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Abstract

Bayesian neural networks (BNNs) excel in un-
certainty quantification (UQ) by estimating the
posterior distribution of model parameters, yet
face challenges due to the high computational
demands of Bayesian inference. Evidential deep
learning methods address this by treating target
distribution parameters as random variables with
a learnable conjugate distribution, enabling effi-
cient UQ. However, there’s debate over whether
these methods can accurately estimate epistemic
uncertainty due to their single-network, sampling-
free nature. In this paper, we combine the strengths
of both approaches by distilling BNN knowledge
into a Dirichlet-based model, endowing it with a
Bayesian perspective and theoretical guarantees.
Additionally, we introduce two enhancements to
further improve the integration of Bayesian UQ
with Dirichlet-based models. To relax the heavy
computational load with BNNs, we introduce a
self-regularized training strategy using Laplacian
approximation (LA) for self-distillation. To alle-
viate the conjugate prior assumption, we employ
an expressive normalizing flow for refining the
model in a post-processing manner, where a few
training iterations can enhance model performance.
The experimental results have demonstrated the
effectiveness of our proposed methods in both UQ
accuracy and robustness.

1 INTRODUCTION

Deep neural networks (DNNs) have shown remarkable per-
formance in a wide range of machine learning applications,
particularly with the advent of big data. However, conven-
tional DNNs may exhibit overconfidence and fail to accu-
rately model the uncertainty associated with predictions.

This shortcoming could lead to catastrophic outcomes in
safety-critical real-world applications. Hence, it is imper-
ative to develop reliable systems employing probabilistic
models that incorporate UQ, thus enabling well-informed
and confident decision-making.

There are two types of uncertainties: epistemic and aleatoric
uncertainty. Epistemic uncertainty refers to the prediction
uncertainty arising from limited knowledge in the modeling
process, while aleatoric uncertainty stems from the inherent
noise present in the data. To accurately quantify both types
of uncertainties, Bayesian neural networks (BNNs) can be
employed, which treat NN parameters as random variables
and compute the posterior distribution of these parameters.
Common approaches for UQ include Markov Chain Monte
Carlo (MCMC) methods [Tierney, 1994, Welling and Teh,
2011, Chen et al., 2014b, Zhang et al., 2019] and varia-
tional inference (VI) techniques [Louizos and Welling, 2017,
Maddox et al., 2019, Franchi et al., 2020]. Ensemble-based
methods [Lakshminarayanan et al., 2017, Valdenegro-Toro,
2019, Wen et al., 2020] also provide powerful alternatives
for achieving accurate UQ. Despite their advantages, tra-
ditional BNNs require substantial and diverse parameter
samples for Bayesian inference, leading to inefficiency in
UQ. This inefficiency stems from the necessity to carry out
multiple forward propagations of the NN using distinct pa-
rameters sampled from the posterior. To address this issue,
researchers have introduced single-network deterministic
methods that facilitate the computation of uncertainty via a
single forward pass of the network.

Evidential deep learning methods [Ulmer, 2021] assume
that the target variable in classification problems follows a
categorical distribution, with parameters treated as random
variables governed by a conjugate Dirichlet distribution,
thus facilitating epistemic uncertainty quantification. How-
ever, current approaches necessitate additional knowledge
to accurately learn the parameters of the conjugate distribu-
tion, such as out-of-distribution (OOD) data [Malinin and
Gales, 2018, 2019], ensemble models [Malinin et al., 2019],
and density models [Charpentier et al., 2020]. Even with
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this added knowledge, point-estimated evidential networks
can struggle to quantify epistemic uncertainty. Malinin and
Gales [2018] and Ulmer [2021] argued that mutual infor-
mation based uncertainty primarily reflects distributional
uncertainty instead of epistemic uncertainty. Charpentier
et al. [2020] and Sensoy et al. [2018] proposed using the
sharpness of the Dirichlet distribution to measure epistemic
uncertainty. However, these methods diverge from entropy-
based UQ and often lack theoretical justification for their un-
certainty measures. These challenges drive our exploration
of evidential networks from a Bayesian perspective, ensur-
ing the capture of epistemic uncertainty with theoretical
guarantees. Furthermore, we introduce two enhancements
to complement our core idea, offering alternative opportuni-
ties for achieving a better accuracy-efficiency trade-off. Our
contributions are summarized below:

• We propose to incorporate BNN knowledge into an
evidential network, endowing it with a Bayesian per-
spective and theoretical guarantees. The uncertainty
can be estimated through a single pass of the NN.

• A self-distilled training strategy using Laplacian ap-
proximation is introduced, eliminating the need for
additional knowledge of BNNs and reducing the com-
putational burden.

• We suggest using flexible normalizing flows in a post-
processing way to relax conjugate prior assumptions,
improving UQ with few training iterations.

2 RELATED WORKS

Bayesian neural networks BNNs treat NN parameters as
random variables, seeking to determine their posterior distri-
bution. Since Bayesian inference entails marginalizing over
the posterior, finding a closed-form solution for Bayesian
inference becomes challenging. Therefore, different meth-
ods for approximately generating parameter samples from
the posterior are proposed. The MCMC methods [Tierney,
1994, Welling and Teh, 2011, Chen et al., 2014b, Zhang
et al., 2019] construct Markov chains to align their equilib-
rium distribution with the posterior distribution, which in
turn provides a basis for sampling. VI methods [Louizos and
Welling, 2017, Maddox et al., 2019, Franchi et al., 2020],
on the other hand, learn a simpler distribution that approxi-
mates the posterior from which samples can be drawn during
inference. As a special variational method, the Laplace ap-
proximation (LA) method [MacKay, 1992] approximates
the posterior distribution using a Gaussian distribution by
performing Taylor expansion around its mode, which can
be applied to any pre-trained probabilistic neural networks
(PNNs)1 for UQ. To improve the efficiency of LA, sub-
network LA [Daxberger et al., 2021b] and last-layer LA

1We define a PNN as a neural network that outputs the proba-
bility distribution of the target variable.

[Kristiadi et al., 2020] are proposed which construct the pos-
terior distribution for subsets of NN parameters. Meanwhile,
the deep ensemble method [Lakshminarayanan et al., 2017]
and its variants [Wen et al., 2020, Wenzel et al., 2020, Han
et al., 2020, Li et al., 2022] generate multiple samples of NN
parameters by training with varying random initializations,
serving as strong baselines.

Evidential deep learning and deterministic UQ Evi-
dential deep learning techniques treat the parameters of
the target distribution as random variables adhering to a
conjugate distribution. To learn the conjugate distribution,
additional knowledge often comes from OOD training sam-
ples, where various approaches [Malinin and Gales, 2018,
2019, Nandy et al., 2020, Shen et al., 2020, Chen et al.,
2018, Sensoy et al., 2020] enforce a flat Dirichlet distribu-
tion over the OOD data. Other regularizations for accurate
conjugate distribution learning involve the use of ensemble
models for knowledge distillation [Malinin et al., 2019], the
accumulation of evidence in the subjective logic framework
[Sensoy et al., 2018], and the density models of latent vari-
ables [Charpentier et al., 2020]. These methods have distinct
loss functions, such as Kullback–Leibler (KL) divergence
loss [Malinin and Gales, 2018], L2 norm loss [Sensoy et al.,
2018], and ELBO loss [Chen et al., 2018]. Additionally,
some approaches [Amini et al., 2020, Malinin et al., 2020,
Charpentier et al., 2021] extend the Dirichlet-based meth-
ods to regression problems. For more detailed discussions,
please refer to Appendix B.1 and the survey paper [Ulmer,
2021]. Recently, some deterministic UQ methods have been
proposed that do not require a Dirichlet framework. These
methods include those that construct distance-aware hid-
den representations for uncertainty quantification through
gradient penalty [Van Amersfoort et al., 2020] or spectral
normalization [Lakshminarayanan et al., 2020, van Amers-
foort et al., 2021], and those that learn more informative
hidden representations through contrastive learning [Wu and
Goodman, 2020] or reconstruction regularization [Postels
et al., 2020]. However, these techniques often have poorly
calibrated uncertainty [Postels et al., 2021] and struggle to
distinguish between aleatoric and epistemic uncertainty.

Bayesian knowledge distillation Hinton et al. [2015] pi-
oneered Bayesian knowledge distillation by transferring
knowledge from complex ensemble models to a single
deterministic counterpart. Subsequent works by Korat-
tikara Balan et al. [2015] and Englesson and Azizpour
[2019] extended this concept, distilling BNN knowledge
into deterministic networks. However, these methods often
omit epistemic uncertainty information. Recently, Lindqvist
et al. [2020] focused on distilling the ensemble distribution
in the latent space. Unlike evidential deep learning, their UQ
approach requires sampling, whereas our method calculates
epistemic uncertainty within a single forward pass.



3 PRELIMINARIES

General notations and assumptions. We denote the in-
put as x, the target variable as y, and the training data as
D = {xn, yn}Nn=1. In this work, we focus on classification
problems, where y is a random variable following a cate-
gorical distribution. E represents expectation, H represents
entropy, and I represents mutual information. β is a hyper-
parameter for determining the prior distribution of a random
variable. C is the number of classes.

Bayesian neural networks Bayesian neural networks
assume the NN parameters ψ are random variables, with
a prior p(ψ|β) and a likelihood p(D|ψ). We can apply the
Bayes’ rule to compute the posterior of ψ, i.e., p(ψ|D, β),
as shown in Eq. (1).

p(ψ | D, β) = p(D | ψ)p(ψ | β)
p(D)

(1)

For classification problems, we assume the target y follows
a categorical distribution with the parameter λ(x, ψ). The
posterior of λ can be computed as follows:

p(λ | x,D, β) =
∫
p(λ | x, ψ)p(ψ | D, β)dψ (2)

where p(λ | x, ψ) = δ(λ(x, ψ)) and δ(·) is a Dirac prob-
ability density function. Given a new testing sample x∗,
Bayesian inference marginalizes out ψ over its posterior
p(ψ|D, β) to obtain p(y|x∗,D, β), as shown in Eq. (3).

p(y | x∗,D, β) =
∫
p(y | x∗, ψ)p(ψ | D, β)dψ (3)

Finally, the entropy-based UQ of a BNN is shown in the
following:

H[p(y|x,D, β)]︸ ︷︷ ︸
Total Ut

= I[y;ψ|x,D, β]︸ ︷︷ ︸
Epistemic Ue

+Ep(ψ|D,β){H[p(y|x, ψ)]}︸ ︷︷ ︸
Aleatoric Ua

.

(4)

Laplacian approximation Given a MAP-trained
PNN with parameters ψ such that ψmap =
argmaxψ log p(ψ|D, β), LA approximates p(ψ|D, β)
by a Gaussian distribution N (ψmap,Σ) with mean ψmap
and covariance matrix Σ as shown in Eq. (5):

p(ψ|D, β) ≈ N (ψmap,Σ); Σ = −(G)−1 (5)

where G = ∇2
ψ log p(ψ|D, β)|ψ=ψmap

. To achieve high
efficiency, we use last-layer LA [Kristiadi et al., 2020] in
this paper. More discussions can be found in Appendix A.

Dirichlet-based model For classification problems, the tar-
get y follows a categorical distribution with parameter λ, i.e.,
y ∼ p(y | λ) = Cat(λ). The parameter of the categorical
distribution λ is also treated as a random variable, follow-
ing a Dirichlet distribution, i.e., λ ∼ p(λ | α(x, θ)) =

Dir(α(x, θ)), where α(x, θ) = [α1, α2, · · · , αC ]T is the
output of a deterministic NN parameterized by θ. The prob-
ability p(y|x, θ) is expressed as:

p(y | x, θ) = p(y | α(x, θ)) =
∫
p(y | λ)p(λ | α)dλ

= Cat

({
αk
α0

}C
k=1

) (6)

where C is the number of classes and α0 =
∑C
k=1 αk. In

the hierarchical model θ → α → λ → y, only θ is learn-
able, with other parameters explicitly calculated. Similar to
standard neural network training, adding Dirichlet λ doesn’t
complicate the neural network and the training process due
to closed-form integration. To clarify, training directly with
the likelihood in Eq. (6) resembles standard training, aiming
to align p(y|α(x, θ)) with ground truth labels. However, it
can only solve for α up to a scale factor α0. Determining α0

controls the sharpness of the Dirichlet distribution, which is
important for epistemic UQ.

