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ABSTRACT

Value function decomposition methods for cooperative multi-agent reinforcement
learning compose joint values from individual per-agent utilities, and train them
using a joint objective. To ensure that the action selection process between indi-
vidual utilities and joint values remains consistent, it is imperative for the com-
position to satisfy the individual-global max (IGM) property. Although satisfying
IGM itself is straightforward, most existing methods (e.g., VDN, QMIX) have
limited representation capabilities and are unable to represent the full class of
IGM values, and the one exception that has no such limitation (QPLEX) is unnec-
essarily complex. In this work, we present a simple formulation of the full class of
IGM values that naturally leads to the derivation of QFIX, a novel family of value
function decomposition models that expand the representation capabilities of prior
models via a thin “fixing” layer. We derive multiple variants of QFIX, and imple-
ment three variants in two well-known multi-agent frameworks. We perform an
empirical evaluation on multiple SMACv2 and Overcooked environments, which
confirms that QFIX (i) succeeds in enhancing the performance of prior methods,
(ii) learns more stably and performs better than its main competitor QPLEX, and
(iii) achieves this while employing the simplest and smallest mixing models.

1 INTRODUCTION

Centralized training for decentralized execution (CTDE) (Lowe et al., 2017; Rashid et al., 2020b;
Wang et al., 2020) is a powerful framework for cooperative multi-agent reinforcement learning
(MARL). CTDE is characterized by a centralized training phase where privileged information is
shared freely and used holistically to train the agents, and a decentralized execution phase where
agents act independently in adherence to the standard constraints of decentralized control. As a
consequence of a training phase that is informed by the full team’s behavior and experiences (and,
when feasible, the environment state), CTDE is commonly associated with increased coordination
between agents and superior performances.

Value function decomposition (Sunehag et al., 2017; Rashid et al., 2020b; Wang et al., 2020) is
a class of CTDE methods that construct a joint team value from individual per-agent utilities that
encode agent behaviors. By training the joint value on a joint centralized objective, the individual
utilities are also indirectly trained, resulting in decentralized agent policies that can be executed
independently. Since its inception, value function decomposition has become a topic of great interest
in cooperative MARL, with significant research effort put in both practical algorithms (Sunehag
et al., 2017; Son et al., 2019; Rashid et al., 2020a;b; Wang et al., 2020; Marchesini et al., 2024)
and theoretical understanding (Wang et al., 2021; Marchesini et al., 2024). Individual-global max
(IGM) (Son et al., 2019) has been identified as a key property that connects individual utilities and
joint values, ensuring that their associated decision making processes remain consistent.

In this work, we advance both theory and practice of value function decomposition. We formulate a
novel simple formulation of IGM-complete value function decomposition. Our formulation (i) cor-
rectly addresses general decentralized partially observable control (avoiding strong assumptions like
full observability or centralized control), and (ii) highlights the core mechanism that characterizes
the full IGM-complete function class. In contrast, prior methods fail to satisfy at least one of these
criteria (usually the first, which limits the expressive capabilities and performance of models). We
introduce QFIX, a novel family of value function decomposition methods inspired by our formu-
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lation of IGM-complete decomposition. QFIX employs a simple “fixing” network to extend the
representation capabilities of prior methods. We derive two main specializations of QFIX called
QFIX-sum and QFIX-mono, respectively obtained by “fixing” VDN (Sunehag et al., 2017) and
QMIX (Rashid et al., 2020b). To provide further insights into the core mechanisms that make value
function decomposition so effective, we also derive QFIX-lin, a third variant that technically falls
just outside of the QFIX family, but combines QFIX-sum with a core component of QPLEX. Finally,
we extend prior work on state-based value function decomposition to QFIX. Empirical evaluations
on the StarCraft Multi-Agent Challenge v2 (SMACv2) (Ellis et al., 2023) and Overcooked (Carroll
et al., 2020) demonstrates that QFIX (i) is effective at enhancing prior non-IGM-complete methods
like VDN and QMIX, (ii) is simpler to implement and understand, and require smaller models than
QPLEX, a state-of-the-art method in IGM-complete value function decomposition, (iii) is competi-
tive or outperforms QPLEX while also showing more stable convergence. An additional evaluation
of model size confirms that the superior performance of QFIX is attributed to the intrinsic mixing
approach rather than by augmenting baseline parameters.

2 RELATED WORK

Value Decomposition Networks (VDN) (Sunehag et al., 2017) are a precursor to value decomposi-
tion methods that employ a simple additive composition of individual utilities. QMIX (Rashid et al.,
2020b) employs a monotonic composition that generalizes the function class of VDN resulting in
significant performance improvements. Both VDN and QMIX have restricted function classes, and
several methods have attempted to overcome the limits of purely additive or monotonic composition
and achieve broader expressiveness. Weighted-QMIX (WQMIX) (Rashid et al., 2020a) aims to ex-
pand the function class of QMIX to non-monotonic cases so as to include optimal values Q∗. How-
ever, WQMIX is specifically developed for fully observable multi-agent environments (MMDPs),
and its theory does not generalize to partially observable DecPOMDPs. In contrast, QFIX is fully
consistent with the general case of partially observable decentralized control. Son et al. (2019) iden-
tify individual-global max (IGM) as a core property that corresponds to consistency between the
individual and joint decision making processes. Notably, VDN and QMIX satisfy IGM, but are un-
able to represent the entire IGM-complete function class. QTRAN (Son et al., 2019) identifies a set
of constraints that are sufficient to imply IGM, and employs auxiliary objectives that softly enforce
those constraints. Son et al. (2019) argue that their constraints are also necessary for IGM under
affine transformations, however they only show that one such affine transformation exists, rather
than IGM being satisfied for all affine transformations. In contrast, QFIX is both sufficient and nec-
essary to imply IGM, thus directly achieving the full IGM-complete function class. QPLEX (Wang
et al., 2020) employs a dueling network decomposition and multiple layers of transformations to
achieve the IGM-complete function class. However, QPLEX employs complex transformations that
are superfluous in relation to its representation capabilities, and falls short of identifying the core
underlying mechanism that is singularly responsible to achieve the IGM function class. In contrast,
QFIX is both simpler to understand and to implement, and achieves the IGM function class with
fewer smaller models. QPLEX is one instance in the space of IGM-complete models, and our work
opens a path to explore other instances that can further improve performance while satisfying IGM.

3 BACKGROUND

3.1 DECENTRALIZED MULTI-AGENT CONTROL

A decentralized POMDP (Dec-POMDP) (Oliehoek & Amato, 2016) generalizes single-agent
partially observable control by accounting for multiple decentralized agents acting con-
currently to solve a shared cooperative task. A Dec-POMDP is defined by a tuple
⟨N,S, {A1, . . . ,AN} , {O1, . . . ,ON} , p, T,R,O, γ⟩ composed of: (i) number of agents N ≥ 2;
(ii) state space S; (iii) individual action and observation spaces Ai and Oi; (iv) starting state dis-
tribution p ∈ ∆S; (v) state transition function T : S × A → ∆S; (vi) joint observation func-
tion O : A × S → ∆O; (vii) joint reward function R : S × A → R; and (viii) discount factor
γ ∈ [0, 1). The number of agents N induces a set of agent indices I .

= [N ]. Agent behaviors are
generally modeled as stochastic policies πi : Hi → ∆Ai that act based on their respective history
hi ∈ Hi

.
= Oi × (Ai ×Oi)

∗. Joint action, observation, and history spaces are defined as the re-
spective Cartesian products A .

=×i
Ai, O

.
=×i

Oi, and H .
=×i

Hi. Therefore, joint actions
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a = (a1, . . . , aN ), observations o = (o1, . . . , oN ), and histories h = (h1, . . . , hN ) are tuples of the
respective individual actions, observations, and histories. The combined behavior of all policies is
represented as a joint (but still decentralized) policy π(h,a)

.
=

∏
i πi(hi, ai) that factorizes accord-

ingly. Decentralized multi-agent control aims to find independent policies that jointly maximize the
expected sum of discounted rewards Jπ .

= E [
∑

t γ
tR(st,at)].

We focus on approaches that model policies implicitly via parametric utilities Q̂i : Hi × Ai → R,
typically via (ϵ-)greedy action selection. Individual utilities can be decomposed into correspond-
ing values V̂i(hi)

.
= maxai

Q̂i(hi, ai) and advantages Âi(hi, ai)
.
= Q̂i(hi, ai) − V̂i(hi). When

convenient, we employ shorthand notation for individual values qi
.
= Q̂i(hi, ai), vi

.
= V̂i(hi), and

ui
.
= Âi(hi, ai), and their joint tuples q .

= (q1, . . . , qN ), v .
= (v1, . . . , vN ), and u

.
= (u1, . . . , uN ).

3.2 VALUE FUNCTION DECOMPOSITION

Value function decomposition methods (Sunehag et al., 2017; Rashid et al., 2020b; Wang et al.,
2020) construct joint values Q̂(h,a) from individual per-agent utilities Q̂i(hi, ai). We specifically
use the term utility to underscore the fact that Q̂i(hi) ∈ RAi merely represents an ordering over
actions, rather than any notion of expected performance. Notably, Q̂i is not directly trained for
policy evaluation or optimization, and neither Q̂i(hi, ai) ≈ Qπ

i (hi, ai) nor Q̂i(hi, ai) ≈ Q∗
i (hi, ai)

are expected interpretations of well-trained utilities.

