V̂i(hi) + bi(h) + wi(h)λi(h,a)Âi(hi, ai), a complex

expression that raises questions about which components are truly important or necessary, e.g., the
product of individual advantages with two types of positive weights wi(h) and λi(h,a) appears to
be redundant. Ultimately, QPLEX only represents one instance in the space of all IGM-complete
models, and whether simpler or better-performing models exist remains an open question.

The convoluted nature of the QPLEX transformations motivate us to find a simpler and more general
formulation of IGM-complete decomposition. In this section, we first present a simple formulation
of the IGM-complete function class. Then, we use this formulation to derive QFIX, a novel family of
value function decomposition models that operate by “fixing” (read: expanding) the representation
capabilities of prior non-IGM-complete models. We derive two primary instances of QFIX based on
“fixing” VDN and QMIX respectively, and a third instance designed to resemble QPLEX. Then, we
derive additive QFIX (Q+FIX), a simple variant of QFIX that achieves significant practical perfor-
mance gains, and derive Q+FIX counterparts of the QFIX instances. Finally, we discuss state-based
variants of QFIX and how the use of centralized state information affects its theoretical properties.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MLP MLP
Agent Agent

, ,

Fixing Network

MLP

RNN

MLP

Fixee

MLP MLP
Agent Agent

, ,

Additive Fixing Network

MLP

RNN

MLP

Fixee

Figure 1: Diagrams for QFIX (left) and Q+FIX (right).

4.1 A SIMPLE PARAMETERIZATION OF THE IGM FUNCTION CLASS

We aim to formalize IGM-complete value function decomposition in its simplest and most essential
form. We begin by simplifying Proposition 1, noting that three of its four constraints are satisfied
by definition; the only one that requires active enforcement is Ai(hi, a

∗
i) = 0, or equivalently

A(h,a) = 0 =⇒ ∀i (Ai(hi, ai) = 0). However, we also note that Proposition 1 is actually
underspecified, and misidentifies the case where ∀i(Ai(hi, ai) = 0) and A(h,a) < 0 as compliant
with IGM when it is not.2 To address this case, we need ∀i (Ai(hi, ai) = 0) =⇒ A(h,a) = 0.

Proposition 2 (Simplified Advantage Constraints). Individual utilities {Qi(hi, ai)}i∈I and joint
values Q(h,a) satisfy IGM iff ∀i (Ai(hi, ai) = 0) ⇐⇒ A(h,a) = 0, or equivalently, via
contraposition, ∃i (Ai(hi, ai) < 0) ⇐⇒ A(h,a) < 0.

In essence, constructing joint advantages that are negative iff any of the individual advantages are
negative is both sufficient and necessary to satisfy IGM. Consider the purposefully named function

QIGM(h,a)
.
= w(h,a)f(u1, . . . , uN) + b(h) , (8)

where w : H×A → R>0 is an arbitrary positive function of joint history and joint action, b : H →
R is an arbitrary function of joint history, and f : RN

≤0 → R≤0 is a non-positive function that is zero
iff all inputs are zero, e.g., f(u1, . . . , uN) =

∑
i ui is a simple instance of f . Then,

VIGM(h)
.
= max

a
QIGM(h,a) = b(h) , (9)

AIGM(h,a)
.
= QIGM(h,a)− VIGM(h) = w(h,a)f(u1, . . . , uN) . (10)

Essentially, QIGM denotes a relationship where any deviation from individual maximality (charac-
terized by at least one negative utility ui < 0, and corresponding to a negative f(u1, . . . , uN) < 0)
is transformed into an arbitrary deviation w(h,a)f(u1, . . . , uN) < 0 from joint maximality (and
vice versa). Per Proposition 2, QIGM represents the full IGM function class.

Proposition 3. For any f , w, and b, values {Qi}i∈I and QIGM satisfy IGM. For any f , and given
free choice of w and b, the function class of {Qi}i∈I and QIGM is IGM-complete. (Proof in Ap-
pendix B.1.)

QIGM is a simple formulation of the IGM function class based on a single weighted (via w) trans-
formation (via f) of individual advantages. Next, we explore how this formulation directly inspires
the derivation of QFIX, a closely related novel family of value function decomposition models.

4.2 QFIX

Let Q̂fixee(h,a) denote a “fixee” value function decomposition model that satisfies IGM but is not
IGM-complete, e.g., VDN or QMIX. Equation (8) suggests a method to “fix” Q̂fixee and expand its
function class to match the full class of IGM functions. We can extend the expressiveness of Q̂fixee

by processing it through a “fixing” network that resembles Eq. (8),

Q̂FIX(h,a)
.
= w(h,a)Âfixee(h,a) + b(h) , (11)

2Luckily, this issue is exclusive to Proposition 1, and QPLEX itself does not suffer from the same issue.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where w : H × A → R>0 is a parametric positive model, b : H → R is a parametric model, and
Âfixee : H×A → R≤0 is the non-positive joint advantage of the fixee as defined by

V̂fixee(h)
.
= max

a
Q̂fixee(h,a) , Âfixee(h,a)

.
= Q̂fixee(h,a)− V̂fixee(h) . (12)

See Fig. 1 for a diagram of QFIX. We note that Âfixee(h,a) = 0 iff the joint action a is maximal
according to Q̂fixee, and negative otherwise. Given that Q̂fixee satisfies IGM by assumption, a
is maximal iff the individual actions ai are maximal according to Q̂i(hi, ai), or, equivalently, iff
Âi(hi, ai) = 0. In short, Âfixee(h,a) satisfies the requirements of f under Eq. (8).

Proposition 4. QFIX satisfies IGM. The function class of QFIX is that of (measurable) IGM values.
(Proof in Appendix B.2.)

Given the free choice of fixee model Q̂fixee, QFIX really represents a wide family of value function
decomposition models. This allows us to consider more or less complex fixees (e.g., VDN, QMIX)
and explore various possible tradeoffs between minimizing the complexity of the fixee model and
minimizing the “fixing” burden on the fixing models w, b. In our empirical evaluation, we will
generally find that the fixing burden on w, b is not significant, and that it is perfectly reasonable to
combine QFIX with simpler fixees like VDN or tiny versions of parametric fixees like QMIX.

Relationship to QPLEX The advantage component of QFIX, w(h,a)Âfixee(h,a), is similar to
one of the transformations of QPLEX,

∑
i λi(h,a)Âi(h, ai), which comparably applies positive

weights to transformed aggregates of the individual advantages. This similarity is no coincidence,
as it is specifically that component of QPLEX that is responsible for achieving IGM-completeness; it
is a more convoluted form of our proposed fixing structure. However, QPLEX also employs various
other transformations that do not contribute to the IGM-complete function class, and their necessity
remains questionable (beyond general considerations of modeling structure and size).

The weights λi(h,a) employed by QPLEX are also more complex in that there is one such model
per agent, and each is implemented via self-importance. In contrast, we employ a simpler structure
based on a single model implemented as a simple feed-forward network, and still manage to achieve
performance improvements. Our formulation is simpler in that it focuses entirely on this single
transformation, which is minimally sufficient to guarantee IGM-completeness.

Fixing VDN We define QFIX-sum as an instance of QFIX based on “fixing” VDN, i.e., with
Q̂fixee(h,a) = Q̂VDN(h,a), which results in (see Appendix C.3 for an explicit derivation)

Q̂FIX-sum(h,a) = w(h,a)
∑
i

Âi(hi, ai) + b(h) . (13)

Fixing QMIX We define QFIX-mono as an instance of QFIX based on “fixing” QMIX, i.e., with
Q̂fixee(h,a) = Q̂MIX(h,a), which results in (see Appendix C.4 for an explicit derivation)

Q̂FIX-mono(h,a) = w(h,a) (fmono(q1, . . . , qN)− fmono(v1, . . . , vN)) + b(h) . (14)

Simplifying QPLEX Given the discussed similarity between QFIX and QPLEX, we may consider
another variant of QFIX that also applies per-agent positive weights wi(h,a) > 0. Due to the linear
structure that generalizes the additive structure of QFIX-sum, we call this variant QFIX-lin.

Q̂FIX-lin(h,a)
.
=

∑
i

wi(h,a)Âi(hi, ai) + b(h) . (15)

QFIX-lin does not strictly satisfy the form of Eq. (11), however, it represents a close enough variant
of QFIX-sum that we consider it QFIX-adjacent and name it accordingly. QFIX-lin is a strict gen-
eralization of QFIX-sum, which can be recovered as a special case where all the weights wi(h,a)
are equal. Formally, we must prove the IGM properties of QFIX-lin separately.