4 PROPOSED METHOD

In this section, we first introduce Dir-BNN, a Dirichlet-
based framework that performs accurate and efficient UQ
by integrating the BNN knowledge. Then, we propose a
self-regularized training strategy by LA to train Dir-BNN
more efficiently. Lastly, we employ a normalizing flow to
refine the Dirichlet distribution in a post-processing manner.

4.1 DIR-BNN TRAINING: A BAYESIAN
PERSPECTIVE

To learn the Dir-BNN parameters θ under the Dirichlet-
based model illustrated in Sec. 3, the Maximum-A-
Posteriori (MAP) loss is represented in Eq. (7), with
p(y|x, θ) given in Eq. (6) and a pre-defined prior p(θ):

Lmap(θ) = −
∑

(x,y)∈D

log p(y|x, θ)− log p(θ) (7)

Nonetheless, based on Eq. (6), the MAP estimation can only
determine α up to the scale factor α0 =

∑
k αk. We suggest

utilizing both the ground truth training data and the BNN
knowledge as regularization to train the Dir-BNN jointly.
The total loss function can be expressed as follows:

L(θ) = Lmap(θ) + ρLreg(θ). (8)

In this case, Lreg(θ) represents the regularization loss func-
tion that incorporates supervision from the BNN model. ρ
is the coefficient of the regularization, serving as a hyperpa-
rameter. To extract knowledge from a BNN, the Dir-BNN
learns Dirichlet distribution p(λ | α(x, θ)) = Dir(α(x, θ))
to approximate the posterior distribution p(λ | x,D, β)



derived from the BNN model in Eq. (2). As a result, we
can employ KL-divergence between p(λ | x,D, β) and
p(λ | α(x, θ)) as the regularization term:

Lreg(θ) =KL (p(λ | x,D, β)∥p(λ | α(x, θ)))

∝−
C∑
k=1

log (Γ(αk)) + log Γ

(
C∑
k=1

αk

)

− Ep(ψ|D,β)

[
C∑
k=1

(αk − 1) log λk(x, ψ)

]
.

(9)
The derivation of Eq. (9) is available in Appendix B.2. Train-
ing Dir-BNN with just the KL divergence loss is also feasi-
ble with a perfect BNN. However, with a suboptimal BNN,
adding NLL loss may improve Dir-BNN’s predictions and
ensure stable training. As noted in Sec.3.1 of [Malinin et al.,
2019], Dirichlet-based methods may encounter optimization
challenges. Optimizing Eq. (9) at the start of training is dif-
ficult because the Bayesian posterior for the output space is
often "sharp" at one corner of the simplex. Initially, when the
NN is randomly initialized, the Dirichlet distribution’s mode
is near the center, making the KL optimization challenging
due to limited common support between the two distribu-
tions. Adding the NLL loss can guide the optimization in
the right direction at the beginning of the training. After
training the Dir-BNN, the uncertainties can be calculated
within a single forward pass of the NN without the need
for sampling. We estimate the epistemic and aleatoric un-
certainties using mutual information and expected entropy,
respectively, as demonstrated in Eq. (10):

H[p(y|x, θ)]︸ ︷︷ ︸
Total Ut

= I[y;λ|α]︸ ︷︷ ︸
Epistemic Ue

+Ep(λ|α)
[
H[p(y|λ)]

]︸ ︷︷ ︸
Aleatoric Ua

.
(10)

The closed-form expressions for the uncertainties men-
tioned above can be found in Appendix B.3. Incorporating
the Bayesian regularization term leads to several signifi-
cant improvements. It endows the Dirichlet models with a
Bayesian perspective, which emulates the process of quan-
tifying epistemic uncertainty through variations in model
parameters. Conventional evidential UQ methods, utilizing
point-estimated models, struggle to effectively quantify epis-
temic uncertainty. As indicated by Malinin and Gales [2018],
the uncertainty estimated by I[y;λ|α] can only capture distri-
butional uncertainty. In contrast, our proposed approach can
be considered a variational method for performing Bayesian
inference in the output space. The following propositions
offer theoretical guarantees for our methods in quantifying
epistemic uncertainty, with proofs provided in Appendix
B.4.

Proposition 4.1.1 (Performing UQ in the output space).
For a BNN f with parameter ψ ∼ p(ψ|D, β), which out-
puts the softmax probability, i.e., λ = f(x, ψ), we have
I[y;ψ|x,D] = I[y;λ|x,D].

Proposition 4.1.2 (Transformation of the variational gap).
Given a BNN as defined in Proposition 4.1.1, we assume
there is a variational approximation qθ(ψ) for approximat-
ing p(ψ|D, β). Correspondingly, the posterior distribution
p(λ|D, x, β) is approximated by qθ(λ|x), which fulfills:

qθ(λ|x) =
∫
δ(λ = f(x, ψ))qθ(ψ)dψ (11)

where δ(·) is the Dirac probability density function. The
KL divergence between p(λ|D, x, β) and qθ(λ|x) is upper
bounded by KL divergence between p(ψ|D, β) and qθ(ψ):

KL(p(λ|D, x, β)||qθ(λ|x)) ≤ c+ KL(p(ψ|D, β)||qθ(ψ)).
(12)

c is a constant with respect to θ as shown in Eq. (13). The
equality is satisfied when f is invertible.

c = −Hλ +Hψ =

∫
p(λ|D, x, β) log p(λ|D, x, β)dλ

−
∫
p(ψ|D, β) log p(ψ|D, β)dψ

(13)

Since the prediction uncertainty is determined in the output
space, Proposition 4.1.1 establishes that calculating epis-
temic uncertainty in the output space using the posterior
distribution of λ is both adequate and necessary. Since
p(λ|x,D, β) is often intractable, Proposition 4.1.2 shows
that it is more advantageous to learn a variational distri-
bution to approximate p(λ|x,D, β) than to conduct VI in
the parameter space. It emphasizes that the output-space
variational gap (KL(p(λ|D, x, β)||qθ(λ|x))) has an upper
bound determined by the parameter-space variational gap
(KL(p(ψ|D, β)||qθ(ψ))). As a result, minimizing the dis-
tance between p(ψ|D, β) and qθ(ψ) yields a sub-optimal
approximation for p(λ|D, x, β). In this paper, we consider
the Dir-BNN as an approximate inference method bridging
Bayesian deep learning and evidential deep learning. Fun-
damentally, we learn a Dirichlet distribution in the output
space to approximate p(λ|D, x, β). Thus, our method offers
theoretical guarantees for accurate epistemic UQ. Proposi-
tion 4.1.3 illustrates that the error in UQ is constrained by
the output-space variational gap. After adding the regulariza-
tion term KL(p(λ|D, x, β)||p(λ|x, θ)), we can theoretically
show that the estimated uncertainties from Dir-BNN serve
as approximations to their exact measurements.

Proposition 4.1.3 (Uncertainty error bound). Consider
Ut, Ua, Ue as the total, aleatoric, and epistemic uncertain-
ties determined by the Dir-BNN, as depicted in Eq. (10).
Similarly, U∗

t , U
∗
a , U

∗
e denote their counterparts derived

from the BNN as presented in Eq. (4). Under certain con-
ditions (will be shown in Eq. (55) of Appendix B.4.3), the
following error bounds demonstrate the distance between
the uncertainties estimated by a Dir-BNN and their exact
measurements from the BNN:



|Ut − U∗
t | ≤ −

√
2 log 2 · d log

√
2 log 2 · d
C

|Ua − U∗
a | ≤ logC

√
2 log 2 · d

|Ue − U∗
e | ≤

√
2 log 2 · d (2 logC − log

√
2 log 2 · d )

(14)

where d = KL(p(λ|D, x, β)||p(λ|x, θ)).
We further present two analyses for the uncertainty error
bounds: (1) under the assumptions illustrated in Eq. (55) of
Appendix B.4.3, all bounds decrease as d decreases; (2) all
bounds approach 0 as d → 0. It is evident that the bound
for Ua satisfies the above conditions. Since the bound for
Ue is the sum of the bounds for Ut and Ua (i.e., we use
|Ue−U∗

e | ≤ |Ut−U∗
t |+|Ua−U∗

a | for Proposition 4.1.3), we
only need to demonstrate that the bound for Ut meets these
conditions. Based on Lemma B.2 in Appendix B.4.3, the
function −x log x

C (with x =
√
2 log 2d for the bound ofUt)

is monotonically non-decreasing if x ∈ [0, Ce ]. Therefore,
under the assumptions for Proposition 4.1.3, the bound of
Ut is non-decreasing. As d approaches 0, the bound tends
to 0, according to L’Hôpital’s Rule:

lim
x→0

−x log x
C

= lim
x→0

log C
x

1
x

= lim
x→0

d
dx log

C
x

d
dx

1
x

= lim
x→0

−1/x

−1/x2
= lim
x→0

x = 0

(15)

It’s also worth noting that the assumptions for Proposi-
tion 4.1.3 provide an upper bound for d, which may gener-
ally hold as p(λ|x, θ) is trained effectively to approximate
p(λ|x,D, β). d often does not “explode” since the distribu-
tions are defined on the probability simplex in the output
space, which is much smaller than the parameter space.

Although the proposed method requires a BNN, it is only
necessary during training. While training may take longer,
the resulting BNN-augmented evidential network facilitates
fast and accurate UQ with theoretical guarantees. Given the
intractability of exact BNNs, we can utilize approximate
BNNs like VI or ensemble methods for supervision, leading
to the creation of the Dir-ESB, an ensemble-augmented
Dirichlet model. For example, we can approximate BNNs
using S samples ψ1, . . . , ψS through the ensemble method.
To train Dir-ESB, we replace the expectation term in Eq. (9)
with a sample average:

Ep(ψ|D,β)

[
C∑
k=1

(αk − 1) log λk(x, ψ)

]

≈ 1

S

S∑
s=1

C∑
k=1

(αk − 1) log λk(x, ψ
s)

(16)

4.2 SELF-DISTILLATION TRAINING STRATEGY

Acquiring the exact posterior distribution in a BNN can be
challenging. To mitigate the training complexity associated
with the BNN, we use LA as a self-regularized training
approach for the Dirichlet-based model. When training the
Dirichlet-based model without regularization, the posterior
distribution of the NN parameters can be approximated us-
ing LA, based on existing values of the parameters. Subse-
quently, adding the LA regularization loss allows for further
model refinement. This uncertainty regularization stems
directly from the single-network Dirichlet model itself. De-
tails can be found in Algorithm 1. It is worth noting that in
step 3 of Algorithm 1, we apply LA on θ given the likeli-
hood p(y|x, θ) = p(y|α(x, θ)) in Eq. (6) and a prior p(θ),
aligning closely with standard LA.

Algorithm 1 Dir-LA: Pseudocode for Dir-BNN with Self-
regularization

1: Input: training data D, Dir-LA model θ;
2: Use the MAP loss in Eq. (7) to train a Dirichlet-based

model;
3: Perform the LA, i.e., p(ψ|D, β) ≈ N (θmap,Σ) follow-

ing Eq. (5);
4: Given the approximated posterior distribution

N (θmap,Σ), refine the current model using the total
loss shown in Eq. (8) where the regularization loss is
shown in Eq. (19);

Moreover, LA allows us to obtain a closed-form expression
of Eq. (9) without the need of sampling during training. De-
note the output logits of the BNN as f(x, ψ) and λ(x, ψ) =
softmax(f(x, ψ)). We perform the first-order Taylor ex-
pansion for f(x, ψ) with respect to ψ at ψ = ψmap:

f(x, ψ) ≈ f(x, ψmap) + JTf (ψ − ψmap) (17)

where Jf = ∇ψf(x, ψ)|ψ=ψmap is the Jacobian matrix of
f(x, ψ) with respect to ψ at ψ = ψmap. Hence, given ψ ∼
N (ψmap,Σ) from LA, f(x, ψ) also follows a Gaussian
distribution, i.e., f(x, ψ) ∼ N (fmap,Σf ), where fmap =
f(x, ψmap) and Σf = JfΣJ

T
f .

