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ABSTRACT

This paper argues that the method of least squares has significant unfulfilled potential in
modern machine learning, far beyond merely being a tool for fitting linear models. To release
its potential, we derive custom gradients that transform the solver into a differentiable
operator, like a neural network layer, enabling many diverse applications. Empirically,
we demonstrate: (i) scalability by enforcing weight sparsity on a 50 million parameter
model; (ii) imposing conservativeness constraints in score-based generative models; and
(iii) hyperparameter tuning of Gaussian processes based on predictive performance. By
doing this, our work represents the next iteration in developing differentiable linear-algebra
tools and making them widely accessible to machine learning practitioners.

1 INTRODUCTION

The method of least squares is commonly introduced as one of the first steps into machine learning, where it
is taught as a simple approach for performing linear regression (Bishop, 2006). Although its importance is
recognized, it is frequently perceived as a basic tool, perhaps overshadowed by the complex non-linear models
prevalent today. We argue that this misconception is a lost opportunity, and take steps towards rectifying it by
providing novel tools and use cases in the present work.

For least-squares problems like x* := arg miny ||Ax — b||? + A\?||x||? or x* := arg miny [|x||? s.t. Ax = b,
consider a computational abstraction Lst Sq, which takes the linear operator A, vector b, and a regularization
weight A (which could be zero), and returns the least-squares solution,

x* = LstSq(A,b,\). (1

A central message of our work is that Lst Sqg is not merely a solver but — if equipped with appropriate
reverse-mode derivatives — a differentiable operator like a neural network layer, and that it should be used as
such. One central example will be constrained optimization of a neural network (more on this later), but the
method has many applications beyond this use case. More precisely, our main contributions are the following:

1. We provide an efficient JAX implementation of Lst Sq. The least-squares solutions are computed
via LSMR (Fong & Saunders, 2011), which we demonstrate is superior to alternative approaches
such as solving normal equations or direct methods that instantiate the matrix.

2. We derive and implement custom reverse-differentiation rules for adaptive least-squares solvers
using the adjoint method. This implementation' has the advantage of working for all least-squares
solvers, including adaptive solvers whose iteration count is unknown a priori. Our experiments show
how the custom gradients are orders of magnitude faster than unrolling the solver’s forward pass.

1JAX library: [redacted]
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3. We revive the null-space method (Yamashita, 1980) for constrained optimization and reformulate
it as a least-squares problem. This new perspective enables using our efficient implementation of
LstSq. To the best of our knowledge, ours is the first use of the null-space method in deep learning.

4. We demonstrate the least-squares-null-space method’s efficacy on a diverse set of constrained
optimization tasks, such as: equivariance, weight sparsity, and conservativeness of score-based
generative models, on models with up to 50 million parameters. We also provide a JAX library
that seamlessly integrates the null-space method into Optax (DeepMind et al., 2020), allowing
constrained optimization of neural networks with just a few lines of code.”

5. We use the backward pass of the differentiable Lst Sq solver to calibrate a Gaussian process, directly
optimizing the posterior fit instead of marginal-likelihood optimization. To achieve this, we exploit
the natural connection between Gaussian process regression and least squares problems, and find
that targeting the posterior fit improves both runtime and quality of fit over typical baselines.

2 LEAST SQUARES: VALUES, GRADIENTS, AND WHAT TO DO WITH THEM

2.1 VALUES: MATRIX-FREE LEAST-SQUARES IN JAX

Forany m,n € N, letb € R™ and A € R™*" be given. Throughout this work, we assume that the matrix
A has full rank, and is parameterized by some 6, A = A (f). We distinguish least-squares problems with a
tall A(6), which means m > n, from problems with a wide matrix, m < n. We also distinguish regularized
from unregularized problems, depending on whether ) is zero or not. Intuitively, least squares problems seek
optimal solutions x to linear systems Ax = b, with a possibly-nonsquare matrix A € R™*™ (Bjorck, 2024).
More precisely, the least-squares method solves

arg miny ||A(0)x — b||2 + A%||x||* if A # 0 or A is tall,

2
argminy {[|x[|? s.t. A(f)x =b}  if A =0and A is wide. &

x*(0,b,A) = Lstsq(A(F),b,\) = {
For tall A (), the regularized problem is well-defined for A — 0 (in the sense of admitting a unique solution in
the limit). For wide A (0), this is not the case. Instead, the relationship between the two is that the regularized
problem (A # 0) is solved by

x*(0,b,)) = A0) " (AO)AB)" +X°1)'b = (AH)"A(0) + X\°T)"'A(0) "b. 3)

In the limit of A\ — 0, only one of the two parameterizations in Equation 3 is well-defined, depending on
whether A (6) is tall or wide. The corresponding limit of x* for A — 0 minimizes || Ax — b||? if A(6) is tall,
or {||x||? s.t. A(8)x = b} if A(6) is wide, respectively; more on this relationship in Appendix C.

The various methods for numerically solving .
least squares problems can be broadly classi- Table 1: Approaches to solving least squares problems.
fied across two axes. Along one axis, there “L.S.”: linear system; “O.T.”: orthogonal transformation.

are direct versus matrix-free methods, which

differ in whether or not the matrix A () is in- Method _ Property Direct Matrix-free
stantiated in memory (“direct method”, high Examples Cholesky Conj. Grad.
memory demands, and for realistic problems, ~ L-S- Precision Double 5 Double
A(0) is too big to store in memory) or only Memory ~ O(min(m,n)”) O(max{m,n})
accessed via matrix-vector products (“matrix- Examples SVD, QR LSMR
free methods”, low memory demands). Along O.T. Precision Single Single

the other axis, there are approaches based on Memory O(mn) O(max{m,n})

solving the linear system in Equation 3 versus
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those approaches that apply orthogonal transformations to A (6) and extract x* directly, for example, us-
ing Golub-Kahan-Li bidiagonalization (Golub & Kahan, 1965). Methods that solve linear systems require
twice the precision of methods that orthogonally transform A (#). This is because the solvers compute
v — (A(0) TA(0) + \T)~ v, which means that singular values of A () are squared, affecting the condition-
ing of the problem accordingly. Table 1 summarises the differences in approaches. Only matrix-free methods
that target orthogonal transformations combine low memory demands with the ability to work in low precision,
which is why we focus on this class of solvers in the present work. As an instance of such an algorithm, our
implementation uses LSMR (Fong & Saunders, 2011). LSMR is equivalent to applying MINRES (Paige &
Saunders, 1975a) to the linear system in Equation 3, but more robust because it handles matrix-vector and
vector-matrix products with A () separately, not in combination (thus it avoids “squaring”; Appendix A).
However, there are also scenarios where direct methods, which target orthogonal transformations like QR
decomposition, can be advantageous, especially in cases where the matrix in question is small and can be
stored in memory.

Commonly, for example, in SciPy’s implementation (Virtanen et al., 2020), LSMR requires access to both
v +— A(f)v and u — A() " u. Transposing the linear operator A (f) manually, without instantiating
A(6), is often tedious and a common source of error. To avoid this error source, our framework handles
transposition automatically: Accessing only v — A(6)v, the transposed linear operator emerges from
automatic differentiation. A vector-Jacobian product (for instance, using jax.vjp or torch. func.vjp),

[A(0)vo, (u— A(0)Tu)] = vip (v — A(0)v,vo) 4)

yields both the value A (#)v and a function that implements matrix-vector products with A(6)T; see also
Potapczynski et al. (2023). At every step of LSMR’s forward pass, we call this vector-Jacobian product
and thereby transpose A (6) without exposing the possibility of erroneous implementations of transpose
linear operators. Furthermore, this automatic transposition only requires a single backward pass through
a function that is known to be linear, which is very efficient (Radul et al., 2023) . By reducing sources of
errors, the solvers become more practical, which is important for using numerical least squares in modern
machine-learning toolchains.