Proposition 5. QFIX-lin satisfies IGM. The function class of QFIX-lin is that of (measurable) IGM
values. (Proof in Appendix B.3.)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Recovering the fixee model We note that QFIX is able recover the fixee model via w(h,a) = 1

and b(h) = V̂fixee(h), for which Q̂FIX(h,a) = Âfixee(h,a) + V̂fixee(h) = Q̂fixee(h,a). Such
values of w(h,a) and b(h) establish a direct relationship between the fixee and fixed models, which
is relevant as we next use this relationship to derive a better-performing additive variant of QFIX.

4.3 ADDITIVE QFIX (Q+FIX)

In this section, we further derive a simple reparameterization of QFIX which, albeit having the same
theoretical properties, achieves significant practical performance improvements. This variant takes
on an additive form when compared to the fixee model, hence its name additive QFIX (Q+FIX).

As previously noted, the values of w(h,a) = 1 and b(h) = V̂fixee(h) hold a special significance for
QFIX. Q+FIX is obtained by reparameterizing w and b to incorporate such values additively,

Q̂+FIX(h,a)
.
= (w(h,a) + 1)Âfixee(h,a) + (b(h) + V̂fixee(h))

= Q̂fixee(h,a) + w(h,a)Âfixee(h,a) + b(h) , (16)

where w : H × A → R>−1 is a parametric model constrained by w(h,a) > −1, b : H → R is
a parametric model, and Q̂fixee and Âfixee are the fixee action-values and advantages. Note that,
with the reparameterization of w, its constraint has changed; Since w(h,a)+1 > 0 must satisfy the
positivity constraint from QFIX, the corresponding constraint for Q+FIX is therefore w(h,a) > −1.

See Fig. 1 for a diagram. This reparameterization allows Q+FIX to more directly exploit the
original form of the fixee model, extending its representation via a separate additive component
∆(h,a)

.
= w(h,a)Âfixee(h,a) + b(h) we call the fixing intervention. Because Q+FIX is a simple

reparameterization of QFIX, the results from Propositions 4 and 5 apply trivially to their Q+FIX
counterparts. Next, we look at specific instances and other relevant implementation details.

Q+FIX-{sum,mono,lin} The Q+FIX counterparts to QFIX-{sum,mono,lin} are as follows. See
Appendices C.5 to C.7 for their corresponding derivations and specialized diagrams.

Q̂+FIX-sum(h,a) =
∑
i

Q̂i(hi, ai) + w(h,a)
∑
i

Âi(hi, ai) + b(h) , (17)

Q̂+FIX-mono(h,a) = fmono(q) + w(h,a) (fmono(q)− fmono(v)) + b(h) , (18)

Q̂+FIX-lin(h,a) =
∑
i

Q̂i(hi, ai) +
∑
i

wi(h,a)Âi(hi, ai) + b(h) . (19)

Detaching the advantages The additive form of Q+FIX enables the use of an implementation
detail already employed by QPLEX that significantly improves performance: the detachment of the
advantages when computing gradients. This can be expressed using the stop-gradient operator,3

Q̂+FIX(h,a) = Q̂fixee(h,a) + w(h,a) stop[Âfixee(h,a)] + b(h) . (20)

The reason why detaching the advantages improves performance is not fully understood. Wang
et al. (2020, Appendix B.2) argue that it (cit.) “increases the optimization stability of the max
operator of the dueling structure”, in reference to dueling networks (Wang et al., 2016). However,
the connection between the detach and dueling networks remains unclear. Instead, we hypothesize
that detaching the advantage may mitigate adverse effects that the fixing structure may have on the
gradients ∇θiQ̂+FIX(h,a) of the joint values w.r.t. the agent parameters θi (see Appendix D).

Annealing the intervention In an effort to stabilize the learning, we have found it occasionally
useful to introduce the fixing intervention smoothly during the early stages of training (≈ 5% of total
timesteps) by employing an auxiliary loss λ∆ · ∆2(h,a) that minimizes the squared intervention,
with a weight λ∆ that is annealed from a starting value down to 0, ultimately disabling this interven-
tion loss. This likely ensures that the early stages of training are focused more on training the fixee
values, so that the fixing intervention can later on focus on making smaller detailed adjustments.

3The stop-gradient function is a mathematical anomaly whose value behaves like the identity function,
stop [x] = x, while its gradient behaves like the zero function, ∇x stop [x] = 0. It is a functionality commonly
provided by deep learning frameworks, e.g., pytorch provides this via the Tensor.detach() method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10

15

20

Re
tu

rn

5vs5 | Protoss 10vs10 | Protoss 20vs20 | Protoss

10

15

20

Re
tu

rn

5vs5 | Terran 10vs10 | Terran 20vs20 | Terran

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10

15

20

Re
tu

rn

5vs5 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10vs10 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20vs20 | Zerg

(a) SMACv2 return mean (5 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0.7

0.8

0.9

Re
tu

rn
 (N

or
m

al
ize

d)

(b) SMACv2 return mean aggregate (45 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0.7

0.8

0.9
Re

tu
rn

 (N
or

m
al

ize
d) Model

Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(c) SMACv2 return IQM aggregate (45 seeds).

Figure 2: SMACv2 results, bootstrapped 95% CI. Aggregate returns are normalized per-task via
G̃i

.
= Gi−mink Gk

maxk Gk−mink Gk
, where {Gi}i is the total set of returns logged by all models in a given task.

4.4 STATE-BASED VARIANTS

As with QMIX and QPLEX, we may consider state-based variants of QFIX that partially deviate
from the stateless theory developed so far. Such variants warrant an explicit discussion on the
implications of employing centralized state information (Marchesini et al., 2024). Different versions
of state-based QFIX are possible by combining stateless/state-based fixees with stateless/state-based
fixing networks. As Q+FIX is a simple reparameterization of QFIX, its properties w.r.t the use of
state are the same. We briefly summarize the conclusions for two main state-based variants of QFIX,
which are comparable to those for state-based QPLEX (Marchesini et al., 2024): (History-State
QFIX) When employing history-state fixing models w(h, s,a) and b(h, s), QFIX both satisfies
IGM and achieves a form of IGM-complete function class. (State-Only QFIX) When employing
state-only fixing models w(s,a) and b(s), QFIX continues to satisfy IGM, but fails to achieve the
IGM-complete function class. See additional discussion in Appendix E.

5 EVALUATION

We perform an empirical evaluation of Q+FIX in two popular multi-agent frameworks, Pymarl2
and JaxMARL. Appendices G and H contains practical details on architectures and used resources.

SMACv2 Pymarl2 provides baseline implementations for SMACv2 Ellis et al. (2023), a popu-
lar benchmark for cooperative multi-agent control based on the real-time strategy game StarCraft II.
SMACv2 features two battling teams composed by configurable races, race-dependent and stochas-
tically determined unit types, and team sizes. Our empirical evaluation is based on 9 scenarios
obtained by combining the 3 races (Protoss, Terran, and Zerg) with 3 team sizes (5vs5,
10vs10, and 20vs20). We use shorthand labels, e.g., P5, T10, Z20. Pymarl2 provides base
implementations for VDN, QMIX, and QPLEX, and we implemented Q+FIX-{sum,mono,lin}.

Fig. 2a contains the evaluation results based on mean performance, with 5 independent runs per
model per scenario. As expected, VDN fails to be a competitive baseline on its own accord. Fixing
VDN via Q+FIX-sum, we are able to overcome this limitation, as noted by the corresponding perfor-
mance gap. QMIX sometimes exhibits fast initial learning speeds, albeit often to a sub-competitive

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 M 2 M 3 M 4 M 5 M
Timesteps

0

100

200

Re
tu

rn

Coordination Ring

0 1 M 2 M 3 M 4 M 5 M
Timesteps

Forced Coordination

0 1 M 2 M 3 M 4 M 5 M
Timesteps

Counter Circuit Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN
IQL

Figure 3: Overcooked return mean, bootstrapped 95% CI (20 seeds).

final performance (P5, T5, T10, Z10, T20, Z20). Fixing QMIX via Q+FIX-mono, we are often
able to exploit the initial learning speed and complement it with improved convergence performance.
QPLEX is highly competitive and performs very well in some scenarios (P5, P20, T20, Z20), but
underperforms in others (T5, P10, Z10), and exhibits troubling instabilities (Z5, T10). Q+FIX-lin
avoids such convergence instabilities, likely as a consequence of the simpler structure. Although
Q+FIX-{sum,mono,lin} generally achieve similar performances, Q+FIX-sum may be slightly out-
performing other variants in some scenarios (T5, Z5), possibly an indication that a simpler compo-
sitions are not just sufficient but possibly preferable.

