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ABSTRACT

Time series modeling is a well-established problem, which often requires that
methods (1) expressively represent complicated dependencies, (2) forecast long
horizons, and (3) efficiently train over long sequences. State-space models (SSMs)
are classical models for time series, and prior works combine SSMs with deep
learning layers for efficient sequence modeling. However, we find fundamental
limitations with these prior approaches, proving their SSM representations can-
not express autoregressive time series processes. We thus introduce SPACETIME,
a new state-space time series architecture that improves all three criteria. For
expressivity, we propose a new SSM parameterization based on the companion
matrix—a canonical representation for discrete-time processes—which enables
SPACETIME’s SSM layers to learn desirable autoregressive processes. For long
horizon forecasting, we introduce a “closed-loop” variation of the companion
SSM, which enables SPACETIME to predict many future time-steps by generat-
ing its own layer-wise inputs. For efficient training and inference, we introduce an
algorithm that reduces the memory and compute of a forward pass with the com-
panion matrix. With sequence length ℓ and state-space size d, we go from Õ(dℓ)

naı̈vely to Õ(d + ℓ). In experiments, our contributions lead to state-of-the-art re-
sults on extensive and diverse benchmarks, with best or second-best AUROC on 6
/ 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer
forecasting tasks. Furthermore, we find SPACETIME (1) fits AR(p) processes that
prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons
than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by
73% and 80% relative wall-clock time over Transformers and LSTMs.

1 INTRODUCTION

Time series modeling is a well-established problem, with tasks such as forecasting and classification
motivated by many domains such as healthcare, finance, and engineering (Shumway et al., 2000).
However, effective time series modeling presents several challenges:

• First, methods should be expressive enough to capture complex, long-range, and autoregressive
dependencies. Time series data often reflects higher order dependencies, seasonality, and trends,
which govern how past samples determine future samples (Chatfield, 2000). This motivates many
classical approaches that model these properties (Box et al., 1970; Winters, 1960), alongside ex-
pressive deep learning mechanisms such as attention (Vaswani et al., 2017) and fully connected
layers that model interactions between every sample in an input sequence (Zeng et al., 2022).

• Second, methods should be able to forecast a wide range of long horizons over various data
domains. Reflecting real world demands, popular forecasting benchmarks evaluate methods on
34 different tasks (Godahewa et al., 2021) and 24−960 time-step horizons Zhou et al. (2021).
Furthermore, as testament to accurately learning time series processes, forecasting methods should
ideally also be able to predict future time-steps on horizons they were not explicitly trained on.

• Finally, methods should be efficient with training and inference. Many time series applications
require processing very long sequences, e.g., classifying audio data with sampling rates up to
16,000 Hz (Warden, 2018). To handle such settings—where we still need large enough models that
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Figure 1: We learn time series processes as state-space models (SSMs) (top left). We represent SSMs with the
companion matrix, which is highly expressive for discrete time series (top middle), and compute such SSMs
efficiently as convolutions or recurrences via a shift + low-rank decomposition (top right). We use these SSMs
to build SPACETIME, a new time series architecture broadly effective across tasks and domains (bottom).

can expressively model this data—training and inference should ideally scale subquadratically
with sequence length and model size in time and space complexity.

Unfortunately, existing time series methods struggle to achieve all three criteria. Classical meth-
ods (c.f., ARIMA (Box et al., 1970), exponential smoothing (ETS) (Winters, 1960)) often require
manual data preprocessing and model selection to identify expressive-enough models. Deep learn-
ing methods commonly train to predict specific horizon lengths, i.e., as direct multi-step forecast-
ing (Chevillon, 2007), and we find this hurts their ability to forecast longer horizons (Sec. 4.2.2).
They also face limitations achieving high expressivity and efficiency. Fully connected networks
(FCNs) in Zeng et al. (2022) scale quadratically in O(ℓh) space complexity (with input length ℓ and
forecast length h). Recent Transformer-based models reduce this complexity to O(ℓ+h), but do not
always outperform the above FCNs on forecasting benchmarks (Liu et al., 2022; Zhou et al., 2021).

We thus propose SPACETIME, a deep state-space architecture for effective time series modeling.
To achieve this, we focus on improving each criteria via three core contributions:

1. For expressivity, our key idea and building block is a linear layer that models time series pro-
cesses as state-space models (SSMs) via the companion matrix (Fig. 1). We start with SSMs due
to their connections to both classical time series analysis (Kalman, 1960; Hamilton, 1994) and
recent deep learning advances (Gu et al., 2021a). Classically, many time series models such as
ARIMA and exponential smoothing (ETS) can be expressed as SSMs (Box et al., 1970; Win-
ters, 1960). Meanwhile, recent state-of-the-art deep sequence models (Gu et al., 2021a) have
used SSMs to outperform Transformers and LSTMs on challenging long-range benchmarks (Tay
et al., 2020). Their primary innovations show how to formulate SSMs as neural network pa-
rameters that are practical to train. However, we find limitations with these deep SSMs for time
series data. While we build on their advances, we prove that these prior SSM representations (Gu
et al., 2021b;a; Gupta, 2022) cannot capture autoregressive processes fundamental for time se-
ries. We thus specifically propose the companion matrix representation for its expressive and
memory-efficient properties. We prove that the companion matrix SSM recovers fundamental
autoregressive (AR) and smoothing processes modeled in classical techniques such as ARIMA
and ETS, while only requiring O(d) memory to represent an O(d2) matrix. Thus, SPACETIME
inherits the benefits of prior SSM-based sequence models, but introduces improved expressivity
to recover fundamental time series processes simply through its layer weights.