Denote l(f(x, ψ)) =
∑C
k=1 (αk − 1) log λk(x, ψ). We

take the second-order Taylor expansion of l(f(x, ψ)) with
respect to f(x, ψ) at f = fmap as shown in Eq. (18).

l(f) ≈ l(fmap)+J
T
l (f−fmap)+

1

2
(f−fmap)THl(f−fmap)

(18)

Then, the regularization loss in Eq. (9) can be solved in a
closed-form manner by substituting Eq. (18) into Eq. (9)
as shown in Eq. (19), where tr represents the trace of a
matrix. The detailed expressions of l(fmap), Jl, Hl and the
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Figure 1: The pipeline of Dir-BNN refinement using NF.

derivation of Eq. (19) can be found in Appendix C.

Lreg(θ) =−
C∑
k=1

log(Γ(αk)) + log Γ(
C∑
k=1

αk)

− l(fmap)−
1

2
tr(HlΣf )

(19)

4.3 DIR-BNN REFINEMENT USING
NORMALIZING FLOW

Normalizing flows (NFs) have gained prominence as a po-
tent method for augmenting the expressiveness and adapt-
ability of variational inference in Bayesian deep learning.
Essentially, NFs are parametric generative models capable
of generating tractable density functions. Starting from a
simple distribution (e.g., standard normal), NFs transform it
into a more intricate distribution through a series of invert-
ible and differentiable transformations. Gordon-Rodriguez
et al. [2020] highlighted several drawbacks of the Dirichlet
distribution: it complicates optimization for compositional
data models, its log-likelihood becomes undefined when
observations contain zeros, and the maximum likelihood
estimation of its mean parameter is biased. Hence, we em-
ploy NFs to achieve a more expressive distribution than
the Dirichlet distribution for superior posterior approxima-
tion. As Proposition 4.1.3 demonstrates, more expressive
distributions can result in better posterior approximation
and improved UQ.

Instead of learning a normalizing flow for the distribution
of λ at the outset of Dir-BNN training, we incorporate NFs
in a post-processing fashion to refine the acquired Dirichlet
distribution. Upon completing the Dir-BNN training as per
Sec. 4.1, we proceed to learn an NF, commencing from the
derived Dirichlet distribution, for a more accurate posterior
approximation. The post-processing NF does not affect the
efficient UQ by Dir-BNN but offers alternative opportunities
for balancing UQ accuracy and efficiency.

The entire process and the architecture of the NF are de-
picted in Figure 1. It is important to note that traditional

NFs are designed for continuous variables, necessitating the
development of a specialized NF for transforming simplex-
valued variables. To achieve this, we first employ the in-
vertible function h−1 to convert the simplex-valued λ into
v ∈ [0, 1]C−1. Subsequently, the inverse of the sigmoid
function σ−1 is utilized to transform v into a real-valued
variable z. The traditional NF for continuous variables, g̃ω,
is then applied. Lastly, the functions h and σ are used in
the corresponding order to transform the real-valued z̃ into
our desired λ̃. The design of h, h−1, σ, σ−1 is detailed in
Figure 1 and Appendix D.1. Given the invertible function
gω = h ◦ σ ◦ g̃ω ◦ σ−1 ◦ h−1, qω(λ̃) has a tractable density
function based on the change of variable property:

qω(λ̃) = Dir(g−1
ω (λ);α(x, θ∗))

∣∣∣det Jg−1
ω

(λ̃)
∣∣∣ (20)

where det Jg−1
ω

(λ̃) is the determinant for the Jacobian ma-
trix of g−1

ω with respect to λ̃, which will be detailed in
Appendix D.2. Finally, ω is learned by minimizing the dis-
tance between p(λ̃|D, x, β) and qω(λ̃) as shown in Eq. (21).
p(λ̃|D, x, β) is equivalent to p(λ|D, x, β) as both λ̃ and λ
denote the simplex-valued probability.

ω∗ = argmin
ω

KL(p(λ̃|D, x, β)||qω(λ̃))

= argmin
ω

−Eλ̃∼λ̃|D,x,β)[log qω(λ̃)]
(21)

By directly optimizing Eq. (21) and starting from the Dirich-
let posterior, the NF distribution is guaranteed to be closer
to the true Bayesian posterior.

5 EXPERIMENTS

Dataset In this paper, we evaluate using bench-
mark image classification datasets: MNIST [Deng, 2012],
Fashion-MNIST (FMNIST) [Xiao et al., 2017], CIFAR-10
(C10) [Krizhevsky et al., 2014], and CIFAR-100 (C100)
[Krizhevsky et al., 2009].

Implementation details We employ standard CNNs for
MNIST and FMNIST and Resnet18 for C10 and C100. The



Table 1: OOD detection results for AUROC (%) ↑ and AUPR (%) ↑ with epistemic uncertainty. “*" represents our method.

Method MNIST → Omniglot MNIST → KMNIST FMNIST→ EMNIST FMNIST→ MNIST AvgAUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
PriorNet 94.5± .65 95.0± .43 98.5± .05 98.0± .11 73.5± .90 96.9 ± .12 83.4± 1.2 96.1± .84 91.99
PosNet 96.4± .36 96.1± .38 97.8± .35 97.2± .33 83.8± 2.6 92.7± 1.1 86.3± 3.3 88.8± 2.3 92.39
EvNet 71.8± 5.3 81.3± 3.7 18.6± 3.6 42.4± 2.5 84.1± 3.8 91.8± 2.3 83.8± 4.0 84.8± 3.6 69.83
DUQ 97.3± .33 97.8 ± .17 98.7 ± .43 98.9 ± .33 79.8± 1.1 82.6± .78 92.4± 1.3 92.4± 1.0 92.49
DUE 94.3± .18 94.1± .54 93.5± .43 93.4± .10 92.4± .96 93.1± 1.2 92.1± .45 92.5± .37 93.18
LA 94.5± .25 93.3± .42 94.9± .26 93.0± .31 88.9± .73 90.9± .79 96.5 ± .38 96.9 ± .91 93.61
Ensemble 97.5± .20 97.3± .25 98.5± .05 98.4± .05 93.0 ± .45 93.7± .65 90.8± .14 95.4± .99 95.58
Dir-LA* 97.9 ± .16 97.7± .17 98.7 ± .21 98.5± .25 91.8± .89 95.2± .23 94.4± .14 93.9± .73 96.01
Dir-ESB* 97.7± .07 97.6± .05 98.5± .10 98.3± .10 92.0± .21 93.3± 1.1 92.0± .88 92.3± 1.3 95.21
Dir-ESB-NF* 97.9 ± .20 97.7± .21 98.7 ± .20 98.5± .27 92.8± .62 95.8± .20 95.5± .53 94.9± .51 96.48

Method C10 → SVHN C10 → LSUN C100→ SVHN C100→ LSUN AvgAUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
PriorNet 64.5± 9.7 91.1 ± 3.0 73.9± 2.4 68.2± 4.3 44.8± .42 85.5 ± 1.2 51.7± 3.5 52.9± 2.9 66.58
PosNet 84.6± 2.1 80.1± 1.3 87.2± .71 86.6± 1.1 63.8± 8.0 57.2± 6.9 45.2± 1.4 45.9± 2.3 68.83
EvNet 59.7± 2.0 67.3± 2.4 61.0± 1.9 68.9± 2.2 51.6± .30 48.6± 1.2 50.3± 1.2 48.1± .28 56.94
DUQ 86.2± 1.1 80.1± .98 87.9± .77 85.6± 1.2 40.9± 1.3 42.0± 1.5 55.6± 1.2 52.9± 1.2 66.40
DUE 82.2± 1.5 76.0± 1.7 79.3± .55 78.9± .57 64.1± 1.9 63.9± 1.3 64.8± .49 60.9± .83 71.26
LA 88.3± .22 85.7± .47 87.1± .34 84.6± 1.0 80.1± .12 73.6± .39 76.5± .40 71.9± .48 80.98
Ensemble 89.5± .15 84.2± .38 86.9± .34 83.1± 1.0 81.5 ± .87 76.2± 1.1 78.4± .74 73.2± 1.2 81.63
Dir-LA* 89.6± .74 82.9± 1.9 89.1± .97 82.1± 2.1 80.6± 3.1 75.5± 3.0 76.8± 3.6 74.2 ± 3.1 81.35
Dir-ESB* 87.6± 1.0 82.6± .60 90.4 ± .60 85.7± 1.7 80.9± 4.4 75.3± 4.0 79.5± .61 71.7± .83 81.71
Dir-ESB-NF* 90.6 ± .74 89.0± 1.9 90.1± .97 88.3 ± 2.1 81.4± 3.3 76.8± 2.2 80.6 ± 1.9 73.8± 1.6 83.82

three methods tested include Dir-ESB, which uses ensemble
models (as a BNN) for regularization as per Sec. 4.1; Dir-
LA, which implements the self-regularization for efficient
training as per Sec. 4.2; Dir-ESB-NF, a post-processing
refinement of Dir-ESB utilizing NF as per Sec. 4.3. We
chose to refine Dir-ESB using NF instead of Dir-LA. This
decision helps maintain the essential information from LA.
It also prevents the NF-generated distribution from align-
ing too closely with LA, especially since LA serves as a
strong assumption for posterior approximation. Note that
Dir-ESB-NF requires only a shallow NF with few training it-
erations. Appendix E contains all experiment configurations
and implementation details.

Baselines We compare our proposed methods against var-
ious baselines including Dirichlet-based models (PriorNet
[Malinin and Gales, 2018], PosNet [Charpentier et al., 2020],
EvNet [Sensoy et al., 2018]), Deterministic UQ methods
(DUQ [Van Amersfoort et al., 2020], DUE [van Amersfoort
et al., 2021]), the deep ensemble method (Ensemble) [Lak-
shminarayanan et al., 2017], and the last-layer LA (LA)
[Kristiadi et al., 2020]. Ensemble and LA denote the BNNs’
performances guiding the supervision of Dir-ESB and Dir-
LA, respectively.

Evaluation tasks In this section, we assess the proposed
method through OOD detection and uncertainty calibration
in the face of distributional shifts.

5.1 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution detection, one of the primary applica-
tions for UQ [Malinin and Gales, 2018, Malinin et al., 2019],
aims to detect anomalous data inconsistent with the training
data distribution, using a measure of uncertainty. Since epis-

temic uncertainty is negatively correlated with data density,
it will be high when predicting anomalous data.

Experiment settings For the MNIST dataset, we obtain
OOD samples from Omniglot [Lake et al., 2015], KMNIST
[Clanuwat et al., 2018]. In the case of the FMNIST dataset,
OOD samples are drawn from both the MNIST and EM-
NIST [Cohen et al., 2017] datasets. The OOD datasets used
for comparison with the CIFAR-10 and CIFAR-100 datasets
are SVHN Netzer et al. [2011] and LSUN Yu et al. [2015].
For OOD detection, we use two evaluation metrics: the area
under the receiver operating characteristic curve (AUROC)
and the area under the precision-recall curve (AUPR).

Experiment results and analysis The OOD detection out-
comes are presented in Table 1. Our methods consistently
outperform existing Dirichlet-based and deterministic UQ
methods, with an average 10% - 15% enhancement on the
C10 and C100 datasets. Dir-ESB, despite distilling knowl-
edge from the Ensemble method, achieves results on par
with the Ensemble. This might be attributed to the frame-
work of fitting a Dirichlet distribution, guided by the ensem-
ble model modes, which capture not only mode information
but also the entire landscape of the posterior approximation,
enabling sampling parameters from the neighborhood of the
modes. Dir-LA also performs competitively compared to
LA, possibly due to the Dirichlet-based hierarchical struc-
ture and the specifically designed loss function in Eq. (19).
Given that Dir-LA achieves competitive results and boasts
superior training efficiency compared to Dir-ESB, we rec-
ommend employing Dir-LA as a sufficient solution for OOD
detection tasks. Dir-ESB-NF, built using an NF to refine Dir-
ESB, shows noticeable improvement compared to Dir-ESB,
particularly on the FMNIST and C10 datasets. For more
OOD detection results, please refer to Sec. 5.2 for detecting



Table 2: Uncertainty calibration performance for ACC (%) ↑, ALC ↑, and ROC (%) ↑. ROC represents AUROC.