In accordance to the methodology suggested by Agarwal et al. (2021) to improve statistical signif-
icance and alleviate the impact of outliers, Figs. 2b and 2c contain (normalized) aggregate results
based on mean and interquantile mean (IQM). Even ignoring the unstable convergence of QPLEX
via the aggregate IQM results, it is clear that the Q+FIX variants continue to outperform QPLEX at
least marginally. These results demonstrate that Q+FIX succeeds in enhancing the performance of its
fixees, raising them to a level comparable to QPLEX while maintaining a more stable convergence.

Table 1: SMACv2 mixer sizes (smallest highlighted).

Protoss Terran, Zerg
5vs5 10vs10 20vs20 5vs5 10vs10 20vs20

QMIX 38 k 83 k 201 k 36 k 79 k 194 k
QPLEX 135 k 326 k 882 k 126 k 308 k 846 k
Q+FIX-sum 20 k 50 k 138 k 19 k 48 k 133 k
Q+FIX-mono 54 k 180 k 743 k 50 k 169 k 708 k
Q+FIX-lin 21 k 51 k 140 k 19 k 48 k 135 k

Table 1 shows the sizes of mixing models
(for the all methods that have one). Notably,
Q+FIX-{sum,lin} employ the smallest mixing
models by a significant margin, indicating that
their performance is a consequence of our pro-
posed mixing structure rather than model size.

Appendix F.1 contains additional discussion on
the SMACv2 evaluation, implementation de-
tails and chosen metrics, additional winrate results, probability-of-improvement Agarwal et al.
(2021) results, and an evaluation of model sizes for Q+FIX-mono and QMIX.

Overcooked JaxMARL Rutherford et al. (2024) provides baseline implementations for Over-
cooked Carroll et al. (2020), another popular benchmark for cooperative multi-agent control focused
on throughput efficiency. Different layouts represent different challenges, e.g., subtask assignment
and synchronization for efficiency. JaxMARL provides base implementations for independent Q-
learning (IQL), VDN and QMIX (but not QPLEX), and we implemented Q+FIX-{sum,mono,lin}.
Appendix F.2 contains further discussion on these tasks, and additional results.

Fig. 3 contains the evaluation results for three challenging layouts: Coordination-Ring,
Forced-Coordination, and Counter-Circuit. In contrast to the SMACv2 results, this
time it is specifically Q+FIX-mono to outperform other baselines and Q+FIX variants, indicating
that there are concrete situations where Q+FIX is able to exploit a more complex fixee structure.
Aside from this difference, these results reaffirm the ability of QFIX to greatly expand the represen-
tation capabilities of the underlying fixees, enabling higher performances.

6 CONCLUSIONS

In this work, we have advanced our understanding of the IGM function class by proposing a simple
formulation of the IGM property. From this formulation, we were able to naturally derive QFIX,
a novel family of value function decomposition methods that enhance prior methods via a simple
weighted transformation of their outputs, and allows the derivation and implementation of various
IGM-complete models that are significantly simpler than QPLEX. Our empirical evaluation on mul-
tiple SMACv2 and Overcooked tasks demonstrates that QFIX models succeed in (i) enhancing the
performance of prior incomplete models like VDN and QMIX, (ii) achieving similar or better per-
formance than QPLEX, with better convergence stability, and (iii) all this while requiring smaller
mixing models. Our contribution not only represents a novel approach that performs well, but also
opens the door for new methods based on the QFIX framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in
Neural Information Processing Systems, volume 34, pp. 29304–29320. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/f514cec81cb148559cf475e7426eed5e-Abstract.html.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the Utility of Learning about Humans for Human-AI Coordination, January
2020. URL http://arxiv.org/abs/1910.05789. arXiv:1910.05789 [cs].

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, December 1989. ISSN 1435-568X. doi: 10.1007/
BF02551274. URL https://doi.org/10.1007/BF02551274.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob N. Foerster, and Shimon Whiteson. SMACv2: An Improved Benchmark for Coopera-
tive Multi-Agent Reinforcement Learning, October 2023. URL http://arxiv.org/abs/
2212.07489. arXiv:2212.07489.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, January 1991. ISSN 0893-6080. doi: 10.1016/0893-6080(91)
90009-T. URL https://www.sciencedirect.com/science/article/pii/
089360809190009T.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the Variance of the Adaptive Learning Rate and Beyond. In International Conference
on Learning Representations, September 2019. URL https://openreview.net/forum?
id=rkgz2aEKDr.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-
datch. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
In Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
68a9750337a418a86fe06c1991a1d64c-Abstract.html.

Enrico Marchesini, Andrea Baisero, Rupali Bhati, and Christopher Amato. On Stateful Value Fac-
torization in Multi-Agent Reinforcement Learning, September 2024. URL http://arxiv.
org/abs/2408.15381. arXiv:2408.15381 [cs].

Frans A. Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:
143–195, January 1999. ISSN 1474-0508, 0962-4929. doi: 10.1017/S0962492900002919. URL
https://www.cambridge.org/core/journals/acta-numerica/article/
abs/approximation-theory-of-the-mlp-model-in-neural-networks/
18072C558C8410C4F92A82BCC8FC8CF9.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: Expand-
ing Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning.
In Advances in Neural Information Processing Systems, volume 33, pp. 10199–10210. Curran
Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/
paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic Value Function Factorisation for Deep Multi-Agent Reinforce-
ment Learning. Journal of Machine Learning Research, 21(178):1–51, 2020b. ISSN 1533-7928.
URL http://jmlr.org/papers/v21/20-081.html.

10

https://proceedings.neurips.cc/paper_files/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
http://arxiv.org/abs/1910.05789
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/2212.07489
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
http://arxiv.org/abs/2408.15381
http://arxiv.org/abs/2408.15381
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
http://jmlr.org/papers/v21/20-081.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garar Ing-
varsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, Alexandra
Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange,
Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and Jakob Nico-
laus Foerster. JaxMARL: Multi-Agent RL Environments and Algorithms in JAX. In Neu-
ral Information Processing Systems Datasets and Benchmarks Track, November 2024. URL
https://openreview.net/forum?id=X90tyXDe8z#discussion.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN: Learn-
ing to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning. In
Proceedings of the 36th International Conference on Machine Learning, pp. 5887–5896. PMLR,
May 2019. URL https://proceedings.mlr.press/v97/son19a.html. ISSN:
2640-3498.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
Decomposition Networks For Cooperative Multi-Agent Learning, June 2017. URL http://
arxiv.org/abs/1706.05296. arXiv:1706.05296 [cs].

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex Dueling
Multi-Agent Q-Learning. In International Conference on Learning Representations, October
2020. URL https://openreview.net/forum?id=Rcmk0xxIQV.

Jianhao Wang, Zhizhou Ren, Beining Han, Jianing Ye, and Chongjie Zhang. Towards Un-
derstanding Cooperative Multi-Agent Q-Learning with Value Factorization. In Advances
in Neural Information Processing Systems, volume 34, pp. 29142–29155. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Du-
eling Network Architectures for Deep Reinforcement Learning. In Proceedings of The 33rd
International Conference on Machine Learning, pp. 1995–2003. PMLR, June 2016. URL
https://proceedings.mlr.press/v48/wangf16.html. ISSN: 1938-7228.

A IS QPLEX TRULY IGM-COMPLETE?

In this section, we take a closer look at (Wang et al., 2016, Proposition 2) which appeals to the uni-
versal approximation theorem (UAT) to claim that that QPLEX is IGM-complete. We will identify
a technical issue that makes many “strong” forms of UAT not formally applicable, and come to the
primary conclusions that (i) only “weak” forms of UAT are applicable to QPLEX, and (ii) conse-
quently, QPLEX is able to approximate “only” the function class of measurable IGM values. To be
clear, this is far from being a strict limitation in practice, as the class of measurable functions is ex-
tremely wide and contains any reasonable function to model, and mostly excludes deeply degenerate
cases.

The main goal of this discussion is to be more specific in regards to what version of UAT is applicable
to methods like QPLEX (and QFIX), and what kinds of convergence guarantees they actually entail.

Part of the issue at hand is that UATs come in a variety of forms, each making different assump-
tions on the model and establishing different notions of approximation to different classes of target
functions. The UATs of Cybenko (1989) and of Pinkus (1999) are among the most well known,
and are formulated in terms of uniform convergence, a strong notion of approximation that is only
applicable to approximate continuous functions. However, other forms of UAT are applicable to
approximate wider classes of functions, although they are also typically associated with weaker no-
tions of approximation. Hornik (1991, Theorem 1) establishes a form of UAT that is applicable to
functions in the Lebesgue spaces Lp and entails convergence in p-norm. Hornik (1991) also infor-
mally formulates a corollary that is applicable to functions that are merely measurable, and “only”
entails convergence in measure µ.

