Assessing Adaptive World Models in Machines
with Novel Games

Lance Ying'?, Katherine M. Collins'-3, Prafull Sharma'!, Cédric Colas!,
Kaiya Ivy Zhao', Adrian Weller?>, Zenna Tavares®, Phillip Isola’,
Samuel J. Gershman?, Jacob D. Andreas’, Thomas L. Griffiths®,
Francois Chollet®, Kelsey R. Allen”*, Joshua B. Tenenbaum'*

IMIT 2Harvard University  2University of Cambridge  “Basis Research Institute
5 Princeton University 6 ARC Prize Foundation 7 University of British Columbia
¥ Co-senior authors

Correspondence to lanceying@mit.edu

Abstract

Human intelligence exhibits a remarkable capacity for rapid adaptation and effec-
tive problem-solving in novel and unfamiliar contexts. We argue that this profound
adaptability is fundamentally linked to the efficient construction and refinement
of internal representations of the environment, commonly referred to as world
models, and we refer to this adaptation mechanism as world model induction.
However, current understanding and evaluation of world models in artificial intel-
ligence (AI) remains narrow, often focusing on static representations learned from
training on massive corpora of data, instead of the efficiency and efficacy in learn-
ing these representations through interaction and exploration within a novel envi-
ronment. In this Perspective, we provide a view of world model induction drawing
on decades of research in cognitive science on how humans learn and adapt so effi-
ciently; we then call for a new evaluation framework for assessing adaptive world
models in Al Concretely, we propose a new benchmarking paradigm based on
suites of carefully designed games with genuine, deep and continually refresh-
ing novelty in the underlying game structures — we refer to this class of games
as novel games. We detail key desiderata for constructing these games and pro-
pose appropriate metrics to explicitly challenge and evaluate the agent’s ability for
rapid world model induction. We hope that this new evaluation framework will
inspire future evaluation efforts on world models in Al and provide a crucial step
towards developing Al systems capable of human-like rapid adaptation and robust
generalization — a critical component of artificial general intelligence.

1 Introduction

A hallmark of human intelligence is the capacity for rapid adaptation, solving new problems quickly
under novel and unfamiliar conditions. Over evolutionary timescales, this adaptive intelligence has
enabled humans to survive and flourish in a vast landscape of complex and ever-changing environ-
ments. In modern life, people are continually adapting to new social situations such as new laws,
cultural environments, partners and foes—often with remarkable effectiveness and efficiency.

Decades of research in cognitive science suggests that a key mechanism supporting this rapid adap-
tation is the construction and refinement of mental models and intuitive theories to explain the world
(Johnson-Laird, 1983; Gopnik and Wellman, 2012; Gelman and Legare, 2011; Tenenbaum et al.,
2011; Gerstenberg and Tenenbaum, 2017; Ullman and Tenenbaum, 2020).



In the field of Al, these internal representations are often referred to as “world models” (Ha and
Schmidhuber, 2018), an agent’s representation of its environment, including objects, agents, and
causal structures, which can be used to simulate and reason about the world. Building Al systems
with more human-like world models and world-modeling capacities has been hypothesized as a
crucial step towards building more general intelligent systems. The concept of world models has
thus garnered significant recent interest in Al research, particularly regarding their structure, how
they can be assessed, and whether today’s Al systems truly possess them (Zhu et al., 2024; Ding
et al., 2024; Hao et al., 2023; Andreas, 2024; Vafa et al., 2024).

However, despite increasing attention, the current ways that internal models are characterized and
evaluated in Al systems often diverge importantly from the ways mental models have been studied
in humans. Much existing evaluation focuses on static, low-level domain-specific representations
learned from large, pre-collected datasets. In contrast, decades of cognitive science research high-
lights the ways human world models not only support rapid adaptation but are themselves highly
adaptive. Our models are dynamically constructed and rapidly adjusted for new domains through
active interaction, not merely learned offline from vast corpora. They operate across multiple scales
of space, time and abstraction, with higher-level models constraining inferences and induction at
lower levels and lower levels grounding the predictions of higher-level abstractions. In this Perspec-
tive, we refer to these capacities broadly as a capacity for world model induction, which allows
intelligent systems to quickly form and validate hypotheses about how new environments and tasks
work, and use these hypotheses to guide action, exploration, and bootstrap further learning.

