
Under review as a conference paper at ICLR 2024

A SHOT-EFFICIENT DIFFERENTIAL EQUATION INTE-
GRATOR USING QUANTUM NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed regularisation on quantum neural networks provides a promis-
ing means for solving differential equations on near-term quantum computers.
However, most demonstrations of this technique assume idealised simulated quan-
tum circuits where the respective expectations are available. In real quantum
hardware, such ideal expectations are not accessible and must be averaged over
many shots, introducing additional computations, the cost of which has not been
considered in the majority of the preceding studies. The requirements of higher-
order derivatives for physics-informed regularisers are especially high in terms
of circuit repetitions (shots) compared to lower-order derivatives required for
supervised learning. We demonstrate how to construct a global formulation of
physics-informed losses especially amenable to solve ordinary differential equa-
tions on near-term quantum computers in a shot-efficient manner. The resulting
approach can reduce the order of derivatives required to calculate a loss com-
pared to Physics-informed Neural Networks (PINNs). In the case of initial value
problems in ordinary differential equations (ODEs) and some partial differential
equations (PDEs), our method removes completely the need for higher-order au-
tomatic differentiation, thus providing an O(N) improvement in shot-efficiency,
where N is the number of data-encodings of the quantum neural network. Our for-
mulation naturally incorporates boundary conditions and physics-informed losses
into a single optimisation term. Numerical experiments demonstrate favourable
empirical performance, in terms of both shot-efficiency and error, on (simulated)
quantum circuits compared to existing quantum methodologies. We demonstrate
that the relative performance of quantum neural network algorithms in the infinite
shot limit does not necessarily correspond to relative performance in the finite shot
limit. We hope this works provides insights on how to efficiently design schemes
that will reduce the shot requirements and will become the basis for further devel-
oping efficient quantum algorithms for the solution of differential equations.

1 INTRODUCTION

Differential equations form the basis of modelling a great number of systems, such as electromag-
netic waves, evolution of heat distributions, population dynamics, optimisation of industrial pro-
cesses, and time-evolution of probability distributions. Consequently, there has been much recent
interest on biasing neural networks towards differential equation solutions.

A common means of representing differential equations in neural networks is using Physics-
informed neural networks (PINNs) Lagaris et al. (1998); Raissi et al. (2019), which use (poten-
tially higher-order) derivatives of neural networks outputs with respect to their inputs to construct
appropriate regularisation terms towards a prescribed differential equation.

In addition to their application to neural networks in conventional silicon-based hardware, physics-
informed loss functions represent a promising means to solve differential equations using quan-
tum neural networks (QNNs) on near-term quantum computers Kyriienko et al. (2021); Paine et al.
(2023a;b); Heim et al. (2021).

However, previous work on solving differential equation on quantum computers assumes that the
expectation of quantum circuits can be calculated directly. This is only possible when simulating

1

Under review as a conference paper at ICLR 2024

quantum circuits. When using actual quantum computers, expectations must be taken via repeated
sampling, a cost so far mostly ignored in using quantum neural networks for differential equation
solving.

Physics-informed regularisation involves taking the derivatives of neural network outputs with re-
spect to input features. In classical neural networks, access to higher order derivatives can be op-
timised by mixing various modes of automatic differentiation, e.g. by considering forward-mode
over reverse-mode automatic differentiation, or via Taylor-mode automatic differentiation Griewank
& Walther (2008).

In contrast, for quantum neural networks, calculating derivatives with respect to circuit inputs typ-
ically involves a cost O(Nd), where N is the number of data encodings into a quantum circuit,
and d is the order of derivatives. This scaling is similar to repeated use of forward-mode automatic
differentiation in classical neural networks: a strategy known to be suboptimal.

Attempts to alleviate the cost of automatic differentiation have been introduced into quantum cir-
cuits Abbas et al. (2023), Bowles et al. (2023). However, in contrast to automatic differentiation in
silicon-based computers, introducing better scaling for automatic differentiation in quantum neural
networks requires architectural restrictions.

In this work, we derive favourable formulations of physics-informed loss functions amenable to run
on quantum neural networks on actual quantum hardware. We construct line integrals of physics-
informed losses from domain boundaries on which one can define appropriate loss functions. This
formulation obviates the need for higher-order automatic differentiation when solving initial-value
problems for ODEs, and thus is especially interesting as a candidate to solve differential equations on
near-term quantum hardware. In addition to reducing the order of automatic differentiation required
for ODEs, our methods also prevent the need to separately balance boundary contributions and in-
terior loss contributions as in regular physics-informed optimisation. Our methods also regularise
on the global properties of neural networks via line integrals, which introduces an alternative opti-
misation scheme to the local nature of point-wise gradient optimisation represented by conventional
PINN optimisations (see Figure 1).

While we present our methodologies with quantum neural networks in mind, they are equally appli-
cable to arbitrary neural networks regardless of the underlying hardware. We demonstrate applica-
tions of line-integral propagated classical and spiking neural networks in the Appendix A.3.

2 METHODS

2.1 FORMULATION

A general differential equation of a dependent variable u : Rn → Rd in an open set (domain)
Ω ⊂ Rn with a boundary ∂Ω can be written as follows:

Nu(x) = 0 if x ∈ Ω, Bu(x) = 0 if x ∈ ∂Ω (1)

where N and B are (potentially non-linear) differential operators. Note that since we leave N to be
an arbitrary differential operator, equation 1 represents a rich class of differential equations including
all partial differential equations (PDEs) and ordinary differential equations (ODEs).

2.2 PHYSICS-INFORMED NEURAL NETWORKS

The solution of equation 1 can be approximated by a neural network fθ(x) : Rn → Rd, where θ
represent trainable parameters.

We define the probability distributions PΩ and P∂Ω over Ω and ∂Ω. and the samples from these
distributions are referred to as collocation points. The optimisation of PINNs constructs weights θ∗
using the following losses and optimisation problem:

2

Under review as a conference paper at ICLR 2024

t t

y y

𝑦(𝑡) = 𝑦! + ∫ 𝑓𝑑𝑡	
𝑑𝑦
𝑑𝑡 = 𝑓

Figure 1: Left: Illustration of qPINNs. To train a variational quantum circuit (VQC) to predict a
solution at a time T (blue dot), gradients need to be calculated, which is very costly with quantum
neural networks. Right: Our proposed method requires no gradients (for initial value ODEs), but
only requires the quantum circuit to be evaluated at points up until time T so that the area under the
curve can be estimated. Since the right hand side relies on an averaging of points to the left of the
blue dot to calculate the area, noise in each dot can be “averaged out” with noise from other dots,
representing a further advantage in terms of optimising quantum neural networks with finite shots.