11

https://openreview.net/forum?id=X90tyXDe8z#discussion
https://proceedings.mlr.press/v97/son19a.html
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
https://openreview.net/forum?id=Rcmk0xxIQV
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.mlr.press/v48/wangf16.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Which universal approximation theorem? The appeal to UAT made by Wang et al. (2020) cites
a form of UAT that is analogous to those of Cybenko (1989); Pinkus (1999) that are formally ap-
plicable to continuous functions only. However we note two relevant details: (i) QPLEX constructs
Q̂PLEX by composing individual values via models wi, bi and λi; therefore any appeal to UAT must
refer to these models rather than Q̂PLEX as a whole. (ii) The proof of Proposition 2 is based on
constructing a piece-wise target λ∗

i (h,a) that is clearly not guaranteed to be continuous. These are

λ∗
i (h,a) =

{
1
N

A(h,a)
Ai(hi,ai)

when Ai(hi, ai) < 0 ,

any value when Ai(hi, ai) = 0 ,
(21)

where A(h,a) is the advantage of the target IGM value function. Clearly, as the target λ∗
i is not

continuous, it is improper to appeal to a form of UAT that is based on continuous targets.

Resolution To resolve this technicality, we must find a version of UAT that is applicable to a target
like λ∗

i . It is not immediately clear that λ∗
i belongs to a Lebesgue space Lp, or what kinds of simple

assumptions can be formulated to make it so. As a simple resolution, we instead appeal to the
weaker form of UAT by Cybenko (1989) (presented informally in the discussion section) based on
measurable functions. However, even this form of UAT still requires some technical assumptions.

To guarantee that λ∗
i is measurable, it is sufficient to assume that Qi(hi, ai) and Q(h,a) are mea-

surable functions. Then,

• Vi(hi), V (h), Ai(hi, ai), A(h,a) are measurable;
• argmaxhi,ai

Ai(hi, ai) (the preimage of Ai(hi, ai) = 0) is a measurable set;
• λ∗

i is a piece-wise function defined by combining measurable functions partitioned in (two)
measurable sets, and is therefore also measurable.

This is sufficient to guarantee convergence to λ∗
i in measure. Technically this assumption means

that there are non-measurable IGM values that cannot be approximated by QPLEX (nor QFIX).
However, we reiterate that this is not a practical concern as (i) they represent an insignificant subset
of all IGM values, and (ii) they are degenerate and unlikely to match realistic and desirable notions
of values.

B PROOFS

B.1 PROOF OF PROPOSITION 3

We prove the two statements separately.

QIGM satisfies IGM

Proof. For any given joint history h, let a∗i ∈ argmaxai
Qi(hi, ai) denote any maximal action

according to the individual utilities, and let a∗ = (a∗1, . . . , a
∗
N) be a joint action constructed accord-

ingly. For any a∗ constructed this way, the corresponding advantage utilities are zero ∀i (u∗
i = 0),

and
QIGM(h,a∗) = w(h,a∗) f(u∗

1, . . . , u
∗
N)︸ ︷︷ ︸

=0

+b(h)

= b(h) . (22)

For any other a, we have at least one strictly negative utility ∃i (ui < 0), and
QIGM(h,a) = w(h,a)︸ ︷︷ ︸

>0

f(u1, . . . , uN)︸ ︷︷ ︸
<0

+b(h)

< b(h) . (23)

Therefore a∗ ∈ argmaxa QIGM(h,a), and the actions that maximize the individual utilities also
maximize the joint value.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

QIGM is IGM-complete

Proof by mutual inclusion. Let us denote the function class of QIGM as FC(QIGM), and the IGM-
complete function class as FCIGM. We prove FC(QIGM) = FCIGM by mutual inclusion:

1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM, i.e., QIGM satisfies IGM (already proven above),

2. Q ∈ FCIGM =⇒ Q ∈ FC(QIGM), i.e., any IGM function is representable by QIGM.

Step 1 was already proven earlier. Next, we prove step 2.

Let Qi(hi, ai) and Q(h,a) denote an arbitrary set of individual and joint values that satisfy IGM,
i.e., Q ∈ FCIGM. Let us denote the usual corresponding individual values and advantages as
follows,

Vi(hi) = max
ai

Qi(hi, ai) , Ai(hi, ai) = Qi(hi, ai)− Vi(hi) , (24)

V (h) = max
a

Q(h,a) , A(h,a) = Q(h,a)− V (h) , (25)

with the usual shorthand qi = Qi(hi, ai) and vi = Vi(hi), and ui = Ai(hi, ai).

For any f that satisfies the requirements of Eq. (8), let w and b be defined as follows,

b(h) = V (h) , (26)

w(h,a) =

{
A(h,a)

f(u1,...,uN) , if f(u1, . . . , uN) ̸= 0 ,

any value , otherwise .
(27)

For any given joint history h, let a∗i ∈ argmaxai
Qi(hi, ai) denote a maximal action according to

the individual utilities, and a∗ = (a∗1, . . . , a
∗
N) the corresponding joint action. Given that Q satisfies

IGM by assumption, we have a∗ ∈ argmaxa Q(h,a), and Q(h,a∗) = maxa Q(h,a) = V (h).

For any a∗ constructed this way, the corresponding advantage utilities are zero ∀i (ui = 0), and

QIGM(h,a∗) = w(h,a∗)f(u1, . . . , uN) + b(h)

= w(h,a∗) f(0, . . . , 0)︸ ︷︷ ︸
=0

+b(h)

= V (h)

= Q(h,a∗) . (28)

For any other a, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h,a) = w(h,a)f(u1, . . . , uN) + b(h)

=
A(h,a)

f(u1, . . . , uN)
f(u1, . . . , uN) + V (h)

= A(h,a) + V (h)

= Q(h,a) . (29)

In either case, QIGM(h,a) = Q(h,a) for all inputs. Therefore Q ∈ FCIGM =⇒ Q ∈
FC(QIGM).

B.2 PROOF OF PROPOSITION 4

Proof. Equation (11) satisfies the form and requirements of Eq. (8). Therefore, IGM follows from
Proposition 3. Assuming target IGM values that are measurable, then the targets constructed in the
proof of Proposition 3 are also measurable, and we can appeal to the universal approximation theo-
rems of Hornik (1991) to show that w, b are able to approximate such targets. (also see Appendix A
for a similar discussion relating to QPLEX).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3 PROOF OF PROPOSITION 5

Proof. QFIX-lin is a monotonic function of individual advantages and therefore satisfies IGM.
QFIX-lin is also a generalization of QFIX-sum, therefore its function class is a superset of the QFIX-
sum function class, i.e., the class of measurable IGM values. Therefore, QFIX-lin can represent all
measurable functions that satisfy IGM, and none of those that do not satisfy IGM.

C DERIVATIONS

This section contains explicit long-form derivations that had to be removed from the main document
due to space limitations.

C.1 VDN MAXIMAL VALUES AND ADVANTAGES

As a reminder, VDN action-values are defined as Q̂VDN(h,a)
.
=

∑
i Q̂i(hi, ai). Due to the the

linear (monotonic) mixing structure, the joint maximal values V̂VDN(h) can be expressed as the
sum of the individual maximal values,

V̂VDN(h)
.
= max

a
Q̂VDN(h,a)

= max
a1,...,aN

∑
i

Q̂i(hi, ai)

=
∑
i

max
ai

Q̂i(hi, ai) (monotonicity)

=
∑
i

V̂i(hi) , (30)

and the joint advantages ÂVDN(h,a) can be expressed as the sum of the individual advantages,

ÂVDN(h,a)
.
= Q̂VDN(h,a)− V̂VDN(h)

=
∑
i

Q̂i(hi, ai)−
∑
i

V̂i(hi)

=
∑
i

Q̂i(hi, ai)− V̂i(hi)

=
∑
i

Âi(hi, ai) . (31)

C.2 QMIX MAXIMAL VALUES AND ADVANTAGES

As a reminder, QMIX action-values are defined as Q̂MIX(h,a)
.
= fmono (q1, . . . , qN). Due to the

monotonic mixing structure, the joint maximal values V̂MIX(h) can be expressed as the monotonic
mixing of the individual maximal values,

V̂MIX(h)
.
= max

a
Q̂MIX(h,a)

= max
a1,...,aN

fmono

(
Q̂1(h1, a1), . . . , Q̂N (hN , aN)

)
= fmono

(
max
a1

Q̂1(h1, a1), . . . ,max
aN

Q̂N (hN , aN)

)
(monotonicity)

= fmono

(
V̂1(h1), . . . , V̂N (hN)

)
= fmono (v1, . . . , vN) , (32)

and the joint advantages ÂMIX(h,a) can be expressed as the corresponding difference,

ÂMIX(h,a)
.
= Q̂MIX(h,a)− V̂MIX(h)

= fmono (q1, . . . , qN)− fmono (v1, . . . , vN) . (33)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MLP MLP

Agent Agent

VDN + Additive Fixing Network

MLP

RNN

MLP

(a) Q+FIX-sum diagram.