Value function decomposition methods employ joint models Q̂(h,a) that are a function of the in-
dividual utilities Q̂i(hi, ai), and mainly differ in terms of the relationship that is enforced and the
corresponding emergent properties. The joint model Q̂(h,a) is trained on a joint objective that
optimizes the joint values and behavior, and indirectly trains the individual utilities and behaviors,

LQ̂(h,a, r,o)
.
=

1

2

(
r + γmax

a′
Q̂−(hao,a′)− Q̂(h,a)

)2

. (1)

Individual-global max Son et al. (2019) identify individual-global max (IGM) as a useful prop-
erty of decomposition models to achieve decentralized action selection and address scaling concerns.
Definition 1 (Individual-Global Max). Individual utilities {Qi(hi, ai)}i∈I and joint values Q(h,a)
satisfy individual-global max (IGM) iff×i

argmaxai
Qi(hi, ai) = argmaxa Q(h,a).1

IGM denotes whether the individual and global decision making processes are equivalent, and re-
duces the complexity of finding the maximal joint action from exponential to linear in the number
of agents: For a given joint history h, the full search over the joint action space A can be replaced
with N independent searches over the individual action spaces Ai. VDN and QMIX are well-known
models that satisfy IGM; however, their function classes do not span the full class of IGM values.
Definition 2 (IGM Function Class). We say a function class of individual utilities {Qi(hi, ai)}i∈I
and joint values Q(h,a) is IGM-complete if it contains all and only functions that satisfy IGM.

VDN: additive decomposition Value Decomposition Network (VDN) (Sunehag et al., 2017) is a
precursor to value function decomposition that uses a simple sum Q̂VDN(h,a)

.
=

∑
i Q̂i(hi, ai).

QMIX: monotonic decomposition QMIX (Rashid et al., 2020b) constructs joint values as a
monotonic function of individual utilities, Q̂MIX(h,a)

.
= fmono(q1, . . . , qN ), with fmono : RN → R

a parametric mixing network that satisfies monotonicity, ∂qifmono ≥ 0. Although the monotonic
composition of QMIX generalizes VDN, it still falls short of the full IGM function class.

QPLEX: IGM-complete decomposition QPLEX (Wang et al., 2020) reframes IGM in terms of
advantages, and employs dueling network decomposition to the IGM function class. Given utilities
Qi(hi, ai) and joint action-values Q(h,a), corresponding values and advantages are defined,

Vi(hi)
.
= max

ai

Qi(hi, ai) , Ai(hi, ai)
.
= Qi(hi, ai)− Vi(hi) , (2)

V (h)
.
= max

a
Q(h,a) , A(h,a)

.
= Q(h,a)− V (h) . (3)

1We employ set notation and Cartesian products to highlight that maximal actions may not be unique.
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Wang et al. (2020) reformulate IGM as a set of constraints between individual and joint advantages.
Proposition 1 (Advantage Constraints). Individual utilities {Qi(hi, ai)}i∈I and joint values
Q(h,a) satisfy IGM iff, ∀h ∈ H, ∀a∗ ∈ A∗(h), and ∀a ∈ A \A∗(h),

A(h,a∗) = 0 , Ai(hi, a
∗
i ) = 0 , (4)

A(h,a) < 0 , Ai(hi, ai) ≤ 0 , (5)

where A∗(h)
.
= argmaxa Q(h,a) is the set of maximal joint actions according to the joint values.

QPLEX employs a mixing structure that enforces Proposition 1. Individual utilities Q̂i(hi, ai) are
decomposed into V̂i(hi) and Âi(hi, ai) and transformed using centralized information,

V̂i(h)
.
= wi(h)V̂i(hi) + bi(h) , Âi(h, ai)

.
= wi(h)Âi(hi, ai) , (6)

where wi : H → R>0 are parametric positive weights and bi : H → R are parametric biases. These
transformed values are aggregated as weighted sums,

V̂PLEX(h)
.
=

∑
i

V̂i(h) , ÂPLEX(h,a)
.
=

∑
i

λi(h,a)Âi(h, ai) , (7)

where λi : H ×A → R>0 are parametric positive weights. The QPLEX joint values are obtained
by recombining aggregate values and advantages, Q̂PLEX(h,a)

.
= V̂PLEX(h) + ÂPLEX(h,a).

This sequence of decomposition, transformations, and recomposition, combined with positive
weights wi and λi, results in the constraint from Proposition 1 being satisfied. Consequently, Wang
et al. (2020) appeal to the universal approximation theorem (UAT) to argue that the function class of
QPLEX is IGM-complete. In Appendix A, we address technical concerns and conclude that, based
on a weaker form of UAT, the function class realizable by QPLEX is that of measurable IGM values.

State-based value function decomposition Practical implementations of value function decom-
position methods often employ state-based joint values Q(h, s,a) and diverge from the stateless
theoretical derivations in ways that may undermine core IGM properties, e.g., as seen for QMIX in
Pymarl Rashid et al. (2020b), QMIX in Pymarl2 Ellis et al. (2023), and both QMIX and QPLEX
in JaxMARL Rutherford et al. (2024)) To address the effects of state in value function decomposi-
tion, Marchesini et al. (2024) formulate a state-compliant version of IGM.
Definition 3 (State-based IGM). Individual utilities {Qi(hi, ai)}i∈I and state-based joint values
Q(h, s,a) satisfy state-based IGM iff×i

argmaxai
Qi(hi, ai) = argmaxa Es|h [Q(h, s,a)].

Marchesini et al. (2024) show that the state-based implementations of QMIX and QPLEX continue
to satisfy IGM, while the state-based implementation of QPLEX (which employs historyless state-
based weights wi(s), λi(s,a)) fails to achieve the full IGM function class. Nonetheless, state-based
implementations often perform well in practice, and remain a common occurrence.

4 FIXING INCOMPLETE VALUE FUNCTION DECOMPOSITION

Although QPLEX is IGM-complete, it is expressed as a convoluted sequence of transformations that
are never fully motivated or justified. Fully unrolling the QPLEX values in terms of the individual
utilities, we get Q̂PLEX(h,a) =

∑
i wi(h)V̂i(hi) + bi(h) + wi(h)λi(h,a)Âi(hi, ai), a complex

expression that raises questions about which components are truly important or necessary, e.g., the
product of individual advantages with two types of positive weights wi(h) and λi(h,a) appears to
be redundant. Ultimately, QPLEX only represents one instance in the space of all IGM-complete
models, and whether simpler or better-performing models exist remains an open question.

The convoluted nature of the QPLEX transformations motivate us to find a simpler and more general
formulation of IGM-complete decomposition. In this section, we first present a simple formulation
of the IGM-complete function class. Then, we use this formulation to derive QFIX, a novel family of
value function decomposition models that operate by “fixing” (read: expanding) the representation
capabilities of prior non-IGM-complete models. We derive two primary instances of QFIX based on
“fixing” VDN and QMIX respectively, and a third instance designed to resemble QPLEX. Then, we
derive additive QFIX (Q+FIX), a simple variant of QFIX that achieves significant practical perfor-
mance gains, and derive Q+FIX counterparts of the QFIX instances. Finally, we discuss state-based
variants of QFIX and how the use of centralized state information affects its theoretical properties.

4
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Figure 1: Diagrams for QFIX (left) and Q+FIX (right).

4.1 A SIMPLE PARAMETERIZATION OF THE IGM FUNCTION CLASS

We aim to formalize IGM-complete value function decomposition in its simplest and most essential
form. We begin by simplifying Proposition 1, noting that three of its four constraints are satisfied
by definition; the only one that requires active enforcement is Ai(hi, a

∗
i ) = 0, or equivalently

A(h,a) = 0 =⇒ ∀i (Ai(hi, ai) = 0). However, we also note that Proposition 1 is actually
underspecified, and misidentifies the case where ∀i(Ai(hi, ai) = 0) and A(h,a) < 0 as compliant
with IGM when it is not.2 To address this case, we need ∀i (Ai(hi, ai) = 0) =⇒ A(h,a) = 0.

Proposition 2 (Simplified Advantage Constraints). Individual utilities {Qi(hi, ai)}i∈I and joint
values Q(h,a) satisfy IGM iff ∀i (Ai(hi, ai) = 0) ⇐⇒ A(h,a) = 0, or equivalently, via
contraposition, ∃i (Ai(hi, ai) < 0) ⇐⇒ A(h,a) < 0.

In essence, constructing joint advantages that are negative iff any of the individual advantages are
negative is both sufficient and necessary to satisfy IGM. Consider the purposefully named function

QIGM(h,a)
.
= w(h,a)f(u1, . . . , uN ) + b(h) , (8)

where w : H×A → R>0 is an arbitrary positive function of joint history and joint action, b : H →
R is an arbitrary function of joint history, and f : RN

≤0 → R≤0 is a non-positive function that is zero
iff all inputs are zero, e.g., f(u1, . . . , uN ) =

∑
i ui is a simple instance of f . Then,

VIGM(h)
.
= max

a
QIGM(h,a) = b(h) , (9)

AIGM(h,a)
.
= QIGM(h,a)− VIGM(h) = w(h,a)f(u1, . . . , uN ) . (10)

Essentially, QIGM denotes a relationship where any deviation from individual maximality (charac-
terized by at least one negative utility ui < 0, and corresponding to a negative f(u1, . . . , uN ) < 0)
is transformed into an arbitrary deviation w(h,a)f(u1, . . . , uN ) < 0 from joint maximality (and
vice versa). Per Proposition 2, QIGM represents the full IGM function class.