We expect that building and evaluating Al systems capable of this kind of rapid world model induc-
tion will be critical for achieving robust, general Al capable of functioning effectively in the complex
and fast-changing real world, and especially in hAuman worlds — the environments that human beings
have evolved in, created, and are continually changing and re-creating.

To drive Al progress towards this goal, and to be able to measure that progress, we argue for a
comprehensive evaluation framework grounded in the cognitive science theories and experimen-
tal paradigms that have been used to study world model induction in humans. We propose that
games are a uniquely advantageous domain for evaluating these capabilities in Al, given their in-
herently rich, often hierarchical structures in concepts and skills and their well-controlled envi-
ronments. Concretely, we introduce an evaluation paradigm centered around the concept of novel
games. Within this framework, a novel game is defined not simply by unseen instances or para-
metric variations within a familiar game structure, but by environments with structured novelty,
where underlying rules, mechanics, object properties, or objectives are initially unknown, hidden,
or dynamically changing. Success requires agents to rapidly infer these latent dynamics and causal
structures through active, limited interaction and exploration, effectively performing world model
induction on-the-fly.

We hope this Perspective will guide future evaluative work on Al world models and thereby driving
progress towards machines that can efficiently learn, generalize, and adapt with human-like flexibil-
ity and robustness in complex, dynamic real-world environments.

2  World Models in Humans and Machines

The precise definition of world models is often debated (Ding et al., 2024). For the purposes of
this paper, we define world model as an agent’s internal representation of an environment, including
its dynamics, rules, objects, and underlying causal relations. The utility of such a model lies in its
ability to allow agents to efficiently simulate different world states for effective decision making,
planning, and problem solving.

The study and evaluation of representations within today’s Al systems has garnered significant inter-
est in recent years. However, much of the existing work on Al world models often characterizes and
evaluates these representations in a relatively narrow scope, frequently treating them as static repre-
sentations primarily capturing low-level domain features learned from large, pre-collected datasets,
such as whether a model can predict the next frame of a video or future states (LeCun, 2022; Ha and
Schmidhuber, 2018), or recover a visual or spatial representation of the environment (Vafa et al.,
2024; Li et al., 2023). Although these offer valuable insights into the inner representations, we
contend that this understanding and evaluation is insufficient for developing Al systems capable of
human-level sample efficient learning and adaptation in the open world.
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Figure 1: Framework for characterizing world models across different levels of abstractions.
a). World models within a hierarchical Bayesian framework. The structured probabilistic model €24
(ad-hoc world model) generates expectations about possible observations e, while abstract knowl-
edge and principles (abstract world model) 25, 23, ... generate the space of possible structures for
;. Each level of abstraction generates hypotheses and probability distributions that support learn-
ing at the level below. Figure adapted from Tenenbaum et al. (2006). b). The hierarchical structure
of games is analogous to many aspects of the human world model hierarchy. The world model
learned at each game level can be ad-hoc and specific. On the other hand, meta-learning enables
agents to learn domain-general principles at higher levels of abstraction.

For adaptation to complex and changing environments, an agent’s world models cannot be static
representations learned once and fixed. The world is inherently dynamic and often unpredictable.
Agents frequently encounter novel situations where previously learned knowledge may be incom-
plete, only partially applicable, or even become obsolete, necessitating continuous refinement and
potentially significant restructuring of the agent’s mental model of the environment. Therefore, an
adaptive agent’s world model must be capable of being dynamically updated and adapted in response
to new experience. This continuous process of inferring and revising the world model through inter-
action is what we refer to as world model induction.

A key characteristic of human world model induction is its sample efficiency. How do humans
achieve such remarkable sample efficiency in learning about the world? Extensive research in cog-
nitive science has formulated human learning and intuitive theory induction within a hierarchical
Bayesian framework (Gopnik and Wellman, 2012; Gelman and Legare, 2011; Tenenbaum et al.,
2011; Ullman and Tenenbaum, 2020), where theories and concepts are learned and represented at
different levels of abstraction. We can draw a similar conceptual framework for world models, as
shown in Figure 1.