MLP MLP

Agent Agent

QMIX + Additive Fixing Network

MLP

RNN

MLP

(b) Q+FIX-mono diagram.

MLP MLP

Agent Agent

VDN + Additive Fixing Network

MLP

RNN

MLP

(c) Q+FIX-lin diagram.

Figure 4: Specialized diagrams for Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin.

C.3 QFIX-SUM

QFIX-sum is an instance of QFIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a).
From Eq. (31), we have that the VDN joint advantage is given as the sum of individual advantages
(hence the “-sum” suffix). Therefore, QFIX-sum is simply obtained as

Q̂FIX-sum(h,a)
.
= w(h,a)ÂVDN(h,a) + b(h)

= w(h,a)
∑
i

Âi(hi, ai) + b(h) . (34)

C.4 QFIX-MONO

QFIX-mono is an instance of QFIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a).
From Eq. (33), we have that the QMIX advantage is given as a difference between monotonic com-
positions of individual utilities (hence the “-mono” suffix). Therefore, QFIX-mono is simply ob-
tained as

Q̂FIX-mono(h,a)
.
= w(h,a)ÂMIX(h,a) + b(h)

= w(h,a)(fmono(q1, . . . , qN)− fmono(v1, . . . , vN)) + b(h) . (35)

C.5 Q+FIX-SUM

Q+FIX-sum is an instance of Q+FIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a)

and Âfixee(h,a) = ÂVDN(h,a), also equivalent to the additive formulation of QFIX-sum. There-
fore, Q+FIX-sum is simply obtained as

Q̂+FIX-sum
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
=

∑
i

Q̂i(h,a) + w(h,a)
∑
i

Âi(h,a) + b(h) . (36)

Figure 4a shows a graphical diagram for Q+FIX-sum.

C.6 Q+FIX-MONO

Q+FIX-mono is an instance of Q+FIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a)

and Âfixee(h,a) = ÂMIX(h,a), also equivalent to the additive formulation of QFIX-mono. There-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

fore, Q+FIX-mono is simply obtained as

Q̂+FIX-mono
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
= fmono(q1, . . . , qN) + w(h,a) (fmono(q1, . . . , qN)− fmono(v1, . . . , vN)) + b(h) .

(37)
Figure 4b shows a graphical diagram for Q+FIX-mono.

C.7 Q+FIX-LIN

Q+FIX-lin is the additive formulation of QFIX-lin. Just as QFIX-lin is not formally a member of the
QFIX family, but rather a generalization of QFIX-sum, so is Q+FIX-lin not formally a member of
Q+FIX, but rather a generalization of Q+FIX-sum. Given that QFIX-lin is obtained by introducing
per-agent weights wi(h,a), Q+FIX-lin is simply obtained as

Q̂+FIX-lin
.
=

∑
i

Q̂i(hi, ai) +
∑
i

wi(h,a)Âi(hi, ai) + b(h) .

Figure 4c shows a graphical diagram for Q+FIX-lin.

D WHY DOES DETACHING THE ADVANTAGES HELP Q+FIX?

First, we note that the gradients ∇θiQ̂+FIX(h,a) when the advantages are not detached are

∇θiQ̂+FIX(h,a) = ∇θiQ̂fixee(h,a) + w(h,a)∇θiÂfixee(h,a)

= ∇θi V̂fixee(h) + (w(h,a) + 1)∇θiÂfixee(h,a) . (38)

It seems plausible that there may be values of w(h,a) that could result in non-ideal gradient signals.
For example, a low fixing weight w(h,a) ≈ −1 results in a dampened gradient ∇θiQ̂+FIX(h,a) ≈
∇θi V̂fixee(h), that is notably independent on actions. On the other end of the spectrum, a very large
fixing weight w(h,a) ≫ −1 results in a gradient that is dominated by the highly-weighted advan-
tage component, overcoming the value component, ∇θiQ̂+FIX(h,a) ≈ w(h,a)∇θiÂfixee(h,a).
On each end of the spectrum, the gradient will propagate almost exclusively through the values
∇θi V̂fixee(h) or through the advantages ∇θiÂfixee(h,a).

On the other hand, the gradients ∇θiQ̂+FIX(h,a) when the advantages are detached are

∇θiQ̂+FIX(h,a) = ∇θiQ̂fixee(h,a)

= ∇θi V̂fixee(h) +∇θiÂfixee(h,a) , (39)
and are invariant to the fixing structure, equally dependent on the value and advantage components.

E STATE-BASED QFIX

In this section, we extend some of the theory of QFIX to the state-based case. As mentioned in the
main document, we consider two cases of state-based QFIX, a history-state case and state-only case,
which differ in what information is provided to the fixing network. The derivations and proofs will
follow closely those of the stateless case, although not all conclusions will transfer to all state-based
cases. Primarily, we will find that state-only QFIX (like other state-only variants of other methods)
is not able to represent the full IGM-complete space of value functions.

E.1 HISTORY-STATE QFIX

Consider a history-state variant of QIGM from Eq. (8) defined as follows,
QIGM(h, s,a)

.
= w(h, s,a)f(u1, . . . , uN) + b(h, s) , (40)

where ui and f are defined as in Section 4.1, w : H × S × A → R>0 is an arbitrary positive
function of joint history, state, and joint action, b : H × S → R is an arbitrary function of joint
history and state. As in the stateless case, QIGM(h, s,a) denotes a relationship where any deviation
from individual maximality is transformed into an arbitrary deviation from joint maximality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proposition 6. For any f , w, and b, values {Qi}i∈I and QIGM satisfy state-based IGM.

Proof. This proof follows the same structure as that for Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according

to the individual utilities, and a∗ = (a∗i , . . . , a
∗
N) the joint action constructed by those individual

actions. We prove that QIGM satisfies state-based IGM in two steps:

1. a∗ = argmaxa QIGM(h, s,a), i.e., the individual maximal actions also maximize the joint
history-state values.

2. a∗ = argmaxa Es|h [QIGM(h, s,a)], i.e., the individual maximal actions also maximize
the marginalized joint history-state values.

Step 1. The advantage utilities corresponding to a∗ are zero ∀i(ui = 0) by definition, and

QIGM(h, s,a∗) = w(h, s,a∗) f(u1, . . . , uN)︸ ︷︷ ︸
=0

+b(h, s)

= b(h, s) . (41)

For any other non-maximal action a, we have at least one strictly negative utility ∃i(ui < 0), and

QIGM(h, s,a∗) = w(h, s,a∗)︸ ︷︷ ︸
>0

f(u1, . . . , uN)︸ ︷︷ ︸
<0

+b(h, s)

< b(h, s) . (42)

Therefore, a∗ = argmaxa QIGM(h, s,a), and the actions that maximize the individual utilities also
maximize the joint history-state value.

Step 2. Note that a∗ = argmaxa QIGM(h, s,a) is valid for any state, at the very least because a∗

are defined via the stateless individual utilities.

If a∗ maximizes the joint history-state values for any given state, then it also maximizes the
joint history-state values when marginalized over any distribution of state p ∈ ∆S, and a∗ =
argmaxa Es∼p [QIGM(h, s,a)]. This must be true also for the specific distribution p(s)

.
= Pr(s |

h), and a∗ = argmaxa Es|h [QIGM(h, s,a)].

Therefore, the same actions a∗ that maximize the individual utilities, also maximize the marginal-
ized joint history-state values, satisfying the definition of state-based IGM in Definition 3.

When it comes to a state-based form of IGM-complete function class, we must be very clear as to
what it is that we are able to prove. We are not able to prove that QIGM(h, s,a) covers the whole
state-based IGM function class of values that satisfy state-based IGM (we do not believe this is
possible, though we will not go into that amount of detail here). Instead, we prove that the projected
space of stateless values obtained by marginalizing the state-based values via Es|h [QIGM(h, s,a)]
is the IGM-complete function class.

Proposition 7. For any f , and given free choice of w and b, the function class of {Qi}i∈I and
projected Es|h [QIGM] is IGM-complete.

Proof. This proof follows the same structure as that for Proposition 3, although we consider
the projected space stateless values Es|h [QIGM(h, s,a)] obtained from the state-based values
QIGM(h, s,a).