2.2 GRADIENTS: ADJOINT OF THE LEAST-SQUARES PROBLEM

Assume that Lst Sq accesses the matrix A only through parameterized matrix-vector products, which means
(0,v) — A(0)v. If the solution x* = x*(6, b, A) of the least-squares problem (Equation 3) is then passed
to a downstream loss function 1 = u(x*), we need a backward pass (think, “gradient”) through LstSq
to optimize p with respect to 6, b, or A. We never optimize p with respect to A, only with respect to 6,
because if A is too big to store in memory, V s pt would be as well. The central challenge tackled next is the
computation of the gradients of this overall loss p with respect to the underlying parameters ¢, b, and A —
that is, computing Vyu, Vi, and Vu from Vi, p. These gradients then enable end-to-end differentiation of
computational pipelines featuring least-squares problems. The following theorem states how to implement
this backward pass, and is an essential contribution of this work.

Theorem 1 (Gradients of LstSq). Ler A(0) be a full-rank matrix, dependent on parameters 0, and accessed
through matrix-vector products (0,v) — A(0)v. Let b be a known vector, and let A\ € R be a known
regularization weight. Let 1 be a scalar objective function that depends on the solution of a least-squares
problem involving A.(0), b, and . Then, the following two statements hold for any X € R:

1. Suppose x* solves the least-squares problem in Equation 2 with a tall matrix A (), then, we have
V@M = VQQ(G)a Vb,u = LStSq(A(H)Tv vxu: A)7 VAM = 2/\<£a X>a %)
with g(0) := (r, A(0)€) + (Vpu, A(0)x*), r == A(0)x* — b, and £ = LstSq(A(0), Vppu,0).
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2. Suppose x* solves the least-squares problem in Equation 2 with a wide matrix A(0), then, we have
Vo =Vog(0), Vop=ILstSq(A(0)", Ve, A), Vap=—2XNVpu,y), (6)
with g(0) == (Vppu, A(0)x)+(y, A(@)r), r == A(0) " Vpu—Vypandy = LstSq(A(#)",x,0).

Proof. The essential strategy for deriving these gradient expressions is to use the method of adjoints. An
introduction to the latter is in Appendix B. A complete proof of the theorem can be found in Appendix C. [J

Related work on Theorem 1: To the best of our knowledge, Theorem 1 is new. However, similar-but-different
statements have been made in prior work. The results most closely related to Theorem 1 are those by Golub
& Pereyra (1973) and Kriamer et al. (2024). Golub & Pereyra (1973) derive forward-mode derivatives of
pseudo-inverses, which are closely linked with least-squares solvers. In contrast, Theorem 1 states the reverse-
mode derivatives, and handles a regularisation term. A gradient with respect to this term will be needed in
the experiment in Section 3.2. Kriamer et al. (2024) derive efficient recursions for backward passes through
Lanczos and Arnoldi methods, and use them to compute gradients of matrix functions. Conversely, our
work derives backward passes through numerical least-squares solvers, albeit using similar proof techniques.
Finally, Amos & Kolter (2017)’s work on implicit layers shares a high-level theme with our work, but the
technical contributions (numerical least squares versus quadratic programs) and applications differ entirely.
Blondel et al. (2022) implements software for implicit differentiation of various optimality conditions for
general problems. Our work differs from this by being more specialised and focusing on least-squares
problems, and this specialisation gives us quite a significant advantage in computational efficiency (essentially
by avoiding general-purpose linear system solvers like CG or GMRES). CoL A (Potapczynski et al., 2023)
focuses on exploiting compositional matrix structure for scalable linear algebra scale applied to modern
machine learning scale problems. Our work is complementary: CoLA provides efficient forward and generic
automatic differenitation rules for structured operators, while we show that for least-squares problems, one
can go further by designing custom adjoints, yielding particularly efficient differentiation of least-squares
solvers.

2.3 WHAT TO DO WITH THEM: CONSTRAINED OPTIMIZATION OF NEURAL NETWORKS

In the remainder of this paper, we turn to novel applications of least squares in deep learning. Specifically,
we focus on constrained optimization of neural networks. Numerous desirable properties, such as physical
principles, equivariance, or sparsity, can be incorporated through model constraints. Consider the problem

0* = arg min {EINX 1£(0,7)] st c(0) = 0}, )

where € R¢ represents the network parameters, £ is the task loss, and ¢ : R? — R* defines k € N constraint,
which shall be continuously differentiable and we assume that the number of constraints are smaller than
parameter dimension. The loss and 6 are unrelated to those in previous sections. Table 6 (Appendix) shows
examples for constraints appearing in combination with neural networks. Standard optimizers like Adam
(Kingma & Ba, 2015) are ill-suited for solving Equation 7, since they operate exclusively in the unconstrained
parameter space. However, the solution 6* of Equation 7 must satisfy the Karush-Kuhn-Tucker conditions
(Nocedal & Wright, 1999): primal feasibility (satisfying the constraint) and Lagrangian stationarity. Finding a
0* that simultaneously satisfies both conditions can be challenging, particularly for non-linear constraints in
high-dimensional parameter spaces encountered in deep learning.

The null-space method (Yamashita, 1980) proposes an iterative algorithm that circumvents these issues. Instead
of enforcing the constraint directly, Yamashita (1980) proposes to enforce its first-order approximation, which
amounts to solving a sequence of local problems with linearized constraints; for some 6; € R?, it enforces

c(0) = c(0;)+ Jc(0:)(0—6,) =0. (3)
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import optax

from nuox import linalg, nsm # null-space method

def constraint (params) : # example constraint: enforce unit norm
return jnp.dot (params, params) - 1.0

transform =

optim

nsm.projection (constraint,
optax.chain (transform,

solver=linalg.lsmr())
optax.adam(le-3)) # Use any optax optimizer

Figure 1: Combine the null-space projection with a standard Optax optimizer using redacted.

An algorithm is derived by studying a differential equation whose critical points are the solution to an
equality-constrained optimization problem. Discretizing such a flow with learning rates 7,y > 0 yields

O = 0; =1 (1= Te(0) T (Je(01)Ie(0) )71 Te(64)) VLO:) +7Tc(0:) T (Te(0:)Tc(0:)T) " e(6r). (9)

We make the crucial observation that this update can be reformulated as a least-squares problem:

. 1
Ory1 —0r = — arg min {2|5 —nVeL(0:))|]* s.t. Je(0:)6 = —Wc(et)} (10a)

77’v9£(0t) + LStSq(Jc(ot)7 nJc(et)VGE(ot) - ’Yc(ot)7 O)

(10b)

Appendix D explains how to use Lst Sq for a least-squares problem with a bias term (in other words, how to
transition from Equation 10a to Equation 10b). Crucially, the transformation of the gradient in Equation 10b
turns any unconstrained optimizer into one for the constrained problem in Equation 7. This is beneficial
because state-of-the-art stochastic optimization routines can now be used for solving constrained optimization
problems. We exploit this generality of the null-space method in our code implementation: Figure 1 shows that
with our library, a few lines of code can turn any of Optax’s (DeepMind et al., 2020) gradient transformations
into an algorithm for solving constrained optimization problems.

Yamashita (1980) shows that under appropriate assumptions, the null-space method converges to the
solution of the constrained optimization problem and that it has a quadratic rate of convergence.
To make such results accessible to a more general
audience, Appendix E provides a new proof of conver-
gence. As for a geometric interpretation, constrained
optimization can be thought of as optimization on a
manifold (Boumal, 2023).