LB(θ) = Ex∼P∂Ω
[B(fθ(x))2]

LN (θ) = Ex∼PΩ
[N (fθ(x))

2]

θ∗ = argmin
θ

LB(θ) + LN (θ).
(2)

Note that hardly any restrictions have been placed on the architecture represented by fθ(x) so far.
Consequently, the optimisation problem in equation 2 applies equally to quantum neural networks
as it does to classical neural networks. While in classical neural networks, the output of differential
operators can be evaluated at collocation points via automatic differentiation Griewank & Walther
(2008), the same can be achieved in quantum neural networks via the parameter-shift rule (PSR)
Kyriienko & Elfving (2021); Izmaylov et al. (2021); Wierichs et al. (2022); Banchi & Crooks (2021);
Schuld et al. (2019); Mitarai et al. (2018), which might be seen as a quantum version of forward-
mode automatic differentiation.

For (digital) quantum neural networks, data and network weights are typically encoded via a rotation
on a given qubit. Derivatives with respect to these encodings typically involve two additional circuit
constructions per encoding. For N data encodings, and d-th order derivatives, the number of circuits
needed to evaluated the d-th order derivative thus scales as O(Nd), incurring significant number of
circuit evaluations.

2.3 GLOBAL PHYSICS-INFORMED LOSSES

In section 2.3.1, we outline a method to derive global physics-informed losses in a general setting,
with a particular emphasis on how to impose Dirichlet and Neumann boundary conditions. In sec-
tion 2.3.2 we specialise these results specifically to ordinary differential equations, which represent
a particularly compelling setting for quantum neural networks. While this work primarily considers
quantum neural networks, the methodology sections are architecture-agnostic and thus apply equally
to classical neural networks as they do to quantum neural networks.

2.3.1 PROPAGATED GLOBAL PHYSICS-INFORMED LOSSES

This section introduces a methodology to construct line integrals which propagate boundary condi-
tions from the boundary, ∂Ω into the domain Ω. Parameterise a solution to a differential equation
by a neural network fθ, with trainable weights θ. For an invertible differential operator NB , where

3

Under review as a conference paper at ICLR 2024

the suffix denotes its significance in propagating a boundary condition, equation 1 gives:

u = N−1
B [(NB −N) fθ] , (3)

which follows from noting (N −NB +NB)u = 0 from equation 1, substituting fθ for u and then
gathering terms.

Introduce a probability distribution, PL, of straight lines starting from points on ∂Ω going into
Ω, and a probability distribution Pl of points along a given line l. This allows for the following
optimisation problem to be defined,

θ∗ = argmin
θ

El∼PL

[
Ex∼Pl

[(
fθ(x)−N−1

B [(NB −N)fθ] (x)
)2]]

, (4)

where θ∗ is a parameterisation of fθ which solves the differential equation.

Now it remains to define operators NB which propagate boundary conditions from ∂Ω to Ω.

Dirichlet Boundary Conditions Choose a point, x0 ∈ ∂Ω with a boundary condition u(x0) = u0.
Parameterise a line xs = x0+sv, where s ∈ [0, S], v is direction into Ω from ∂Ω and xs ∈ Ω for all
0 < s < S. Then parameterising the solution u with a neural network fθ and a choice of NB = ∂

∂xs

yields that:

u(x) ≈ N−1
B [(NB −N) fθ] (x) = u0 +

∫ x

x0

[NB −N] fθ(x
′)dx′, (5)

where x is a point on the line and the integral represents a line integral along xs from x0 to x. Now
u in the integrand can be parameterised with a neural network fθ which then defines the Volterra
integral equations to be used in the optimisation problem in equation 4.

Neumann Boundary Conditions As in the previous section, consider the same point and param-
eterised line. However, instead of a Dirichlet boundary condition, we take ∇vu|x0

= u′
0, where ∇v

denotes a directional derivative towards v. Then parameterising the solution u with a neural network
fθ and a choice of NB = ∂2

∂xs
2 gives:

u(x) ≈ N−1
B [(NB −N) fθ] (x) = u0 + su′

0 +

∫ x

x0

∫ x′

x0

[NB −N] fθ(x
′′)dx′′dx′, (6)

where, as previously, x is a point on the line and the integral represents a line integral along xs from
x0 to x. However, in this scenario, since our boundary is a Neumann condition, fθ(0) should be
substituted in for u0 in equation 6 to avoid biasing the resulting loss function towards any specific
Dirichlet condition. The resulting expression then defines the line integrals to be optimised upon in
equation 4.

Remarks The formulation of boundary propagated differential equation losses provides several
benefits: 1. The boundary condition and interior terms—which are summed and weighted as separate
terms in traditional PINN formulations—are combined into a single term. 2. Boundary conditions
are propagated into Ω from ∂Ω via a loss derived directly from the underlying differential equation.
This contrasts to PINNs which optimise points independently of one another. 3. Dependent on the
specific forms of NB and N , we can achieve a reduction in the order of automatic differentiation
in the optimisation of equation 4 compared to equation 2. In the case of initial-value problems
in ODEs, higher-order automatic differentiation is not required at all. See section 2.3.2 for more
details. 4. If the evaluation of fθ(xi) is stochastic, as in the measurement of a quantum neural
network, then a (quasi) Monte-Carlo estimation of the integral averages noisy evaluations across the
integral domain.

The integral in equation 5 must be evaluated numerically. This can be done by sampling points xi

along the line xs, computing [NB −N] fθ(xi) via automatic or numerical differentiation, and then
numerically approximating the integral via Monte-Carlo integration, trapezoidal approximations,
numerical quadratures, or quantum-enhanced Monte-Carlo integration Akhalwaya et al. (2023).

4

Under review as a conference paper at ICLR 2024

Given L different lines emanating from ∂Ω, each evaluated at N different points, the computational
complexity of the evaluation of the line integrals is O(NL). This is the same order of computa-
tional complexity as the evaluation of a forward-pass of a neural network at NL different points.
Finally, the integral in equation 6 represents a double line integral, as opposed to a surface integral.
This can be calculated by repeating an integral estimation twice. Thus, the evaluation of Neumann
boundary integrals of the form in equation 6, even though nested, remains of the order O(NL). The
formulations of loss functions to impose Dirichlet and Neumann boundaries are not unique. For ex-
ample, equation 6 can be used to regularise to Dirichlet boundary conditions by including Dirichlet
boundaries for u0 and substituting f ′

θ for u′
0.