Proposition 3. For any f , w, and b, values {Qi}i∈I and QIGM satisfy IGM. For any f , and given
free choice of w and b, the function class of {Qi}i∈I and QIGM is IGM-complete. (Proof in Ap-
pendix B.1.)

QIGM is a simple formulation of the IGM function class based on a single weighted (via w) trans-
formation (via f ) of individual advantages. Next, we explore how this formulation directly inspires
the derivation of QFIX, a closely related novel family of value function decomposition models.

4.2 QFIX

Let Q̂fixee(h,a) denote a “fixee” value function decomposition model that satisfies IGM but is not
IGM-complete, e.g., VDN or QMIX. Equation (8) suggests a method to “fix” Q̂fixee and expand its
function class to match the full class of IGM functions. We can extend the expressiveness of Q̂fixee

by processing it through a “fixing” network that resembles Eq. (8),

Q̂FIX(h,a)
.
= w(h,a)Âfixee(h,a) + b(h) , (11)

2Luckily, this issue is exclusive to Proposition 1, and QPLEX itself does not suffer from the same issue.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where w : H × A → R>0 is a parametric positive model, b : H → R is a parametric model, and
Âfixee : H×A → R≤0 is the non-positive joint advantage of the fixee as defined by

V̂fixee(h)
.
= max

a
Q̂fixee(h,a) , Âfixee(h,a)

.
= Q̂fixee(h,a)− V̂fixee(h) . (12)

See Fig. 1 for a diagram of QFIX. We note that Âfixee(h,a) = 0 iff the joint action a is maximal
according to Q̂fixee, and negative otherwise. Given that Q̂fixee satisfies IGM by assumption, a
is maximal iff the individual actions ai are maximal according to Q̂i(hi, ai), or, equivalently, iff
Âi(hi, ai) = 0. In short, Âfixee(h,a) satisfies the requirements of f under Eq. (8).

Proposition 4. QFIX satisfies IGM. The function class of QFIX is that of (measurable) IGM values.
(Proof in Appendix B.2.)

Given the free choice of fixee model Q̂fixee, QFIX really represents a wide family of value function
decomposition models. This allows us to consider more or less complex fixees (e.g., VDN, QMIX)
and explore various possible tradeoffs between minimizing the complexity of the fixee model and
minimizing the “fixing” burden on the fixing models w, b. In our empirical evaluation, we will
generally find that the fixing burden on w, b is not significant, and that it is perfectly reasonable to
combine QFIX with simpler fixees like VDN or tiny versions of parametric fixees like QMIX.

Relationship to QPLEX The advantage component of QFIX, w(h,a)Âfixee(h,a), is similar to
one of the transformations of QPLEX,

∑
i λi(h,a)Âi(h, ai), which comparably applies positive

weights to transformed aggregates of the individual advantages. This similarity is no coincidence,
as it is specifically that component of QPLEX that is responsible for achieving IGM-completeness; it
is a more convoluted form of our proposed fixing structure. However, QPLEX also employs various
other transformations that do not contribute to the IGM-complete function class, and their necessity
remains questionable (beyond general considerations of modeling structure and size).

The weights λi(h,a) employed by QPLEX are also more complex in that there is one such model
per agent, and each is implemented via self-importance. In contrast, we employ a simpler structure
based on a single model implemented as a simple feed-forward network, and still manage to achieve
performance improvements. Our formulation is simpler in that it focuses entirely on this single
transformation, which is minimally sufficient to guarantee IGM-completeness.

Fixing VDN We define QFIX-sum as an instance of QFIX based on “fixing” VDN, i.e., with
Q̂fixee(h,a) = Q̂VDN(h,a), which results in (see Appendix C.3 for an explicit derivation)

Q̂FIX-sum(h,a) = w(h,a)
∑
i

Âi(hi, ai) + b(h) . (13)

Fixing QMIX We define QFIX-mono as an instance of QFIX based on “fixing” QMIX, i.e., with
Q̂fixee(h,a) = Q̂MIX(h,a), which results in (see Appendix C.4 for an explicit derivation)

Q̂FIX-mono(h,a) = w(h,a) (fmono(q1, . . . , qN )− fmono(v1, . . . , vN )) + b(h) . (14)

Simplifying QPLEX Given the discussed similarity between QFIX and QPLEX, we may consider
another variant of QFIX that also applies per-agent positive weights wi(h,a) > 0. Due to the linear
structure that generalizes the additive structure of QFIX-sum, we call this variant QFIX-lin.

Q̂FIX-lin(h,a)
.
=

∑
i

wi(h,a)Âi(hi, ai) + b(h) . (15)

QFIX-lin does not strictly satisfy the form of Eq. (11), however, it represents a close enough variant
of QFIX-sum that we consider it QFIX-adjacent and name it accordingly. QFIX-lin is a strict gen-
eralization of QFIX-sum, which can be recovered as a special case where all the weights wi(h,a)
are equal. Formally, we must prove the IGM properties of QFIX-lin separately.

Proposition 5. QFIX-lin satisfies IGM. The function class of QFIX-lin is that of (measurable) IGM
values. (Proof in Appendix B.3.)
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Recovering the fixee model We note that QFIX is able recover the fixee model via w(h,a) = 1

and b(h) = V̂fixee(h), for which Q̂FIX(h,a) = Âfixee(h,a) + V̂fixee(h) = Q̂fixee(h,a). Such
values of w(h,a) and b(h) establish a direct relationship between the fixee and fixed models, which
is relevant as we next use this relationship to derive a better-performing additive variant of QFIX.

4.3 ADDITIVE QFIX (Q+FIX)

In this section, we further derive a simple reparameterization of QFIX which, albeit having the same
theoretical properties, achieves significant practical performance improvements. This variant takes
on an additive form when compared to the fixee model, hence its name additive QFIX (Q+FIX).

As previously noted, the values of w(h,a) = 1 and b(h) = V̂fixee(h) hold a special significance for
QFIX. Q+FIX is obtained by reparameterizing w and b to incorporate such values additively,

Q̂+FIX(h,a)
.
= (w(h,a) + 1)Âfixee(h,a) + (b(h) + V̂fixee(h))

= Q̂fixee(h,a) + w(h,a)Âfixee(h,a) + b(h) , (16)

where w : H × A → R>−1 is a parametric model constrained by w(h,a) > −1, b : H → R is
a parametric model, and Q̂fixee and Âfixee are the fixee action-values and advantages. Note that,
with the reparameterization of w, its constraint has changed; Since w(h,a)+1 > 0 must satisfy the
positivity constraint from QFIX, the corresponding constraint for Q+FIX is therefore w(h,a) > −1.

See Fig. 1 for a diagram. This reparameterization allows Q+FIX to more directly exploit the
original form of the fixee model, extending its representation via a separate additive component
∆(h,a)

.
= w(h,a)Âfixee(h,a) + b(h) we call the fixing intervention. Because Q+FIX is a simple

reparameterization of QFIX, the results from Propositions 4 and 5 apply trivially to their Q+FIX
counterparts. Next, we look at specific instances and other relevant implementation details.

Q+FIX-{sum,mono,lin} The Q+FIX counterparts to QFIX-{sum,mono,lin} are as follows. See
Appendices C.5 to C.7 for their corresponding derivations and specialized diagrams.

Q̂+FIX-sum(h,a) =
∑
i

Q̂i(hi, ai) + w(h,a)
∑
i

Âi(hi, ai) + b(h) , (17)

Q̂+FIX-mono(h,a) = fmono(q) + w(h,a) (fmono(q)− fmono(v)) + b(h) , (18)

Q̂+FIX-lin(h,a) =
∑
i

Q̂i(hi, ai) +
∑
i

wi(h,a)Âi(hi, ai) + b(h) . (19)

Detaching the advantages The additive form of Q+FIX enables the use of an implementation
detail already employed by QPLEX that significantly improves performance: the detachment of the
advantages when computing gradients. This can be expressed using the stop-gradient operator,3

Q̂+FIX(h,a) = Q̂fixee(h,a) + w(h,a) stop[Âfixee(h,a)] + b(h) . (20)

The reason why detaching the advantages improves performance is not fully understood. Wang
et al. (2020, Appendix B.2) argue that it (cit.) “increases the optimization stability of the max
operator of the dueling structure”, in reference to dueling networks (Wang et al., 2016). However,
the connection between the detach and dueling networks remains unclear. Instead, we hypothesize
that detaching the advantage may mitigate adverse effects that the fixing structure may have on the
gradients ∇θiQ̂+FIX(h,a) of the joint values w.r.t. the agent parameters θi (see Appendix D).

Annealing the intervention In an effort to stabilize the learning, we have found it occasionally
useful to introduce the fixing intervention smoothly during the early stages of training (≈ 5% of total
timesteps) by employing an auxiliary loss λ∆ · ∆2(h,a) that minimizes the squared intervention,
with a weight λ∆ that is annealed from a starting value down to 0, ultimately disabling this interven-
tion loss. This likely ensures that the early stages of training are focused more on training the fixee
values, so that the fixing intervention can later on focus on making smaller detailed adjustments.

3The stop-gradient function is a mathematical anomaly whose value behaves like the identity function,
stop [x] = x, while its gradient behaves like the zero function, ∇x stop [x] = 0. It is a functionality commonly
provided by deep learning frameworks, e.g., pytorch provides this via the Tensor.detach() method.
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Figure 2: SMACv2 results, bootstrapped 95% CI. Aggregate returns are normalized per-task via
G̃i

.
= Gi−mink Gk

maxk Gk−mink Gk
, where {Gi}i is the total set of returns logged by all models in a given task.

