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Deep Unrolled Graph Laplacian Regularization for
Robust Time-of-Flight Depth Denoising
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Abstract—Depth images captured by Time-of-Flight (ToF)
sensors are subject to severe noise. Recent approaches based on
deep neural networks achieve good depth denoising performance
in synthetic data, but the application to real-world data is limited,
due to the complexity of actual depth noise characteristics and
the difficulty in acquiring ground truth. In this paper, we propose
a novel ToF depth denoising network based on unrolled graph
Laplacian regularization to “robustify” the network against both
noise complexity and dataset deficiency. Unlike previous schemes
that are ignorant of underlying ToF imaging mechanism, we
formulate a fidelity term in the optimization problem to adapt to
the depth probabilistic distribution with spatially-varying noise
variance. Then, we add quadratic graph Laplacian regularization
as the smoothness prior, leading to a maximum a posteriori
problem that is optimized efficiently by solving a linear system
of equations. We unroll the solution into iterative filters so that
parameters used in the optimization and graph construction are
amendable to data-driven tuning. Because the resulting network
is built using domain knowledge of ToF imaging principle
and graph prior, it is robust against overfitting to synthetic
training data. Experimental results demonstrate that the proposal
outperforms existing schemes in ToF depth denoising on synthetic
FLAT dataset and generalizes well to real Kinectv2 dataset.

Index Terms—Depth denoising, Time-of-Flight sensor, graph
signal processing, deep neural network.

I. INTRODUCTION

DUE to the low-cost CMOS sensor technology and
low power requirement, continuous-wave Time-of-Flight

(ToF) depth sensors [1] have emerged as an exciting 3D
imaging modality empowering various vision applications
[2]–[4]. Depth images captured by commercial ToF sensors
such as Microsoft Kinect suffer from severe noise on dark,
distant, and glossy surfaces [5], motivating various ToF depth
denoising schemes [6]–[11]. Model-based methods are based
on mathematical models, such as bilateral filter [12] and
non-local means [13], [14]. Leveraging progress in graph
signal processing (GSP) [15], [16], recent schemes construct
graphs to encode pixel correlations in depth images, then
formulate ToF depth denoising as a maximum a posteriori
(MAP) problem [17] using graph-based priors. For example,
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[18] used a sparsity prior in graph transform domain, and
[19], [20] adopted smoothness prior via graph Laplacian
regularization (GLR) [21]. However, existing model-based
schemes are ignorant of distinctive ToF depth noise statistics,
leading to inaccurate optimization formulations and sub-par
performance.

Recent approaches based on deep neural networks (DNNs)
achieved state-of-the-art ToF denoising performance using
synthetic data for training. While many approaches denoise
generated depth images [22], [23], errors accumulate during
image formation from raw ToF data, resulting in unique depth
noise characteristics that hamper denoising performance [7].
More recent methods take raw ToF data as input and build
end-to-end networks to produce denoised depth images [7]–
[11]. For example, ToFNet [7] generated restored depth from
raw data with a multi-scale network, significantly improving
imaging quality. However, existing DNN-based schemes are
purely data-driven and do not account for ToF noise patterns,
resulting in poor generalization to real data, due to difficulty
in acquiring ground truth. Although domain adaptation has
been adopted to enhance network generalization ability [9],
the performance still drops significantly at high noise levels.

To address the above issues, we propose the Graph Lapla-
cian Regularization Unrolling Network (GLRUN) for ro-
bust and interpretable ToF depth denoising. Unlike existing
schemes ignorant of the ToF imaging mechanism, we formu-
late a MAP problem based on an accurate ToF noise model,
which is optimally denoised before converting to depth. Dif-
ferent from existing graph-based methods [18]–[20] construct-
ing graphs with hand-crafted features, we unroll GLR-based
solution into iterative low-pass graph filters via its diffusion
interpretation, so that parameters used in graph construction
and optimization are end-to-end trained. Resulting network is
built from domain knowledge of ToF imaging principle and
GLR prior, which restricts its solution space [24] and makes
it more robust against overfitting than existing DNN-based
schemes [9]–[11]. Our contributions are as follows.