2.3.2 SHOT-EFFICIENT ODE SOLVING VIA GLOBAL LOSSES

While the methodologies in section 2.3.1 apply to a broad class of differential equations, we find
a particular instance of that methodology to be of particular relevance to ODEs. Consider an ODE
defined by:

N =
du

dt
− g(u, t) = 0, u(0) = u0 0 < t < T, (7)

with u : R → Rd, d ∈ N. Note that this formulation encompasses non-linear initial-value problems
of arbitrarily high order since an n-th order initial-value problem can be rewritten as a set of n-
coupled first-order initial-value problems. For example, d2y

dt2 = g(y, t) can be written as the paired
ODEs dy

dt = z and dz
dt = g(y, t).

Since our boundary condition in this case comprises of a single line, the PL in equation 4 comprises
a single line. We denote a probability distribution of time between 0 and T by Pt. Parameterising
a solution to equation 7 with a neural network fθ and combining equation 5, equation 4 then yields
the following optimisation problem to solve for the differential equation:

θ∗ = argmin
θ

Et∼Pt

[(
fθ(t)−

(
u0 +

∫ t

0

g(fθ(t), t)dt
′
))2

]
. (8)

Note that there are no derivatives of the fθ with respect to its input, in contrast to the optimisation
problem used in traditional PINN formulations outlined in equation 2. The optimisation problem
in equation 8 can result directly from equation 7 by manually integrating with respect to time on
both sides. However, the formulation provided in section 2.3.1 applies to a much larger class of
differential equations.

The removal of higher-order neural network derivatives from the optimisation problem in equation 8
compared to regular PINNs is of especially large significance in solving differential equations with
quantum circuits. Combining the lack of requirements of higher-order derivatives with gradient-free
optimisation allows for a near arbitrary choice of hardware to solve ordinary differential equations.

Since finding the dth order derivative of a quantum neural network with N feature-encodings re-
quires O(Nd) evaluations, our method thus provides an O(N) reduction in the number of quantum
neural network shots per training step.

3 APPLICATIONS

This section presents the homogeneous, non-homogeneous and non-linear ordinary differential
equations with applications in population modelling. We emphasise experimental setups achiev-
able on near-term quantum hardware. While the methods in Section 2.3.1 apply to multiple types of
differential equations and can be used to remove higher-order automatic differentiation requirements
for some PDEs, this section demonstrates the applicability of method to ODEs.

Our methodologies also apply to almost arbitrary neural network architectures. Since our work
is primarily concerned with shot-efficient solving of differential equations with quantum neural
networks, we present results with multilayer perceptrons and spiking neural networks in the Ap-
pendix A.3.

We consider models of population extinction, population growth in a seasonal environment, and
population evolution in an environment with limited resources, given respectively by the equations:

5

Under review as a conference paper at ICLR 2024

dy

dt
= −3

2
y,

dy

dt
= 3 cos(3t)y,

dy

dt
= y (1− y) (9)

starting at time t = 0 with maximum times of t = 2.0, t = 1.0, t = 5.0, and with initial conditions
y = 1.5, y = 1.0 and y = 0.1, respectively.

Investigations into the optimisation of quantum neural networks in finite shot training is still in its
nascent stages. Since automatic differentiation over trainable parameters in quantum neural net-
works carries a computational overhead scaling linearly with the number of parameters, as opposed
the constant scaling of backpropagation with classical neural networks, there is a stronger incentive
to use gradient-free methods to train quantum neural networks. Thus, we compare gradient-based
methods (with several learning rates) and gradient-free methods.

Experimental Details Experimental setups were chosen to ensure a degree of achievability on
current quantum hardware. We consider a three-qubit circuit of the form ⟨∅|U†

t U
†
θHUθUt|∅⟩, where

Ut encodes data via a Chebyshev-tower type feature map Kyriienko et al. (2021), Uθ represents a
parameterised variational unitary comprising of single-qubit rotations followed by a triangular ring
of entangling CNOT gates as in a hardware-efficient ansatz Kyriienko et al. (2021) Kandala et al.
(2017). Input features were scaled linearly [−0.95, 0.95] prior to the Chebyshev-feature encoding
ensuring the arccos operation in the Chebyshev feature encoding is well-defined. Variational pa-
rameters, θ, were initialised to be uniformly distributed in the range [0, 2π]. The Hamiltonian, H , is
single-qubit magnetization on the zeroth qubit. The structure of the circuit used is shown in Figure 2.

x3

q0 : |0⟩
Ut Uθq1 : |0⟩

q2 : |0⟩

Ut

R̂y(2 arccos(t))

= R̂y(4 arccos(t))

R̂y(6 arccos(t))

Uθ,i

R̂x(θ1,i) R̂y(θ4,i) R̂x(θ7,i) • •

= R̂x(θ2,i) R̂y(θ5,i) R̂x(θ8,i) • •

R̂x(θ3,i) R̂y(θ6,i) R̂x(θ9,i) • •

Figure 2: The quantum circuit diagram used for the shots experiments: (top) diagram shows the
circuit diagram with three qubits q0, q1, q2, initialised with the zero basis state, a data encoding
unitary Ut that applies a Chebyshev-tower type feature map, three paramaterised variational unitaries
Uθ,i, that comprise the hardware-efficient ansatz (HEA), and measurement; (mid) data encoding
unitary, and (bottom) the HEA in greater detail.

As a gradient-based optimiser, we use Adam Kingma & Ba (2014) with learning rates specified in
the results section. For gradient-free optimisation, we use SPSA Spall (1992) (with hyperparameters
standard deviation c=0.15, and a=2.0 needed for the calculation of the magnitude of the gradient)
and One-Plus-One optimiser Droste et al. (2002) with budget=100, otherwise all remaining hyper-
parameters as set by Nevergrad Rapin & Teytaud (2018). We make use of PennyLane Bergholm
et al. (2018), JAX Bradbury et al. (2018), optax Babuschkin et al. (2020) and Nevergrad in all our
quantum experiments, and PyTorch Paszke et al. (2019) and snnTorch Eshraghian et al. (2021) for

6

Under review as a conference paper at ICLR 2024

Table 1: Number of shots of a quantum circuit required per training epoch for our proposed prop-
agated methodology compared to existing qPINN methods. Note that the approximate factor of 6
appearing between the two methods corresponds to requiring two extra circuit evaluations required
for each of three data-encodings in our quantum circuits. For N data-encodings, our proposed
method gives an O(N) factor reduction in the number of shots required per training epoch.