In our framework, we partition an agent’s world model, denoted as 2, into two categories of repre-
sentation, distinguishing between an instance world model and abstract world models. An instance
world model §21, at the lowest level of abstraction, is often a detailed, structured, and domain-specific
representation pertaining to a specific instance, which can be constructed on-the-fly to explain ob-
servations within that environment, for example, a cognitive map of New York City. Abstract world



models 5, ()3, ... are more abstract generalizable concepts and principles applicable across do-
mains. For example, one’s understanding of real-world physics can be applied even if one moves
to a new city. This hierarchical world model structure is key to human adaptation as abstract world
models can provide informative priors for a sample-efficient construction of ad-hoc instance world
models for interacting and problem-solving within new domains.

Learning can be understood as the construction and refinement of such hierarchical world model.
When an agent receives new observations (e), its beliefs about the underlying world model €2 are
updated. The posterior probability distribution over possible world models, given new data e, is
computed by inverting the generative model:

P(Qle) x P(e|]Q)P(Q)

Here, the likelihood term P(e|2) represents the probability of observing the data e given a spe-
cific world model 2, while the prior P(2) represents the agent’s beliefs about {2 before the new
observation.

The efficacy and sample efficiency of this Bayesian update process are significantly enhanced when
the agent is not merely a passive observer but actively seeks out informative data. Insights from
cognitive science and developmental psychology, particularly the “the child as scientist” framework
(Schulz, 2012; Gopnik and Wellman, 1992; Gopnik, 1996), suggest that human learning is char-
acterized by hypothesis-driven exploration. Starting at infancy, human learning involves actively
planning and designing “experiments” — actions that (intentionally or not) effectively generate in-
formative observations that can discriminate between competing hypotheses about the underlying
world model 2. We expect that this kind of active hypothesis-driven approach to generating data is
critical for agents to converge on an accurate representation of a new, unfamiliar domain with mini-
mal interaction and observation, and more generally for sample-efficient world model induction.

Adaptation via World Model Induction

Human-like adaptive intelligence necessitates world model induction at different levels of abstrac-
tion. This affords agents a number of core behavioral capabilities that are crucial for success in
complex and fast-evolving environments. These include:

1. Rapid Learning in New Domains: The ability to achieve proficiency quickly in a wide
range of previously unseen domains. This learning is facilitated by a combination of mech-
anisms, including generalization from sparse experiences, efficient goal-directed explo-
ration, and the intelligent use of data sources beyond direct trial-and-error interaction (e.g.,
information derived from language or social observation).

2. Robust Generalization within a Domain: The capacity to generalize effectively to new
and varied situations encountered within a newly learned domain. This includes adapting
flexibly to novel perceptual inputs, understanding the behavior and affordances of previ-
ously unseen object types, handling modified consequences for actions, or pursuing altered
goals within that domain’s structure.

3. Cross-Domain Generalization and Meta-Learning: The development of meta-learning
capabilities, enabling faster and more efficient adaptation to new domains by leveraging
prior world models. This reflects the human ability to build generalizable knowledge (e.g.,
intuitive physics, intuitive psychology) that can bootstrap learning and generalize broadly
to new tasks, even those with fundamentally different domain characteristics (Spelke and
Kinzler, 2007; Allen et al., 2020; Lake et al., 2017; Chollet, 2019).

The capacity for rapid world model induction and the associated adaptive capabilities outlined above
will be crucial for a wide range of practical applications that Al designers may target, such as adapt-
ing to new work environments and collaborating effectively with new human or artificial partners,
especially when new tools or protocols are introduced. These capacities are also crucial for Al sys-
tems intended to function as Al scientists (Wang et al., 2023; Bengio et al., 2025; Geng et al., 2025),
as human scientific discovery fundamentally involves actively forming hypotheses about the world,
at different levels of abstraction, and designing experiments to validate these provisional models,
mirroring the process of hierarchical world model induction (Henderson et al., 2010).