• We formulate a new MAP problem based on ToF depth
noise analysis that denoises raw ToF data with adaptation
to spatially-varying depth noise variance;

• We solve the problem with GLR prior by unrolling the
solution into iterative graph filters to enable data-driven
parameter optimization;

• We interpret GLRUN as a sequence of low-pass graph
filtering, which explains its robustness to overfitting.

We demonstrate the enhanced accuracy of GLRUN on the
FLAT dataset [8], decreasing MAE by 37.4% over competing
schemes. In addition, we show strong generalization ability of
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GLRUN to real noise in ToF data captured by Kinectv2 [5].

II. NOISE ANALYSIS AND PROBLEM FORMULATION

In this section, we review the ToF imaging mechanism and
depth noise statistics, then derive a MAP formulation with a
GLR prior to denoise raw ToF data before converting to depth.

A. ToF Imaging Mechanism

To measure depth xd of an object, the ToF camera emits a
periodic signal se(t) modulated by a sinusoidal function with
frequency fm and receives the reflected signal sr(t) with phase
shift ϕ after the signal has traveled the distance 2xd [25]. By
measuring the correlation between sr(t) and the phase shifted
version of se(t) with phase offset θ, the raw measurements
are given as cθ = α cos(ϕ + θ) + β, where α is the signal
amplitude, and β is the ambient light intensity. By measuring
cθ for multiple phase offsets θ, the raw ToF pair, i.e., in-phase
xi and quadrature xq components of ϕ, are computed as [11],

xi =
∑
θ

cos(θ)cθ, xq =
∑
θ

− sin(θ)cθ. (1)

Then, depth xd and amplitude xa are reconstructed as

xd =
cϕ

4πfm
, ϕ = arctan(xq/xi), xa =

√
x2
i + x2

q, (2)

where c is the light speed.

B. Depth Noise Probability Distribution Model

We study how noises in raw data xi and xq affect the depth
estimation. It is commonly assumed that the noisy versions
of xi and xq , i.e., yi, yq , are independent and identically
distributed with bivariate Gaussian distribution [14], [26],

P (yi, yq|xi, xq) =
1

2πσ2
exp(− (xi − yi)

2 + (xq − yq)
2

2σ2
),

(3)
where σ is the noise variance. Under normal noise level,
i.e., γ = σ/ya ≪ 1, where ya is the noisy amplitude, the
distribution of depth noise nd is derived in [14] as

P (nd) ≈
cos(4πfmnd/c)

γ
√
2π

exp(− sin2(4πfmnd/c)

2γ2
) . (4)

(4) is close to a Gaussian distribution with variance approxi-
mately proportional to γ/fm. This requires a denoising scheme
to be adaptive to frequency fm and spatially varying ya,
so we flexibly adjusts denoising operations according to the
spatially-varying noise variance. Next, we formulate a MAP
problem with data fidelity term P (yd|xd) and prior term P (xd)
described as follows.

C. Data Fidelity Term

Since raw data yi, yq exhibit a simpler noise model than yd,
we optimize xi, xq then convert to xd instead of denoising xd

directly. Based on (4), the log of likelihood P (yd|xd) is

lnP (yd|xd) ≈ ln(cos(4πfmnd/c))− sin2(4πfmnd/c)/(2γ
2)

(5)
where the constant term − ln(γ

√
2π) is removed. Both terms

in (5) minimize nd, and with γ ≪ 1, the second term
dominates. Thus, we remove the first term and compute the

likelihood as a function of xi, xq as follows:

lnP (yd|xd) ≈ − sin2(ϕ− ϕ′)/(2γ2) (6)

= −(sinϕ cosϕ′ − cosϕ sinϕ′)2/(2γ2), (7)

where ϕ′ = 4πfmyd/c is the noisy phase. From (2) we have

lnP (yd|xd) ≈ −(xqyi − xiyq)
2/(2σ2 x2

a). (8)