Method Rotate 20 Rotate 60 Rotate 100 Avg
ACC ALC ROC ACC ALC ROC ACC ALC ROC ACC ALC ROC

PriorNet 95.10 0.91 68.20 31.90 0.36 94.63 16.35 0.21 96.10 47.78 0.49 86.31
PosNet 95.19 0.91 63.51 32.75 0.50 92.15 14.69 0.29 92.83 47.54 0.57 82.83
EvNet 95.65 0.02 44.80 34.87 0.07 36.92 17.16 0.02 40.91 49.22 0.04 40.88
DUQ 90.91 0.90 66.30 27.56 0.33 90.92 15.62 0.09 86.71 44.70 0.47 81.31
DUE 94.15 0.92 69.10 31.03 0.37 96.53 12,67 0.13 96.96 45.95 0.47 87.53
LA 93.53 0.87 69.29 35.43 0.38 93.22 18.12 0.13 94.64 49.02 0.46 85.71
Ensemble 96.18 0.92 68.52 34.39 0.29 96.10 15.65 0.15 96.50 48.74 0.45 87.04
Dir-LA* 96.18 0.90 70.00 35.51 0.34 96.84 18.68 0.17 97.08 50.12 0.47 87.97
Dir-ESB* 95.70 0.92 73.76 33.64 0.32 97.46 17.38 0.13 97.77 48.91 0.46 89.66
Dir-ESB-NF* 95.94 0.92 73.78 33.76 0.38 97.58 17.53 0.16 97.83 49.08 0.49 89.73

Method Noise 0.05 Noise 0.1 Noise 0.15 Avg
ACC ALC ROC ACC ALC ROC ACC ALC ROC ACC ALC ROC

PriorNet 62.21 0.66 53.91 54.09 0.59 65.07 41.10 0.49 76.71 52.47 0.58 65.23
PosNet 69.63 0.63 69.32 32.46 0.39 89.99 17.44 0.20 93.41 39.84 0.41 84.24
EvNet 73.95 0.11 46.24 40.17 0.14 52.17 24.64 0.17 62.25 46.25 0.14 53.55
DUQ 81.81 0.82 58.98 44.43 0.46 76.22 22.67 0.29 85.15 49.63 0.52 73.45
DUE 81.15 0.64 53.13 56.88 0.48 61.23 35.93 0.27 66.06 57.99 0.46 60.14
LA 70.66 0.72 73.55 33.78 0.42 91.13 18.07 0.24 92.16 40.84 0.46 85.88
Ensemble 77.92 0.75 70.94 32.07 0.29 83.32 14.69 0.28 85.93 41.56 0.44 80.06
Dir-LA* 71.26 0.69 72.03 34.50 0.46 86.94 22.20 0.29 91.88 42.65 0.48 83.62
Dir-ESB* 71.32 0.73 71.97 34.34 0.46 86.77 21.85 0.30 92.60 42.50 0.50 83.78
Dir-ESB-NF* 82.40 0.84 60.49 70.49 0.75 72.06 58.35 0.64 80.75 70.41 0.74 71.10

varying levels of shifted data.

5.2 UNCERTAINTY CALIBRATION ANALYSIS
In this section, we will showcase the efficacy of our meth-
ods in handling image classification tasks with synthetic
distributional shifts, with a focus on uncertainty calibra-
tion. As demonstrated by Postels et al. [2021], numerous
deterministic uncertainty quantification methods lack proper
calibration. Consequently, a comprehensive analysis of un-
certainty calibration for our proposed techniques is vital.

Experiment settings We develop shifted datasets, namely
rotated MNIST and noisy CIFAR-10. Specifically, we mod-
ify the MNIST test data by rotating it from 0◦ to 180◦

in 20◦ increments and create the noisy CIFAR-10 dataset
by introducing Gaussian noise with mean 0 and variance
ranging from 0 to 0.25 in 0.05 steps. Various metrics are em-
ployed, including accuracy (ACC), the relative area under
the lift curve (ALC) as introduced by Postels et al. [2021],
and AUROC for OOD detection tasks MNIST → rotated
MNIST and C10 → noisy C10. Note that ALC is a cali-
bration metric that analyzes how well the uncertainty score
aligns with the prediction error. We excluded the estimation
of Expected Calibration Error (ECE) and Negative Log-
Likelihood (NLL) from our evaluation for all baselines be-
cause these metrics do not apply to DUQ and DUE, which
do not yield softmax probabilities directly. In Appendix F,
the within-dataset performance, additional metrics such as
ECE and NLL for other baselines, and more experiment
settings are provided.

Experiment results and analysis As displayed in Table 2,
Dir-ESB and Dir-LA continue to outperform Dirichlet-based
and deterministic UQ methods on the MNIST dataset. While
PriorNet, DUQ, and DUE demonstrate strong ACC/ALC

performance on the C10 dataset, Dir-ESB and Dir-LA main-
tain competitive performance across all metrics when com-
pared to SOTAs. Owing to the Dirichlet-based architecture
and the unique training strategy, Dir-ESB and Dir-LA on av-
erage perform competitively compared to Ensemble and LA.
Comparing Dir-LA to Dir-ESB highlights Dir-LA’s compa-
rable performance and superior efficiency in incorporating
BNN knowledge. For the MNIST dataset, Dir-ESB-NF en-
hances Dir-ESB across all metrics, while improving ACC
and ALC for the C10 dataset. This refinement involves only
a shallow NF and a few training iterations.

5.3 ABLATION STUDIES

Runtime/Complexity analysis Dir-ESB requires pre-
trained ensemble models, and once these are in place, its
training time aligns with that of a standard NN. Compared to
training a standard NN, Dir-LA requires additional time for
last-layer LA, O(C3 + P 3), where C is the class count and
P is the last-layer parameter count. However, this doesn’t
notably increase training time since it’s a one-time process,
marginal over the entire training duration. For inference,
both Dir-ESB and Dir-LA can achieve high efficiency, esti-
mating uncertainty in a single forward pass. Our Dir-ESB-
NF only utilizes a shallow NF. By starting with a pre-trained
Dir-ESB, the convergence only requires a few training it-
erations, not substantially increasing training or inference
time. A comprehensive complexity analysis and empirical
runtime are detailed in Appendix G.1.

Refining output space vs. parameter space In this sec-
tion, we compare our method with Kristiadi et al. [2022].
While both studies use a normalizing flow for improved
posterior approximation, refining the Dirichlet distribution
in the output space offers distinct theoretical merits, as high-



lighted by Proposition 4.1.2. This proposition reveals that
a good parameter-space approximation doesn’t guarantee a
comparable output-space approximation. Given that predic-
tion uncertainty is calculated in the output space, an accurate
approximation there is crucial. Experimentally, we adapted
Kristiadi et al. [2022] ’s method to refine the last-layer LA
in weight space for the MNIST and C10 datasets. The OOD
detection performance (AUROC/AUPR) is shown in Table 3.
Our output-space NF refinement outperforms the refinement
conducted in the parameter space.

Table 3: OOD detection performance.

Method MNIST → Omniglot C10 → SVHN
AUROC AUPR AUROC AUPR

Dir-LA 97.9 97.7 89.6 82.9
Kristiadi et al. 97.6 96.6 89.1 82.7

Comparison with standard knowledge distillation A
standard deterministic NN can only capture the aleatoric un-
certainty, while the Dirichlet-based framework can capture
both types of uncertainty. Nevertheless, we follow Korat-
tikara et al. [2015] to perform distillation between p(y|x,D)
and p(y|x, θ) where p(y|x,D) is approximated by ensem-
ble models. The uncertainty is quantified by the entropy,
which primarily denotes the aleatoric uncertainty. Our OOD
detection results (AUROC/AUPR) for MNIST → Omniglot
and C10 → SVHN outperform the standard distillation
(97.7/97.6 vs 97.7/97.5 and 87.6/82.6 vs 86.2/80.9).

Hyperparameter sensitivity A crucial hyperparameter for
our method is the regularization loss coefficient, denoted
as ρ in Eq. (8). This hyperparameter balances supervised
training and knowledge distillation from the BNN. ρ should
not be excessively small or large. A too-small ρ will fail to
effectively distill knowledge from the BNN, while an overly
large ρ might negatively impact classification performance.
To scrutinize the effect of ρ, we conduct OOD detection on
the MNIST and C10 datasets using Dir-LA. For selected
values of ρ from 25 to 65, we empirically illustrate in Table
4 that our methods are relatively insensitive to the values of
ρ within a certain range. Empirically, adjusting the balance
between MAP and regularization losses may enhance model
performance.

Table 4: OOD detection results (AUROC (%)/AUPR (%))
for varying ρ between 25 to 65.

Method MNIST → Omniglot C10 → SVHN
AUROC AUPR AUROC AUPR

Dir-LA ρ = 25 97.6 97.5 89.5 82.7
DIr-LA ρ = 30 98.7 98.5 89.5 82.8
Dir-LA ρ = 40 97.8 97.6 89.6 82.9
Dir-LA ρ = 50 97.9 97.7 89.6 82.9
Dir-LA ρ = 65 98.1 98.1 89.5 82.7

NF architecture and training In this study, we only
require a shallow flow to refine the Dirichlet distribution,
serving two purposes: it enhances efficiency, and a shallow
NF is sufficient for refining the model. We do not seek
perfect alignment with the approximate inference methods

used for distillation; thus, a shallow flow adequately extracts
critical information from the approximate posterior without
overfitting. We empirically evaluate the OOD performance
of Dir-ESB-NF by varying the number of flows, with results
shown in Table 5. Increasing the NF’s complexity does
not yield notable improvements. Given the shallow NF and
the initially trained Dir-BNN, only about 200 iterations are
necessary. More discussions are shown in Appendix G.2.

Table 5: OOD detection results for AUROC (%) ↑ and AUPR
(%) ↑ for Dir-ESB-NF with varying number of flows.

Method MNIST → Omniglot C10 → SVHN
AUROC AUPR AUROC AUPR

10-layer flow 97.9 97.7 89.6 82.9
15-layer flow 97.9 97.7 89.6 82.9
20-layer flow 97.9 97.7 89.6 82.9

Other BNNs for knowledge distillation Dir-BNN is com-
patible with many BNN approximations. We chose the en-
semble and LA methods for their effectiveness in UQ. To
further demonstrate Dir-BNN’s effectiveness, we explore
its combination with SGLD [Welling and Teh, 2011] and
SGHMC [Chen et al., 2014a]. MCMC methods are pow-
erful techniques to approximate the posterior distribution
if the burn-in period is long enough and sufficient samples
are generated. For implementing SGLD and SGHMC, we
followed the experimental settings outlined in Appendix E.1
to ensure consistency in model architecture and certain train-
ing protocols. For the burn-in period, we used 50 epochs.
After the burn-in period, we selected 50 samples from each
method as supervision for the Dirichlet-based model. The
OOD detection performance (AUROC/AUPR) on MNIST
and FMNIST datasets is shown in Table 6. It is shown that
Dir-SGLD and Dir-SGHMC also perform competitively.

Table 6: OOD detection results for AUROC (%) ↑ and AUPR
(%) ↑ for our methods with various BNN supervision.