4.4 STATE-BASED VARIANTS

As with QMIX and QPLEX, we may consider state-based variants of QFIX that partially deviate
from the stateless theory developed so far. Such variants warrant an explicit discussion on the
implications of employing centralized state information (Marchesini et al., 2024). Different versions
of state-based QFIX are possible by combining stateless/state-based fixees with stateless/state-based
fixing networks. As Q+FIX is a simple reparameterization of QFIX, its properties w.r.t the use of
state are the same. We briefly summarize the conclusions for two main state-based variants of QFIX,
which are comparable to those for state-based QPLEX (Marchesini et al., 2024): (History-State
QFIX) When employing history-state fixing models w(h, s,a) and b(h, s), QFIX both satisfies
IGM and achieves a form of IGM-complete function class. (State-Only QFIX) When employing
state-only fixing models w(s,a) and b(s), QFIX continues to satisfy IGM, but fails to achieve the
IGM-complete function class. See additional discussion in Appendix E.

5 EVALUATION

We perform an empirical evaluation of Q+FIX in two popular multi-agent frameworks, Pymarl2
and JaxMARL. Appendices G and H contains practical details on architectures and used resources.

SMACv2 Pymarl2 provides baseline implementations for SMACv2 Ellis et al. (2023), a popu-
lar benchmark for cooperative multi-agent control based on the real-time strategy game StarCraft II.
SMACv2 features two battling teams composed by configurable races, race-dependent and stochas-
tically determined unit types, and team sizes. Our empirical evaluation is based on 9 scenarios
obtained by combining the 3 races (Protoss, Terran, and Zerg) with 3 team sizes (5vs5,
10vs10, and 20vs20). We use shorthand labels, e.g., P5, T10, Z20. Pymarl2 provides base
implementations for VDN, QMIX, and QPLEX, and we implemented Q+FIX-{sum,mono,lin}.

Fig. 2a contains the evaluation results based on mean performance, with 5 independent runs per
model per scenario. As expected, VDN fails to be a competitive baseline on its own accord. Fixing
VDN via Q+FIX-sum, we are able to overcome this limitation, as noted by the corresponding perfor-
mance gap. QMIX sometimes exhibits fast initial learning speeds, albeit often to a sub-competitive

8
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Figure 3: Overcooked return mean, bootstrapped 95% CI (20 seeds).

final performance (P5, T5, T10, Z10, T20, Z20). Fixing QMIX via Q+FIX-mono, we are often
able to exploit the initial learning speed and complement it with improved convergence performance.
QPLEX is highly competitive and performs very well in some scenarios (P5, P20, T20, Z20), but
underperforms in others (T5, P10, Z10), and exhibits troubling instabilities (Z5, T10). Q+FIX-lin
avoids such convergence instabilities, likely as a consequence of the simpler structure. Although
Q+FIX-{sum,mono,lin} generally achieve similar performances, Q+FIX-sum may be slightly out-
performing other variants in some scenarios (T5, Z5), possibly an indication that a simpler compo-
sitions are not just sufficient but possibly preferable.

In accordance to the methodology suggested by Agarwal et al. (2021) to improve statistical signif-
icance and alleviate the impact of outliers, Figs. 2b and 2c contain (normalized) aggregate results
based on mean and interquantile mean (IQM). Even ignoring the unstable convergence of QPLEX
via the aggregate IQM results, it is clear that the Q+FIX variants continue to outperform QPLEX at
least marginally. These results demonstrate that Q+FIX succeeds in enhancing the performance of its
fixees, raising them to a level comparable to QPLEX while maintaining a more stable convergence.

Table 1: SMACv2 mixer sizes (smallest highlighted).

Protoss Terran, Zerg
5vs5 10vs10 20vs20 5vs5 10vs10 20vs20

QMIX 38 k 83 k 201 k 36 k 79 k 194 k
QPLEX 135 k 326 k 882 k 126 k 308 k 846 k
Q+FIX-sum 20 k 50 k 138 k 19 k 48 k 133 k
Q+FIX-mono 54 k 180 k 743 k 50 k 169 k 708 k
Q+FIX-lin 21 k 51 k 140 k 19 k 48 k 135 k

Table 1 shows the sizes of mixing models
(for the all methods that have one). Notably,
Q+FIX-{sum,lin} employ the smallest mixing
models by a significant margin, indicating that
their performance is a consequence of our pro-
posed mixing structure rather than model size.

Appendix F.1 contains additional discussion on
the SMACv2 evaluation, implementation de-
tails and chosen metrics, additional winrate results, probability-of-improvement Agarwal et al.
(2021) results, and an evaluation of model sizes for Q+FIX-mono and QMIX.

Overcooked JaxMARL Rutherford et al. (2024) provides baseline implementations for Over-
cooked Carroll et al. (2020), another popular benchmark for cooperative multi-agent control focused
on throughput efficiency. Different layouts represent different challenges, e.g., subtask assignment
and synchronization for efficiency. JaxMARL provides base implementations for independent Q-
learning (IQL), VDN and QMIX (but not QPLEX), and we implemented Q+FIX-{sum,mono,lin}.
Appendix F.2 contains further discussion on these tasks, and additional results.

Fig. 3 contains the evaluation results for three challenging layouts: Coordination-Ring,
Forced-Coordination, and Counter-Circuit. In contrast to the SMACv2 results, this
time it is specifically Q+FIX-mono to outperform other baselines and Q+FIX variants, indicating
that there are concrete situations where Q+FIX is able to exploit a more complex fixee structure.
Aside from this difference, these results reaffirm the ability of QFIX to greatly expand the represen-
tation capabilities of the underlying fixees, enabling higher performances.

6 CONCLUSIONS

In this work, we have advanced our understanding of the IGM function class by proposing a simple
formulation of the IGM property. From this formulation, we were able to naturally derive QFIX,
a novel family of value function decomposition methods that enhance prior methods via a simple
weighted transformation of their outputs, and allows the derivation and implementation of various
IGM-complete models that are significantly simpler than QPLEX. Our empirical evaluation on mul-
tiple SMACv2 and Overcooked tasks demonstrates that QFIX models succeed in (i) enhancing the
performance of prior incomplete models like VDN and QMIX, (ii) achieving similar or better per-
formance than QPLEX, with better convergence stability, and (iii) all this while requiring smaller
mixing models. Our contribution not only represents a novel approach that performs well, but also
opens the door for new methods based on the QFIX framework.
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A IS QPLEX TRULY IGM-COMPLETE?

In this section, we take a closer look at (Wang et al., 2016, Proposition 2) which appeals to the uni-
versal approximation theorem (UAT) to claim that that QPLEX is IGM-complete. We will identify
a technical issue that makes many “strong” forms of UAT not formally applicable, and come to the
primary conclusions that (i) only “weak” forms of UAT are applicable to QPLEX, and (ii) conse-
quently, QPLEX is able to approximate “only” the function class of measurable IGM values. To be
clear, this is far from being a strict limitation in practice, as the class of measurable functions is ex-
tremely wide and contains any reasonable function to model, and mostly excludes deeply degenerate
cases.

The main goal of this discussion is to be more specific in regards to what version of UAT is applicable
to methods like QPLEX (and QFIX), and what kinds of convergence guarantees they actually entail.

Part of the issue at hand is that UATs come in a variety of forms, each making different assump-
tions on the model and establishing different notions of approximation to different classes of target
functions. The UATs of Cybenko (1989) and of Pinkus (1999) are among the most well known,
and are formulated in terms of uniform convergence, a strong notion of approximation that is only
applicable to approximate continuous functions. However, other forms of UAT are applicable to
approximate wider classes of functions, although they are also typically associated with weaker no-
tions of approximation. Hornik (1991, Theorem 1) establishes a form of UAT that is applicable to
functions in the Lebesgue spaces Lp and entails convergence in p-norm. Hornik (1991) also infor-
mally formulates a corollary that is applicable to functions that are merely measurable, and “only”
entails convergence in measure µ.
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Which universal approximation theorem? The appeal to UAT made by Wang et al. (2020) cites
a form of UAT that is analogous to those of Cybenko (1989); Pinkus (1999) that are formally ap-
plicable to continuous functions only. However we note two relevant details: (i) QPLEX constructs
Q̂PLEX by composing individual values via models wi, bi and λi; therefore any appeal to UAT must
refer to these models rather than Q̂PLEX as a whole. (ii) The proof of Proposition 2 is based on
constructing a piece-wise target λ∗

i (h,a) that is clearly not guaranteed to be continuous. These are

λ∗
i (h,a) =

{
1
N

A(h,a)
Ai(hi,ai)

when Ai(hi, ai) < 0 ,

any value when Ai(hi, ai) = 0 ,
(21)

where A(h,a) is the advantage of the target IGM value function. Clearly, as the target λ∗
i is not

continuous, it is improper to appeal to a form of UAT that is based on continuous targets.

Resolution To resolve this technicality, we must find a version of UAT that is applicable to a target
like λ∗

i . It is not immediately clear that λ∗
i belongs to a Lebesgue space Lp, or what kinds of simple

assumptions can be formulated to make it so. As a simple resolution, we instead appeal to the
weaker form of UAT by Cybenko (1989) (presented informally in the discussion section) based on
measurable functions. However, even this form of UAT still requires some technical assumptions.