D. GLR Prior for Raw Data

Since we perform denoising on xi, xq , we replace prior
P (xd) with P (xi, xq). Denote by xi,xq,yi,yq ∈ RN the
clean and noisy raw ToF image pairs in vectorized form,
respectively, where N is the number of pixels in the image.
GLR smoothness prior is widely used for signal recovery [20],
[21], [27]–[29], and we adopt GLR prior for xi,xq so that
the optimization is efficiently computed by solving a linear
system. Specifically, we model xi,xq as 8-connected graphs
[18] with each pixel connected to its 8 neighbors. Similarities
between connected pixel pairs are modeled using graph Lapla-
cian matrices Li,Lq that are symmetric and positive semi-
definite (PSD) with positive edge weights [15]. The graph
edge weights are end-to-end trained with details discussed in
Sec. III-B. GLR prior is given as

P (xi,xq) = exp(−
x⊤
i Lixi + x⊤

q Lqxq

σ2
L

), (9)

where σL adjusts the sensitivity to variations on graphs.
Based on (8) and (9), the MAP problem is optimized as

min
xi,xq

∥∥∥∥X−1
a (xq ⊙ yi − xi ⊙ yq)√

2σ

∥∥∥∥2
2

+
x⊤
i Lixi

σ2
L

+
x⊤
q Lqxq

σ2
L

,

(10)
where Xa = diag(xa), ⊙ is Hadamard product. To solve (10)
approximately, we take an alternating approach, where in each
iteration, we fix xq and solve xi, then fix xi and solve xq ,
and repeat until convergence. For example, in iteration l, we
compute xl−1

a based on (2) and set xa = xl−1
a , then set yi =

xl−1
i , xq = yq = xl−1

q in (10), and optimize xl
i as

min
xi

||(Xl−1
a )−1xl−1

q ⊙ (xi − xl−1
i )||22 + 2λx⊤

i Lixi, (11)

where λ = (σ/σL)
2. Then we set xi = yi = xl

i, yq = xl−1
q in

(10) and optimize xl
q . For the first iteration, we set x0

q = yq ,
x0
i = yi. In this way, we jointly denoise the raw ToF pair

xi,xq to optimize depth estimation based on its noise model.
Next, we design an algorithm implementation to solve (10).

III. ALGORITHM UNROLLING AND NETWORK DESIGN

In this section, we unroll the solution of (11) into iterative
filtering, which is used as the key module to design the
proposed GLRUN with graph filtering interpretation.

A. Unrolled GLR Module
The solution of (11) is obtained by solving a linear system:

((Xl−1
a )−1|xl−1

q |)2 ⊙ (xi − xl−1
i ) + 2λLixi = 0, (12)

where |xl−1
q | computes element-wise absolute value of xl−1

q .
Denote by Wi and Di = diag(Wi1) the adjacency and degree
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Fig. 1. GLRUN consists of the feature extraction network to estimate initial prior weights and graph adjacency matrices, and Unrolled GLR modules to
denoise ToF data. Input dimensions are shown on top of each layer.

matrices of Li [15], where 1 is an all-ones vector. (12) is
rewritten as

(xi−xl−1
i )+2λ((|Xl−1

q |)−1Xl−1
a )2(Di−Wi)xi = 0, (13)

where Xl−1
q = diag(xl−1

q ). 2λ((|Xl−1
q |)−1Xl−1

a )2 can be
regarded as the spatially-varying prior weight, which we
denote as Φl−1

i . For accurate estimation of Φl−1
i and Wi, we

adopt algorithm unrolling [24] to enable data-driven parameter
optimization. While existing algorithm unrolling schemes [30],
[31] employ matrix inversion that is not fully trained, we avoid
matrix inversion and unroll the solution into iterative filtering
so that the parameters are fully trainable.