Method MNIST → Omniglot MNIST → KMNIST
AUROC AUPR AUROC AUPR

Dir-ESB 97.7 97.6 98.5 98.3
Dir-SGLD 97.9 97.3 98.4 98.3
Dir-SGHMC 98.0 98.0 97.4 97.3

Method FMNIST → EMNIST FMNIST → MNIST
AUROC AUPR AUROC AUPR

Dir-ESB 92.0 93.3 92.0 92.3
Dir-SGLD 94.1 97.3 94.6 95.7
Dir-SGHMC 90.4 95.7 91.5 93.5

6 CONCLUSION

In this paper, we introduce a Dirichlet-based framework for
accurate and efficient UQ by incorporating BNN knowl-
edge. Then, a self-regularized training strategy using LA is
proposed to relax the requirement of BNNs for knowledge
distillation, which empirically shows strong performance.
Finally, we also present an opportunity to boost model per-



formance via post-processing NF refinement. Various ex-
periments on OOD detection and uncertainty calibration
analysis have demonstrated the effectiveness and superiority
of our proposed methods.
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A LAPLACIAN APPROXIMATION

The LA shown in Eq. (5) approximates the posterior distri-
bution p(ψ|D, β) by N (ψmap,Σ) where Σ = −(H)−1 and
H = ∇2

ψ log p(ψ|D, β)|ψ=ψmap . Efficiently and accurately
calculating the Hessian matrix H is the key of LA. Given
a standard Gaussian distribution prior p(ψ) = N (0, β2I)
where β is the hyperparameter, we can obtain that

∇2
ψ log p(ψ|D, β) =∇2

ψ log p(D|ψ) +∇2
ψ log p(ψ|β)

=
∑

(x,y)∈D

∇2
ψ log p(y|x, ψ) + 1

β2
I

(22)

where I is the identity matrix. Basically, computing the
second-order derivatives for highly nonlinear neural net-
works is hard and we leverage the Generalized Gauss-
Newton Matrix (GGN) [Schraudolph, 2002] to approxi-
mate ∇2

ψ log p(y|x, ψ). Denote the neural network output
as f(x, ψ) in general.

∇2
ψ log p(y|x, ψ) =∇2

ψ log p(y|f(x, ψ))
≈J(x)∇2

fp(y|f(x, ψ))J(x)T
(23)

where J(x) = ∇ψf(x, ψ) is the Jacobian matrix. However,
the large matrix multiplication in Eq. (23) may also lead to
problems. We use the last-layer Laplacian approximation
proposed by Kristiadi et al. [2020]. To reduce computational
complexity, different Hessian matrix factorization methods
are also proposed such as Kronecker-factored approxima-
tion curvature (KFAC) [Ritter et al., 2018] and low-rank
KFAC [Lee et al., 2020]. We use the full Hessian matrix for
MNIST, FMNIST, and C10 datasets. To improve efficiency,
we use a diagonal covariance matrix for the C100 dataset. To
avoid tuning the hyperparameter β, we utilize the marginal
likelihood maximization method proposed by Ritter et al.
[2018] to do a one-parameter optimization for β. The loss
function is the posterior predictive approximated by LA.

β∗ = argmax
β

∑
(x,y)∈D

log p(y|x,D) (24)

where the posterior p(y|x,D) can be expressed as:

p(y|x,D) =

∫
p(y|x, ψ)p(ψ|D, β)dψ

≈
∫
softmax(f(x, ψ))N (ψ;ψmap,Σ)dψ

(25)

softmax(f) = exp(f)∑
j exp(fj)

is the softmax function and Eq.
(25) can be solved either by MC sample average or by probit
approximation [Daxberger et al., 2021a].

B DIRICHLET NETWORK TRAINING
WITH BNN DISTILLATION

In this section, we will delve deeper into our distinctive con-
tribution of distilling BNN knowledge for Dirichlet-based
model training, detailing the aspects of uncertainty and pro-
viding comprehensive proofs for all the theorems presented.

B.1 MORE DISCUSSIONS ON OUR
CONTRIBUTIONS

As outlined in [Ulmer, 2021], Dirichlet-based evidential
deep learning techniques can be classified into two types:
prior Dirichlet networks and posterior Dirichlet networks.
Prior Dirichlet networks directly learn the parameters of the
Dirichlet distribution, treating it as a conjugate prior to the
desired categorical distribution. The form of the Dirichlet
distribution p(λ|x, θ) = p(λ|α(x, θ)) is as follows:

Dir(λ;α(x, θ)) =
1

B(α(x, θ))

C∏
k=1

λαk−1
k

B(α(x, θ)) =

∏C
k=1 Γ(αk)

Γ(
∑C
i=1 αi)

(26)

Conversely, posterior Dirichlet networks learn p(λ|x,D, θ),
which is depicted in Eq. (27):

p(λ|x,D, θ) ∝ p(D|x, λ, θ)p(λ|x, θ)
= p({yi}Ni=1|x, λ, θ)p(λ|x, θ)

=

N∏
i=1

C∏
k=1

λ
Iyi=k

k · 1

B(α(x, θ))

C∏
k=1

λαk−1
k

=
1

B(α(x, θ))

C∏
k=1

λαk+Nk−1
k

∝ Dir(λ; {αk +Nk − 1}Ck=1)

= Dir(λ;αprior + αdata)

(27)

where αdata is determined by {Nk}Ck=1 and Nk represents
the counts for yi = k in {yi}Ni=1. Given an input x, there
is usually just one label y available. Therefore, {yi}Ni=1 is
computed using pseudo counts approximated by a latent
generative model, such as a normalizing flow [Charpentier
et al., 2020]. However, modeling the density of the lower-
dimensional latent space necessitates additional effort, and
the density in the latent space might not adequately represent
the density in the input space. As we do not use an estimate
of α from the training data density, our methods fall under
the category of prior Dirichlet networks.

Prior Dirichlet networks primarily vary in the regularization
terms within their loss function. As seen in related studies,
some techniques [Malinin and Gales, 2018, 2019, Nandy



et al., 2020, Shen et al., 2020, Chen et al., 2018, Sensoy
et al., 2020] aim to flatten the Dirichlet distribution on OOD
samples. However, it is unrealistic to assume that OOD
samples are always available, since enumerating all possi-
ble OOD data configurations during training is impossible.
Consequently, the learned model might overfit to one type
of OOD data seen during training, failing to generalize to
other OOD data types. Some methods [Sensoy et al., 2018]
attempt to regularize training by diminishing the density
with respect to incorrect classes in the Dirichlet distribution.
They often diverge from others in terms of loss functions
and employ L2 loss instead of negative log-likelihood loss.
The method that is most similar to ours is ensemble distri-
bution distillation [Malinin et al., 2019], which learns the
Dirichlet distribution by distilling knowledge from Ensem-
ble models. A self-distilled strategy [Fathullah and Gales,
2022] has been proposed to learn the teacher model and the
Dirichlet network simultaneously, sharing a feature extrac-
tor and efficiently generating multiple NN outputs using the
Gaussian dropout method.

Our proposed method seeks to employ Bayesian neural
networks for knowledge distillation, resulting in efficient
and accurate uncertainty quantification. It can be seen as a
strict extension of [Malinin et al., 2019]. The primary ad-
vantage of distilling knowledge from a BNN is that it offers
a theoretical assurance for the Dirichlet network to estimate
epistemic uncertainty. The posterior predictive distribution
for a BNN is displayed as follows:

BNN: p(y|x,D, β) =
∫
p(y|x, θ)︸ ︷︷ ︸
aleatoric

p(θ|D, β)︸ ︷︷ ︸
epistemic

dθ

=

∫
p(y|λ)︸ ︷︷ ︸
aleatoric

p(λ|x,D, β)︸ ︷︷ ︸
epistemic

dλ

(28)

where p(λ|x,D, β) =
∫
p(λ|x, θ)p(θ|D, β)dλ as shown in

Eq. (2). Since we are interested in the prediction uncertainty,
our proposed method directly approximates p(λ|x,D, β)
under the Dirichlet framework, as shown below:

Dirichlet network: p(y|x,D, β)

=

∫
p(y|λ) p(λ|x,D, β)︸ ︷︷ ︸

≈Dir(α(x,θ∗))

dλ (29)

Our approach carries out variational inference under
the Dirichlet assumption by incorporating the regulariza-
tion term KL(p(λ|x,D, β)||Dir(α(x, θ))). This procedure
specifically encapsulates the epistemic uncertainty insti-
gated by the weight posterior. The associated theorems are
presented in Sec. 4.1. Moreover, as depicted by Malinin and
Gales [2018], a universal Dirichlet-based network solely

encapsulates distribution uncertainty:

General Dirichlet Network:

p(y|x,D, β) =
∫

p(y|λ)︸ ︷︷ ︸
aleatoric

p(λ|x, θ)︸ ︷︷ ︸
distributional

p(θ|D, β)︸ ︷︷ ︸
epistemic

dλdθ

=

∫
p(y|λ)︸ ︷︷ ︸
aleatoric

p(λ|x, θ∗)︸ ︷︷ ︸
distributional

dλ

(30)

where p(θ|D, β) ≈ δ(θ = θ∗). The absence of a direct cor-
relation between p(λ|x, θ∗) and p(λ|x,D, β) hampers its
capability to compute epistemic uncertainty. it is important
to note that distributional uncertainty may impart some epis-
temic uncertainty information. Unless explicitly designed
using our methods, the main distinction lies in the distri-
butional uncertainty’s inability to identify the uncertainty
captured by the weight posterior. Although some techniques
claim to capture epistemic uncertainty via the sharpness
factor of the Dirichlet distribution, we contend that such
uncertainties are predominantly distributional in nature, as
they are merely properties of p(λ|x, θ∗) and do not con-
sider the weight posterior. Based on Proposition 4.1.1, the
epistemic uncertainty can be computed in the following:

H
{
Ep(λ|x,D,β)[p(y|λ)]

}︸ ︷︷ ︸
Total uncertainty

= I[y;λ|x,D, β]︸ ︷︷ ︸
Epistemic uncertainty

+Ep(λ|x,D,β){H[p(y|λ]}︸ ︷︷ ︸
Aleatoric uncertainty

.
(31)

In the absence of an explicit approximation p(λ|x,D, β) ≈
p(λ|D, θ∗) = Dir(α(x, θ∗)), substituting p(λ|x,D, β)
with p(λ|D, θ∗) is less effective in capturing the epistemic
uncertainty.

In our study, we employ LA and ensemble models as BNN
approximations. It is important to note that while the Dirich-
let network’s performance is influenced by BNN regulariza-
tion, it is not necessarily limited by the approximate BNN
models’ performance. As seen in the Sec. 5, the Dirichlet-
based model can effectively extract crucial information from
the approximate posterior distribution while disregarding
some potentially misleading aspects. This could be due to
the Dirichlet framework and our uniquely crafted loss func-
tion.



B.2 DERIVATION OF EQ. (9)

The derivation of Eq. (9) is shown below:

Lreg(θ) = KL (p(λ | x,D, β)∥p(λ | α(x, θ)))

∝ −
∫
p(λ | x,D, β) log p(λ | α(x, θ))dλ

=−
∫ ∫

p (λ | x, ψ) p(ψ | D, β)[log p(λ | α(x, θ))]dλdψ

=−
∫
p(ψ | D, β)[log p(λ(x, ψ) | α(x, θ))]dψ

=−
K∑
k=1

log(Γ(αk)) + log Γ(

K∑
k=1

αk)

− Ep(ψ|D,β)

[
K∑
k=1

(αk − 1) log λk(x, ψ)

]
(32)

B.3 UNCERTAINTY QUANTIFICATION OF
DIRICHLET NETWORK

As demonstrated in Sec. 4.1, we evaluate the epistemic
and aleatoric uncertainties using mutual information and
expected entropy, respectively:

H[p(y|x, θ)]︸ ︷︷ ︸
Total uncertainty

= I[y;λ|α]︸ ︷︷ ︸
Epistemic uncertainty

+Ep(λ|α)
[
H[p(y|λ)]

]︸ ︷︷ ︸
Aleatoric uncertainty

.

(33)

The closed-form expressions of Eq. (33) are shown in
Eq. (34).

H[p(y|x, θ)] = −
C∑
k=1

αk
α0

log
αk
α0

I[y;λ|α] = −
C∑
k=1

αk
α0

(
ln
αk
α0

−Ψ(αk + 1) + Ψ (α0 + 1)

)
(34)

where α0 =
∑C
k=1 αk and Ψ(·) is the dgamma function.