~—

—~—

Using this perspective, null-space-method steps can
then be derived as Riemannian gradient steps with the
projection onto the tangent space as approximations
of the exponential map. Appendix F elaborates on
this new interpretation of the null-space method using
differential geometry.

w= = Optimal level
mmm Parameter constraint
SGD
=O=Null-Space
Penalty (p =0.025)

Classical methods for constrained optimization include
penalty methods, Lagrangian methods, and projected
gradient descent (Nocedal & Wright, 1999). Penalty

Figure 2: SGD & penalty method fail the constraint,
unlike the null-space method.

methods turn a constrained problem into an uncon-
strained one by adding a penalty term to the loss. How-
ever, for finite penalty weights, penalty methods do
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not satisfy primal feasibility upon convergence (Nocedal & Wright, 1999), and a large penalty weight can
distort the optimization landscape, leading to poor solutions for the task loss. Figure 2 shows this issue.

Another approach to constrained optimization is to optimize an (augmented) Lagrangian. However,
this requires finding saddle points rather than minima, which complicates the use of typical gradient-
based (stochastic) optimization routines, leading to intricate update schemes that can be difficult
to tune (Walsh, 1975). Finally, projected gradient descent (PGD) is an iterative method that alter-
nates between a standard gradient update on the task loss and a projection step onto the feasi-
ble set defined by c(f) = 0. While conceptually straightforward, the projection step is computa-
tionally expensive or analytically intractable for most constraints. Consequently, PGD is often lim-
ited to simple problems, and does not generalize to the applications we demonstrate in Section 3.

Table 2: Key properties of various constrained op-
timization algorithms. “NSM”:“Null-space method”.
PGD: “Projected gradient descent.”

Table 2 summarizes the relative strengths and weak-
nesses of different classical methods.

Recent works that tackle constrained optimization

for neural networks have combined one of the afore- NSM Penalty Lagr. PGD

mentioned classical methods with certain approxi- KKT v X v v
mations. Gallego-Posada et al. (2022) find a saddle No saddle pts. 4 4 X v
point of the Lagrangian by doing gradient descent on Any constraint v/ v v X

the neural network parameters and gradient ascent

on the Lagrange multiplier. Donti et al. (2021) propose a framework for constrained optimization, which is
equivalent to an approximate projected gradient descent scheme. Our usage of the null-space method is the
first of its kind in a deep learning setting, and generally novel in combination with numerical least squares.

3 EXPERIMENTS

10.0 4 AD (checkpointed)

3.1 EFFICIENCY OF CUSTOM GRADIENTS —*— AD (bounded)

—e— Custom VJP (ours)

-
o
L

Next, we compare the efficiency of our custom gradient (The-
orem 1) with automatic differentiation “through” an adaptive
least-squares solver (LSMR), implemented via Equinox’s reverse-
mode differentiable while-loops (Kidger & Garcia, 2021). As a : i i i
test problem, let A be a square convolution matrix with a fixed- 16384 65536 262144 1048576

. . . . Size of convolution matrix
size convolution kernel and an increasing number of rows and
columns. The convolution kernel as well as the right-hand side
vector b are randomly sampled from N'(0,I). We measure the Figure 3: Automatic differentiation versus
runtime (wall time), reporting the fastest of three runs to minimize a custom vector-Jacobian product (VIP).
“machine noise” as much as possible — the results are in Figure 3.  Our custom VJP is five to ten times faster
The runtimes of all three are proportional, but our custom back-  than unrolling the solver’s loop.
ward pass is five to ten times faster than the alternatives.

Wall time (sec)
o
a
L

3.2 GAUSSIAN PROCESS CALIBRATION VIA DIFFERENTIABLE LEAST-SQUARES

Next, we demonstrate the utility of reverse derivatives of adaptive least-squares codes. Gaussian processes
are a natural testbed for two reasons: first, they are closely linked to least-squares problems (Williams &
Rasmussen, 2006); second, matrix-free linear algebra is popular for accelerating Gaussian process inference
(Gardner et al., 2018). Consider the task of interpolating a function fie(z) = cos(2mx) + x sin(57x) from
noisy observations. We sample 1600 training data points Xiqin, and 400 test data points Xieg uniformly
on [0, 1], with corresponding noisy evaluations yi.i, and yi.s. The noise is discussed below. For unknown
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lengthscale ¢, output-scale o, and observation noise o, consider the following probabilistic model. Let
w ~ N(0,I;/¢?),and b ~ U([0, 27]) be fixed and define a Gaussian process with k& = 200 random Fourier
features (Rahimi & Recht, 2007),

2 NI, [(2) = O (w)z = [0 cos(w] @ +b)z];

2
i=1" y | zZ~ N(f(x)z7 >\ ]I) (11)
where (X, y) represent the in- and outputs of either the training or the test set, respectively, depending on
the stage of the experiment. Equation 11 models isotropic Gaussian observation noise, but we generate the
data with anisotropic noise (increasing as z increases; see Figure 4). This model mismatch emulates what is
typically encountered when using Gaussian processes “in the wild”. Given the training data, the conditional

mean z* := E[z | yiuin] solves a least-squares problem,

Z*(Ua Ea )‘) = arg lein {”(I)(T,Z(Xtrain)z - ytrain”2 + )\2||Z||2} = LStSCI (q)a,f(xtrain)) Yitrain, >\) . (12)

We compute the solution to this least-squares problem using LSMR, selecting the tolerance 10~°. Then, we
learn the hyperparameters ¢, o, and A using two different algorithms:

1. Baseline: Type-II log-marginal-likelihood optimization on the training set (Williams & Rasmussen,
2006), which minimizes the negative log-probability-density function of the observations yiin

L(O’, & )\) = Ing(ymlin | g, 67 >\) = - 1Og/\/’(ytrain | 07 (PU,E(Xtrain)(PU,Z(Xtrain)T + )\2]1) (13)

to find the optimal hyperparameters. Type-1I marginal likelihood optimisation is the typical calibra-
tion strategy for Gaussian process models (Williams & Rasmussen, 2006) and, thus, the baseline.

2. Ours: Evaluating the fit of the predictive mean, which means that we first compute z* (o, £, \)
according to Equation 12, and then evaluate

L(U7£7 A) = H‘I)U,Z(Xtrain)z*(avga A) - Y||2 + A2||Z*(0'7£7 A)H (14)

This approach is surprisingly uncommon in the Gaussian process literature — we only know of
Nguyen et al. (2021) who use it — but beats marginal likelihood in simplicity and scalability (shown
below). Evaluating the gradient of this calibration loss requires gradients of Lst Sq.

Both losses are optimized with standard optimizers and learning rates. The results of this comparison for 10
different random seeds are in Figure 4. They show how using our predictive-mean calibration loss is more than
ten times faster (left plot), with lower test loss (root-mean-square error on test data, middle plot; the p-value
is 3.11%, which suggests that the differences are significant), and a better visual fit (right). The mean-data fit
shows how the marginal-likelihood strategy leads to underfitting in four of the ten cases, whereas our loss
consistently performs well. In summary, the differentiable LSMR code enables highly efficient calibration of
Gaussian process models.

3.3 CONSTRAINED OPTIMIZATION

Next, we demonstrate the capabilities of the null-space method using various practical constraints. The focal
points are, next to good performance, versatility, and ease of application; thus, the benchmarks below prefer
baselines that are typical to each constraint over those that are carefully-tuned state-of-the-art implementations.
To make things fair, we use equally little fine-tuning for our approach — the results are surprisingly strong.
We anticipate that domain-specific optimizations could further enhance performance and scalability in each
application. Precise setups for all experiments are in Appendix H.