Method Gradient-based Gradient-free
Propagated 56,320 1,024

qPINN 394,240 7,168

our multilayer perceptron and spiking neural network simulations shown in Appendix A.3. The
number of collocation points and the number of repeated measurements for given circuit parameters
were both set to 32 for the finite shot experiments, with collocation points arranged in a uniform
grid. Numerical integration for propagated losses was done via a quasi Monte-Carlo method across
collocation points. Training is done over 10k epochs per method. While finite shots are used dur-
ing training, solution quality was calculated on the basis of expectations taken on a uniform grid of
128 points over the temporal domain. All results are over 20 different random seeds. We compare
physics-informed solutions for each system as given in equation 2, which we denote as qPINN to
the propagated optimisation regime outlined in equation 8, which we denote as propagated.

Our experimental setup dictates a number of shots per training epoch dependent on the optimisation
procedure used, which is summarised in table 3.

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.5

1.0

RM
SE

A
propagated
qPINN

0 1 2 3 4
Number of Training Shots 1e9

0.0

0.5

1.0

RM
SE

D
propagated
qPINN

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.2

0.4

RM
SE

B
propagated
qPINN

0 1 2 3 4
Number of Training Shots 1e9

0.2

0.4

RM
SE

E
propagated
qPINN

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

0.6

RM
SE

C
propagated
qPINN

0 1 2 3 4
Number of Training Shots 1e9

0.0

0.2

0.4

0.6

RM
SE

F
propagated
qPINN

Figure 3: Mean qPINN (black) vs Global losses (gray) with shaded regions representing 95% con-
fidence intervals of the mean calculated via bootstrapping over neural networks trained over 20
random seeds. We demonstrate lower root mean squared error (RMSE) in terms of both the num-
ber of training epochs (A-C) and training shots (D-F). Both models were trained using the Adam
optimiser with learning rate 0.01. A|D) present the results for the seasonal growth of a popula-
tion, depending on its environment, B|E) show the logistic growth model, and C|F) illustrate the
population extinction model.

7

Under review as a conference paper at ICLR 2024

3.1 PROPAGATED LOSSES PROVIDE PROMISING MEANS OF SOLVING DIFFERENTIAL
EQUATIONS ON NEAR-TERM QUANTUM HARDWARE

Across a full range of gradient-based optimiser settings and gradient-free optimiser settings, we
find both faster convergence in terms of shot number and number of epochs (see Figure 3) and also
lower end RMSEs. While Figure 3 shows a specific optimiser setting, its behaviour is representative
of a broader trend across various learning rates and gradient or gradient-free optimisers. See the
Appendix for further experiments A.2.

3.2 INFINITE SHOT QUANTUM NEURAL NETWORK ALGORITHM PERFORMANCE IS NOT
NECESSARILY INDICATIVE OF FINITE-SHOT PERFORMANCE

Given the prevalence of infinite shot experiments, it is interesting to consider whether the perfor-
mance of various algorithms in the limit of infinite shots translates to their performance with finite
shots.

We observe that in some cases, algorithm performance in the infinite shot limit is not indicative of
algorithm performance in the finite shot limit.

In Figure4, we demonstrate a scenario where a quantum PINN in the infinite shot limit demon-
strates much lower RMSEs compared to propagated losses in the infinite shot limit, but much higher
RMSEs in the finite shot limit.

The scientific relevance of this result is two-fold: 1. To illustrate that infinite shot behaviour of
quantum neural networks is not necessarily illustrative of finite shot behaviour. 2. The favourable
performance of our propagated loss formulation in the finite shot regime.

Finite shots Infinite shots
7

6

5

4

3

2

1

lo
g(

RM
SE

)

 Exponential

Finite shots Infinite shots

 Logistic

Finite shots Infinite shots

 Seasonal
qPINN
Propagated

Figure 4: A comparison in the final values of the log root mean squared error (RMSE) achieved
after 10000 training epochs between the finite (left) and infinite shots (right) cases for the propa-
gated (yellow) and qPINN (grey) methods using the Adam optimiser with a 0.01 learning rate. The
boxplots show the loss distribution for the 20 random seed experiments. Left to right subplots show
the population extinction model, the logistic growth model, and the seasonal growth of a popula-
tion, depending on its environment. Note in particular that for the seasonal model the qPINN shows
preferable RMSE to propagated loss functions in the infinite shot limit, but worse RMSE in the finite
shot limit.

4 CONCLUSIONS

This work demonstrates a means of solving ordinary differential equations with quantum neural
networks in a manner amenable to near-term quantum hardware. The proposed methods performed
favourably compared to benchmark solutions in terms of both shot requirements and RMSEs .

Experimentally, we find that the relative performance of quantum neural networks in the finite and
infinite shot limits can be unpredictable, emphasising the need to consider finite-shots in quantum
neural network when designing a quantum algorithm.

8

Under review as a conference paper at ICLR 2024

While we have demonstrated promise of our propagated loss formulation for ODE solutions, there
remain many future directions of research. One intriguing direction involves exploring various col-
location strategies for the propagated loss functions. Strategies for better sampling of collocation
points are an active area of research in the field of PINNs Nabian et al. (2021); Guo et al. (2022)
with some evidence that there is a relationship between the sampling strategies and the inability of
the PINNs to converge to the correct solution (also called failure modes) Daw et al. (2023). Given
that propagated physics-informed loss functions rely on numerical integration, it might be beneficial
to draw inspiration from Monte-Carlo integration techniques, such as importance sampling, to en-
hance the presented techniques. We hope that our work demonstrates the importance of considering
the implications of finite shots in quantum neural network algorithm design and motivates further
research on this front.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa,
and Jarrod R. McClean. On quantum backpropagation, information reuse, and cheating measure-
ment collapse. 5 2023. URL https://arxiv.org/abs/2305.13362v1.

Ismail Yunus Akhalwaya, Adam Connolly, Roland Guichard, Steven Herbert, Cahit Kargi, Alexan-
dre Krajenbrink, Michael Lubasch, Conor Mc Keever, Julien Sorci, Michael Spranger, et al. A
modular engine for quantum monte carlo integration. arXiv preprint arXiv:2308.06081, 2023.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou,
Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan,
Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren Sezener,
Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu Wang,
Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/deepmind.