The derivations of Eq. (34) can be found in Appendix C of
[Malinin and Gales, 2018].

B.4 PROOF OF THE THEOREMS

B.4.1 Proposition 4.1.1:

For a BNN f with parameter ψ ∼ p(ψ|D, β) that out-
puts the softmax probability λ = f(x, ψ), we have
I[y;ψ|x,D] = I[y;λ|x,D].

Proof. As shown in Eq. (4):

H
{
Ep(ψ|D,β)[p(y|x, ψ])]

}︸ ︷︷ ︸
Total uncertainty

= I[y;ψ|x,D, β]︸ ︷︷ ︸
Epistemic uncertainty

+Ep(ψ|D,β){H[p(y|x, ψ)]}︸ ︷︷ ︸
Aleatoric uncertainty

.
(35)

By introducing λ in the BNN framework:

H
{
Ep(ψ|D,β)[p(y|x, ψ])]

}
= H

{
Ep(ψ|D,β)[Ep(λ|x,ψ) p(y|λ])

}
= H

{
Ep(λ|x,D,β)[p(y|λ)]

}
Ep(ψ|D,β){H[p(y|x, ψ)]}
= Ep(ψ|D,β){H[p(y|λ(x, ψ))]}
= Ep(λ|D,β){H[p(y|λ)]}.

(36)

Given that

H
{
Ep(λ|x,D,β)[p(y|λ)]

}︸ ︷︷ ︸
Total uncertainty

= I[y;λ|x,D, β]︸ ︷︷ ︸
Epistemic uncertainty

+Ep(λ|x,D,β){H[p(y|λ]}︸ ︷︷ ︸
Aleatoric uncertainty

.
(37)

and compare Eq. (36) with Eq. (37), we can finally obtain:

I[y;ψ|x,D] = I[y;λ|x,D]. (38)

B.4.2 Proposition 4.1.2:

Given a BNN defined in Proposition 4.1.1, we assume
there is a variational approximation qθ(ψ) for approximat-
ing p(ψ|D, β). Correspondingly, the posterior distribution
p(λ|D, x, β) is approximated by qθ(λ|x), which fulfills:

qθ(λ|x) =
∫
δ(λ = f(x, ψ))qθ(ψ)dψ (39)

where δ(·) is the Dirac probability density function. The
KL divergence between p(λ|D, x, β) and qθ(λ|x) is upper
bounded by KL divergence between p(ψ|D, β) and qθ(ψ):

KL(p(λ|D, x, β)||qθ(λ|x)) ≤ c+ KL(p(ψ|D, β)||qθ(ψ)).
(40)

c is a constant with respect to θ as shown in Eq. (41). The
equality is satisfied when f is invertible.

c = −Hλ +Hψ =

∫
p(λ|D, x, β) log p(λ|D, x, β)dλ

−
∫
p(ψ|D, β) log p(ψ|D, β)dψ

(41)



Proof. For a BNN defined in Proposition 4.1.1, the
simplex-valued probability λ is the output of the BNN by
λ = f(x, ψ). Given the posterior distribution of ψ, i.e.,
p(ψ|D, β), or its variational approximation qθ(ψ),

p(λ|x,D, β) =
∫
δ(λ = f(x, ψ = ψ

′
))p(ψ = ψ

′
|D, β)dψ

′

qθ(λ|x) =
∫
δ(λ = f(x, ψ = ψ′′))qθ(ψ = ψ′′)dψ′′

(42)

where ψ
′

and ψ′′ are specific values of random variable ψ.
Then, we can obtain

KL(p(λ|D, x, β)||qθ(λ|x))

= −Hλ − Eλ′∼p(λ|x,D,β)[log qθ(λ = λ
′
|x)]

= −Hλ − Eψ′∼p(ψ|D,β){
Eλ′∼δ(λ=f(x,ψ=ψ′ ))

[
log qθ(λ = λ

′
|x)
]}

= −Hλ − Eψ′∼p(ψ|D,β)

[
log qθ(λ = f(x, ψ = ψ

′
)|x)

]
= −Hλ − Eψ′∼p(ψ|D,β)[

log

∫
δ(f(x, ψ = ψ

′
) = f(x, ψ = ψ′′))qθ(ψ = ψ′′)dψ′′

]
≤ −Hλ − Eψ′∼p(ψ|D,β)

[
log qθ(ψ = ψ

′
)
]

= −Hλ +Hψ + KL(p(ψ|D, β)||qθ(ψ))
= c+ KL(p(ψ|D, β)||qθ(ψ))

(43)

where

Hλ = −
∫
p(λ|D, x, β) log p(λ|D, x, β)dλ

Hψ = −
∫
p(ψ|D, β) log p(ψ|D, β)dψ

(44)

It is worth noting that the equality is satisfied if f is an
invertible function. In that case,∫

δ(f(x, ψ = ψ
′
) = f(x, ψ = ψ′′))qθ(ψ = ψ′′)dψ′′

= qθ(ψ = ψ
′
)

(45)

B.4.3 Proposition 4.1.3:

Under certain conditions (i.e., ||p(y|x,D, β) −
p(y|x, θ)||1 ≤ 1

2 and
√
2 log 2 · d ≤ C

e ), the follow-
ing error bounds demonstrate the distance between the
uncertainties estimated by a Dirichlet network in Eq. (10)

and their exact measurements from a BNN in Eq. (4):

|Ut − U∗
t | = |H[p(y|x, θ)]−H[p(y|x,D, β)]|

≤ −
√
2 log 2 · d log

√
2 log 2 · d
C

|Ua − U∗
a | =

∣∣Ep(λ|x,θ)[p(y|λ)]− Ep(ψ|D,β){H[p(y|x, ψ)]}
∣∣

≤ logC
√
2 log 2 · d

|Ut − U∗
t | = |I[y, λ|x, θ]− I[y, ψ|x,D, β]|

≤
√
2 log 2 · d(2 logC − log

√
2 log 2 · d)

(46)

where d = KL(p(λ|D, x, β)||p(λ|x, θ)).

Proof. We first introduce a Lemma for the L1 bound on the
entropy function.

Lemma B.1 (Theorem 17.3.3 in Cover and Thomas [2006]).
Let p and q be two probability mass functions on X such
that

||p− q||1 =
∑
x∈X

|p(x)− q(x)| ≤ 1

2
. (47)

Denote H as the entropy function, we can obtain

|H(p)−H(q)| ≤ −||p− q||1 log
||p− q||1

|X |
(48)

where |X | is the number of elements in X .

Lemma B.2. −||p−q||1 log ||p−q||1
|X | is non-decreasing with

respect to ||p− q||1 if ||p− q||1 ≤ |X |
e .

Proof. Let g(t) = −t log t
|X | . This is because g

′
(t) = −1−

log t
|X | ≥ 0 is always true for t ≤ |X |

e .

Total uncertainty error bound Given the expres-
sion of the total uncertainty measured by a BNN, i.e.,
H[p(y|x,D, β)], and its approximation by the Dirichlet
network, i.e., H[p(y|x, θ)], the uncertainty error bound is
shown in Eq. (49) by substituting p = p(y|x,D, β) and
q = p(y|x, θ) in Eq. (48).

|H(p(y|x,D, β))−H(p(y|x, θ))|

≤ −||p(y|x,D, β)− p(y|x, θ)||1 log
||p(y|x,D, β)− p(y|x, θ)||1

C
(49)



Then, ||p(y|x,D, β − p(y|x, θ)||1 can be expressed as:

||p(y|x,D, β)− p(y|x, θ)||1

=

C∑
k=1

|p(y = k|x,D, β)− p(y = k|x, θ)|

=

C∑
k=1

|
∫
p(y = k|λ)p(λ|x,D, β)dλ

−
∫
p(y = k|λ)p(λ|x, θ)dλ|

=

C∑
k=1

∣∣∣∣∫ p(y = k|λ) [p(λ|x,D, β)− p(λ|x, θ)] dλ
∣∣∣∣

≤
C∑
k=1

∫
p(y = k|λ) |p(λ|x,D, β)− p(λ|x, θ)| dλ

=

∫ [ C∑
k=1

p(y = k|λ)

]
|p(λ|x,D, β)− p(λ|x, θ)| dλ

=

∫
|p(λ|x,D, β)− p(λ|x, θ)| dλ

= ||p(λ|x,D, β)− p(λ|x, θ)||1
(50)

By Prinsker’s inequality [Canonne, 2022], we have

||p(λ|x,D, β)− p(λ|x, θ)||1
≤
√

2 log 2KL(p(λ|D, x, β)||p(λ|x, θ))

=
√

2 log 2 · d.

(51)

According to Lemma B.2, by substituting into Eq. (50) and
Eq. (51) into Eq. (49), we can obtain:

|H[p(y|x, θ)]−H[p(y|x,D, β)]|

≤ −
√
2 log 2 · d log

√
2 log 2 · d
C

(52)

Aleatoric uncertainty error bound Given the
aleatoric uncertainty measured by a BNN, i.e.,
Ep(ψ|D,β){H[p(y|x, ψ)]} and the aleatoric uncertainty
quantified by the Dirichlet model, i.e., Ep(λ|x,θ)[p(y|λ)],

the aleatoric uncertainty error bound is shown as below:∣∣Ep(λ|x,θ) {H[p(y|λ)]} − Ep(ψ|D,β){H[p(y|x, ψ)]}
∣∣

=
∣∣Ep(λ|x,θ) {H[p(y|λ)]} − Ep(λ|D,β){H[p(y|λ)]}

∣∣
= |
∫ [

−
C∑
k=1

p(y = k|λ) log 1

p(y = k|λ)

]
· [p(λ|x, θ)− p(λ|x,D, β)]dλ|

≤
∫ [

−
C∑
k=1

p(y = k|λ) log 1

p(y = k|λ)

]
· |p(λ|x, θ)− p(λ|x,D, β)|dλ

≤
∫

logC|p(λ|x, θ)− p(λ|x,D, β)|dλ

= logC · ||p(λ|x,D, β)− p(λ|x, θ)||1
≤ logC

√
2 log 2 · d

(53)

In Eq. (53),
[
−
∑C
k=1 p(y = k|λ) log 1

p(y=k|λ)

]
≤ logC

can be proved by a special property that uniform distribution
has the maximum entropy.

Epistemic uncertainty error bound Given the epistemic
uncertainty captured by I[y;λ|x, θ] and I[y;ψ|x,D, β] for a
BNN and a Dirichlet-based model respectively,

| I[y;λ|x, θ]− I[y;ψ|x,D, β]|
=
∣∣[H(p(y|x, θ))− Ep(λ|x,θ) {H[p(y|λ)]}

]
+
[
H(p(y|x,D, β))− Ep(ψ|D,β){H[p(y|x, ψ)]}

]
≤ |H(p(y|x,D, β))−H(p(y|x, θ))|
+
∣∣Ep(λ|x,θ) {H[p(y|λ)]} − Ep(ψ|D,β){H[p(y|x, ψ)]}

∣∣
≤ −

√
2 log 2 · d log

√
2 log 2 · d
C

+ logC
√
2 log 2 · d

≤ 2 logC
√

2 log 2 · d−
√
2 log 2 · d log

√
2 log 2 · d

(54)

Assumptions It is worth noting that the uncertainty error
bounds are valid given the following conditions:

||p(y|x,D, β)− p(y|x, θ)||1 ≤ 1

2

||p(λ|x,D, β)− p(λ|x, θ)||1 ≤
√
2 log 2 · d ≤ C

e

(55)

Even though we can’t always assure the validity of the
aforementioned assumptions, they hold true if p(λ|x, θ)
approaches p(λ|x,D, β). This serves as the basis for
our work, prompting us to incorporate a regularization
term that minimizes the difference between p(λ|x, θ) and
p(λ|x,D, β).