Enforcing equivariance: The null-space method enables the enforcement of complex functional properties
like equivariance and invariance directly during training, without the need for bespoke architectures. These
properties act as powerful structural priors, guiding the model to learn representations that respect known
symmetries or are robust to specific nuisance transformations in the input data.
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Runtime Convergence (10 seeds) 3 Mean-data fit (10 seeds)
E 40 T 4 a0 Data (test)
aQ 34+ 26 0.45 =3 : 5 LML (baseline)
9 ] PRED (ours) 5o ¢
[e] - i
= 30 Q 0.40 A } , “ N Z(?’*‘
2 Lo it -—- LML (baseline) o 147 N A
i 20 1 4 0.35 4 |} PRED (ours) % \\ "{'9 \
£ ° % ~ 01 N Y
Z 10 0.30 - s N\ I F
g . 32402 \‘\\Z;r S==ssssssssssssss —14 \”f{::tzzéj
LML PRED 0 50 100 150 200 0.00 0.25 0.50 0.75 1.00
(baseline) (ours) Epoch Inputs

Figure 4: Calibration with negative log-marginal-likelihood (LML, baseline) versus evaluating the fit of the
predictive mean (PRED, ours). PRED is over ten times faster (left), consistently achieves lower test losses
(root mean square error on test set, p-value is 3.11%), which correlates with a better mean-data fit (right).

Table 3: Comparing the null-space method with baselines on C4 and O(3) equivariance. Test error (accuracy
and mean-square error) and constraint violation. Lower is better.

Structure Task Method Test Error ()  Constraint Violation ({)
Cy Equiv. FMNIST Baseline 0.105 +0.004 743.51 £+ 141.65
C, Equiv. FMNIST Null-space (ours) 0.147 £+ 0.004 0.27 +0.12
O(3) Equiv.  From (Finzi et al., 2021)  Data augm. (baseline) 0.13+£0.01 0.36 £0.01
O(3) Equiv.  From (Finzi et al., 2021)  Null-space (ours) 0.11 +0.01 0.18 £ 0.01

* Rotation Equivariance: We enforce C} rotational equivariance (Cohen & Welling, 2016) on the
convolutional layers of a LeNet (Lecun et al., 1998) model trained on FMNIST (Xiao et al., 2017).
The constraint ¢(f) minimizes the difference between final feature maps resulting from rotating
the input image and rotating the final output feature maps, ensuring the learned filters respect C
rotational symmetry (i.e., f(Rx;6) — Rf(x;6) = 0 for Cy rotation R). The results in Table 3 show
that the null-space method balances the task loss and constraint satisfaction: it achieves slightly
lower test accuracy compared to “ordinarily trained” models but exhibits vastly superior satisfaction
of C4 equivariance.

* O(3) Equivariance: A key strength of our null-space method is its ability to impose complex
group equivariances by changing just a few lines of code to define the constraint. We demonstrate
this by enforcing O(3) equivariance on the task of predicting the moment of inertia for particle
systems (Finzi et al., 2021). We randomly sample transformations R € O(3) and the constraint
f(Rx;0) — RT f(x;60)R = 0. Then, we benchmark our null-space method against a baseline that
uses O(3) data augmentation. Performance is evaluated on a test dataset by measuring the mean
squared error (MSE) on a test set and the O(3) equivariance constraint violation (Table 3). The
null-space method outperforms data augmentation in both metrics.

Enforcing ¢, sparsity: Enforcing a specific ¢y sparsity level during training can be achieved using learnable
stochastic masks (Louizos et al., 2018; Gallego-Posada et al., 2022). We optimize mask-probabilities p
alongside model weights 6, and sample masks from a Bernoulli distribution, using Yin et al. (2019)’s straight-
through estimator for p’s gradients derived from the task loss. Our constrained optimization method is applied
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Table 4: Test accuracy (%) for models trained to target £ sparsity. Higher is better.

Model Dataset Method Test accuracy (%, 1)
e IR0 00 sy S e B L0 (i
SWIN-S  ImageNet (50% Sparsity) gjfﬁiﬁggf;‘:‘(fig’aSe“ne) 8.';182

Table 5: Comparing the null-space method, USBMs, and QCSBM on three datasets: 8-Gaussian, Spirals, and
Checkerboard. NLL is measured in bits/dimension. Lower is better.

Dataset/Model Asym () NAsym () Score Error ({) NLL ()
8-Gaussian

Null-Space 266+134-1073 3.204+1.47 -107% 1.52+0.08 3.70+0.03
USBM 2.38+0.25 - 1072 3.74+0.09 -1073 1.50 £ 0.06 3.79 4+ 0.09
QCSBM 6.96+1.20 - 1073 1.39 +£0.06 - 1073 1.494+0.05 3.74+0.07
Spirals

Null-Space 337+0.10 -107% 1.214+0.07 -10°3  1.63+£0.08 3.53+0.15
USBM 6.68 +3.48 - 107! 3.43+0.78 - 1072 1.57 £ 0.07 4.114+0.01
QCSBM 5.134+1.55 - 1072 9.434+0.44 - 1073 1.534+0.04 4.02+0.05
Checkerboard

Null-Space 426+2.35 -1073 987+5.21 -10°% 1.65 +0.09 3.69+0.05
USBM 9.154+1.10 - 1072 1.91+0.16 - 1072 1.65 4+ 0.09 3.74 £0.07
QCSBM 2.17+0.26 - 1072 5.86 +0.52 - 1073 1.644+0.04 3.76+£0.01

to p via a constraint ¢(p) = Ni Zi\;"l Pi — Starget = 0, where N, is the total number of parameters, which
P

drives the expected proportion of active weights towards a target sparsity level sireei. We apply this method to
train ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009) (target Sget = 0.1, i.€., 90% sparsity)
and SWIN-S (Liu et al., 2021) on ImageNet (Deng et al., 2009; Russakovsky et al., 2015) (target Sgarget = 0.5,
i.e., 50% sparsity). We compare against one-shot magnitude pruning (Lee et al., 2024) as a baseline. Table 4
shows that the null-space method achieves better test accuracies than magnitude pruning.

Conservative property of score-based generative models: Score-based generative models learn the score
function s(x; ) = Vx log pq(x), where pq(x) is the data distribution. For s to be a valid score function, it
must be a conservative vector field, implying its Jacobian must be symmetric, J(s) — J(s) T = 0; see (Chao
et al., 2023) for details. We apply the null-space method to enforce this conservativeness constraint ¢(f) =
[[J(s) — J(s) "||2 = 0 during training. This encourages score-based models that are both architecturally
flexible and theoretically sound. We compare our null-space method to typical unconstrained score-based
models (USBMs) and Chao et al. (2023)’s quasi-conservative score-based models (QCSBM) on various
synthetic 2D datasets. The performance is evaluated via asymmetry (Asym), normalized asymmetry (NAsym),
score error, and negative log-likelihood (NLL). The results in Table 5 show that the null-space method
outperforms the baselines by achieving the best NLL and a stricter enforcement of conservativeness.
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The experiment code is under [redacted].

4 LIMITATIONS AND CONCLUSION

This paper is the first step towards rectifying the misconception that least squares is a basic tool and only
useful for linear regression. To this end, our work explains how to compute values and (novel) gradients of
matrix-free least squares solvers, offering JAX code that seamlessly embeds the now-differentiable Lst Sq
operator into modern deep learning software stacks.