Despite the critical importance of world model induction for achieving human-like intelligence,
there is a lack of comprehensive evaluation frameworks specifically designed for such world models
in Al systems. Existing evaluations of world models in AI models often focus on assessing static
world models learned from large, pre-collected datasets and extensive offline training (Vafa et al.,
2024; Li et al., 2023), rather than measuring the efficiency and flexibility of models in learning and
adapting world models through online exploration and interaction in genuinely novel domains.

In this perspective, we call for future Al evaluation efforts to holistically assess world models in
machines according to the framework outlined above. We contend that games provide particularly
rich and controlled environments uniquely well-suited for systematically evaluating rapid model
adaptation and the process of world model induction. The remainder of this paper details how
games can serve this purpose and proposes a new game-based evaluation in subsequent sections.

3 Games as a Benchmark for Intelligence

Games are universal cultural artifacts and have been commonly used as a measure of intelligence
(Cleveland, 1907). While the definition of games is frequently debated, in this paper, we follow pre-
vious work on using games to study intelligence (Allen et al., 2024) and define games as “facilitators
that structure player behavior and whose main purpose is enjoyment” (Newell et al., 1972).

Games have long served as valuable environments for studying machine intelligence by the Al
community (Campbell et al., 2002; van Opheusden et al., 2023; Silver et al., 2016; Yannakakis
and Togelius, 2018; Vinyals et al., 2019; Shannon, 1950; Newell, 1955; Chase and Simon, 1973).
They strike a unique balance by offering clear rules, goals, and feedback while also requiring agents
to engage in complex planning, learning, and abstraction. This combination of formal structure and
behavioral complexity makes them especially well-suited for probing how intelligent systems —
biological or artificial — make decisions under uncertainty. Formally, many games can be modeled
as Partially Observable Markov Decision Processes (POMDPs), which define a task in terms of
hidden states, observations, transitions, and rewards (Kaelbling et al., 1998).

Many established Al benchmarks, particularly those involving complex games (e.g. Atari (Belle-
mare et al., 2013), Go (Silver et al., 2016), StarCraft (Vinyals et al., 2019)) for reinforcement learning
agents, follow a training/testing paradigm in which agents are optimized over millions or billions of
interaction steps. While such systems can achieve superhuman performance, their success typically
reflects extensive optimization within fixed environments rather than rapid, human-like adaptation
to new environments.

To address the limitations of evaluating Al systems solely within the distribution of their training
data, various reinforcement learning (RL) benchmarks have introduced forms of task variation to test
generalization capabilities. However, much of the generalization evaluation in RL has focused pri-
marily on measuring changes in raw task performance rather than evaluating the process of adap-
tation itself. There is often insufficient focus on whether these tasks truly necessitate the synthesis
of new world models, how efficiently an Al model actually constructs these internal representations,
or how these models evolve over time through interaction with the novel environment.

These limitations collectively highlight a critical gap in current Al evaluation paradigms. While
they succeed in measuring performance under varying conditions or with some task generalization,
they fall short of assessing the core human capacity to actively construct and dynamically adapt
internal world models based on limited online experience and interaction. This ability demands
an evaluation framework specifically tailored to reveal an agent’s model-building capabilities. To
address this need, we next introduce an evaluation paradigm centered on the use of novel games and
detail how the design of these games, alongside appropriate metrics, can provide a robust method
for assessing rapid world model induction in Al

4 Assessing Adaptive World Modeling in AI with Novel Games

In this section, we propose an evaluation paradigm based on a class of games we call novel games
for assessing the capacity for adaptive world modeling in AI. We are using the phrase novel games
to refer to games with genuine, deep, and continually refreshing novelty in the structure of the
environments and goals presented to the players. These games require players to construct new
world models or modify their models when first learning the game and dynamically throughout their
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Figure 2. Case studies of novel environments for testing world model induction

a) ARC-AGI-3 (ARC Prize, 2025) is an interactive reasoning benchmark. Players are not given
instructions about the gameplay or win conditions; instead, they must infer game rules and objectives
through interaction.

b) AutumnBench (Basis, 2025) evaluates an agent’s ability to discover latent mechanics through
interactive exploration of grid-world environments. The evaluation follows a two-phase protocol:
interaction and test. During interaction, agents explore environments freely without rewards or
goals. The subsequent test phase evaluates their understanding through three tasks: masked frame
prediction, defect detection, and planning. In the featured example, through interaction the agent is
expected to discover the rule that adding a grey block lowers the ballon, which makes the right-most
frame an anomaly.