To guarantee that λ∗
i is measurable, it is sufficient to assume that Qi(hi, ai) and Q(h,a) are mea-

surable functions. Then,

• Vi(hi), V (h), Ai(hi, ai), A(h,a) are measurable;
• argmaxhi,ai

Ai(hi, ai) (the preimage of Ai(hi, ai) = 0) is a measurable set;
• λ∗

i is a piece-wise function defined by combining measurable functions partitioned in (two)
measurable sets, and is therefore also measurable.

This is sufficient to guarantee convergence to λ∗
i in measure. Technically this assumption means

that there are non-measurable IGM values that cannot be approximated by QPLEX (nor QFIX).
However, we reiterate that this is not a practical concern as (i) they represent an insignificant subset
of all IGM values, and (ii) they are degenerate and unlikely to match realistic and desirable notions
of values.

B PROOFS

B.1 PROOF OF PROPOSITION 3

We prove the two statements separately.

QIGM satisfies IGM

Proof. For any given joint history h, let a∗i ∈ argmaxai
Qi(hi, ai) denote any maximal action

according to the individual utilities, and let a∗ = (a∗1, . . . , a
∗
N ) be a joint action constructed accord-

ingly. For any a∗ constructed this way, the corresponding advantage utilities are zero ∀i (u∗
i = 0),

and
QIGM(h,a∗) = w(h,a∗) f(u∗

1, . . . , u
∗
N )︸ ︷︷ ︸

=0

+b(h)

= b(h) . (22)

For any other a, we have at least one strictly negative utility ∃i (ui < 0), and
QIGM(h,a) = w(h,a)︸ ︷︷ ︸

>0

f(u1, . . . , uN )︸ ︷︷ ︸
<0

+b(h)

< b(h) . (23)

Therefore a∗ ∈ argmaxa QIGM(h,a), and the actions that maximize the individual utilities also
maximize the joint value.
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QIGM is IGM-complete

Proof by mutual inclusion. Let us denote the function class of QIGM as FC(QIGM), and the IGM-
complete function class as FCIGM. We prove FC(QIGM) = FCIGM by mutual inclusion:

1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM, i.e., QIGM satisfies IGM (already proven above),

2. Q ∈ FCIGM =⇒ Q ∈ FC(QIGM), i.e., any IGM function is representable by QIGM.

Step 1 was already proven earlier. Next, we prove step 2.

Let Qi(hi, ai) and Q(h,a) denote an arbitrary set of individual and joint values that satisfy IGM,
i.e., Q ∈ FCIGM. Let us denote the usual corresponding individual values and advantages as
follows,

Vi(hi) = max
ai

Qi(hi, ai) , Ai(hi, ai) = Qi(hi, ai)− Vi(hi) , (24)

V (h) = max
a

Q(h,a) , A(h,a) = Q(h,a)− V (h) , (25)

with the usual shorthand qi = Qi(hi, ai) and vi = Vi(hi), and ui = Ai(hi, ai).

For any f that satisfies the requirements of Eq. (8), let w and b be defined as follows,

b(h) = V (h) , (26)

w(h,a) =

{
A(h,a)

f(u1,...,uN ) , if f(u1, . . . , uN ) ̸= 0 ,

any value , otherwise .
(27)

For any given joint history h, let a∗i ∈ argmaxai
Qi(hi, ai) denote a maximal action according to

the individual utilities, and a∗ = (a∗1, . . . , a
∗
N ) the corresponding joint action. Given that Q satisfies

IGM by assumption, we have a∗ ∈ argmaxa Q(h,a), and Q(h,a∗) = maxa Q(h,a) = V (h).

For any a∗ constructed this way, the corresponding advantage utilities are zero ∀i (ui = 0), and

QIGM(h,a∗) = w(h,a∗)f(u1, . . . , uN ) + b(h)

= w(h,a∗) f(0, . . . , 0)︸ ︷︷ ︸
=0

+b(h)

= V (h)

= Q(h,a∗) . (28)

For any other a, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h,a) = w(h,a)f(u1, . . . , uN ) + b(h)

=
A(h,a)

f(u1, . . . , uN )
f(u1, . . . , uN ) + V (h)

= A(h,a) + V (h)

= Q(h,a) . (29)

In either case, QIGM(h,a) = Q(h,a) for all inputs. Therefore Q ∈ FCIGM =⇒ Q ∈
FC(QIGM).

B.2 PROOF OF PROPOSITION 4

Proof. Equation (11) satisfies the form and requirements of Eq. (8). Therefore, IGM follows from
Proposition 3. Assuming target IGM values that are measurable, then the targets constructed in the
proof of Proposition 3 are also measurable, and we can appeal to the universal approximation theo-
rems of Hornik (1991) to show that w, b are able to approximate such targets. (also see Appendix A
for a similar discussion relating to QPLEX).

13
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B.3 PROOF OF PROPOSITION 5

Proof. QFIX-lin is a monotonic function of individual advantages and therefore satisfies IGM.
QFIX-lin is also a generalization of QFIX-sum, therefore its function class is a superset of the QFIX-
sum function class, i.e., the class of measurable IGM values. Therefore, QFIX-lin can represent all
measurable functions that satisfy IGM, and none of those that do not satisfy IGM.

C DERIVATIONS

This section contains explicit long-form derivations that had to be removed from the main document
due to space limitations.

C.1 VDN MAXIMAL VALUES AND ADVANTAGES

As a reminder, VDN action-values are defined as Q̂VDN(h,a)
.
=

∑
i Q̂i(hi, ai). Due to the the

linear (monotonic) mixing structure, the joint maximal values V̂VDN(h) can be expressed as the
sum of the individual maximal values,

V̂VDN(h)
.
= max

a
Q̂VDN(h,a)

= max
a1,...,aN

∑
i

Q̂i(hi, ai)

=
∑
i

max
ai

Q̂i(hi, ai) (monotonicity)

=
∑
i

V̂i(hi) , (30)

and the joint advantages ÂVDN(h,a) can be expressed as the sum of the individual advantages,

ÂVDN(h,a)
.
= Q̂VDN(h,a)− V̂VDN(h)

=
∑
i

Q̂i(hi, ai)−
∑
i

V̂i(hi)

=
∑
i

Q̂i(hi, ai)− V̂i(hi)

=
∑
i

Âi(hi, ai) . (31)

C.2 QMIX MAXIMAL VALUES AND ADVANTAGES

As a reminder, QMIX action-values are defined as Q̂MIX(h,a)
.
= fmono (q1, . . . , qN ). Due to the

monotonic mixing structure, the joint maximal values V̂MIX(h) can be expressed as the monotonic
mixing of the individual maximal values,

V̂MIX(h)
.
= max

a
Q̂MIX(h,a)

= max
a1,...,aN

fmono

(
Q̂1(h1, a1), . . . , Q̂N (hN , aN )

)
= fmono

(
max
a1

Q̂1(h1, a1), . . . ,max
aN

Q̂N (hN , aN )

)
(monotonicity)

= fmono

(
V̂1(h1), . . . , V̂N (hN )

)
= fmono (v1, . . . , vN ) , (32)

and the joint advantages ÂMIX(h,a) can be expressed as the corresponding difference,

ÂMIX(h,a)
.
= Q̂MIX(h,a)− V̂MIX(h)

= fmono (q1, . . . , qN )− fmono (v1, . . . , vN ) . (33)
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MLP MLP

Agent Agent 

VDN + Additive Fixing Network

MLP

RNN

MLP

(a) Q+FIX-sum diagram.

MLP MLP

Agent Agent 

QMIX + Additive Fixing Network

MLP

RNN

MLP

(b) Q+FIX-mono diagram.

MLP MLP

Agent Agent 

VDN + Additive Fixing Network

MLP

RNN

MLP

(c) Q+FIX-lin diagram.

Figure 4: Specialized diagrams for Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin.

C.3 QFIX-SUM

QFIX-sum is an instance of QFIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a).
From Eq. (31), we have that the VDN joint advantage is given as the sum of individual advantages
(hence the “-sum” suffix). Therefore, QFIX-sum is simply obtained as

Q̂FIX-sum(h,a)
.
= w(h,a)ÂVDN(h,a) + b(h)

= w(h,a)
∑
i

Âi(hi, ai) + b(h) . (34)

C.4 QFIX-MONO

QFIX-mono is an instance of QFIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a).
From Eq. (33), we have that the QMIX advantage is given as a difference between monotonic com-
positions of individual utilities (hence the “-mono” suffix). Therefore, QFIX-mono is simply ob-
tained as

Q̂FIX-mono(h,a)
.
= w(h,a)ÂMIX(h,a) + b(h)

= w(h,a)(fmono(q1, . . . , qN )− fmono(v1, . . . , vN )) + b(h) . (35)

C.5 Q+FIX-SUM

Q+FIX-sum is an instance of Q+FIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a)

and Âfixee(h,a) = ÂVDN(h,a), also equivalent to the additive formulation of QFIX-sum. There-
fore, Q+FIX-sum is simply obtained as

Q̂+FIX-sum
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
=

∑
i

Q̂i(h,a) + w(h,a)
∑
i

Âi(h,a) + b(h) . (36)

Figure 4a shows a graphical diagram for Q+FIX-sum.

C.6 Q+FIX-MONO

Q+FIX-mono is an instance of Q+FIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a)

and Âfixee(h,a) = ÂMIX(h,a), also equivalent to the additive formulation of QFIX-mono. There-
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fore, Q+FIX-mono is simply obtained as

Q̂+FIX-mono
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
= fmono(q1, . . . , qN ) + w(h,a) (fmono(q1, . . . , qN )− fmono(v1, . . . , vN )) + b(h) .