The first main contribution of this article was the backward pass through Lst Sqg (Theorem 1), which requires
exactly two extra forward passes per gradient. However, while efficient, our gradient expressions are currently
limited to full-rank matrices, and future work should investigate the case of rank-deficient systems.

The second main contribution is the revitalization of the null-space method, an algorithm by Yamashita (1980)
that relies heavily on numerical least squares via gradient projections. Our implementation of the null-space
method is not just effective, as demonstrated on a range of experiments (Section 3), but it’s also incredibly
simple: all experiments use the same few lines of JAX code (Figure 1). However, the null-space method
incurs an additional computational overhead on top of the underlying gradient-based optimization, which is
the cost of solving the least-squares problem at each update step. Fortunately, the computational complexity
of our least-squares solver of choice (LSMR) is linear in the number of rows and columns, and its space
complexity matches that of standard gradient-based optimizers. And, unlike in Yamashita (1980)’s article,
our experiments always mini-batch the data to account for deep-learning-sized datasets. While empirically,
this choice proved effective, future work should analyze the convergence of such a stochastic variant of the
null-space method. In any case, the constrained optimization of neural networks has become considerably
easier, which means that many exciting applications can now be built on top of these advancements.
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A LEAST SQUARES REDUX

At its core, a least-squares problem seeks an optimal solution x to a linear system Ax = b, where A € R™*"
and b € R™ (Bjorck, 2024). The precise formulation depends on the dimensions of A. If m > n, A is a tall
matrix, and the least-squares problem is about finding x € R" that minimizes the squared Euclidean norm
of the residual, arg miny ||Ax — b||?. The solution of the tall least-squares problem is the pseudo-inverse,
which simplifies to x* = (AT A)"'ATb if A has full column rank. If m < n, A is a wide matrix and the
goal is to find arg miny %Hx| |2 subject to Ax = b. Like in the tall case, the solution is the pseudo-inverse. If

A has full row rank, it simplifies to x* = AT (AAT)~1b. Throughout this paper, we assume A is too large

for explicit instantiation, accessed only via matrix-vector and vector-matrix products (“matvecs”, “vecmats”)
v = Av.

Several numerical strategies exist for solving the least-squares problem, each with implications for efficiency
and stability depending on the problem’s structure. One common strategy for solving the least-squares
problem (illustrated with the wide case) is via the normal equations. This involves solving (AAT)y* = b
for y*, followed by x* = A Ty*. For smaller m (number of rows in A), AA " can be formed explicitly and
solved with direct methods like Cholesky factorizations. For larger 7 where forming AA T is infeasible, for
example if A is the Jacobian of a neural network, iterative matrix-free solvers such as the conjugate gradient
(CG, Hestenes et al., 1952) or minimum residual method (MINRES, Paige & Saunders, 1975b) can be applied,
requiring only matrix-vector products with A and A T. However, methods relying on normal equations suffer
a critical drawback: squaring the matrix A exacerbates ill-conditioning (the eigenvalues of AA T are the
squared singular values of A), leading to numerical instability and slow convergence for iterative solvers. An
example follows shortly.

As an alternative to solving normal equations, bidiagonalization methods offer a numerically robust foundation
for large-scale least-squares problems, particularly when A is accessed only via matrix-vector products. The
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standard algorithm for this is the Golub-Kahan iterative bidiagonalization (Golub & Kahan, 1965). This
iterative process, after k iterations and with starting vector b, generates two matrices with orthonormal
columns, U € R™*% and V € R"**_ and a lower bidiagonal matrix B € R**%_ These matrices are such
that A ~ UBVT and Ve; = b/|/b|| holds, where e; is the first unit basis vector. The quality of this
approximation depends on the singular values of A; details are in the book by Golub & Van Loan (2013).
Conceptually, if the process were run for enough iterations (e.g., K = min(m,n) assuming full rank), it
would yield a full factorization A = UBV T, but the process is rarely run for that long. The approximation
A ~UBV', Ve, = b/||b|| yields

AATA)"'b~UBV(VB'U'UBV") ‘b= |b|UB") te;. (15)

Since only a linear system involving BT needs to be solved, squaring of matrices is circumvented. This
results in significantly improved numerical stability and often more rapid convergence to an accurate solution;
see Example 2.

Example 2 (Bidiagonalization vs. CG). Consider the following least-squares problem: A is a randomly pop-
ulated 10° x 50 matrix with singular values in [1,1/€| where € is machine precision (= 1077 ). Least-squares
based on bidiagonalisation is closely related to solving the normal equations with CG (Paige & Saunders,
1982), but the fact that solving the normal equation via CG requires AAT, whereas bidiagonalization handles
A, affects the numerical reliability of the algorithm; see Figure 5. For well-conditioned matrices, the choice
between CG and bidiagonalization would not matter much. But for ill-conditioned matrices, where numerical
robustness is important, solving least squares problems with bidiagonalization instead of CG is vital.

The bidiagonalization solver from Equation 15 is more ro- 1.2 G
bust and efficient than solving the normal equations with 1.1,

CG, but could still be improved: Equation 15 requires ac- 1.0

cess to U € R™** storing which is prohibitive for large 5

problems. There exist error-adaptive, O(max{m,n}))- & %°7

memory versions of bidiagonalization solvers, namely, 0.8
LSQR and LSMR (Paige & Saunders, 1982; Fong & 0.7 1
Saunders, 2011), which avoid storing U or V. LSMR and 06 . . . : :
LSQR are mathematically equivalent to applying MIN- 0 100 200 300 400 500
RES, respectively, CG to the normal equations (Paige & Iterations

Saunders, 1982; Fong & Saunders, 2011), but are more
robust because they use bidiagonalization. In the remain-
der of this article, when we discuss least-squares solution
operators, x* = LstSqg(A,b,\), we mean LSMR, unless specified otherwise. JAX code for LSMR is
provided under the URL in the main paper.

Figure 5: Bidiagonalization vs. CG.

B BACKGROUND ON THE METHOD OF ADJOINTS

The method of adjoints offers a powerful technique for computing gradients of an objective function, say ,
with respect to parameters, say 6, and “through” an algorithm # — x whose outputs are implicitly defined
by a set of constraints, (6, x) = 0. The general procedure involves four key steps (Krimer et al., 2024). (i)
Identify the constraint that the algorithm’s inputs and outputs must satisfy. (ii) Differentiate the constraints to
obtain a linear relationship between the differentials. This typically takes the form

0f(0,x) of(0,x)
ox X5

where 8fgi’x) and 8fg9éx) are the Jacobians of the constraint, and du, dx, and df are infinitesimal perturbations.
(iii) Introduce an adjoint variable (respectively Lagrange multiplier) &, combine it with Equation 16, and add

do =0, (16)
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it to the differential du = (Vxu, dx). This leads to an expression:

of (0
At = (Vt, dx) + <§7 0.

= <qu + <af(a)9>;}{))T£,dx> n <<0f(890,x))T57d9> . (17b)

-
(iv) To find the gradient Vg, identify the adjoint system Vi + <%) & = 0. Solving for £ leads to

of(6,x)
dx + 50 dé (17a)

T
Vo = (%) &. Details: (Kridmer et al., 2024; Blondel & Roulet, 2024). The advantage of the adjoint

method over other forms of deriving reverse-mode derivatives of computer programs is that it only requires
an inner product and a constraint. Thus, it not only applies to vector-valued problems, but also to matrix-
or function-space valued algorithms without much modification. Therefore, we use the adjoint method for
deriving reverse-mode derivatives of least squares codes.

C PROOF OF THEOREM 1

To prove Theorem 1, we apply the four steps involved in the method of adjoints (Appendix B) to the
regularized least-squares problem defined in Equation 2. We distinguish the cases of tall versus wide A,
because their behaviours are slightly different in the limit of the regulariser approaching zero.