C LA DISTILLATION LOSS

C.1 COMPONENTS OF EQ. (18)

In Eq. (18), the detailed expression of l(fmap), Jl, and Hl

are shown in the following.

l(fmap) =

C∑
k=1

(αk − 1) log
exp(fk(x, ψmap))∑C
j=1 exp(fj(x, ψmap))

;

(56)
Jl is the Jacobian matrix of size C × 1 and

Jl[i] =
∂l(f)

∂fi
= αi−1− [

C∑
k=1

(αk−1)]λi; i = 1, 2, ..., C

(57)
Hl is the Hessian matrix of size C × C and

Hl[i, j] =
∂2l(f)

∂fi∂fj
=

{
[
∑C
k=1(αk − 1)]λi(λi − 1) if i = j

[
∑C
k=1(αk − 1)]λiλj if i ̸= j

(58)

C.2 DERIVATION OF EQ. (19)

The key of obtaining Eq. (19) is to solve the expectation
analytically in Eq. (9). Based on the second-order Taylor
expansion shown in Eq. (18), we can obtain

Ep(ψ|D,β)

[
K∑
k=1

(αk − 1) log λk(x, ψ)

]

= Ef∼N (fmap,Σf )

[
K∑
k=1

(αk − 1) log
exp(fk)∑K
j=1 exp(fj)

]
≈ Ef

[
l(fmap) + JTl (f − fmap)

+
1

2
(f − fmap)

THl(f − fmap)
]

= l(fmap) +
1

2
tr(HlΣf )

(59)

D DIR-BNN REFINEMENT USING
NORMALIZING FLOWS

D.1 THE DESIGN OF THE NORMALIZING FLOW

We develop the normalizing flow in accordance with these
criteria:

• The transformation function, denoted as gω : λ → λ̃,
is invertible.

• Given a simplex-valued probability vector as input, the
result of gω(·) also returns a simplex-valued probability
vector.

• The calculation of the Jacobian matrix for gω is straight-
forward and manageable.

The invertible function gω = h◦σ◦ g̃ω ◦σ−1◦h−1 is shown
below:

v = h−1(λ) :

{
v1 = λ1

vk = λk

1−
∑k−1

i=1 λi
k ∈ [2, 3, · · · , C − 1]

(60)

z = σ−1(v) : zk = log
vk

1− vk
k ∈ [1, 2, · · · , C − 1]

(61)

ṽ = σ(z̃) : ṽk =
1

1 + exp(−z̃k)
k ∈ [1, 2, · · · , C − 1]

(62)

λ̃ = h(ṽ) :


λ̃1 = ṽ1

λ̃k =
(
1−

∑k−1
i=1 λ̃i

)
ṽk k ∈ [2, 3, · · · , C − 1]

λ̃C = 1−
∑C−1
i=1 λ̃i

(63)
where g̃ω represents a standard normalizing flow for contin-
uous variables, the specifics of which can differ based on
the method employed. For the purposes of this study, we
utilize coupling flows.

D.2 DETAILS OF EQ. (20)

In Equation (20), the expression Dir(g−1
ω (λ);α(x, θ∗)) is

obtained by inserting g−1
ω (λ) into the density function of

a Dirichlet distribution, parameterized by α(x, θ∗). Fur-
ther elaboration on the determinant of the Jacobian matrix,
specifically det Jg−1

ω
(λ̃), is provided in the subsequent text:

Jg−1
ω

(λ̃) =
dh−1(λ̃)

dλ̃
· dσ

−1(ṽ)

dṽ
|ṽ=h−1(λ̃) ·

dg̃−1
ω (z̃)

dz̃
|z̃=σ−1(ṽ)

· dσ(z)
dz

|z=g̃ω(z̃) ·
dh(v)

dv
|v=σ(z).

(64)

As a result,

det Jg−1
ω

(λ̃) =det
dh−1(λ̃)

dλ̃
· det dσ

−1(ṽ)

dṽ
· det dg̃

−1
ω (z̃)

dz̃

· det dσ(z)
dz

· det dh(v)
dv

(65)



where

det
dh−1(λ̃)

dλ̃
=

C−1∏
k=2

1

1−
∑k−1
i=1 λ̃i

det
dσ−1(ṽ)

dṽ
=

C−1∏
k=1

1

ṽk(1− ṽk)

det
dσ(z)

dz
=

C−1∏
k=1

σ(z)k(1− σ(z)k)

det
dh(v)

dv
=

C−1∏
k=2

(1−
k−1∑
i=1

h(v)i)

(66)

where σ(z)k and h(v)i are the kth and ith element of σ(z)
and h(v). det dg̃

−1
ω (z̃)
dz̃ depends on the chosen standard NF

for continuous variables.

E EXPERIMENT SETTINGS AND
IMPLEMENTATION

E.1 MODEL ARCHITECTURE AND
HYPERPARAMETERS

We conducted experiments on four datasets: MNIST, FM-
NIST, C10, and C100. For all training sessions, we randomly
allocate 10% of the training data as validation data for model
selection. We utilize an RTX2080Ti GPU to perform all the
experiments. Below, we detail the training procedures for
the pre-trained models corresponding to each of the four
datasets.

• MNIST/FMNIST: We employ a simple CNN archi-
tecture: Conv2D-ReLU-Conv2D-ReLU-MaxPool2D-
Dense-ReLU-Dense-Softmax. Each convolutional
layer includes 32 filters with a 4 × 4 kernel size. We
utilize a max-pooling layer with a 2 × 2 kernel and
dense layers comprising 128 units. The SGD optimizer
is used with a learning rate of 1e-2 and a momentum of
0.9. We set the maximum number of epochs at 30 and
the weight decay coefficient at 5e-4. The batch size is
128.

• C10/C100: We utilize ResNet18 for feature extraction,
connected to a fully-connected layer for classification.
The SGD optimizer is employed with an initial learn-
ing rate of 1e-1, decreasing to 1e-2, 1e-3, and 1e-4 at
the 30th, 60th, and 90th epochs, respectively. The mo-
mentum is set at 0.9, with a maximum of 100 epochs
and a weight decay coefficient of 5e-4. Standard data
augmentation techniques, such as random cropping,
horizontal flipping, and random rotation, are applied.
The batch size is 128.

E.2 IMPLEMENTATION DETAILS

In this section, we will discuss the implementation details
for different uncertainty estimation methods used for OOD
detection and image classification under distributional shifts.

• The Ensemble method (ESB): we randomly train 5
ensemble models with different initialization.

• PriorNet, PosNet, EviNet: we utilize implementations
from Kopetzki et al. [2021] are utilized, adhering
to the default hyperparameters. The source code is
available at https://github.com/TUM-DAML/
dbu-robustness. Since we do not have OOD sam-
ples, we utilize the images with random noise as the
OOD samples for PriorNet.

• LA: as elaborated in Appendix A, we opt for last-layer
LA accompanied by a full Hessian matrix computa-
tion. The software used is credited to Daxberger et al.
[2021a] and can be found at https://github.
com/AlexImmer/Laplace.

• DUQ: We use the source code avail-
able at https://github.com/y0ast/
deterministic-uncertainty-quantification,
modified for our experimental settings. After tuning
the hyperparameters, we set the gradient penalty coef-
ficient to 0.5 and retain other default hyperparameters.

• DUE: We utilize the open-source code available
at https://github.com/y0ast/DUE, modi-
fied for our experimental settings. We crafted our own
feature extractor using Resnet18 with spectral normal-
ization, given that only a wide-Resnet version is ac-
cessible. While we tested various kernel types, “RBF"
was our choice. We also adjusted parameters like learn-
ing rate, batch size, and dropout rate, but since these
changes didn’t notably affect the outcomes, we opted
to stick with the default values.

• Dir-LA: we use ρ = 50 which is the coefficient of the
regularization loss. After training a single network us-
ing MAP loss, the last-layer LA is performed with an
implementation shown in https://github.com/
AlexImmer/Laplace. Then, we add the regular-
ization loss to refine the model until convergence.

• Dir-ESB: knowledge distillation was performed after
training an ensemble of 5 models. The regularization
loss is mentioned in Eq. (9), where samples from the
ensemble models approximate p(ψ | D, β). We also
select ρ = 50.

• Dir-ESB-NF: a 10-layer coupling flow for continuous
variables was applied for g̃ω. Adhering to RealNVP
[Dinh et al., 2016], the coupling flows were designed
such that the affine autoregressive flow linearly scales
and modifies half of the dimension as a function of the
other half. The implementation of the affine flow can
be found at pytorch-normalizing-flows on GitHub. We

https://github.com/TUM-DAML/dbu-robustness
https://github.com/TUM-DAML/dbu-robustness
https://github.com/AlexImmer/Laplace
https://github.com/AlexImmer/Laplace
https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/DUE
https://github.com/AlexImmer/Laplace
https://github.com/AlexImmer/Laplace
https://github.com/karpathy/pytorch-normalizing-flows


Table 7: Uncertainty calibration within-dataset performance ( ACC (%) ↑, ALC ↑, and ROC (%) ↑ ) for MNIST and C10
datasets. “*" represents our method.

Method
MNIST C10

ACC ALC ACC ALC
Ensemble 99.41 0.984 93.64 0.902
PriorNet 99.11 0.983 64.18 0.670
PosNet 98.90 0.917 91.23 0.810
EvNet 99.18 -1.197 91.77 -0.185
DUQ 98.64 0.976 91.11 0.887
DUE 98.19 0.954 87.53 0.684
LA 98.51 0.959 92.55 0.915
Dir-LA* 99.34 0.941 93.16 0.890
Dir-ESB* 99.30 0.977 92.43 0.914
Dir-ESB-NF* 99.31 0.984 93.16 0.884

Table 8: Additional results for uncertainty calibration performance ( ACC (%) ↑, ALC ↑, and ROC (%) ↑ ) for MNIST. ROC
represents AUROC. “*" represents our method.

Method
Rotate 40 Rotate 80 Rotate 120

ACC ALC ROC ACC ALC ROC ACC ALC ROC
Ensemble 71.27 0.666 88.89 17.34 0.180 97.13 20.65 0.168 96.16
PriorNet 68.81 0.694 86.84 15.42 0.292 96.52 16.89 0.200 95.76
PosNet 64.19 0.748 88.24 16.35 0.415 89.47 20.22 0.037 82.61
EvNet 71.77 -0.124 32.19 16.66 -0.006 25.86 22.80 0.035 33.15
DUQ 66.03 0.673 90.49 17.84 0.195 97.18 16.50 0.127 96.53
DUE 59.89 0.676 84.17 15.94 0.173 89.55 16.65 0.054 86.10
LA 66.54 0.649 86.82 21.25 0.216 95.02 19.95 0.123 93.86
Dir-LA* 73.00 0.710 90.39 19.94 0.222 98.01 21.71 0.259 95.63
Dir-ESB* 70.54 0.706 92.06 19.80 0.212 98.04 21.63 0.218 97.04
Dir-ESB-NF* 70.81 0.709 92.18 19.47 0.237 98.21 22.17 0.225 97.21

initialize the NF to start with the pre-trained Dirichlet
distribution. During the training phase of NF, we used
the Adam optimizer with a learning rate of 1× 10−4,
and the maximum training iterations were set to 400.

F ADDITIONAL RESULTS FOR
UNCERTAINTY CALIBRATION
UNDER DISTRIBUTIONAL SHIFTS

This section first presents the within-dataset performance
measured by ACC and AULC for MNIST and C10. As
demonstrated in Table 7, our techniques show a slight im-
provement in within-dataset performance compared to both
Dirichlet-based and single-network deterministic methods.
Due to the page restrictions, supplementary results, which
include varying degrees of distributional shifts, are provided
in Tables 8 and 9. These additional results support the con-
clusions drawn in Section 5.2. Tables 10 and 11 detail the
negative log-likelihood (NLL) and expected calibration er-
ror (ECE) outcomes for the rotated MNIST and noisy C10
datasets, respectively, under varying distributional shifts.
NLL and ECE, as pivotal calibration metrics, furnish ad-
ditional evaluations on aleatoric uncertainty and total un-
certainty. It’s important to note that DUQ and DUE are ex-

cluded because they don’t provide softmax probabilities. On
average, our methods (Dir-LA, Dir-ESB) demonstrate com-
petitive performance. Notably, Dir-LA outperforms other
baselines with the best average scores in both NLL and ECE
for the rotated MNIST dataset. For the noisy C10 dataset,
Dir-ESB achieves the top average NLL score.