¢) VGDL games (Schaul, 2013; Perez-Liebana et al., 2019) were used by Tsividis et al. (2021) to
evaluate an agent’s capability to discover rules and objectives in ambiguous environments when no
language instructions are provided. In their games, the agent can press a few keys on a keyboard to
explore the environment to pass each level. Humans generally learn to play these new games in a
matter of minutes.

d) Virtual Tools Game (Allen et al., 2020) tests rapid learning in physical reasoning scenarios. The
goal is to select and drop one of the tools on the right so that the red ball ends up in the green
bin. Allen et al. (2020) show that humans quickly solve these tasks by leveraging their intuitive
understanding of physics. This showcases robust cross-domain generalization.

play, across boards, screens or levels. In the following sections, we first discuss the desiderata for
such games, and then we propose a set of metrics for evaluating Al systems within them.

4.1 Desiderata for Designing Novel Games

The key requirement for our Al evaluation paradigm is the inherent novelty in the underlying game
structure. These games must offer genuinely new adaptation challenges, meaning they are signif-
icantly distinct from established and widely studied games (like Chess, Go, or classic Atari titles)
and necessitate new world models. This distinctiveness is crucial to prevent Al systems from reusing
existing world models to solve the task or exploiting readily available online resources such as wikis
and walkthroughs that describe optimal strategies for existing popular games.

However, the space of all possible novel games is infinitely large as one can construct new games
with any arbitrary mechanics. We propose novel games should be grounded in the kinds of diverse,
highly dynamic and novel environments encountered by humans, thus providing a testbed for how
well an Al system can learn and adapt in all kinds of (game) worlds intuitive to humans, either alone
or with humans.

4.1.1 Desideratum 1: Novelty in Game Structures

In this section, we articulate key features for the design of domains with genuine novelty in their
underlying structures for testing the three aspects of adaptive capabilities listed in Section 2:
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Rapid Learning and Theory-driven Exploration We encourage the design of game environ-
ments where the underlying mechanics are not fully transparent or pre-specified to the player. In-
stead, crucial aspects — including types of objects, specific rules governing interactions, affordances
and properties of objects, or the consequences of actions — should be partially or entirely latent,
requiring the agent to infer them through active gameplay, exploration, and experimentation. We
highlight three such game environments from previous studies in Figure 2.

This design compels the Al agent to function as an active learning system, dynamically construct-
ing an understanding of its environment. This exploratory process should ideally reflect aspects of
theory-driven learning (Ullman and Tenenbaum, 2020; Tsividis et al., 2021). The agent must be
capable of forming hypotheses about latent rules or object behaviors based on observation, strategi-
cally planning and executing ‘experiments’ through its actions to test these hypotheses, and refining
its internal model based on the observed outcomes. Effectively pursuing this form of active, model-
building learning necessitates setting epistemic goals—objectives focused on acquiring knowledge
and reducing uncertainty about the game’s state and mechanics.

Robust Generalization within a Domain Effective adaptation within a learned novel domain re-
quires robustness to variations and changes occurring within that specific environment’s structure.
Novel games should be designed to feature multiple levels or configurations, introduce new object
types with distinct properties, modify existing rules or mechanics, or alter goals and outcomes over
the course of interaction. Crucially, these games can also incorporate mechanics that cause the envi-
ronment, including its rules and dynamics, to evolve dynamically over time, potentially influenced
by the player’s actions or external events. This dynamic aspect necessitates that the agent continu-
ously monitors the environment, detects changes, and updates its internal world model online.

Flexible Generalization across Domains To evaluate the capacity for cross-domain generaliza-
tion and meta-learning, the benchmark should include game sets where abstract principles or mod-
els learned can be productively transferred to a new game, despite significant differences in sur-
face rules or mechanics. For example, training on games involving various scenarios governed by
a consistent set of physics rules (e.g., gravity, momentum) allows an agent to induce an abstract
“intuitive physics” model. This model can then be transferred to accelerate adaptation in a new
game featuring new objects and tasks but operating under similar physical laws, enabling the agent
to predict outcomes more effectively from the outset.