Let A(6), b, and X be known. Assume that A has full rank. Recall the least-squares objective

L(x) = [|A(0)x = b]* + 3 [x| (18)
with minimum x* = arg miny £(x). Any such least-squares solution x* satisfies V£ = 0, which means
A0)T(A(0)x* —b) + \2x* = 0. (19)

Reorder the terms to obtain
x* = (A(6)"A(0) + X°T)"'A(0) "b = Lstsq(A(0), b, \). (20)
This defines the Lst Sqg operator; however, in practice, we do not evaluate Lst Sg with Equation 20, but
with our implementation of LSMR. Due to the “push-through identity’ (A(8) T A(6) + N°I)"'A(0)T =
A(O)T(A(O)A(H)T + A\2T)~! holds, there is an equivalent representation of x*,
x*=A0) (AB)AB) T + X°T)"'b. 1)

Both representations in Equation 20 and Equation 21 are the same, but they behave differently for A — 0 and
for different shapes of A (6). If A(#) is tall (and has full rank), then A (6) " A(6) is invertible but A (9)A(0)"
is not; and vice versa for when A (6) is wide. Since we want the gradients to hold for both wide and tall
matrices, and for any A, we distinguish tall and wide settings below.

C.1 TALL CASE

In the remainder of this section, we refer to x* as x and to A(f) as A. Assume A has full rank. If A is tall,
we apply the adjoint method to the constraint

(ATA+XDx=A"b (22)
because this expression always yields a unique x even for A\ — 0. Differentiate the constraint,
dATAx+ ATdAx + ATAdx + 22 d\x + A2dx =dA b+ ATdb. (23)
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For any scalar © = p(x), let £ be any vector with as many dimensions as there are constraints. Let Vi be
given. Then,

dp = (Vyp, dx) (24a)
= (Vyp,dx) + (€, dATAx + ATdAx + ATAdx + 2\d \x + \2dx —dA b — ATdb) (24b)
= (2x, dx) + (zp,db) + (Za,dA) + (25, d)\) (24c)

for variables
Zo 1= Vst + (AT A + NT)¢ (252)
b= —AE (25b)
Za =AxtT + Aéx" —beT (25¢)
zx = 2M(§, x). (25d)
Due to the rules of the adjoint method, if zx = 0, then zp, = Vppu, Za = Vap, and 2\, = Vu hold. Thus,
Vot = A(ATA + X°1) "'V, = LstSq(A, Vg, ) (26a)
E=—(ATA+ XD 'Vp=(ATA) AT Vpp = Lstsq(A T, Vi, 0) (26b)
Vap=(Ax —b)¢T + (Vpu)x " (26¢)
Vil =2, x) (26d)

are the desired gradients. We can evaluate the required quantities with the same least-squares solver that has
been employed in the forward pass.

If A depends on parameters 6, then V a 11 can be turned into Vgu via (abbreviate r := Ax — b),

dp = (Va(g)p, dA(0)) + const (27a)
= <r§ + (Vou)x" 689 (9)d9> + const (27b)
= Vg(0) + const, (27¢)

where “+const” means that the line depends on quantities that are not related to dA(6), and where g is
defined as g(0) = (r, A(6)¢) + (Vbu, A(0)x). Once r, &, x, and V), are available, g(#) and its §-gradient
can be evaluated with automatic differentiation. This concludes the gradients for the tall case.

C.2 WIDE CASE

For the wide case, we proceed in the same way but we apply the adjoint method to the constraints
x=A'y, (AAT + M)y =b (28)

because these imply a well-defined x if A is wide, even for A — 0 (we always assume A is full rank).
Differentiate the constraints

dx =dATy + A'dy, (29a)
dAATy + AdATy + AATdy + 2)\d)\y + \’dy = db (29b)

Let 1 = p(x) be a scalar function. Let p and g be two vectors with the same dimensions as the two constraints.
Then,

dp = (Vyep, dx) (30a)
= (Vxpt,dx) + (p, —dx + dA "y + ATdy) (30b)
+(q,—dAATy + AdATy + AATdy + 2\d)\y + A\?dy — db) (30c)

= (zx,dx) + (zy,dy) + (zp,db) + (Za,dA) + (2, dN) (30d)
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with the variables

Zx = Vx/t — P (31a)
zy = Ap+ AATq+ \q (31b)
= —q (310)
Za=yp' —qy'A+yq'A=yp' —agx' +yq A (31d)
zx = 2Mq,y) (31e)

If zx = 0 and z, = 0, then by the adjoint method, zp, = Vyu, Zao = Vapu, and zy = Vp holds.

Before solving zy = 0 and z,, = 0 for suitable p and g, note how we can obtain y from the least-squares
solution x with another least-squares call, since

y=(AAT + X)) 'b=(AAT)'Ax = 1stsg(AT,x,0) (32)
holds. Now, zx = 0 implies p = Vxpu, and thus
a=(AAT + N)"'AV, = LstSq(A, Vi, A) (33)
is another least-squares call. Therefore,
Vit = LstSq(A, Vi, A) (34)
as well as
Vap=yr' +Vpux', r=A"Vpu—Viu,  Vip=-2XNVpuy). (35)

If A depends on 6, like in the tall case, we can turn V o i into Vg by.

dp = (Vap,dA) + const = <Vb,ux—r +yr', 689Ad0> + const = Vyg(6) + const, (36)

where g(0) = (Vpu, AX) + (y, Ar). Assoon as y, r, x, and Vpu are available, Vg can be evaluated with
automatic differentiation. This concludes the proof.

D WEIGHTED LEAST-SQUARES

In this section, we show how it is no loss of generality to consider unweighted least-squares problems only.
We show how we can use an unweighted least-squares code to solve weighted problems. We only discuss the
wide case, because in the tall case, absorbing the weights and biases in A and b is relatively straightforward.

Specifically, consider the weighted least-squares problem:
argmin ||[Wx — v||*> subjectto Ax =b. 37)

Here, W is tall or square, A is wide or square, and v and b are vectors. Substitute z := Wx — v:

Ax=Db
. 2 .
bject t 38
argmin ||z||* subject to {z:Wx—v (38)
Reorganise z = Wx — v into x = W (z + v), with pseudoinverse W (same shape as W T):

argmin ||z||* subjectto AWTz=b - AW v. (39)

Solve for z with standard least-squares code. Then, get x viax = W™ (z + v).
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E CONVERGENCE OF THE NULL-SPACE METHOD

Theorem 3. Define a continuously differentiable constraint function ¢ : RP? — R?, where D is the number
of neural network parameters and O is the number of constraints. We assume O < D. If the update rule in
Equation 44 converges to a point 6%, then the point satisfies:

1. Primal Feasibility: The constraint is satisfied, i.e., c(60*) = 0.

2. Lagrangian Stationarity: There exists some \* such that VL(0*) = J(0*) T \*.

Proof. The null-space update step can be written explicitly as (recall O < D):

i — 0, = —nargmin {éna VL) st Te(6,)5 = —vc(m} (40)
= — nVeﬂ(Ht) — LstSq[Jc(Ht),Jc(et)nVQK(Gt) — ’yc(@t)] (40b)
= = n[(T— Je(00)) " Ic(0:)) VoL (0:)] — v[(Te(0:)) Te(0)], (40c)

where  (Jo(61))F =Je(0) T (Je(0)Ic(6)T) . (40d)

Here, (J.(6;))" is the pseudo-inverse, which means it satisfies J(6;)(Jc(6;))" = L.