Let us denote the projected function class of QIGM as FC(QIGM), and the state-based IGM-
complete function class as FCIGM. We prove the equivalence FC(QIGM) = FCIGM in two steps:

Step 1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM follows directly from Proposition 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Step 2. Let Qi(hi, ai) and Q(h,a) denote an arbitrary set of individual and joint values that satisfy
IGM, i.e., Q ∈ FCIGM. Let us denote the usual corresponding values and advantages as follows,

Vi(hi) = max
ai

Qi(hi, ai) , Ai(hi, ai) = Qi(hi, ai)− Vi(hi) , (43)

but, let us define a different notion of joint values and advantages for this history-state case (note the
stateless V , state-based A),

V (h) = max
a

Q(h,a) , A(h,a) = Q(h,a)− V (h) , (44)

with the usual shorthand qi = Qi(hi, ai) and vi = Vi(hi), and ui = Ai(hi, ai).

For any f that satisfies the requirements of Eq. (41), let w and b be defined as follows,
b(h, s) = V (h) , (45)

w(h, s,a) =

{
A(h,a)

f(u1,...,uN) , if f(u1, . . . , uN) ̸= 0 ,

any value , otherwise .
(46)

These definitions effectively create state-based values QIGM(h, s,a) that are state-independent, and
functionally equivalent to stateless values QIGM(h,a). Although this appears to be a severe misuse
of the additional state information, it is sufficient to prove the claim that the projected space of
stateless values obtained via marginalization Es|h [QIGM(h,a)] is IGM-complete. It’s easy to see
that the rest of the proof can not proceed as in Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according to

the individual utilities, and a∗ = (a∗1, . . . , a
∗
N) the corresponding joint action. Given that Q satisfies

IGM by assumption, we have a∗ = argmaxa Q(h,a), and Q(h,a∗) = maxa Q(h,a) = V (h).

For this joint action a∗, the corresponding individual advantage utilities are zero ∀i (ui = 0) by
definition, and

QIGM(h, s,a∗) = w(h, s,a∗)f(u1, . . . , uN) + b(h, s)

= w(h, s,a∗) f(0, . . . , 0)︸ ︷︷ ︸
=0

+b(h, s)

= V (h)

= Q(h,a∗) . (47)

For any other non-maximal action a†, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h, s,a†) = w(h, s,a†)f(u1, . . . , uN) + b(h, s)

=
A(h,a†)

f(u1, . . . , uN)
f(u1, . . . , uN) + V (h)

= A(h,a†) + V (h)

= Q(h,a†) . (48)

In either case, QIGM(h, s,a) = Q(h,a) for all joint histories, states, and actions, which trivially
implies Es|h [QIGM(h, s,a)] = Q(h,a). Therefore Q ∈ FCIGM =⇒ Q ∈ FC(QIGM).

E.2 STATE-ONLY QFIX

Consider a state-only variant of QIGM from Eq. (8) defined as follows,
QIGM(h, s,a)

.
= w(s,a)f(u1, . . . , uN) + b(s) , (49)

where ui and f are defined as in Section 4.1, w : S × A → R>0 is an arbitrary positive function
of joint history, state, and joint action, b : S → R is an arbitrary function of joint history and state.
As in the stateless case, QIGM(h, s,a) denotes a relationship where any deviation from individual
maximality is transformed into an arbitrary deviation from joint maximality. Note that the name
state-only refers moreso to the fixing models w, b, than the values as a whole that remain at least in
part history-based due to the dependence on the individual history-based utilities.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proposition 8. For any f , w, and b, values {Qi}i∈I and QIGM satisfy state-based IGM.

Proof. This proof follows the same structure as that for Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according

to the individual utilities, and a∗ = (a∗i , . . . , a
∗
N) the joint action constructed by those individual

actions. We prove that QIGM satisfies state-based IGM in two steps:

1. a∗ = argmaxa QIGM(h, s,a), i.e., the individual maximal actions also maximize the
state-only values.

2. a∗ = argmaxa Es|h [QIGM(h, s,a)], i.e., the individual maximal actions also maximize
the marginalized joint state-only values.

Step 1. The advantage utilities corresponding to a∗ are zero ∀i(ui = 0) by definition, and

QIGM(h, s,a∗) = w(s,a∗) f(u1, . . . , uN)︸ ︷︷ ︸
=0

+b(s)

= b(s) . (50)

For any other non-maximal action a, we have at least one strictly negative utility ∃i(ui < 0), and

QIGM(h, s,a∗) = w(s,a∗)︸ ︷︷ ︸
>0

f(u1, . . . , uN)︸ ︷︷ ︸
<0

+b(s)

< b(s) . (51)

Therefore, a∗ = argmaxa QIGM(h, s,a), and the actions that maximize the individual utilities also
maximize the joint state-only value.

Step 2. Note that a∗ = argmaxa QIGM(h, s,a) is valid for any state, at the very least because a∗

are defined via the stateless individual utilities.

If a∗ maximizes the joint history-state values for any given state, then it also maximizes the
joint history-state values when marginalized over any distribution of state p ∈ ∆S, and a∗ =
argmaxa Es∼p [QIGM(h, s,a)]. This must be true also for the specific distribution p(s)

.
= Pr(s |

h), and a∗ = argmaxa Es|h [QIGM(h, s,a)].

Therefore, the same actions a∗ that maximize the individual utilities, also maximize the marginal-
ized joint history-state values, satisfying the definition of state-based IGM in Definition 3.

In contrast to history-state QFIX in Appendix E.1, we are not able to prove that state-only QFIX is
able to represent the complete function class of IGM values.

F EVALUATION DETAILS AND ADDITIONAL RESULTS

F.1 SMACV2

Implementation details We note that Pymarl2 provides state-based implementations of QMIX
and QPLEX. For QPLEX in particular, this means that state-only weights wi(s) and λi(s,a) are
employed. As discussed by Marchesini et al. (2024), the state-only implementation of QPLEX loses
some of the theoretical properties related to full IGM-completeness (and the same holds for Q+FIX,
see Appendix E). However, to maintain a fair comparison, our implementation of Q+FIX employs
analogous state-based implementation with state-only weights w(s,a) for Q+FIX-{sum,mono}, and
wi(s,a) for Q+FIX-lin. QPLEX and Q+FIX implementations both employ advantage detaching as
previously described. For these SMACV2 experiments, we did not find it necessary to employ
intervention annealing.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

25%

50%

75%

W
in

ra
te

5vs5 | Protoss 10vs10 | Protoss 20vs20 | Protoss

25%

50%

75%

W
in

ra
te

5vs5 | Terran 10vs10 | Terran 20vs20 | Terran

0 2 M 4 M 6 M 8 M 10 M
Timesteps

25%

50%

75%

W
in

ra
te

5vs5 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10vs10 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20vs20 | Zerg

(a) SMACv2 winrate mean (5 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

25%

50%

75%

W
in

ra
te

(b) SMACv2 winrate mean aggregate (45 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

25%

50%

75%

W
in

ra
te

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(c) SMACv2 winrate IQM aggregate (45 seeds).

Figure 5: SMACv2 winrate results, bootstrapped 95% CI.

Metrics SMACv2 logs various metrics pertaining to team performance, including the mean return
and the mean winrate obtained as the ratio of episodes where the agents succeed in defeating the
enemies. Although the winrate is a common metric used in prior work (e.g., Wang et al. (2020) use
the winrate in their SMACv1 evaluation), we have found that winrates induce a different ordering
over performances, i.e., it is possible to obtain a higher winrate while achieving a lower return, and
vice versa. This indicates that the rewards of SMACv2 do not perfectly encode the task of defeating
the enemies—a matter of reward design that is beyond the scope of this work. Since returns are
the metric that the methods are directly trained to maximize, we prioritize returns as our primary
evaluation metric in the main document, but also provide winrate results in this appendix.

Winrate results In this section, we show additional results based on the winrate metric. As with
the return-based results, we show the learning performance for each model and scenario in Fig. 5a,
and the aggregate winrate across scenarios in Fig. 5b.

Winrates vs returns As mentioned in the main document, the winrate and return metrics induce
correlated but notably different orderings over the evaluated methods. Comparing Figs. 2 and 5, this
is notable by the following (non-exhaustive) observations:

• In T5,

– Return indicates Q+FIX-sum ≻ Q+FIX-mono.
– Winrate indicates Q+FIX-sum ≺ Q+FIX-mono.

• In Z5,

– Return indicates Q+FIX-sum ≻ Q+FIX-mono ≈ Q+FIX-lin.
– Winrate indicates Q+FIX-sum ≈ Q+FIX-mono ≈ Q+FIX-lin.