4.1.2 Desideratum 2: Intuitive and Learnable for Human Players

For novel games to stress-test Al models’ capability to adapt in the human world, their core mechan-
ics and objectives should be fundamentally intuitive and learnable for average human players.
This criterion is essential because a key goal of this evaluation paradigm is to measure human-like
adaptation skills. Games that humans find intuitive are likely structured in ways that resonate with
fundamental human inductive biases: the inherent cognitive predispositions and learning mecha-
nisms shaped by the cultural and physical environment humans inhabit (Allen et al., 2024; Dubey
et al., 2018). Ensuring human learnability serves practical purposes: it allows for benchmarking Al
performance directly against human capabilities, provides a valuable constraint on the complexity
and potential arbitrariness of the game generation process, and aligns the evaluation with the broader
goal of developing Al that can learn from and collaborate with humans in novel scenarios.

4.1.3 Desideratum 3: Diversity in World Models and Learning Mechanisms

To span the diverse array of challenges people—and Al systems in a human-world may face—the
benchmark game suite should encompass significant diversity to necessitate different types of world
models that agents are compelled to induce. For example, while some games may primarily involve
learning about spatial relationships or object physics, others can require understanding and model-
ing other agents in multi-agent games (whether competitive or collaborative with other human or
artificial agents). Successfully adapting in multi-agent scenarios often requires agents to develop
sophisticated mental models about other agents, inferring and representing their goals, beliefs, in-
tentions, or emotional states (often referred to as Theory of Mind (Gopnik and Wellman, 1992)),
which constitutes a crucial aspect of human social adaptation.



Furthermore, the benchmark should feature diversity in the learning mechanisms available to the
agent. Some games can be designed to offer minimal or no explicit instructions, compelling the agent
to induce the world model predominantly through interaction and exploration. Conversely, other
games could provide structured linguistic instructions, demonstrations, or tutorials, allowing for the
evaluation of how well agents can leverage external, often multimodal, information to accelerate
model construction. Incorporating scenarios where information about mechanics or objectives is
conveyed implicitly through social means, such as Non-Player Characters (NPCs) that demonstrate
actions or use language, can provide a critical way to test learning through observation and social
scaffolding like people.

4.1.4 Combining Desiderata in a Generative Framework

A central challenge in this evaluation paradigm is the continual provision of games that rigorously
satisfy our desiderata. Specifically, the inherent novelty of these games is ephemeral; as Al systems
(and indeed, humans) gain experience with their mechanics, the games quickly become familiar,
thereby undermining their utility as tests of adaptation to truly novel situations.

We propose that game benchmarks should be thought of as a generative process over such games
which can continually sample new novel games that satisfy our desiderata. Like language, games
can be compositional and continually reconfigured. Modifications can vary the game mechanics,
partners, and other game features (see Figure 3). This would allow the game benchmark to continue
to evolve and cover a large space of novel and diverse environments that AI would need to adapt to,
thus mitigating overfitting.

4.2 Evaluation of AI Agent’s World Modeling Capacity

Once we have designed games that pose meaningful challenges on adaptive world modeling for Al,
we need a comprehensive evaluation framework to characterize the internal world models learned
by the agent.

Sample Efficiency in Adaptation A measure of learning efficiency is how quickly a model can
achieve proficiency with limited experience. One could evaluate this by providing a restricted “bud-
get” of training attempts (trials) within a game level and assessing performance. This budget can be
varied to provide a fine-grained understanding of learning dynamics and adaptability under different
constraints. For example, one can measure performance after a fixed number of attempts, or quantify
the number of game-plays required to reach average human performance (e.g. Lake et al. 2017).