We begin by proving primal feasibility. We observe that:

Je(Ok) (01 — Ok) = =T e(01) [0 (T = (Je(0:)) T Ie(6:)) VoL(6:) + (T (0:) T c(6:)] (41a)
=1 (Je(Ok) = Tc(0k)) VoL(0:) —7Tc(0:)(Tc(0:)) Fc(6r) (41b)
= —vc(y). (41c)

Since we assume that the update rule converges to some 6*, we have that 651 — 6, — 0, this implies that as
k — o0

1 1
c(0%) = —;Jc(ek)wm — b)) — —;JC(Q*)O = 0. 42)

Therefore c(6*) = 0. This gives us primal feasibility.

To show Lagrangian stationarity, we observe that the updates and the constraint value are both 0 at convergence.
This implies that Equation 40c approaches zero which in the limit, of k£ — oo, leads to:

VoL(0%) = Je(0%)T (3e(0%)T(6)T) ™ Je(6%)VoL(6). 43)

Define \* = (Jo(6*)Jc(6%)7) - Jc(0%)VL(0™). This gives Lagrangian stationarity. O

F GEOMETRIC INTERPRETATION OF THE NULL-SPACE UPDATE

The explicit null space update rule, as stated above, is given by:
Opir =0k — [n (T =33 (TIL) 1 T) VLO) + 4T (TTE) te(6,)] (44)

This section provides a geometric perspective to build intuition for the update’s components and behavior,
formalizing it using concepts from differential geometry.

At any parameter iterate 6;, the update Af; from Equation 44 can be understood as performing two simulta-
neous updates related to the local geometry defined by the constraint Jacobian J.(6;):
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1. Loss minimization on the tangent hyperplane: The term —n(I—J! (J.J!)~1J.)VL(6;) projects
the negative loss gradient onto the null-space of J.(6;). This null-space, ker(J.(6;)), is the tangent
space to the constraint manifold c(6) = c(6;) at 6;. This step aims to decrease the loss £ by moving
along directions where the linearized constraint value does not change.

2. Constraint satisfaction step: The term 7J. ' (JoJ. ')~ 'c(6,) takes a Gauss—Newton step towards
satisfying the constraints. This direction lies in the row space of J.(;), im(J.(6;) "), which is
orthogonal to ker(J¢(6;)).

These components ensure that the optimization process iteratively reduces the loss while driving the parameters
towards the feasible set where c(#) = 0.

We can formalize this intuition in the language of Riemannian geometry. For a given parameter § € R” and
a continuously differentiable constraint function ¢, we can define two relevant manifolds embedded in RP,
Let My = {0 € RP such that ¢(9") = c(6)} be the kernel manifold where the constraint value is constant
and equal to c(#). Its tangent space Ty M represents directions where the constraint doesn’t change locally.
Let NV, the image manifold, be a local manifold transversal to My at 8, representing directions where the
constraint value necessarily changes. Existence of these manifolds is stated and proved formally below:

Theorem 4. For any parameter 0, suppose the set of parameters that have the same constraint value as 0
is denoted by My = {0’ € RP | c¢(0') = c(0)}. Assuming J(0) has full rank, this set is locally a smooth
manifold embedded in RP. Furthermore, there exists a local manifold Ny through 0 such that R can be
locally viewed as a product space involving these manifolds, and their tangent spaces Ty Mg and TyNy are
orthogonal at 0.

Proof. The existence of these manifolds follow from the preimage theorem. It can be proved as follows: The
constraint differential J.(0) € RO*P is assumed to be full rank. Each column of the J.. corresponds to the
gradient of each constraint

5'(:2-
1o0) = (aej)i—l,...,O;j—l,.“,D @

We assume that the differential operator is full-rank, hence surjective, and D > O. Consequently, we can
reorder the matrix columns to ensure that the first O columns are linearly independent. Then the O x O
matrix below (with reordered columns):

oc;
R= ( Z) (46)
90 i=1,...,055=1,...,0
is invertible. Consider the map
de 600
a(ela"'veD):<8917"'v69790+17"~79D> (47)

Then we obtain that the Jacobian of «, which is:

3.(60) = (ff ’ﬁ) . (48)

This matrix is invertible. Hence, by the inverse function theorem, « is a local diffeomorphism.

Finally, define

My =< aei(8),...,co(8),p1,....,pD-0) forp e RP=9 } C RP, (49)
R ———

O constraint values
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and similarly

No=<a Yp1,...,p0,0,...,0) forpe R}y CRP. (50)
D20

These the two restrictions of « are slice charts of My and Ny, respectively, proving that they are embedded
manifolds in RP. O

We can endow these two manifolds with Riemannian metrics. The kernel manifold My inherits the Euclidean
metric, i.e., its metric gL restricted to the tangent space Ty M . The image manifold Ny can be endowed with
a metric g derived by pulling back the Euclidean metric from the constraint output space, such that distances
correspond to changes in the constraint value. Hence we get g = J! J., restricted to the tangent space TyNp.
Also note that even though J! J.. is a low-rank matrix, g is not a pseudo-metric but a proper Riemannian
metric because the tangent space of the image manifold excludes directions that live in the null space of the
Jacobian and hence of the metric.

We can now interpret the update in Equation 44 (replicated below as Equation 51a) as approximating a
Riemannian gradient descent step across these two manifolds. We minimize the loss £ on My and the squared
constraint norm ||c(6)||? on Np. If we approximate the retractions with the orthogonal projection onto the
tangent space, as is standard in the literature (Boumal, 2023), then the Riemannian gradient descent steps on
these two manifolds are given by:

Orin = 0 = ~11Ray, a1y, () VL0 — 1Ry, x5, (—(8) 'V 1e(0)]2) (51a)
~ =1 (projr,, a,, ((8) " VLO))) = (proj, x, (~(&) ' VIIe@)IF)  (S1b)
=0 ([~ I TI) T T)VL(B)) — v (I (TIE) He(6r)) (510)

This is exactly the null-space update. We can see that the null space method approximates Riemannian
gradient descent concurrently on these two manifolds.

G LOW-RANK LEAST-SQUARES

In the proof of Theorem 1, we always assume that the matrix A is a full-rank matrix. In this section, we will
analyze the gradient computations when A is a low-rank matrix. However, for differentiability, we still need
to assume constant rank in a neighbourhood.

Damped least-squares: When the matrix A is low-rank, perhaps the most important practical case is
damped least-squares. This is because regularization is a common way of dealing with ill-posed problems,
which corresponds to damped least-squares. Damped least-squares, unlike the cases above, have a unique
solution, and their gradients can be derived with only a slight modification to the proof of Theorem 1. We
follow the derivation for the tall case, applying the adjoint method to the same constraint

(ATA+XDx=A"b (52)

This is well defined, even if A is low-rank, due to the regularization term. Following the exact steps
(differentiating this constraint and introducing an adjoint variable £), we obtain

Vi =A(ATA + N°I) "'V = LstSq(A, Vyp, \) (53a)
E=—(ATA+ )" 'V,u (53b)

However, unlike the full-rank case, the equation ¢ = —(ATA + N\2)7'V, = —(ATA)"'ATVyu is
not well-defined because A " A is not invertible. Thus ¢ can’t be reduced to the same least squares call:
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LstSq(AT, Vb, 0). However, with only a slight modification, we can still rewrite ¢ as a different least-
squares call. Note that

(ATA+X1)'Vyp = (ATA + X1) (I = Projca)) Vact + (AT A 4 A1) 7 Proj,,ya) Vet (54)
1
= LstSq(A", Vip,0) + 3z (Vxh — LstSa(A, AVyp, 0)) (55)

This is because the first term finds the minimum norm solution in the range of (AT, which is the complement
of the null-space of A. This corresponds exactly to what the least-squares call computes, the second term
lives in the null-space of A, thus it is simply a scaled projection of the rhs (V) into the null-space of A.
This gives us:

1
¢ =LstSq(AT, Vppu,0) + 12 (Vxkt — LstSa(A, AV, 0)) (56)
With this slightly modified expression of £, we can proceed with the rest of the derivation, and all the other
expressions are the same.