• In Z10,

– Return indicates VDN ≈ Q+FIX.
– Winrate indicates VDN ≺ Q+FIX.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• In P20,

– Return indicates VDN ≈ Q+FIX-mono.
– Winrate indicates VDN ≺ Q+FIX-mono.

• In T10, the return of QPLEX drops significantly around the 9M timestep mark, whereas
its winrate is able to recover temporarily, indicating that high winrates are achievable even
with low returns.

Comparing the final performances in Figs. 2b and 5b,

• Return indicates VDN ≺ QMIX ≺ QPLEX.

• Winrate indicates QPLEX ≺ VDN ≈ QMIX.

Winrate results discussion Despite the notable differences between returns and winrates as eval-
uation metrics, the winrate-based evaluation arrives to largely the same conclusions as the return-
based one in the main document, with respect to the performance evaluation of Q+FIX compared to
other baselines.

As in the return-based results, VDN fails to be a competitive baseline on its own for most scenarios,
likely due to the well-known limited representation. Fixing VDN via Q+FIX-sum, we are able
to overcome this limitation (as noted by the performance gap between VDN and Q+FIX-sum),
expanding its representation space and reaching SOTA performance.

As in the return-based results, QMIX sometimes exhibits fast initial learning speeds, albeit often to
a sub-competitive final performance (P5, T5, T10, Z10, T20, Z20), again a likely consequence of
its limited representation. Fixing QMIX via Q+FIX-mono, we are often able to exploit the initial
learning speeds and complement them with improved performance at convergence reaching SOTA
performance.

Compared to return-based results, QPLEX appears less competitive, and performs very well in fewer
scenarios (P20, T20, Z20), and underperforms in more (T5, Z10), and exhibits the same trou-
bling convergence instabilities as well (Z5, T10). Q+FIX-lin, as the simplified variant inspired by
QPLEX, manages to avoid such convergence instabilities, plausibly as a consequence of the simpler
structure.

As in the return-based results, Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve similar learning
performances in most cases, with only minor differences across scenarios. Compared to the return-
based results, it is Q+FIX-mono that may be slightly outperforming other variants in some scenarios
(T5, Z5).

The aggregate results in Figs. 5b and 5c largely confirm the trends discussed above. Even when
employing the IQM measure, which ignores the unstable QPLEX outlier rus, Q+FIX comes out as
achieving higher performance. Despite the concerning difference between the return and winrate
metrics, both demonstrate that Q+FIX succeeds in enhancing the native performances of VDN and
QMIX fixees, and lifts them to a similar level as QPLEX while maintaining more stable convergence.

Model size evaluation One of the major appeals of Q+FIX over prior models is in its simplic-
ity, and its ability to enhance prior models to achieve IGM-complete value function decomposition
with small models. Because Q+FIX operates by augmenting existing fixee models with additional
models w(h,a) and b(h), there may be other concerns regarding whether the superior performance
of Q+FIX comes simply as a consequence of the larger parameterization compared to the corre-
sponding fixee. Table 2 contains a complete list of mixer sizes. Note that the mixer of Q+FIX-sum
is always larger than that of VDN, and the mixer of Q+FIX-mono is always larger than that of
QMIX. Therefore, there is a potential concern that the performance of Q+FIX (compared to its cor-
responding fixee) is driven by the additional parameterization rather than other factors like its proven
theoretical properties.

In this section, we present an evaluation that disproves this concern by comparing the performance
of a bigger fixee with a corresponding Q+FIX variant that employs a smaller fixee. We note that this
evaluation is only possible for the case of QMIX and Q+FIX-mono: (i) VDN has no mixing network;
therefore it is not possible to perform this evaluation for VDN and Q+FIX-sum. (ii) QPLEX is never

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2: SMACv2 mixer sizes in number of parameters. Smallest (non-zero) models highlighted.

Protoss Terran, Zerg
5vs5 10vs10 20vs20 5vs5 10vs10 20vs20

VDN 0 k 0 k 0 k 0 k 0 k 0 k

QMIX 38 k 83 k 201 k 36 k 79 k 194 k
QPLEX 135 k 326 k 882 k 126 k 308 k 846 k
Q+FIX-sum 20 k 50 k 138 k 19 k 48 k 133 k
Q+FIX-mono 54 k 180 k 743 k 50 k 169 k 708 k
Q+FIX-lin 21 k 51 k 140 k 19 k 48 k 135 k

QMIX-big 166 k 341 k 767 k 161 k 331 k 747 k
Q+FIX-mono-small 29 k 83 k 290 k 27 k 78 k 277 k

10.0

12.5

15.0

17.5

20.0

Re
tu

rn

Protoss | 5vs5 Terran | 5vs5 Zerg | 5vs5

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10.0

12.5

15.0

17.5

20.0

Re
tu

rn

Protoss | 10vs10

0 2 M 4 M 6 M 8 M 10 M
Timesteps

Terran | 10vs10

0 2 M 4 M 6 M 8 M 10 M
Timesteps

Zerg | 10vs10

(a) SMACv2 return mean (5 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Re
tu

rn
 (N

or
m

al
ize

d)

(b) SMACv2 return mean aggregate (30 seeds).

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Re
tu

rn
 (N

or
m

al
ize

d)

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN
QMIX-big
Q+FIX-mono-small

(c) SMACv2 return IQM aggregate (30 seeds).

Figure 6: SMACv2 model size results, bootstrapped 95%. Aggregation computed as in Fig. 2.

used as a fixee; therefore it is not possible to perform this evaluation for QPLEX (also, the Q+FIX
models are all significantly smaller than QPLEX to begin with). Therefore, we implement a bigger
variant of QMIX (QMIX-big) and a smaller variant of Q+FIX-mono (Q+FIX-mono-small). See in
Table 2 that the size of Q+FIX-mono-small is now both smaller than that of QMIX-big, and more
comparable to those of Q+FIX-sum and Q+FIX-lin.

?? shows the results of this evaluation; to focus on the matter at hand, we only show the relevant
performance of QMIX and Q+FIX-mono methods. As can be seen, the performance of Q+FIX-
mono-small is analogous to that of +FIX-mono, and the performance of QMIX-big is analogous to
that of QMIX. These results strongly confirm that the superior performance of Q+FIX-mono is not
caused by the larger parameterization, but by our proposed fixing structure.

Probability of improvement Agarwal et al. (2021) also suggest the use of probability of improve-
ment (POI) as a criterion for evaluation that is resilient to data outliers. This metric measures the
likelihood that a random run based on one method outperforms a random run based on another
method, while ignoring the size of the performance gap. If method X has been evaluated empiri-
cally N times with performances X̂ = {x̂i}Ni=1, and method Y has been evaluated empirically M

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
VD

N)

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(a) POI of model “X” over VDN.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
Q+

FI
X-

su
m

) Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(b) POI of model “X” over Q+FIX-sum.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
QM

IX
) Model

Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(c) POI of model “X” over QMIX.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
Q+

FI
X-

m
on

o) Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(d) POI of model “X” over Q+FIX-mono.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
QP

LE
X)

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(e) POI of model “X” over QPLEX.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0%

25%

50%

75%

100%

Pr
(X

>
Q+

FI
X-

lin
) Model

Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

(f) POI of model “X” over Q+FIX-lin.

Figure 7: Aggregate probability of improvement (POI), bootstrapped 95% CI.

times with performances Ŷ = {ŷi}Mi=1, we estimate the POI as

Pr(X > Y) ≈ 1

N ·M
∑

x̂∈X̂,ŷ∈Ŷ

I [x̂ > ŷ] . (52)

In their work, Agarwal et al. (2021) demonstrate this criterion assuming that each run is summarized
by a single scalar (e.g., final performance); since we are both concerned with learning speed and
are uncertain how to fairly pick a single scalar performance for each run, we instead perform this
calculation over the entire learning phase.

Fig. 7 contains our aggregate POI results for SMACv2. Agarwal et al. (2021) note that a POI that is
above 50% with its entire CI indicates a statistically significant result; out of all methods, Q+FIX-
sum is the only one to achieve this against all other methods.

F.2 OVERCOOKED

Observability Overcooked is a fully observable environment, with each agent receiving observa-
tions whose information content is equivalent to the state. Therefore, the challenge of these tasks is
primarily one of coordination and subtask assignment over information gathering. The state is pro-
vided as a tensor with shape H×W ×C, with C = 26 (mostly but not exclusively binary) channels
encoding agent positions and orientations, and positions of tables, pots, plates, various ingredients,
etc.