Specifically, as shown in [32], (13) can be solved using
a diffusion scheme based on gradient descent. We adopt the
following anisotropic diffusion [33] that runs forward in time
on the input xl−1

i to steady state with initial state xl,0
i = xl−1

i ,

∂txi =
(xl−1

i − xi)−Φl−1
i (Di −Wi)xi

I+Φl−1
i Di

. (14)

Instead of computing the large Hessian matrix for (13) to find
an optimal step size for gradient descent [34], we follow [33]
and use diagonal (I+Φl−1

i Di)
−1 as the diffusion coefficient

in (14), which is computed efficiently and decreases with the
gradient where elements in Φl−1

i Di is large. By discretizing
∂txi with xl,t+1

i − xl,t
i , (14) becomes

xl,t+1
i − xl,t

i =
(xl−1

i − xl,t
i )−Φl−1

i (Di −Wi)x
l,t
i

I+Φl−1
i Di

, (15)

xl,t+1
i = (I+Φl−1

i Di)
−1(xl−1

i +Φl−1
i Wix

l,t
i ). (16)

From (16), we can see at each time step t, xl,t+1
i is obtained by

the convolutional transform of xl,t
i with 3×3 kernel specified

by Φl−1
i Wi, fused with the initial state xl−1

i . In this way, (11)
is solved by recurrently repeating T times of convolutions on
xl−1
i , which we refer to as Unrolled GLR module, illustrated

in the right part of Fig. 1. The notations l and i are eliminated
in Fig. 1 since the same procedure applies to each iteration l
and the optimization of xq . Next, we utilize DNN to learn the
initial prior weight Φ0

i , and graph adjacency Wi.

B. GLRUN Architecture and Graph Filter Interpretation

The proposed GLRUN is illustrated in Fig. 1, which com-
prises two parts. The first part is the feature extraction network
that adopts an encoder-decoder structure with skip-connections
[35] to estimate the initial prior weights Φ0

i ,Φ
0
q , and edge

weights Wi,Wq for the 8-connected graphs for xi,xq . We
hereinafter eliminate the notations i and q since the same
procedure applies to the two components. We apply sigmoid
function on Φ0 to get positive weights, then scale by 10 to
ensure sufficient denoising strength. To get symmetric and
PSD L, we use W+W⊤ as the new adjacency matrix, then
apply softmax function for each pixel to learn positive edge
weights. To reduce the computational cost, the outputs are of
1/2 input scale and bilinearly upsampled to match input size.

In the second part, we use two Unrolled GLR modules
to denoise raw data, which corresponds to two iterations of
optimization in Section II-D. To update prior weights, we set
Φ1

i = ((X1
q)

−1X0
q)

2Φ0
i , Φ1

q = ((X1
i )

−1X0
i )

2Φ0
q based on

(13). The final output x∗
i and x∗

q are converted to depth x∗
d via

the raw2d module based on (2). In the case of multi-frequency
inputs, raw data of different fm are denoised separately with
shared network parameters. Depth maps with different fm are
merged via phase unwrapping [7] to generate the final depth.

Inside the Unrolled GLR module, each convolutional layer
computes ΦWxt. Given non-negative ΦW, corresponding to
all positive graph weights, each layer corresponds to a one-hop
low-pass graph filter [36], and the iterations are repeated until
solution convergence. Due to the regularization of the depth
noise model and graph prior, GLRUN is fully interpretable as
a parameter-optimized low-pass graph filter. This restricts its
solution space and makes it less prone to overfitting.

C. Loss Function

We train our network with l1 loss function supervised by
the ground truth xgt

i , xgt
q and xgt

d as follows:

L =
1

|V|
∑
v∈V

∑
θ∈{i,q,d}

|x∗
θ(v)− xgt

θ (v)| (17)

where v, V and |V| denote the pixel index, set of valid pixels
in GT, and the number of valid pixels, respectively. Loss on xd

is also included since the final target is to reconstruct depth.

IV. EXPERIMENTAL RESULTS

We experimentally validate the effectiveness of GLRUN in
ToF depth denoising via comparison with competing schemes
on FLAT dataset [8] and real Kinectv2 data.