Undamped tall least-squares: The undamped tall least squares does not have a unique solution. Notice
that if x* = arg miny || A(0)x — b||? then for any xy; € null(A), we have that || A (0)(x* + Xker) — b||? =
|A(0)x* — b||?. Thus x* + Xy is a solution to the least-squares problem. The Lst Sq is then a multi-valued
function, and to define gradients, we need additional constraints to select a specific branch of this function.

Undamped wide least-squares: The undamped wide case also has a unique solution because it favors the
minimum-norm solution by definition Equation 2. Thus, it always sets any null-space component to 0. We
leave this for future work.

H DETAILS ON EXPERIMENTS IN SECTION 3

This section provides detailed information regarding the experimental setups for the results presented in the
main paper. Our implementation is developed in JAX (Bradbury et al., 2018), using Optax (DeepMind et al.,
2020) for optimization. The code for all experiments is available at [redacted]. The table below provides
concrete examples of constrained optimization in deep learning with relevant references

Table 6: Examples for imposing structure via constrained optimization.

Structure Constraint ¢, (6) Key references

G-Equivariance Ty(f(x;0)) — f(T,(x);0) Cohen & Welling (2016); Finzi et al.
(2021)

G-Invariance [(Ty(x);0) — f(x:0) Puny et al. (2022)

lo-Sparsity ‘GTO — Starget Louizos et al. (2018); Gallego-Posada et al.
(2022)

Adversarial robustness  Ex_... o [[(fo(Zciean), ¥)] < d  Robey et al. (2021)

Conservativeness Epeoll22 — %TH%] Chao et al. (2023)

Unless otherwise specified, all deep-learning experiments were conducted on an NVIDIA H100 GPU, and the
others on the CPU of a consumer-level laptop. For iterative solvers like LSMR, a tolerance of 10~6 was used
by default. For results reporting mean and standard deviation, experiments were repeated using 3 different
random seeds, covering aspects like network initialization and data shuffling.
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Table 7: Hyperparameter configurations for constrained optimization experiments.

Experiment Model Optimizer Weight v Batch Size Epochs
C4 Equivariance LeNet (FMNIST) Adam 1074 128 100
O(3) Equivariance MLP (Particles) Adam 0.5 128 100
lp Sparsity
ResNet-18 (CIFAR) Adam 1074 128 300
ResNet-18 (SVHN) Adam 10~4 128 300
Pre-trained SWIN-S (ImageNet) SGD 0.01 128 10
Conservativeness MLP (Synthetic 2D) Adam 500 5000 10°

Section 2.3 applies the null-space method to various constrained optimization problems from the literature.
Below, we detail how we implement the constraints for each experiment and report any relevant hyperparame-
ters in Table 7. The only hyperparameter specific to our method is the constraint weight . This weight refers
to the constant multiplier of the constraint term in the null-space update. While the convergence is robust to
the choice of -, this weight ~y affects the rate of convergence of the constraint.

H.1 EQUIVARIANCE

Cy Rotational equivariance on FMNIST We enforced Cy rotational equivariance on a LeNet model
trained on FMNIST. The constraint function is given by c(0) = f(Rx;0) — Rf(z;0), for all z and R € Cy,
where the output of f is the final output of the convolutional layers of the neural network. Concretely, the
constraint measures the norm of the difference between the filters of rotated images and rotated filters of an
image, for all the images in a mini-batch and all the rotations in C4. Hence, the constraint output dimension is
B x 4, which demonstrates the ability to handle multiple constraints with ease.

The baseline model was trained using Adam with a learning rate of 10~2 for 100 epochs and a batch size
of 128. For the null-space method, the same optimizer was chained with our null-space projection using
v = 10~*. The constraint violation metric was the mean squared norm || f(Rx;0) — Rf(x;0)||* averaged
over the test set and all four C rotations and test data.

O(3) Equivariance for particle systems This experiment aims to predict the moment of inertia for particle
systems, following the task setup by Finzi et al. (2021). Following Finzi et al. (2021), an MLP with three
hidden layers of 384 units each and ReLU activations was trained on a synthetic dataset with 5000 data
points, each representing a system of particles and their targets corresponding to their respective moments of
inertia. Unlike Cy, O(3) is not a discrete group. Hence, it is not possible to sample all the group elements. So
to enforce the constraints, we sample random matrices from O(3) and the equivariance constraint is given
by f(Rx;0) — R f(x;0)R = 0 (Finzi et al., 2021). We average over each mini-batch and end up with a
measurement of constraint-violation, which is a 3 x 3 inertia tensor. Hence, we have a nine-dimensional
constraint.

The baseline uses O(3) data augmentation, where each input particle system was augmented with random
O(3) rotations, with corresponding transformations applied to the target tensor. Both the null-space method
and baseline uses an Adam optimizer with a learning rate 10~ with null space projections with a batch size
of 128. Constraint violation was measured as || f(Rxz;0) — R f(z;0)R||%, averaged over the test set and
random O(3) transformations.
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H.1.1 ENFORCING £y SPARSITY

To enforce ¢ sparsity, we used learnable stochastic masks m; ~ Bernoulli(p;) for weights §; = éimi,
with the straight-through estimator for gradients of mask probabilities p (Yin et al., 2019). The constraint

c(p) = Ni vazpl Di — Strget = 0 was applied to the expected proportion of active weights. This is a scalar
P
constraint.

ResNet-18 on CIFAR-10 and SVHN A standard ResNet-18 architecture is trained on CIFAR-10 and
SVHN. Sparsity was targeted at Srget = 0.1 (90% sparsity) and applied to [e.g., all convolutional and fully
connected layer weights, excluding biases and batch normalization parameters]. The baseline was one-shot
magnitude pruning, where the model was trained to convergence, then pruned, and fine-tuned for 20 epochs
with a learning rate of 10~%. For the null-space method, model weights 6 and mask probabilities p were
optimized using Adam with learning rates 10~2 for 300 epochs with batch size 128, with 50 epochs of
warm-up, i.e, standard training without any projections. Standard data augmentation for CIFAR-10/SVHN
was used (random crops and horizontal flips).

SWIN-S on ImageNet A pretrained SWIN-S (Small) transformer was trained on ImageNet with a target
sparsity S¢qrget = 0.5 (50% sparsity). Both methods use an SGD optimizer with a linear one-cycle learning
rate schedule and a peak learning rate of 0.1. The null space method was trained for 10 epochs, with a batch
size of 128 and standard ImageNet augmentations.

H.1.2 CONSERVATIVENESS OF SCORE-BASED GENERATIVE MODELS

For score-based generative models, we enforced the conservativeness constraint c¢(6) = ||.J(s) — J(s) "||% =
0, where s(x; 0) is the score network and J(s) its Jacobian with respect to 2. The score network s(z; ) was
an MLP with Swish activations. The Jacobian .J(s) was computed using JAX’s automatic differentiation tools
per sample, and the constraint was averaged over mini-batches. In this experiment, we attempt to reproduce
the setup of Chao et al. (2023) exactly. For additional details on learning rate, batch size, evaluation metrics,
and more, refer to Chao et al. (2023).
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