(37)
Figure 4b shows a graphical diagram for Q+FIX-mono.

C.7 Q+FIX-LIN

Q+FIX-lin is the additive formulation of QFIX-lin. Just as QFIX-lin is not formally a member of the
QFIX family, but rather a generalization of QFIX-sum, so is Q+FIX-lin not formally a member of
Q+FIX, but rather a generalization of Q+FIX-sum. Given that QFIX-lin is obtained by introducing
per-agent weights wi(h,a), Q+FIX-lin is simply obtained as

Q̂+FIX-lin
.
=

∑
i

Q̂i(hi, ai) +
∑
i

wi(h,a)Âi(hi, ai) + b(h) .

Figure 4c shows a graphical diagram for Q+FIX-lin.

D WHY DOES DETACHING THE ADVANTAGES HELP Q+FIX?

First, we note that the gradients ∇θiQ̂+FIX(h,a) when the advantages are not detached are

∇θiQ̂+FIX(h,a) = ∇θiQ̂fixee(h,a) + w(h,a)∇θiÂfixee(h,a)

= ∇θi V̂fixee(h) + (w(h,a) + 1)∇θiÂfixee(h,a) . (38)

It seems plausible that there may be values of w(h,a) that could result in non-ideal gradient signals.
For example, a low fixing weight w(h,a) ≈ −1 results in a dampened gradient ∇θiQ̂+FIX(h,a) ≈
∇θi V̂fixee(h), that is notably independent on actions. On the other end of the spectrum, a very large
fixing weight w(h,a) ≫ −1 results in a gradient that is dominated by the highly-weighted advan-
tage component, overcoming the value component, ∇θiQ̂+FIX(h,a) ≈ w(h,a)∇θiÂfixee(h,a).
On each end of the spectrum, the gradient will propagate almost exclusively through the values
∇θi V̂fixee(h) or through the advantages ∇θiÂfixee(h,a).

On the other hand, the gradients ∇θiQ̂+FIX(h,a) when the advantages are detached are

∇θiQ̂+FIX(h,a) = ∇θiQ̂fixee(h,a)

= ∇θi V̂fixee(h) +∇θiÂfixee(h,a) , (39)
and are invariant to the fixing structure, equally dependent on the value and advantage components.

E STATE-BASED QFIX

In this section, we extend some of the theory of QFIX to the state-based case. As mentioned in the
main document, we consider two cases of state-based QFIX, a history-state case and state-only case,
which differ in what information is provided to the fixing network. The derivations and proofs will
follow closely those of the stateless case, although not all conclusions will transfer to all state-based
cases. Primarily, we will find that state-only QFIX (like other state-only variants of other methods)
is not able to represent the full IGM-complete space of value functions.

E.1 HISTORY-STATE QFIX

Consider a history-state variant of QIGM from Eq. (8) defined as follows,
QIGM(h, s,a)

.
= w(h, s,a)f(u1, . . . , uN ) + b(h, s) , (40)

where ui and f are defined as in Section 4.1, w : H × S × A → R>0 is an arbitrary positive
function of joint history, state, and joint action, b : H × S → R is an arbitrary function of joint
history and state. As in the stateless case, QIGM(h, s,a) denotes a relationship where any deviation
from individual maximality is transformed into an arbitrary deviation from joint maximality.
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Proposition 6. For any f , w, and b, values {Qi}i∈I and QIGM satisfy state-based IGM.

Proof. This proof follows the same structure as that for Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according

to the individual utilities, and a∗ = (a∗i , . . . , a
∗
N ) the joint action constructed by those individual

actions. We prove that QIGM satisfies state-based IGM in two steps:

1. a∗ = argmaxa QIGM(h, s,a), i.e., the individual maximal actions also maximize the joint
history-state values.

2. a∗ = argmaxa Es|h [QIGM(h, s,a)], i.e., the individual maximal actions also maximize
the marginalized joint history-state values.

Step 1. The advantage utilities corresponding to a∗ are zero ∀i(ui = 0) by definition, and

QIGM(h, s,a∗) = w(h, s,a∗) f(u1, . . . , uN )︸ ︷︷ ︸
=0

+b(h, s)

= b(h, s) . (41)

For any other non-maximal action a, we have at least one strictly negative utility ∃i(ui < 0), and

QIGM(h, s,a∗) = w(h, s,a∗)︸ ︷︷ ︸
>0

f(u1, . . . , uN )︸ ︷︷ ︸
<0

+b(h, s)

< b(h, s) . (42)

Therefore, a∗ = argmaxa QIGM(h, s,a), and the actions that maximize the individual utilities also
maximize the joint history-state value.

Step 2. Note that a∗ = argmaxa QIGM(h, s,a) is valid for any state, at the very least because a∗

are defined via the stateless individual utilities.

If a∗ maximizes the joint history-state values for any given state, then it also maximizes the
joint history-state values when marginalized over any distribution of state p ∈ ∆S, and a∗ =
argmaxa Es∼p [QIGM(h, s,a)]. This must be true also for the specific distribution p(s)

.
= Pr(s |

h), and a∗ = argmaxa Es|h [QIGM(h, s,a)].

Therefore, the same actions a∗ that maximize the individual utilities, also maximize the marginal-
ized joint history-state values, satisfying the definition of state-based IGM in Definition 3.

When it comes to a state-based form of IGM-complete function class, we must be very clear as to
what it is that we are able to prove. We are not able to prove that QIGM(h, s,a) covers the whole
state-based IGM function class of values that satisfy state-based IGM (we do not believe this is
possible, though we will not go into that amount of detail here). Instead, we prove that the projected
space of stateless values obtained by marginalizing the state-based values via Es|h [QIGM(h, s,a)]
is the IGM-complete function class.

Proposition 7. For any f , and given free choice of w and b, the function class of {Qi}i∈I and
projected Es|h [QIGM] is IGM-complete.

Proof. This proof follows the same structure as that for Proposition 3, although we consider
the projected space stateless values Es|h [QIGM(h, s,a)] obtained from the state-based values
QIGM(h, s,a).

Let us denote the projected function class of QIGM as FC(QIGM), and the state-based IGM-
complete function class as FCIGM. We prove the equivalence FC(QIGM) = FCIGM in two steps:

Step 1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM follows directly from Proposition 6.
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Step 2. Let Qi(hi, ai) and Q(h,a) denote an arbitrary set of individual and joint values that satisfy
IGM, i.e., Q ∈ FCIGM. Let us denote the usual corresponding values and advantages as follows,

Vi(hi) = max
ai

Qi(hi, ai) , Ai(hi, ai) = Qi(hi, ai)− Vi(hi) , (43)

but, let us define a different notion of joint values and advantages for this history-state case (note the
stateless V , state-based A),

V (h) = max
a

Q(h,a) , A(h,a) = Q(h,a)− V (h) , (44)

with the usual shorthand qi = Qi(hi, ai) and vi = Vi(hi), and ui = Ai(hi, ai).

For any f that satisfies the requirements of Eq. (41), let w and b be defined as follows,
b(h, s) = V (h) , (45)

w(h, s,a) =

{
A(h,a)

f(u1,...,uN ) , if f(u1, . . . , uN ) ̸= 0 ,

any value , otherwise .
(46)

These definitions effectively create state-based values QIGM(h, s,a) that are state-independent, and
functionally equivalent to stateless values QIGM(h,a). Although this appears to be a severe misuse
of the additional state information, it is sufficient to prove the claim that the projected space of
stateless values obtained via marginalization Es|h [QIGM(h,a)] is IGM-complete. It’s easy to see
that the rest of the proof can not proceed as in Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according to

the individual utilities, and a∗ = (a∗1, . . . , a
∗
N ) the corresponding joint action. Given that Q satisfies

IGM by assumption, we have a∗ = argmaxa Q(h,a), and Q(h,a∗) = maxa Q(h,a) = V (h).

For this joint action a∗, the corresponding individual advantage utilities are zero ∀i (ui = 0) by
definition, and

QIGM(h, s,a∗) = w(h, s,a∗)f(u1, . . . , uN ) + b(h, s)

= w(h, s,a∗) f(0, . . . , 0)︸ ︷︷ ︸
=0

+b(h, s)

= V (h)

= Q(h,a∗) . (47)

For any other non-maximal action a†, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h, s,a†) = w(h, s,a†)f(u1, . . . , uN ) + b(h, s)

=
A(h,a†)

f(u1, . . . , uN )
f(u1, . . . , uN ) + V (h)

= A(h,a†) + V (h)

= Q(h,a†) . (48)

In either case, QIGM(h, s,a) = Q(h,a) for all joint histories, states, and actions, which trivially
implies Es|h [QIGM(h, s,a)] = Q(h,a). Therefore Q ∈ FCIGM =⇒ Q ∈ FC(QIGM).

E.2 STATE-ONLY QFIX

Consider a state-only variant of QIGM from Eq. (8) defined as follows,
QIGM(h, s,a)

.
= w(s,a)f(u1, . . . , uN ) + b(s) , (49)

where ui and f are defined as in Section 4.1, w : S × A → R>0 is an arbitrary positive function
of joint history, state, and joint action, b : S → R is an arbitrary function of joint history and state.
As in the stateless case, QIGM(h, s,a) denotes a relationship where any deviation from individual
maximality is transformed into an arbitrary deviation from joint maximality. Note that the name
state-only refers moreso to the fixing models w, b, than the values as a whole that remain at least in
part history-based due to the dependence on the individual history-based utilities.
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Proposition 8. For any f , w, and b, values {Qi}i∈I and QIGM satisfy state-based IGM.