Leonardo Banchi and Gavin E. Crooks. Measuring Analytic Gradients of General Quantum
Evolution with the Stochastic Parameter Shift Rule. Quantum, 5:386, January 2021. ISSN
2521-327X. doi: 10.22331/q-2021-01-25-386. URL https://doi.org/10.22331/
q-2021-01-25-386.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arra-
zola, Utkarsh Azad, Sam Banning, Carsten Blank, Thomas R Bromley, Benjamin A. Cordier, Jack
Ceroni, Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony
Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain, Ed-
ward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina Lee, Thomas
Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Romain
Moyard, Zeyue Niu, Lee James O’Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeun Park,
Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá, Isidor Schoch, Borun Shi, Shuli
Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet,
Rodrigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber, David Wierichs,
Roeland Wiersema, Moritz Willmann, Vincent Wong, Shaoming Zhang, and Nathan Killoran.
Pennylane: Automatic differentiation of hybrid quantum-classical computations. 11 2018. URL
https://arxiv.org/abs/1811.04968v4.

Dimitri P Bertsekas. Multiplier methods: A survey. Automatica, 12(2):133–145, 1976.

Joseph Bowles, David Wierichs, and Chae-Yeun Park. Backpropagation scaling in parameterised
quantum circuits. 6 2023. URL https://arxiv.org/abs/2306.14962v1.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling, 2023.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1 + 1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 4 2002. ISSN 03043975. doi: 10.1016/
S0304-3975(01)00182-7.

Jason K Eshraghian, Max Ward, Emre Neftci Forschungszentrum, Jülich Rwth, Aachen Xinxin
Wang, Gregor Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu.
Training spiking neural networks using lessons from deep learning. 9 2021. URL https:
//arxiv.org/abs/2109.12894v6.

10

https://arxiv.org/abs/2305.13362v1
http://github.com/deepmind
http://github.com/deepmind
https://doi.org/10.22331/q-2021-01-25-386
https://doi.org/10.22331/q-2021-01-25-386
https://arxiv.org/abs/1811.04968v4
https://arxiv.org/abs/2306.14962v1
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/2109.12894v6
https://arxiv.org/abs/2109.12894v6

Under review as a conference paper at ICLR 2024

Andreas. Griewank and Andrea Walther. Evaluating derivatives : principles and techniques of
algorithmic differentiation. Society for Industrial and Applied Mathematics, 2008. ISBN
9780898716597.

Jia Guo, Haifeng Wang, and Chenping Hou. A novel adaptive causal sampling method for physics-
informed neural networks, 2022.

Niklas Heim, Atiyo Ghosh, Oleksandr Kyriienko, and Vincent E Elfving. Quantum model-
discovery. arXiv preprint arXiv:2111.06376, 2021.

Artur F. Izmaylov, Robert A. Lang, and Tzu-Ching Yen. Analytic gradients in variational quantum
algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations.
Phys. Rev. A, 104:062443, Dec 2021. doi: 10.1103/PhysRevA.104.062443. URL https://
link.aps.org/doi/10.1103/PhysRevA.104.062443.

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M.
Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets. Nature, 549:242–246, 4 2017. doi: 10.1038/
nature23879. URL http://arxiv.org/abs/1704.05018http://dx.doi.org/
10.1038/nature23879.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd Interna-
tional Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 12
2014. URL https://arxiv.org/abs/1412.6980v9.

Oleksandr Kyriienko and Vincent E. Elfving. Generalized quantum circuit differentiation rules.
Phys. Rev. A, 104:052417, Nov 2021. doi: 10.1103/PhysRevA.104.052417. URL https://
link.aps.org/doi/10.1103/PhysRevA.104.052417.

Oleksandr Kyriienko, Annie E Paine, and Vincent E Elfving. Solving nonlinear differential equa-
tions with differentiable quantum circuits. Physical Review A, 103(5):052416, 2021.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural network methods in quantum mechanics.
Computer Physics Communications, 104(1-3):1–14, aug 1997. doi: 10.1016/s0010-4655(97)
00054-4. URL https://doi.org/10.1016%2Fs0010-4655%2897%2900054-4.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Edward Norton Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:
130–141, 1963. URL https://api.semanticscholar.org/CorpusID:15359559.

Alfred J. Lotka. Analytical note on certain rhythmic relations in organic systems. Proceedings of
the National Academy of Sciences, 6, 1920. ISSN 0027-8424. doi: 10.1073/pnas.6.7.410.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-informed neural networks with hard constraints for inverse design, 2021.

Douglas B. Meade and Allan A. Struthers. Differential equations in the new millennium: the
parachute problem*. International Journal of Engineering Education, 15:417–424, 1999. URL
https://api.semanticscholar.org/CorpusID:947369.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, 98:
032309, Sep 2018. doi: 10.1103/PhysRevA.98.032309. URL https://link.aps.org/
doi/10.1103/PhysRevA.98.032309.

J D Murray. Mathematical Biology : I . An Introduction , Third Edition, volume 1. 2002. doi:
10.1086/421587.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, apr 2021. doi: 10.1111/mice.12685. URL https://doi.org/
10.1111%2Fmice.12685.

11

https://link.aps.org/doi/10.1103/PhysRevA.104.062443
https://link.aps.org/doi/10.1103/PhysRevA.104.062443
http://arxiv.org/abs/1704.05018 http://dx.doi.org/10.1038/nature23879
http://arxiv.org/abs/1704.05018 http://dx.doi.org/10.1038/nature23879
https://arxiv.org/abs/1412.6980v9
https://link.aps.org/doi/10.1103/PhysRevA.104.052417
https://link.aps.org/doi/10.1103/PhysRevA.104.052417
https://doi.org/10.1016%2Fs0010-4655%2897%2900054-4
https://api.semanticscholar.org/CorpusID:15359559
https://api.semanticscholar.org/CorpusID:947369
https://link.aps.org/doi/10.1103/PhysRevA.98.032309
https://link.aps.org/doi/10.1103/PhysRevA.98.032309
https://doi.org/10.1111%2Fmice.12685
https://doi.org/10.1111%2Fmice.12685

Under review as a conference paper at ICLR 2024

Annie E Paine, Vincent E Elfving, and Oleksandr Kyriienko. Physics-informed quantum machine
learning: Solving nonlinear differential equations in latent spaces without costly grid evaluations.
arXiv preprint arXiv:2308.01827, 2023a.

Annie E Paine, Vincent E Elfving, and Oleksandr Kyriienko. Quantum kernel methods for solving
regression problems and differential equations. Physical Review A, 107(3):032428, 2023b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems, 32, 12 2019. ISSN
10495258. URL https://arxiv.org/abs/1912.01703v1.

Ilya Prigogine. From Being to Becoming Time and Complexity in the Physical Sciences.
W.H.Freeman, 1980.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.
com/FacebookResearch/Nevergrad, 2018.