Table 9: Additional results for uncertainty calibration performance ( ACC (%) ↑, ALC ↑, and ROC (%) ↑ ) for C10. ROC
represents AUROC. “*" represents our method.

Method
Noise 0.20 Noise 0.25

ACC ALC ROC ACC ALC ROC
Ensemble 11.52 0.279 89.02 10.43 0.249 91.09
PriorNet 29.35 0.329 84.80 21.69 0.251 89.51
PosNet 10.00 -0.062 91.18 9.98 -0.082 88.62
EvNet 17.34 0.135 72.60 13.66 0.029 79.30
DUQ 18.16 0.271 93.19 13.70 0.128 91.19
DUE 21.35 0.146 63.15 14.52 0.102 53.13
LA 11.97 0.149 93.69 10.36 0.119 90.41
Dir-LA* 16.47 0.221 91.10 14.19 0.164 89.18
Dir-ESB* 22.43 0.375 74.94 19.45 0.289 78.21
Dir-ESB-NF* 47.03 0.536 86.50 38.64 0.429 89.62

Table 10: The NLL and ECE for rotated MNIST dataset under different rotation angles from 0 to 180 with a step of 20. 0
rotation represents the in-distribution performance. The bold values indicate the best performance.

Method
NLL ↓ for Rotated MNIST Under Distributional Shifts

0 20 40 60 80 100 120 140 160 180 Avg
PriorNet 0.118 0.263 1.125 2.225 2.647 2.791 2.742 2.474 2.373 2.357 1.912
PosNet 0.043 0.187 1.117 2.637 3.348 3.512 3.530 3.158 3.012 3.167 2.371
EvNet 2.184 2.191 2.226 2.272 2.292 2.294 2.288 2.280 2.271 2.264 2.256
Ensemble 0.028 0.127 0.888 2.391 3.523 4.128 4.208 4.194 4.675 5.207 2.937
LA 0.027 0.153 0.996 2.408 3.435 4.104 4.019 3.973 4.428 5.212 2.876
Dir-LA 0.454 0.647 1.268 2.019 2.298 2.344 2.305 2.209 2.130 2.104 1.778
Dir-ESB 0.039 0.183 0.974 2.101 2.727 3.043 3.152 2.984 3.071 3.284 2.156

Method
ECE ↓ for Rotated MNIST Under Distributional Shifts

0 20 40 60 80 100 120 140 160 180 Avg
PriorNet 0.088 0.094 0.060 0.247 0.351 0.389 0.383 0.319 0.318 0.331 0.258
PosNet 0.016 0.023 0.079 0.317 0.444 0.480 0.470 0.404 0.379 0.394 0.301
EvNet 0.879 0.844 0.601 0.240 0.073 0.063 0.121 0.186 0.255 0.298 0.356
Ensemble 0.012 0.022 0.080 0.329 0.467 0.534 0.516 0.452 0.436 0.449 0.330
LA 0.003 0.005 0.099 0.306 0.422 0.478 0.474 0.427 0.428 0.464 0.311
Dir-LA 0.347 0.401 0.302 0.059 0.153 0.164 0.140 0.090 0.089 0.112 0.186
Dir-ESB 0.019 0.047 0.053 0.220 0.348 0.395 0.414 0.384 0.379 0.399 0.266

Table 11: The NLL and ECE for noisy C10 dataset under different noise levels from 0 to 0.25 with a step of 0.05. 0 noise
represents the in-distribution performance. The bold values indicate the best performance.

Method
NLL ↓ and ECE ↓ for noisy C10 Under Distributional Shifts

0 0.05 0.1 0.15 0.2 0.25 Avg
NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE

PriorNet 1.895 0.134 1.898 0.133 1.941 0.126 2.020 0.106 2.141 0.112 2.235 0.060 2.022 0.112
PosNet 0.358 0.043 1.318 0.162 2.593 0.348 3.118 0.474 3.340 0.522 3.546 0.557 2.379 0.351
EvNet 1.277 0.061 1.394 0.098 2.416 0.341 3.349 0.472 3.768 0.528 3.478 0.371 2.614 0.312
Ensemble 0.170 0.008 0.905 0.081 3.588 0.435 5.226 0.534 5.403 0.515 5.194 0.505 3.414 0.346
LA 0.246 0.019 1.201 0.132 4.736 0.426 6.970 0.493 7.769 0.560 7.966 0.641 4.815 0.379
Dir-LA 0.697 0.335 1.398 0.242 2.443 0.113 2.707 0.145 2.698 0.167 2.640 0.198 2.097 0.200
Dir-ESB 0.326 0.061 0.940 0.083 2.148 0.291 2.578 0.373 2.730 0.378 2.765 0.357 1.915 0.257



G ABLATION STUDIES AND FURTHER
ANALYSIS

G.1 EFFICIENCY ANALYSIS

This section is dedicated to assessing the efficiency of the
introduced methods through both theoretical and practical
evidence. Let us define M as the total count of parameters,
P as the number of parameters in the last layer, N as the
data size, C as the class count, S as the number of samples
produced for LA, K as the ensemble components count,
and T as the number of training epochs. Both the theoretical
complexity analysis and the actual training and uncertainty
quantification (UQ) runtimes are detailed in Table 12.

It is important to acknowledge that theoretical investiga-
tions into model complexity do not account for diverse loss
functions, but rather calculate complexity solely in relation
to backpropagation for a fixed set of training samples. The
Dir-LA method we propose does necessitate extra time for
the last-layer LA (O(C3 + P 3)) during training. However,
Dir-LA doesn’t significantly extend training time. As this
process is executed just once throughout the entire training
period, its time consumption is marginal in comparison to
the overall training process. Empirically, building the last-
layer LA for a single network consumes 3.2s for MNIST
and 14.4s for C10.

Dir-ESB requires pre-trained ensemble models. DUQ em-
ploys the gradient penalty during training, thereby demand-
ing an additional O(TNM) for backpropagating through
gradients. DUE takes advantage of spectral normalization
which adds another O(TM) to the training time. In prac-
tice, PriorNet doubles the training duration as it also has to
load the OOD data samples for regularization. Concurrently,
PosNet demands a longer duration to train the normalizing
flow.

Regarding inference, most methods, except Ensemble and
LA, can estimate uncertainty via a single deterministic for-
ward pass of the neural network, thus reducing both the
computational complexity and the memory requirements.
The theoretical and practical runtimes of UQ for Dir-LA
and Dir-ESB are comparable to other deterministic UQ ap-
proaches.

The aforementioned comparisons do not include Dir-ESB-
NF as it is not part of the Dirichlet-based networks. Dir-ESB-
NF implements a normalizing flow in a post-processing ap-
proach to refine the Dirichlet distribution to better mimic
the posterior. Given that the NF is initialized to align with
the pre-trained Dirichlet distribution, typically only a few
iterations (less than 200) are necessary to learn the NF. The
empirical runtime for a single iteration is 0.27s for the C10
dataset. Overall, Dir-ESB-NF is unquestionably more com-
plex than a standard Dirichlet-based model. However, it
offers alternative pathways to further enhance the Dirichlet

network with improved performance. For inference, Dir-
ESB-NF requires inputting the samples from the Dirichlet
distribution into the NF. The complexity here relies on the
number of samples produced and the intricacy of the NF.
Practically, if we generate 100 samples and only employ
a shallow flow, the runtime will be 6.2s for estimating the
uncertainty for the C10 testing dataset.

G.2 MORE ANALYSIS FOR DIR-ESB
REFINEMENT USING NF

Posterior approximation The NF we propose offers both
theoretical and empirical evidence that a better approxima-
tion of the posterior distribution can be achieved. Impor-
tantly, the NF is designed to initialize with the pre-trained
Dirichlet distribution, thereby ensuring that minimizing the
KL divergence between the NF distribution and the posterior
leads to an enhanced approximation of the posterior. Con-
sidering the substantial efforts and time needed to obtain
an exact posterior distribution, this work opts for ensem-
ble methods and LA as substitutes for BNN regularization
of NF, in line with the Dir-BNN training strategy detailed
in Sec. 4.1. The primary aim of training the NF is to dis-
till vital information about the weight posterior as much
as possible, without the need for an exact posterior. How-
ever, a perfect alignment with the approximate BNN is not
desirable, as it could potentially hinder performance. For
instance, in numerous experiments, Dir-LA demonstrates
superior performance in OOD detection compared to LA.

Choose Dir-ESB for refinement We choose to refine Dir-
ESB using NF instead of Dir-LA. This decision allows us
to maintain the essential information that is intrinsic to LA,
while circumventing the risk of the NF-created distribution
aligning too closely with LA, considering LA serves as a
strong assumption for posterior approximation.

A shallow NF In this study, we only require a shallow flow
to refine the Dirichlet distribution. This approach serves
two purposes. Firstly, it enhances efficiency. Secondly, a
shallow NF suffices for refining the model. As previously
mentioned, we do not aim to achieve a perfect alignment
with the approximate inference methods used for distilla-
tion. Therefore, a shallow flow is adequate to glean critical
information from the approximate posterior while steering
clear of overfitting it. Empirically, we evaluate the OOD per-
formance of Dir-ESB-NF by varying the number of flows.
Upon increasing the complexity of the NF, there are no
notable improvements.

Few training iterations Since our objective isn’t to achieve
a perfect alignment of the NF with the approximate posterior,
we only need a few training iterations. The stopping criteria
are dictated by the performance metrics on the validation
dataset, such as accuracy and negative log-likelihood loss.

Additional results for refining weak Dir-ESB models



Table 12: The theoretical complexity shows the additional runtimes of each method for both training and UQ compared to a
single network’s training and evaluation. The empirical results of training are the runtimes of training C10 for one epoch in
seconds. The results for inference show the runtimes for estimating the uncertainty of the C10 testing dataset.

Method Theoretical Complexity Empirical Runtime (C10)
Training UQ Training UQ

Ensemble O((K − 1)TNM) O((K − 1)NM) 202.2s 5.3s
PriorNet O(1) O(1) 98.4s 1.4s
PosNet > O(1) O(1) 533.0s 1.4s
EvNet O(1) O(1) 23.27s 1.4s
DUQ O(TNM) O(1) 59.5s 1.5s
DUE O(TM) O(1) 52.4s 1.6s
LA O(C3 + P 3) O(SNP ) 50.5s 3.6s
Dir-LA* O(C3 + P 3) O(1) 59.2s 1.4s
Dir-ESB* O(KTNM) O(1) 256.6s 1.4s

Table 13: OOD detection results for AUROC (%) ↑ and AUPR (%) ↑ for refining a weak Dir-ESB model using Dir-ESB-NF.
We also consider different ensemble sizes. "→" shows the improvement.

Method
MNIST → KMNIST MNIST → FMNIST

AUROC AUPR AUROC AUPR
Ensemble-5 97.8 97.8 97.4 97.2
Dir-ESB → Dir-ESB-NF 96.1→96.7 95.0→96.2 98.7→98.7 98.4→98.5

Method
MNIST → KMNIST MNIST → FMNIST

AUROC AUPR AUROC AUPR
Ensemble-10 98.6 98.6 97.9 97.5
Dir-ESB → Dir-ESB-NF 94.4→97.3 92.7→96.9 97.7→98.7 96.5→98.5

Method
MNIST → KMNIST MNIST → FMNIST

AUROC AUPR AUROC AUPR
Ensemble-20 98.6 98.6 98.0 97.7
Dir-ESB → Dir-ESB-NF 97.3→98.0 97.2→98.0 99.2→99.3 99.1→99.3

with varying ensemble size In Table 13, we provide em-
pirical evidence of further enhancements when we employ
NF to refine weak Dir-ESB models. These weak Dir-ESB
models are derived by using a small coefficient ρ, specifi-
cally ρ = 10, in Eq. (8) during training. The results indicate
that NF can bring about more improvements on a weak
Dirichlet-based network. Additionally, it is feasible to use
NF to refine Dirichlet-based networks trained using other
existing methodologies.
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