Proof. This proof follows the same structure as that for Proposition 3.

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according

to the individual utilities, and a∗ = (a∗i , . . . , a
∗
N ) the joint action constructed by those individual

actions. We prove that QIGM satisfies state-based IGM in two steps:

1. a∗ = argmaxa QIGM(h, s,a), i.e., the individual maximal actions also maximize the
state-only values.

2. a∗ = argmaxa Es|h [QIGM(h, s,a)], i.e., the individual maximal actions also maximize
the marginalized joint state-only values.

Step 1. The advantage utilities corresponding to a∗ are zero ∀i(ui = 0) by definition, and

QIGM(h, s,a∗) = w(s,a∗) f(u1, . . . , uN )︸ ︷︷ ︸
=0

+b(s)

= b(s) . (50)

For any other non-maximal action a, we have at least one strictly negative utility ∃i(ui < 0), and

QIGM(h, s,a∗) = w(s,a∗)︸ ︷︷ ︸
>0

f(u1, . . . , uN )︸ ︷︷ ︸
<0

+b(s)

< b(s) . (51)

Therefore, a∗ = argmaxa QIGM(h, s,a), and the actions that maximize the individual utilities also
maximize the joint state-only value.

Step 2. Note that a∗ = argmaxa QIGM(h, s,a) is valid for any state, at the very least because a∗

are defined via the stateless individual utilities.

If a∗ maximizes the joint history-state values for any given state, then it also maximizes the
joint history-state values when marginalized over any distribution of state p ∈ ∆S, and a∗ =
argmaxa Es∼p [QIGM(h, s,a)]. This must be true also for the specific distribution p(s)

.
= Pr(s |

h), and a∗ = argmaxa Es|h [QIGM(h, s,a)].

Therefore, the same actions a∗ that maximize the individual utilities, also maximize the marginal-
ized joint history-state values, satisfying the definition of state-based IGM in Definition 3.

In contrast to history-state QFIX in Appendix E.1, we are not able to prove that state-only QFIX is
able to represent the complete function class of IGM values.

F EVALUATION DETAILS AND ADDITIONAL RESULTS

F.1 SMACV2

Implementation details We note that Pymarl2 provides state-based implementations of QMIX
and QPLEX. For QPLEX in particular, this means that state-only weights wi(s) and λi(s,a) are
employed. As discussed by Marchesini et al. (2024), the state-only implementation of QPLEX loses
some of the theoretical properties related to full IGM-completeness (and the same holds for Q+FIX,
see Appendix E). However, to maintain a fair comparison, our implementation of Q+FIX employs
analogous state-based implementation with state-only weights w(s,a) for Q+FIX-{sum,mono}, and
wi(s,a) for Q+FIX-lin. QPLEX and Q+FIX implementations both employ advantage detaching as
previously described. For these SMACV2 experiments, we did not find it necessary to employ
intervention annealing.
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Figure 5: SMACv2 winrate results, bootstrapped 95% CI.

Metrics SMACv2 logs various metrics pertaining to team performance, including the mean return
and the mean winrate obtained as the ratio of episodes where the agents succeed in defeating the
enemies. Although the winrate is a common metric used in prior work (e.g., Wang et al. (2020) use
the winrate in their SMACv1 evaluation), we have found that winrates induce a different ordering
over performances, i.e., it is possible to obtain a higher winrate while achieving a lower return, and
vice versa. This indicates that the rewards of SMACv2 do not perfectly encode the task of defeating
the enemies—a matter of reward design that is beyond the scope of this work. Since returns are
the metric that the methods are directly trained to maximize, we prioritize returns as our primary
evaluation metric in the main document, but also provide winrate results in this appendix.

Winrate results In this section, we show additional results based on the winrate metric. As with
the return-based results, we show the learning performance for each model and scenario in Fig. 5a,
and the aggregate winrate across scenarios in Fig. 5b.

Winrates vs returns As mentioned in the main document, the winrate and return metrics induce
correlated but notably different orderings over the evaluated methods. Comparing Figs. 2 and 5, this
is notable by the following (non-exhaustive) observations:

• In T5,

– Return indicates Q+FIX-sum ≻ Q+FIX-mono.
– Winrate indicates Q+FIX-sum ≺ Q+FIX-mono.

• In Z5,

– Return indicates Q+FIX-sum ≻ Q+FIX-mono ≈ Q+FIX-lin.
– Winrate indicates Q+FIX-sum ≈ Q+FIX-mono ≈ Q+FIX-lin.

• In Z10,

– Return indicates VDN ≈ Q+FIX.
– Winrate indicates VDN ≺ Q+FIX.
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• In P20,

– Return indicates VDN ≈ Q+FIX-mono.
– Winrate indicates VDN ≺ Q+FIX-mono.

• In T10, the return of QPLEX drops significantly around the 9M timestep mark, whereas
its winrate is able to recover temporarily, indicating that high winrates are achievable even
with low returns.

Comparing the final performances in Figs. 2b and 5b,

• Return indicates VDN ≺ QMIX ≺ QPLEX.

• Winrate indicates QPLEX ≺ VDN ≈ QMIX.

Winrate results discussion Despite the notable differences between returns and winrates as eval-
uation metrics, the winrate-based evaluation arrives to largely the same conclusions as the return-
based one in the main document, with respect to the performance evaluation of Q+FIX compared to
other baselines.

As in the return-based results, VDN fails to be a competitive baseline on its own for most scenarios,
likely due to the well-known limited representation. Fixing VDN via Q+FIX-sum, we are able
to overcome this limitation (as noted by the performance gap between VDN and Q+FIX-sum),
expanding its representation space and reaching SOTA performance.

As in the return-based results, QMIX sometimes exhibits fast initial learning speeds, albeit often to
a sub-competitive final performance (P5, T5, T10, Z10, T20, Z20), again a likely consequence of
its limited representation. Fixing QMIX via Q+FIX-mono, we are often able to exploit the initial
learning speeds and complement them with improved performance at convergence reaching SOTA
performance.

Compared to return-based results, QPLEX appears less competitive, and performs very well in fewer
scenarios (P20, T20, Z20), and underperforms in more (T5, Z10), and exhibits the same trou-
bling convergence instabilities as well (Z5, T10). Q+FIX-lin, as the simplified variant inspired by
QPLEX, manages to avoid such convergence instabilities, plausibly as a consequence of the simpler
structure.

As in the return-based results, Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve similar learning
performances in most cases, with only minor differences across scenarios. Compared to the return-
based results, it is Q+FIX-mono that may be slightly outperforming other variants in some scenarios
(T5, Z5).

The aggregate results in Figs. 5b and 5c largely confirm the trends discussed above. Even when
employing the IQM measure, which ignores the unstable QPLEX outlier rus, Q+FIX comes out as
achieving higher performance. Despite the concerning difference between the return and winrate
metrics, both demonstrate that Q+FIX succeeds in enhancing the native performances of VDN and
QMIX fixees, and lifts them to a similar level as QPLEX while maintaining more stable convergence.

Model size evaluation One of the major appeals of Q+FIX over prior models is in its simplic-
ity, and its ability to enhance prior models to achieve IGM-complete value function decomposition
with small models. Because Q+FIX operates by augmenting existing fixee models with additional
models w(h,a) and b(h), there may be other concerns regarding whether the superior performance
of Q+FIX comes simply as a consequence of the larger parameterization compared to the corre-
sponding fixee. Table 2 contains a complete list of mixer sizes. Note that the mixer of Q+FIX-sum
is always larger than that of VDN, and the mixer of Q+FIX-mono is always larger than that of
QMIX. Therefore, there is a potential concern that the performance of Q+FIX (compared to its cor-
responding fixee) is driven by the additional parameterization rather than other factors like its proven
theoretical properties.

In this section, we present an evaluation that disproves this concern by comparing the performance
of a bigger fixee with a corresponding Q+FIX variant that employs a smaller fixee. We note that this
evaluation is only possible for the case of QMIX and Q+FIX-mono: (i) VDN has no mixing network;
therefore it is not possible to perform this evaluation for VDN and Q+FIX-sum. (ii) QPLEX is never
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Table 2: SMACv2 mixer sizes in number of parameters. Smallest (non-zero) models highlighted.

Protoss Terran, Zerg
5vs5 10vs10 20vs20 5vs5 10vs10 20vs20

VDN 0 k 0 k 0 k 0 k 0 k 0 k

QMIX 38 k 83 k 201 k 36 k 79 k 194 k
QPLEX 135 k 326 k 882 k 126 k 308 k 846 k
Q+FIX-sum 20 k 50 k 138 k 19 k 48 k 133 k
Q+FIX-mono 54 k 180 k 743 k 50 k 169 k 708 k
Q+FIX-lin 21 k 51 k 140 k 19 k 48 k 135 k

QMIX-big 166 k 341 k 767 k 161 k 331 k 747 k
Q+FIX-mono-small 29 k 83 k 290 k 27 k 78 k 277 k
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Figure 6: SMACv2 model size results, bootstrapped 95%. Aggregation computed as in Fig. 2.

used as a fixee; therefore it is not possible to perform this evaluation for QPLEX (also, the Q+FIX
models are all significantly smaller than QPLEX to begin with). Therefore, we implement a bigger
variant of QMIX (QMIX-big) and a smaller variant of Q+FIX-mono (Q+FIX-mono-small). See in
Table 2 that the size of Q+FIX-mono-small is now both smaller than that of QMIX-big, and more
comparable to those of Q+FIX-sum and Q+FIX-lin.