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
analytic gradients on quantum hardware. Phys. Rev. A, 99:032331, Mar 2019. doi: 10.1103/
PhysRevA.99.032331. URL https://link.aps.org/doi/10.1103/PhysRevA.99.
032331.

Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Al-pinns: Augmented lagrangian relaxation
method for physics-informed neural networks, 2022.

James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37:332–341, 1992. ISSN 15582523.
doi: 10.1109/9.119632.

V Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria
della regia accademia nazionale del lincei ser., 62, 1926.

David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin. General parameter-shift rules
for quantum gradients. Quantum, 6:677, March 2022. ISSN 2521-327X. doi: 10.22331/
q-2022-03-30-677. URL https://doi.org/10.22331/q-2022-03-30-677.

Qian Zhang, Chenxi Wu, Adar Kahana, Youngeun Kim, Yuhang Li, George Em Karniadakis, and
Priyadarshini Panda. Artificial to spiking neural networks conversion for scientific machine learn-
ing. 8 2023. URL https://arxiv.org/abs/2308.16372v1.

12

https://arxiv.org/abs/1912.01703v1
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://link.aps.org/doi/10.1103/PhysRevA.99.032331
https://link.aps.org/doi/10.1103/PhysRevA.99.032331
https://doi.org/10.22331/q-2022-03-30-677
https://arxiv.org/abs/2308.16372v1

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXTENDED PHYSICS-INFORMED NEURAL NETWORKS METHODS

The proposed method of propagated global loss was compared to a PINN, constrained PINN, Aug-
mented Lagrangian PINN on three different neural networks types—multilayer perceptron (MLP),
quantum neural network (QNN), and spiking neural network (SNN) presented in section A.3. This
section introduces the augmented PINN methods and the SNN architecture for scientific machine
learning.

A.1.1 THE AUGMENTED LAGRANGIAN METHODS

First, we introduce the Lagrangian method. Given some loss function L(θ) subject to constraints
Ci(θ) = 0, we might define some loss function like Ltotal = L+

∑
i C

2
i to include the constraints.

However, as we allude to above, these constraints might not be adhered to especially strongly.

To obtain stronger constraints, we might use Lagrange multipliers. We introduce a Lagrange multi-
plier λi for each Ci and solve the following optimisation problem:

max
λ

min
θ

[
L+

∑
i

λiCi

]
. (10)

In practice this means a different optimisation loop, taking alternating optimisation steps for λ and
θ at each overall training step.

Now, we can present the augmented Lagrangian method. Incorporating a straightforward imple-
mentation of Lagrange multipliers as above is only valid in cases where L is locally convex, which
unfortunately is not the case with NN and QNNs. When the problem is not locally convex, param-
eters λ can start to diverge, leading to unstable training. Reintroducing the variational terms now
re-stabilises training. See Bertsekas (1976) for a load more detail.

max
λ

min
θ

[
L+

∑
i

λiCi + βiC
2
i

]
(11)

where β is a hyper parameter to be set, which take β = 1 for all experiments.

We follow Son et al. (2022), in assigning a Lagrange multilier lambdai for each collocation
point. We consider two variants: one variant constrains only the boundary conditions via the aug-
mented Lagrangian method (denoted augmented-lagrangian in the results), and another which con-
strains the interior differential equation loss via augmented Lagrangian method (denoted augmented-
lagrangian interior in the results).

A.1.2 SPIKING NEURAL NETWORKS (SNN)

Spiking neural networks (SNN) are a type of neural networks that resembles the biological inter-
actions between neurons in the central nervous system Eshraghian et al. (2021). The transmission
of spikes in SNN is highly time-dependent, with the spikes being binary signals compared to the
continuous values outputs of NNs. As a general rule, the neuromorphic algorithms and hardware
have a high energy efficiency that is beneficial for resource-constrained applications.

There is a myriad of proposed neuron types varying in complexity due to their level of descriptive-
ness of natural neurons (it is important to note that such models usually have no exact solutions),
but one of the most commonly used ones in practice are the leaky integrate-and-fire (LIF). The LIF
neuron can be described as a simplified biological neuron model that resembles a resistor (R) and
capacitor (C) circuit as given in equation 12, where τ , U, I, R are the membrane time constant,
membrane potential, input current, and resistance. A spike (signal) is transmitted to other neurons
is output only when the membrane potential U reaches a threshold value.

13

Under review as a conference paper at ICLR 2024

τ
dU

dt
= −U + IR (12)

The spiking neural networks have potential to be applied to the scientific machine learning domain
to solve relevant problems in the form of differential equations in an energy-efficient manner Zhang
et al. (2023).

14

Under review as a conference paper at ICLR 2024

A.2 ADDITIONAL SHOTS EXPERIMENTS

These are additional visualisations of the finite and infinite shots experiments described in section 3.
In the finite shots case, as stated, we used 32 shots, while in the infinite shots case the number of
shots was set to None in PennyLane, which gives the exact expectation values as described in the
documentation.

0 1 2 3 4 5
Number of Training Shots 1e8

0.5

1.0

RM
SE

A
Adam 0.01
Adam 0.001
Adam 0.0001

0.0 0.2 0.4 0.6 0.8 1.0
Number of Training Shots 1e8

0.0

0.5

1.0

RM
SE

D
Adam 0.01
SPSA
OnePlusOne

0 1 2 3 4 5
Number of Training Shots 1e8

0.2

0.4

RM
SE

B
Adam 0.01
Adam 0.001
Adam 0.0001

0.0 0.2 0.4 0.6 0.8 1.0
Number of Training Shots 1e8

0.2

0.4
RM

SE

E
Adam 0.01
SPSA
OnePlusOne

0 1 2 3 4 5
Number of Training Shots 1e8

0.0

0.2

0.4

0.6

RM
SE

C
Adam 0.01
Adam 0.001
Adam 0.0001

0.0 0.2 0.4 0.6 0.8 1.0
Number of Training Shots 1e8

0.00

0.25

0.50

0.75

RM
SE

F
Adam 0.01
SPSA
OnePlusOne

Figure 5: A comparison in the root mean squared error (RMSE) in terms of the number of train-
ing shots between the Adam optimiser with three different learning rates and the SPSA and One
Plus One gradient-free algorithms in the finite shots case. The shaded regions representing 95%
confidence intervals of the mean calculated via bootstrapping over neural networks trained over 20
random seeds. A|D) present the results for the seasonal growth of a population, depending on its
environment, B|E) show the logistic growth model, and C|F) illustrate the population extinction
model.