Qualitative Analysis of Exploration and Learning Behavior Beyond quantitative metrics, a
qualitative analysis of how agents explore and learn within novel environments can reveal crucial
insights into their capabilities for world model induction. Different learning approaches often mani-
fest in distinct exploration patterns, reflecting their strategies for gathering information and inferring
rules. For instance, Tsividis et al. (2021) finds that human players tend to exhibit targeted and ef-
ficient exploration when learning to play novel games, focusing on areas relevant to understanding
the game mechanics, while other learning algorithms such as DDQN (Van Hasselt et al., 2016) of-
ten displays highly diffuse and less directed exploration, indicative of a struggle to efficiently form
coherent internal representations of the environment.

Probing Internal World Models To properly assess rapid world model induction, it is essential
to gain insight into the nature of the internal representations that the agent constructs and how these
representations are dynamically updated in response to new observations and actions.

The methods for inspecting these internal world models are heavily dependent on the agent’s archi-
tecture. For models based on explicit program synthesis or symbolic reasoning, the inferred world
model may be directly interpretable as the synthesized program or set of rules (Tsividis et al., 2021;
Das et al., 2023). This offers a transparent view of the agent’s current representation of the environ-
ment, and this allows direct comparison to the kinds of hierarchical representations in humans.

For neural networks, inspecting the internal world model is more complex, typically involving an-
alyzing representation spaces, activation patterns, attention mechanisms, or tracing reasoning pro-
cesses through the network (Vafa et al., 2024). Techniques such as probing specific network layers
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Figure 3: Creating novel games. There are many ways that researchers can create novel games.
Variants could be sourced from existing games by modifying the environment and number of players,
mechanics, or objective function. Novel games could also be formed by combining existing games.

for learned features related to game mechanics or dynamics can reveal aspects of the implicit world
model. For many of the large foundation models that can interact with humans in natural language,
we can also examine their understanding of the game mechanics through targeted question answer-
ing at different levels of abstraction.

By probing these internal representations and their changes over time as the agent interacts with a
game environment, we can gain crucial qualitative insights into how the Al agent is actively infer-
ring, representing, and revising its understanding of the world.

5 Discussion and Looking Forward

In this Perspective, we have argued that a critical component for developing truly general and ro-
bust artificial intelligence lies in its capacity for adaptation to novel circumstances. This adaptive
capability is fundamentally linked to the agent’s ability to rapidly induce and dynamically refine
internal world models when confronted with unknown environments. We then introduce an evalu-
ation paradigm centered around carefully constructed novel games. This framework is specifically
designed to evaluate Al systems on their capacity for adaptive world modeling, which is essential for
efficient learning and robust generalization in dynamic, unforeseen environments where underlying
rules and structures are often hidden from the agent.

While we believe this paradigm offers a valuable path forward, we acknowledge several important
outstanding questions and challenges that warrant future investigation and refinement. A funda-
mental question that may arise regarding our central thesis is the extent to which hierarchical and
adaptive world models are truly necessary for rapid and efficient adaptation. Our Perspective is
strongly motivated by and aligned with extensive evidence from cognitive science and developmen-
tal psychology (Tenenbaum et al., 2011; Gopnik and Wellman, 2012), which highlights the crucial
role of constructing and refining internal models in human learning and adaptation. The extent to
which such model-free approaches can achieve human-level rapid, sample-efficient adaptation and
robust generalization remains an open empirical question.

Second, while we can evaluate performance on the tasks within novel games, directly measuring the
quality and efficiency of internal world model induction at different levels of hierarchy presents its
own challenges. Developing metrics that specifically quantify how well an agent has inferred the
latent rules or dynamics—beyond just task success—and how efficiently it updates this understand-
ing over time is crucial. This may involve developing probing techniques, counterfactual evaluation
methods based on the inferred model, or analyzing the structure of internal representations.



6 Conclusion

In this paper, we have argued that building human-like adaptability in machines necessitates adaptive
world models, which affords sample efficient world model induction in any new domains. We then
proposed a novel framework for assessing adaptive world models centered on the concept of novel
games. We believe this proposed evaluation paradigm holds significant potential to serve as a core
component in assessing current Al models and drive research towards systems that exhibit the rapid,
flexible, and robust adaptability characteristic of human intelligence, thus contributing meaningfully
to the ambitious pursuit of artificial general intelligence.
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