?? shows the results of this evaluation; to focus on the matter at hand, we only show the relevant
performance of QMIX and Q+FIX-mono methods. As can be seen, the performance of Q+FIX-
mono-small is analogous to that of +FIX-mono, and the performance of QMIX-big is analogous to
that of QMIX. These results strongly confirm that the superior performance of Q+FIX-mono is not
caused by the larger parameterization, but by our proposed fixing structure.

Probability of improvement Agarwal et al. (2021) also suggest the use of probability of improve-
ment (POI) as a criterion for evaluation that is resilient to data outliers. This metric measures the
likelihood that a random run based on one method outperforms a random run based on another
method, while ignoring the size of the performance gap. If method X has been evaluated empiri-
cally N times with performances X̂ = {x̂i}Ni=1, and method Y has been evaluated empirically M
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Figure 7: Aggregate probability of improvement (POI), bootstrapped 95% CI.

times with performances Ŷ = {ŷi}Mi=1, we estimate the POI as

Pr(X > Y ) ≈ 1

N ·M
∑

x̂∈X̂,ŷ∈Ŷ

I [x̂ > ŷ] . (52)

In their work, Agarwal et al. (2021) demonstrate this criterion assuming that each run is summarized
by a single scalar (e.g., final performance); since we are both concerned with learning speed and
are uncertain how to fairly pick a single scalar performance for each run, we instead perform this
calculation over the entire learning phase.

Fig. 7 contains our aggregate POI results for SMACv2. Agarwal et al. (2021) note that a POI that is
above 50% with its entire CI indicates a statistically significant result; out of all methods, Q+FIX-
sum is the only one to achieve this against all other methods.

F.2 OVERCOOKED

Observability Overcooked is a fully observable environment, with each agent receiving observa-
tions whose information content is equivalent to the state. Therefore, the challenge of these tasks is
primarily one of coordination and subtask assignment over information gathering. The state is pro-
vided as a tensor with shape H×W ×C, with C = 26 (mostly but not exclusively binary) channels
encoding agent positions and orientations, and positions of tables, pots, plates, various ingredients,
etc.

Coordination Notably, the tasks in overcooked do not strictly require tight coordination between
agents. Though some tasks may need both agents to contribute in different ways to the same plate
being completed, that cooperation is not under strict coordination requirements. Though the agents
may achieve higher efficiency and performance if they coordinate optimally, the tasks can be com-
pleted even if the agents act relatively independently. We believe this can explain some of the results
in our evaluation, especially in terms of the relatively good performance of methods like VDN that
hardly enforce strong coordination.

Implementation details For these Overcooked experiments, we found it useful for Q+FIX to
employ both advantage detaching and intervention annealing with λ descending linearly from 1 to
0 over the first 500k timesteps (10% of training).
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Figure 8: Overcooked return mean, bootstrapped 95% CI (20 seeds).

Additional results Fig. 8 shows the results for all five evaluated layouts: Cramped-Room,
Asymmetric-Advantages, Coordination-Ring, Forced-Coordination, and
Counter-Circuit. The tasks are categorically different and not directly comparable, but there
is a progression in difficulty from the first to the last. Coordination-Ring is a simple task
solved adequately by all methods. Performances start to differentiate more strongly in the other
layout. Notably, QMIX has some trouble in these layouts, even compared to simpler methods like
VDN. We believe this may be due to the coordination properties of these layouts (as described
previously in this section), which may benefit simpler methods like VDN and independent learners.
Nonetheless, in all scenarios, Q+FIX variants are the best performing, achieving statistically
significant performance improvements compared to the baselines in four of the five layouts.

G ARCHITECTURES AND HYPERPARAMETERS

G.1 SMACV2

Baseline methods are used and run as implemented in the Pymarl2 repository4, using the pre-
optimized hyperparameters as provided by the corresponding configs. Q+FIX methods are imple-
mented to match the baseline implementations completely, with the only difference being the mixer
type and architecture, and are run using the same hyperparameters as the baselines. All implemen-
tations use the Adam optimizer Kingma & Ba (2017).

Due to their complex nature (including the use of hypernetworks and attention modules) we omit
a full description of the mixing architectures for QMIX and QPLEX. We refer the reader to the
corresponding publications and Pymarl2 implementations56.

Agent Model Q̂i(hi, ai) All methods employ the same architecture to compute the individual util-
ities Q̂i(hi, ai). As SMAXv2 is partially-observable and provides observations directly as feature
vectors, this architecture employs the following layers:

• Inputs:

– Observation vector Rd (d variable per scenario).
– Agent ID one-hot encoding {0, 1}N .

• Layers:

– Linear(output dim=64) + ReLU()

– GRUCell(output dim=64)

– Linear(output dim=#actions)

• Output: Action values R|Ai|, one per action.

4https://github.com/benellis3/pymarl2
5https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/

qmix.py
6https://github.com/benellis3/pymarl2/blob/master/src/modules/mixers/

dmaq_general.py
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Q+FIX Weight Model w(s,a)

• Input:
– State vector Rd (d variable per scenario).
– Agent actions one-hot encodings {0, 1}

∑
i |Ai|.

• Layers:
– Linear(output dim=64) + ReLU()
– Linear(output dim=1) (if Q+FIX-{sum,mono})
Linear(output dim=N) (if Q+FIX-lin)

– lambda w: |w+1|-1+10e-8

• Outputs: Weights w(s,a) ∈ R>−1 (if Q+FIX-{sum,mono})
Weights w(s,a) ∈ RN

>−1 (if Q+FIX-lin).

Q+FIX Bias Model b(s)

• Input: State vector Rd (d variable per scenario).

• Layers:
– Linear(output dim=64) + ReLU()
– Linear(output dim=1)

• Output: Bias b(s) ∈ R.

G.2 OVERCOOKED

Baseline methods are used and run as implemented in the JaxMARL repository7, using the pre-
optimized hyperparameters as provided by the corresponding configs. Q+FIX methods are imple-
mented to match the baseline implementations completely, with the only difference being the mixer
type and architecture, and are run using the same hyperparameters as the baselines. All implemen-
tations use the rectified Adam (RAdam) optimizer Liu et al. (2019).

Agent Model Q̂i(hi, ai) All methods employ the same architecture to compute the individual
utilities Q̂i(hi, ai). As Overcooked is fully-observable and provides states as a grid (tensor) of
categorical data, this architecture employs the following layers:

• Input: State grid NH×W×C (C = 26 channels, mostly binary).

• Layers:
– Conv(output dim=32, kernel size=(5, 5)) + ReLU()
– Conv(output dim=32, kernel size=(3, 3)) + ReLU()
– Conv(output dim=32, kernel size=(3, 3)) + ReLU() + Flatten()
– Linear(output dim=64) + ReLU()
– Linear(output dim=64) + ReLU()
– Linear(output dim=#actions)

• Output: Action values R|Ai|, one per action.

Q+FIX Weight Models w(s,a)

• Input:
– State grid NH×W×C (C = 26 channels, mostly binary).
– Agent actions one-hot encodings {0, 1}

∑
i |Ai|.

• Layers:
– Conv(output dim=64, kernel size=(5, 5)) + ReLU()

7https://github.com/FLAIROx/JaxMARL
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– Conv(output dim=64, kernel size=(3, 3)) + ReLU() + Flatten()
– Linear(output dim=64) + ReLU()
– Linear(output dim=1) (if Q+FIX-{sum,mono})
Linear(output dim=N) (if Q+FIX-lin)

– lambda w: |w+1|-1+10e-8

• Outputs: Weights w(s,a) ∈ R>−1 (if Q+FIX-{sum,mono})
Weights w(s,a) ∈ RN

>−1 (if Q+FIX-lin).

Q+FIX Bias Model b(s)

• Input: State grid NH×W×C (C = 26 channels, mostly binary).
• Layers:

– Linear(output dim=64) + ReLU()
– Linear(output dim=1)

• Output: Bias b(s) ∈ R.

H EXPERIMENTS COMPUTE RESOURCES

Experiments were distributed (unevenly) primarily across two workstations:

• Type: Standalone workstation,
CPU: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz,
GPU(s): 2x NVIDIA GeForce GTX 1080.

• Type: Standalone workstation,
CPU: AMD Ryzen Threadripper 7960X 24-Cores,
GPU(s): 1x NVIDIA GeForce RTX 4090.

The time of executing a single run can differ greatly depending on the workstation, the environment,
the method, and model size. The following is only a very rough estimate of total sequential runtime:

SMACv2 Pymarl2 implementations can be very slow due to the CPU-bound environment, and
vary somewhere between 5 h and 20 h per run. For the main results, since we execute 6
methods for 5 runs in 9 scenarios, which amounts to 6 · 5 · 9 = 270 independent runs
and roughly 270 · 12 h = 135 d of sequential runtime. For the results on model sizes, we
execute an additional 2 methods for 5 runs in 6 scenarios, which amounts to 2 · 5 · 6 = 60
independent runs and roughly 60 · 12 h = 30 d of sequential runtime.

Overcooked JaxMARL implementations are much faster, and vary between 15min and 60min.
Since we execute 6 methods for 20 runs in 5 layouts, which amounts to 6 · 20 · 5 = 600
independent runs and roughly 600 · 40min = 24 000min ≈ 16 d of sequential runtime.

Naturally, the experiments were not executed purely sequentially; however, they still took multiple
weeks to complete as a whole, on our available hardware.
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