15

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.5

1.0

RM
SE

A
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.5

1.0

RM
SE

D
Adam 0.01
SPSA
OnePlusOne

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.2

0.4

RM
SE

B
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.2

0.4

RM
SE

E
Adam 0.01
SPSA
OnePlusOne

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

0.6

RM
SE

C
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.00

0.25

0.50

0.75

RM
SE

F
Adam 0.01
SPSA
OnePlusOne

Figure 6: A comparison in the root mean squared error (RMSE) in terms of the number of train-
ing epochs between the Adam optimiser with three different learning rates and the SPSA and One
Plus One gradient-free algorithms in the finite shots case. The shaded regions representing 95%
confidence intervals of the mean calculated via bootstrapping over neural networks trained over 20
random seeds. A|D) present the results for the seasonal growth of a population, depending on its
environment, B|E) show the logistic growth model, and C|F) illustrate the population extinction
model

16

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.5

1.0

RM
SE

A
propagated
qPINN

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

RM
SE

B
propagated
qPINN

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

0.6

RM
SE

C
propagated
qPINN

Figure 7: Mean qPINN (black) vs Global losses (gray) for a simple ODE with the shaded regions
representing 95% confidence intervals of the mean calculated via bootstrapping over neural networks
trained over 20 random seeds, demonstrating lower root mean squared error (RMSE) in terms of the
number of training epochs in the infinite shots case. Both models were trained using the Adam
optimiser with learning rate 0.01. A) presents the results for the seasonal growth of a population,
depending on its environment, B) shows the logistic growth model, and C) illustrates the population
extinction model.

17

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.5

1.0

RM
SE

A
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.5

1.0

RM
SE

D

Adam 0.01
SPSA
OnePlusOne

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

RM
SE

B
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

RM
SE

E

Adam 0.01
SPSA
OnePlusOne

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.0

0.2

0.4

0.6

RM
SE

C
Adam 0.01
Adam 0.001
Adam 0.0001

0 2000 4000 6000 8000 10000
Number of Training Epochs

0.00

0.25

0.50

0.75

RM
SE

F

Adam 0.01
SPSA
OnePlusOne

Figure 8: A comparison in the root mean squared error (RMSE) in terms of the number of train-
ing epochs between the Adam optimiser with three different learning rates and the SPSA and One
Plus One gradient-free algorithms in the infinite shots case. The shaded regions representing 95%
confidence intervals of the mean calculated via bootstrapping over neural networks trained over 20
random seeds. A|D) present the results for the seasonal growth of a population, depending on its
environment, B|E) show the logistic growth model, and C|F) illustrate the population extinction
model.

18

Under review as a conference paper at ICLR 2024

A.3 ODE RESULTS

We conducted additional experiments solving four different physically and biologically important
ODE examples, namely, the Brusselator, the Lorenz and Lotka-Volterra systems of equations, and
the so called “parachute problem”, or finding the final velocity of a falling body. Here, we were
interested in comparing our new method labeled as propagated, to a vanilla PINN, a constrained
PINN, and two Lagrangian-based methods that were given in greater detail in the previous section
of the Appendix A.1.

We also considered three different types of neural networks: classical, a quantum, and spiking.
The classical network has a feed-forward, multilayer perceptron (MLP) architecture with a single
input (time data points), four hidden layers of 32 neurons each, and an output with a dimension
matching the one of the ODE problem, using a hyperbolic tangent (tanh) as an activation function.
The quantum network was already presented in the section 3. The SNN used 128 LIF neurons and
has a single hidden layer and is based on the regression model presented in snnTorch Eshraghian
et al. (2021).

The training of the MLP, QNN, and SNN was conducted using the Adam optimiser with 0.01,
0.001, and 0.0001 learning rates. The classical experiments were run for 32 000 epochs in the
Lotka-Volterra and the Brusselator, or 64 000 for the parachute problem and the Lorenz system of
equations. For the QNN experiments, we wanted to simulate realistically the current capabilities
of the existing hardware and limited the training epochs to 1000, while for the SNN the training
epochs were all set constant at 5000. All experiments are run using 20 random seeds to ensure
reproducibility.

The results for the four main methods 1) propagated global loss method, 2) PINN, 3) constrained
PINN, 4) Augmented Lagrangian PINN, labelled as propagated, pinn, constrained, augmented la-
grangian, respectively (for more details see section A.1). The constrained PINN method uses expo-
nential boundary pinning Lagaris et al. (1997), Lu et al. (2021).

A.3.1 THE BRUSSELATOR SYSTEM OF EQUATIONS

The Brusselator is as system of ODEs (see equation 14) describing an autocatalytic reaction for two
chemical species x and y that depend on the supply of the substances a and b Prigogine (1980). It is
one of the best studied chemical oscillator systems. The Brusselator is used as a typical example of
a stiff equation when solved with the values for the substances at a=1, b=3. In our case, we solved
the system in a stable regime with a=0.1, b=0.5, and initial values x(0) = 1 and y(0) = 1, for tmax =
10.

dx

dt
= a+ x2y − bx− x (13)

dy

dt
= bx− x2y

A.3.2 THE LORENZ SYSTEM OF EQUATIONS

The Lorenz system of equations comprises three ODEs and describes a chaotically behaving model
of atmospheric convection Lorenz (1963), while being and nonlinear and deterministic. The equa-
tions are given in equation 15 with dx

dt being the rate of change in convection, and dy
dt and dz

dt being
the horizontal and vertical change in temperature, respectively, and σ, ρ, and β are system parame-
ters. We solved the Lorenz system of equations using the initial values x(0) = 1, y(0) = 1, z(0) = 1,
and values for the parameters σ = 10, β = 8 / 3 and ρ = 5, for tmax = 2.

19

Under review as a conference paper at ICLR 2024

Table 2: Summary of the RMSE values per method and neural network type for the Brusselator. The
RMSE mean and SD are calculated on the final values for the 20 random seeds. All models were
trained using Adam with learning rate 0.001. The MLP, QNN, SNN were trained for 32 000, 1000,
and 5000 epochs, respectively.