A. Experiment Setting

Dataset FLAT dataset [8] was used for training and testing,
which is a synthetic dataset with simulated Kinect noise,
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Fig. 2. Depth results and error maps of ToF depth denoised on FLAT dataset
[8]: (a) GT, results of (b) RADU [11], (c) UDA [9], (d) DeepGLR [30] and
(e) proposed GLRUN. Corresponding error maps are in the second row. (f)
shows prior weight for 58MHz ToF data adaptive to input features.

containing 1923 depth images and corresponding raw ToF
data. We used 1815 images for training and 108 for testing
with image size 424×512. We further collected real Kinectv2
data to test the generalization ability to real ToF data.
Training Details We used Adam optimizer with initial learn-
ing rate 1e−3 and decay at epoch [10, 20, 30, 40] with decay
rate 0.5. The model was trained from scratch for 50 epochs.
We employed the PyTorch framework [37] on a single GeForce
RTX 3090 GPU. We set T = 3 in each Unrolled GLR module.
Metrics Following [38], we used Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), inverse RMSE
(iRMSE), and inverse MAE (iMAE) to evaluate depth esti-
mation, and used average runtime and GPU memory cost for
each image on 3090 GPU for complexity comparison.

B. Comparison with Existing Schemes

We compared with depth-based approach DeepToF [22], and
raw-based approaches ToFNet [7], UDA [9], RADU [11], and
graph-based DeepGLR [30]. The networks were trained on
FLAT dataset with codes released by the authors. We also
included model-based libfreenect2 [6] without deep learning.
We compared both accuracy and complexity with FLAT testing
dataset. In addition, we followed [39] to augment FLAT with
simulated edge noise. Note that the same model was used for
testing in both noise settings to test generalization ability to
unseen noise. In Table I, GLRUN achieved the best accuracy
among all the methods in both noise settings, decreasing
MAE by at least 37.4% over competing schemes with lower
complexity than the state-of-the-art UDA and DeepGLR.

Visual comparison in Fig. 2 further validated the advantage
of graph-based methods over existing methods in preserving
sharp details with noise removal. GLRUN surpassed DeepGLR
due to the adaptive prior weight shown in Fig. 2(f) and the
end-to-end training of parameters used in the optimization.

C. Ablation Study

To investigate the effectiveness of each component in
GLRUN, we tested on FLAT dataset with different variants of
GLRUN. Specifically, we removed Unrolling GLR modules
(UGLR) and reduced the network to a simple UNet as the
baseline model. Then, we solved the MAP problem via either
the algorithm in DeepGLR [30] or our UGLR without prior
weight layer (Φ). In addition, we investigated the effect of
Φ and the loss of depth and IQ, respectively. Results in
Table. II show that each component is essential for denoising

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY AND DENOISING

ACCURACY ON FLAT TESTING DATASET AND AUGMENTED DATASET

Method
Runtime Memory FLAT FLAT with edge noise

(s) (MB) RMSE(m) MAE(m) RMSE(m) MAE(m)

libfreenect2 - - 0.4154 0.0798 0.4709 0.1145

DeepToF 0.011 1660 0.1120 0.0490 0.1693 0.0783

ToFNet 0.012 3168 0.1744 0.1176 0.1755 0.1180

RADU 193.317 23478 0.1804 0.1197 0.1632 0.0913

UDA 0.011 1920 0.0681 0.0470 0.1404 0.0495

DeepGLR 35.630 1860 0.0954 0.0171 0.1366 0.0177

GLRUN 0.011 1680 0.0677 0.0107 0.1296 0.0140

TABLE II
COMPARISON OF QUANTITATIVE EVALUATION ON FLAT TESTING

DATASET WITH GLRUN VARIANTS

Modules RMSE MAE iRMSE iMAE
GLR Φ loss (m) (m) (1/m) (1/m)

- - depth+IQ 0.0809 0.0140 0.0625 0.0162
DeepGLR - depth+IQ 0.0784 0.0147 0.0552 0.0124