Coordination Notably, the tasks in overcooked do not strictly require tight coordination between
agents. Though some tasks may need both agents to contribute in different ways to the same plate
being completed, that cooperation is not under strict coordination requirements. Though the agents
may achieve higher efficiency and performance if they coordinate optimally, the tasks can be com-
pleted even if the agents act relatively independently. We believe this can explain some of the results
in our evaluation, especially in terms of the relatively good performance of methods like VDN that
hardly enforce strong coordination.

Implementation details For these Overcooked experiments, we found it useful for Q+FIX to
employ both advantage detaching and intervention annealing with λ descending linearly from 1 to
0 over the first 500k timesteps (10% of training).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 2 M 4 M
Timesteps

0

200

400

Re
tu

rn

Cramped Room

0 2 M 4 M
Timesteps

Asymmetric Advantages

0 2 M 4 M
Timesteps

Coordination Ring

0 2 M 4 M
Timesteps

Forced Coordination

0 2 M 4 M
Timesteps

Counter Circuit
Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN
IQL

Figure 8: Overcooked return mean, bootstrapped 95% CI (20 seeds).

Additional results Fig. 8 shows the results for all five evaluated layouts: Cramped-Room,
Asymmetric-Advantages, Coordination-Ring, Forced-Coordination, and
Counter-Circuit. The tasks are categorically different and not directly comparable, but there
is a progression in difficulty from the first to the last. Coordination-Ring is a simple task
solved adequately by all methods. Performances start to differentiate more strongly in the other
layout. Notably, QMIX has some trouble in these layouts, even compared to simpler methods like
VDN. We believe this may be due to the coordination properties of these layouts (as described
previously in this section), which may benefit simpler methods like VDN and independent learners.
Nonetheless, in all scenarios, Q+FIX variants are the best performing, achieving statistically
significant performance improvements compared to the baselines in four of the five layouts.

G ARCHITECTURES AND HYPERPARAMETERS

G.1 SMACV2

Baseline methods are used and run as implemented in the Pymarl2 repository4, using the pre-
optimized hyperparameters as provided by the corresponding configs. Q+FIX methods are imple-
mented to match the baseline implementations completely, with the only difference being the mixer
type and architecture, and are run using the same hyperparameters as the baselines. All implemen-
tations use the Adam optimizer Kingma & Ba (2017).

Due to their complex nature (including the use of hypernetworks and attention modules) we omit
a full description of the mixing architectures for QMIX and QPLEX. We refer the reader to the
corresponding publications and Pymarl2 implementations56.

Agent Model Q̂i(hi, ai) All methods employ the same architecture to compute the individual util-
ities Q̂i(hi, ai). As SMAXv2 is partially-observable and provides observations directly as feature
vectors, this architecture employs the following layers:

• Inputs:

– Observation vector Rd (d variable per scenario).
– Agent ID one-hot encoding {0, 1}N .

• Layers:

– Linear(output dim=64) + ReLU()

– GRUCell(output dim=64)

– Linear(output dim=#actions)

• Output: Action values R|Ai|, one per action.

4https://github.com/benellis3/pymarl2
5https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/

qmix.py
6https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/

dmaq_general.py

24

https://github.com/benellis3/pymarl2
https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/qmix.py
https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/qmix.py
https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/dmaq_general.py
https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/dmaq_general.py

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Q+FIX Weight Model w(s,a)

• Input:
– State vector Rd (d variable per scenario).
– Agent actions one-hot encodings {0, 1}

∑
i |Ai|.

• Layers:
– Linear(output dim=64) + ReLU()
– Linear(output dim=1) (if Q+FIX-{sum,mono})
Linear(output dim=N) (if Q+FIX-lin)

– lambda w: |w+1|-1+10e-8

• Outputs: Weights w(s,a) ∈ R>−1 (if Q+FIX-{sum,mono})
Weights w(s,a) ∈ RN

>−1 (if Q+FIX-lin).

Q+FIX Bias Model b(s)

• Input: State vector Rd (d variable per scenario).

• Layers:
– Linear(output dim=64) + ReLU()
– Linear(output dim=1)

• Output: Bias b(s) ∈ R.

G.2 OVERCOOKED

Baseline methods are used and run as implemented in the JaxMARL repository7, using the pre-
optimized hyperparameters as provided by the corresponding configs. Q+FIX methods are imple-
mented to match the baseline implementations completely, with the only difference being the mixer
type and architecture, and are run using the same hyperparameters as the baselines. All implemen-
tations use the rectified Adam (RAdam) optimizer Liu et al. (2019).

Agent Model Q̂i(hi, ai) All methods employ the same architecture to compute the individual
utilities Q̂i(hi, ai). As Overcooked is fully-observable and provides states as a grid (tensor) of
categorical data, this architecture employs the following layers:

• Input: State grid NH×W×C (C = 26 channels, mostly binary).

• Layers:
– Conv(output dim=32, kernel size=(5, 5)) + ReLU()
– Conv(output dim=32, kernel size=(3, 3)) + ReLU()
– Conv(output dim=32, kernel size=(3, 3)) + ReLU() + Flatten()
– Linear(output dim=64) + ReLU()
– Linear(output dim=64) + ReLU()
– Linear(output dim=#actions)

• Output: Action values R|Ai|, one per action.

Q+FIX Weight Models w(s,a)

• Input:
– State grid NH×W×C (C = 26 channels, mostly binary).
– Agent actions one-hot encodings {0, 1}

∑
i |Ai|.

• Layers:
– Conv(output dim=64, kernel size=(5, 5)) + ReLU()

7https://github.com/FLAIROx/JaxMARL

25

https://github.com/FLAIROx/JaxMARL

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

– Conv(output dim=64, kernel size=(3, 3)) + ReLU() + Flatten()
– Linear(output dim=64) + ReLU()
– Linear(output dim=1) (if Q+FIX-{sum,mono})
Linear(output dim=N) (if Q+FIX-lin)

– lambda w: |w+1|-1+10e-8

• Outputs: Weights w(s,a) ∈ R>−1 (if Q+FIX-{sum,mono})
Weights w(s,a) ∈ RN

>−1 (if Q+FIX-lin).

Q+FIX Bias Model b(s)

• Input: State grid NH×W×C (C = 26 channels, mostly binary).
• Layers:

– Linear(output dim=64) + ReLU()
– Linear(output dim=1)

• Output: Bias b(s) ∈ R.

H EXPERIMENTS COMPUTE RESOURCES

Experiments were distributed (unevenly) primarily across two workstations:

• Type: Standalone workstation,
CPU: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz,
GPU(s): 2x NVIDIA GeForce GTX 1080.

• Type: Standalone workstation,
CPU: AMD Ryzen Threadripper 7960X 24-Cores,
GPU(s): 1x NVIDIA GeForce RTX 4090.

The time of executing a single run can differ greatly depending on the workstation, the environment,
the method, and model size. The following is only a very rough estimate of total sequential runtime:

SMACv2 Pymarl2 implementations can be very slow due to the CPU-bound environment, and
vary somewhere between 5 h and 20 h per run. For the main results, since we execute 6
methods for 5 runs in 9 scenarios, which amounts to 6 · 5 · 9 = 270 independent runs
and roughly 270 · 12 h = 135 d of sequential runtime. For the results on model sizes, we
execute an additional 2 methods for 5 runs in 6 scenarios, which amounts to 2 · 5 · 6 = 60
independent runs and roughly 60 · 12 h = 30 d of sequential runtime.

Overcooked JaxMARL implementations are much faster, and vary between 15min and 60min.
Since we execute 6 methods for 20 runs in 5 layouts, which amounts to 6 · 20 · 5 = 600
independent runs and roughly 600 · 40min = 24 000min ≈ 16 d of sequential runtime.

Naturally, the experiments were not executed purely sequentially; however, they still took multiple
weeks to complete as a whole, on our available hardware.

26

	Introduction
	Related work
	Background
	Decentralized multi-agent control
	Value function decomposition

	Fixing incomplete value function decomposition
	A simple parameterization of the IGM function class
	QFIX
	Additive QFIX (Q+FIX)
	State-based variants

	Evaluation
	Conclusions
	Is QPLEX truly IGM-complete?
	Proofs
	Proof of thm:qigm:igm
	Proof of thm:qfix
	Proof of thm:qfix-lin

	Derivations
	VDN maximal values and advantages
	QMIX maximal values and advantages
	QFIX-sum
	QFIX-mono
	Q+FIX-sum
	Q+FIX-mono
	Q+FIX-lin

	Why does detaching the advantages help Q+FIX?
	State-based QFIX
	History-state QFIX
	State-only QFIX

	Evaluation details and additional results
	SMACv2
	Overcooked

	Architectures and hyperparameters
	SMACv2
	Overcooked

	Experiments compute resources