Experiment Method Neural network Mean SD

brusselator augmented-lagrangian classical 0.002976 0.003733
brusselator augmented-lagrangian quantum 0.902459 0.277743
brusselator augmented-lagrangian spiking 4.884190 3.952953
brusselator augmented-lagrangian-interior classical 0.203813 0.035461
brusselator augmented-lagrangian-interior quantum 0.962216 0.265557
brusselator augmented-lagrangian-interior spiking 3.781580 2.443145
brusselator constrained classical 0.004762 0.004572
brusselator constrained quantum 0.858994 0.274412
brusselator constrained spiking 2.609187 3.129017
brusselator pinn classical 0.002825 0.003758
brusselator pinn quantum 0.925948 0.278504
brusselator pinn spiking 3.576626 2.005476
brusselator propagated classical 0.007230 0.003229
brusselator propagated quantum 1.343192 0.232959
brusselator propagated spiking 1.591969 3.506904

Table 3: Summary of the RMSE values per method and neural network type for the Lorenz system
of equations. The RMSE mean and SD are calculated on the final values for the 20 random seeds.
All models were trained using Adam with learning rate 0.001. The MLP, QNN, SNN were trained
for 64 000, 1000, and 5000 epochs, respectively.

Experiment Method Neural network Mean SD

lorenz augmented-lagrangian classical 0.002862 0.003027
lorenz augmented-lagrangian quantum 0.147204 0.101358
lorenz augmented-lagrangian spiking 3.488624 0.623335
lorenz augmented-lagrangian-interior classical 1.288524 0.000474
lorenz augmented-lagrangian-interior quantum 1.274591 0.201808
lorenz augmented-lagrangian-interior spiking 2.660279 1.124220
lorenz constrained classical 0.001751 0.001207
lorenz constrained quantum 0.044270 0.022340
lorenz constrained spiking 2.852119 0.853843
lorenz pinn classical 0.004316 0.003373
lorenz pinn quantum 0.311432 0.194034
lorenz pinn spiking 3.157912 0.798862
lorenz propagated classical 0.012058 0.001823
lorenz propagated quantum 0.138709 0.063387
lorenz propagated spiking 1.457266 1.201605

dx

dt
= σ(y − x) (14)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

20

Under review as a conference paper at ICLR 2024

Table 4: Summary of the RMSE values per method and neural network type for the Lotka-Volterra
system of equations. The RMSE mean and SD are calculated on the final values for the 20 random
seeds. All models were trained using Adam with learning rate 0.001. The MLP, QNN, SNN were
trained for 32 000, 1000, and 5000 epochs, respectively.

Experiment Method Neural network Mean SD

lotka-volterra augmented-lagrangian classical 3.573486 0.141492
lotka-volterra augmented-lagrangian quantum 0.660898 0.200107
lotka-volterra augmented-lagrangian spiking 4.468683 6.338741
lotka-volterra augmented-lagrangian-interior classical 2.398411 0.005294
lotka-volterra augmented-lagrangian-interior quantum 2.256630 0.236550
lotka-volterra augmented-lagrangian-interior spiking 6.097998 6.549479
lotka-volterra constrained classical 0.000060 0.000133
lotka-volterra constrained quantum 0.727081 0.682835
lotka-volterra constrained spiking 3.612240 2.979569
lotka-volterra pinn classical 2.280876 1.718062
lotka-volterra pinn quantum 0.666538 0.192753
lotka-volterra pinn spiking 3.105012 1.002183
lotka-volterra propagated classical 0.574673 0.431178
lotka-volterra propagated quantum 1.147414 0.313880
lotka-volterra propagated spiking 1.411853 1.095471

A.3.3 THE LOTKA-VOLTERRA SYSTEM OF EQUATIONS

We considered a Lotka-Volterra systems Lotka (1920), Volterra (1926) as a benchmark. This is
a standard set of ODEs in Biology representing the time-evolution of a predator-prey system (see
the equation below), that is widely used as a scientific machine learning benchmark, showing an
oscillatory behavior Murray (2002). We solved the Lotka-Volterra equations with constant values a
= 1.1, b = 0.4, c = 0.4, d = 0.1 and initial values x(0) = 5 and y(x) = 5, for tmax = 10.

dx

dt
= ax− bxy (15)

dy

dt
= dxy − cy

A.3.4 THE PARACHUTE PROBLEM (TERMINAL VELOCITY OF A FALLING BODY)

Finding the terminal velocity of a falling body (frequently labelled as the parachute problem) serves
as a classical physics textbook example of a mathematical model of Newtonian mechanics Meade
& Struthers (1999) (see equation 16). We solved the parachute problem using the initial values v(0)
= 0, and mass m = 70.0 kg, g = 9.81 m/s2 and drag coefficient = 10.0, for tmax = 10.

dv

dt
=

(mg − cv)

m
(16)

21

Under review as a conference paper at ICLR 2024

Table 5: Summary of the RMSE values per method and neural network type for the parachute
problem. The RMSE mean and SD are calculated on the final values for the 20 random seeds. All
models were trained using Adam with learning rate 0.001. The MLP, QNN, SNN were trained for
64 000, 1000, and 5000 epochs, respectively.

Experiment Method Neural network Mean SD

parachute-problem augmented-lagrangian classical 0.057748 0.061661
parachute-problem augmented-lagrangian quantum 0.111825 0.067211
parachute-problem augmented-lagrangian spiking 14.803368 5.130939
parachute-problem augmented-lagrangian-interior classical 0.035753 0.047889
parachute-problem augmented-lagrangian-interior quantum 0.057583 0.098441
parachute-problem augmented-lagrangian-interior spiking 26.809915 32.139628
parachute-problem constrained classical 0.022498 0.022315
parachute-problem constrained quantum 0.071080 0.140354
parachute-problem constrained spiking 18.933899 10.626157
parachute-problem pinn classical 0.070363 0.080651
parachute-problem pinn quantum 0.108740 0.063579
parachute-problem pinn spiking 23.560550 9.201258
parachute-problem propagated classical 0.934856 0.371374
parachute-problem propagated quantum 0.962259 0.370997
parachute-problem propagated spiking 8.915335 3.896813

22

	Introduction
	Methods
	Formulation
	Physics-Informed Neural Networks
	Global Physics-Informed Losses
	Propagated Global Physics-Informed Losses
	Shot-Efficient ODE Solving via Global Losses

	Applications
	Propagated Losses Provide Promising Means of Solving Differential Equations on Near-Term Quantum Hardware
	Infinite shot quantum neural network algorithm performance is not necessarily indicative of finite-shot performance

	Conclusions
	Appendix
	Extended physics-informed neural networks methods
	The Augmented Lagrangian Methods
	Spiking neural networks (SNN)

	Additional shots experiments
	ODE results
	The Brusselator system of equations
	The Lorenz system of equations
	The Lotka-Volterra system of equations
	The parachute problem (terminal velocity of a falling body)