UGLR - depth+IQ 0.0748 0.0145 0.0541 0.0139
UGLR ✓ depth 0.0717 0.0137 0.0547 0.0150
UGLR ✓ IQ 0.0688 0.0112 0.0336 0.0087
UGLR ✓ depth+IQ 0.0677 0.0107 0.0304 0.0084

accuracy. While using IQ loss generated competitive results by
generating accurate x∗

i , x∗
q , including depth loss further refined

the final depth output x∗
d. Moreover, while using DeepGLR

generated competitive results, using UGLR greatly reduced
runtime as shown in Table I by avoiding matrix inversion, and
enhanced the accuracy by making parameters fully trainable.

D. Generalization Ability Evaluation with Real Kinectv2 Data
We captured real ToF data with Kinectv2 sensor and con-

ducted qualitative comparison shown in Fig. 3. The same
model trained on synthetic FLAT dataset is used for testing
on real data. DNN-based methods UDA and RADU generated
blurry results. This was due to the poor generalization to real
data with different noise characteristics from synthetic training
data. GLRUN showed strong generalization ability and better
detail preservation due to the specified low-pass graph filter.

Fig. 3. Visual results of ToF depth denoising on real Kinectv2 data: (a) IR
image and results of (b) UDA [9], (c) RADU [11], and (d) GLRUN.

V. CONCLUSION

In this paper, we propose GLRUN for ToF depth denoising
that is robust to complicated noise characteristics and training
data insufficiency. Based on ToF depth noise model analy-
sis, we propose graph-based MAP problem formulation to
optimize raw ToF data. The optimization is implemented via
iterative diffusion to incorporate with DNN and enable data-
driven parameter optimization. The resulting network shows
enhanced denoising accuracy on synthetic data and higher
robustness to real noise over competing schemes due to the
graph filter interpretation.
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“Theoretical and experimental error analysis of continuous-wave time-
of-flight range cameras,” Optical Engineering, vol. 48, no. 1, pp.
013 602–013 602, 2009.

[27] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regu-
larization on weighted graphs: A framework for image and manifold
processing,” IEEE Transactions on Image Processing, vol. 17, no. 7,
pp. 1047–1060, 2008.

[28] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE
Transactions on Image Processing, vol. 20, no. 5, pp. 1327–1336, 2011.

[29] J. Wang, L. Sun, R. Xiong, Y. Shi, Q. Zhu, and B. Yin, “Depth map
super-resolution based on dual normal-depth regularization and graph
laplacian prior,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 32, no. 6, pp. 3304–3318, 2022.

[30] J. Zeng, J. Pang, W. Sun, and G. Cheung, “Deep graph laplacian
regularization for robust denoising of real images,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0.

[31] R. Yoshida, K. Kodama, H. Vu, G. Cheung, and T. Hamamoto, “Un-
rolling graph total variation for light field image denoising,” in 2022
IEEE International Conference on Image Processing (ICIP). IEEE,
2022, pp. 2162–2166.

[32] D. M. Strong and T. F. Chan, “Spatially and scale adaptive total variation
based regularization and anisotropic diffusion in image processing,” in
Diusion in Image Processing, UCLA Math Department CAM Report.
Citeseer, 1996.

[33] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on pattern analysis and ma-
chine intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[34] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Foundations and Trends® in Machine Learning, vol. 8, no. 3-4, pp.
231–357, 2015.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2015, pp. 234–241.

[36] A. Ortega, Introduction to graph signal processing. Cambridge
University Press, 2022.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[38] Y. Wang, B. Li, G. Zhang, Q. Liu, T. Gao, and Y. Dai, “Lrru: Long-short
range recurrent updating networks for depth completion,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 9422–9432.

[39] J. T. Barron and J. Malik, “Intrinsic scene properties from a single rgb-d
image,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 17–24.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2025.3539908

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 13,2025 at 07:26:22 UTC from IEEE Xplore.  Restrictions apply. 