2. For forecasting long horizons, we introduce a new “closed-loop” view of SSMs. Prior deep
SSM architectures either apply the SSM as an “open-loop” (Gu et al., 2021a), where fixed-length
inputs necessarily generate same-length outputs, or use closed-loop autoregression where final
layer outputs are fed through the entire network as next-time-step inputs (Goel et al., 2022). We
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describe issues with both approaches in Sec. 3.2, and instead achieve autogressive forecasting in
a deep network with only a single SSM layer. We do so by explicitly training the SSM layer to
predict its next time-step inputs, alongside its usual outputs. This allows the SSM to recurrently
generate its own future inputs that lead to desired outputs—i.e., those that match an observed
time series—so we can forecast over many future time-steps without explicit data inputs.

3. For efficiency, we introduce an algorithm for efficient training and inference with the companion
matrix SSM. We exploit the companion matrix’s structure as a “shift plus low-rank” matrix,
which allows us to reduce the time and space complexity for computing SSM hidden states and
outputs from Õ(dℓ) to Õ(d+ ℓ) in SSM state size d and input sequence length ℓ.

In experiments, we find SPACETIME consistently obtains state-of-the-art or near-state-of-the-art
results, achieving best or second-best AUROC on 6 out of 7 ECG and audio speech time series
classification tasks, and best mean-squared error (MSE) on 14 out of 16 Informer benchmark fore-
casting tasks (Zhou et al., 2021). SPACETIME also sets a new best average ranking across 34 tasks
on the Monash benchmark (Godahewa et al., 2021). We connect these gains with improvements
on our three effective time series modeling criteria. For expressivity, on synthetic ARIMA pro-
cesses SPACETIME learns AR processes that prior deep SSMs cannot. For long horizon forecasting,
SPACETIME consistently outperforms prior state-of-the-art on the longest horizons by large mar-
gins. SPACETIME also generalizes better to new horizons not used for training. For efficiency, on
speed benchmarks SPACETIME obtains 73% and 80% relative wall-clock speedups over parameter-
matched Transformers and LSTMs respectively, when training on real-world ETTh1 data.

2 PRELIMINARIES

Problem setting. We evaluate effective time series modeling with classification and forecasting
tasks. For both tasks, we are given input sequences of ℓ “look-back” or “lag” time series samples
ut−ℓ:t−1 = (ut−ℓ, . . . , ut−1) ∈ Rℓ×m for sample feature size m. For classification, we aim to
classify the sequence as the true class y out of possible classes Y . For forecasting, we aim to
correctly predict H future time-steps over a “horizon” yt,t+H−1 = (ut, . . . , ut+H−1) ∈ RH×m.

State-space models for time series. We build on the discrete-time state-space model (SSM), which
maps observed inputs uk to hidden states xk, before projecting back to observed outputs yk via

xk+1 = Axk +Buk (1)
yk = Cxk +Duk (2)

where A ∈ Rd×d, B ∈ Rd×m, C ∈ Rm′×d, and D ∈ Rm′×m. For now, we stick to single-input
single-output conventions where m,m′ = 1, and let D = 0. To model time series in the single SSM
setting, we treat u and y as copies of the same process, such that

yk+1 = uk+1 = C(Axk +Buk) (3)

We can thus learn a time series SSM by treating A,B,C as black-box parameters in a neural
net layer, i.e., by updating A,B,C via gradient descent s.t. with input uk and state xk at time-
step k, following (3) predicts ŷk+1 that matches the next time-step sample yk+1 = uk+1. This
SSM framework and modeling setup is similar to prior works (Gu et al., 2021b;a), which adopt a
similar interpretation of inputs and outputs being derived from the “same” process, e.g., for language
modeling. Here we study and improve this framework for time series modeling. As extensions, in
Sec. 3.1.1 we show how (1) and (2) express univariate time series with the right A representation. In
Sec. 3.1.2 we discuss the multi-layer setting, where layer-specific u and y now differ, and we only
model first layer inputs and last layer outputs as copies of the same time series process.

3 METHOD: SPACETIME

We now present SPACETIME, a deep architecture that uses structured state-spaces for more effective
time-series modeling. SPACETIME is a standard multi-layer encoder-decoder sequence model, built
as a stack of repeated layers that each parametrize multiple SSMs. We designate the last layer as the
“decoder”, and prior layers as “encoder” layers. Each encoder layer processes an input time series
sample as a sequence-to-sequence map. The decoder layer then takes the encoded sequence repre-
sentation as input and outputs a prediction (for classification) or output sequence (for forecasting).
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Figure 2: SPACETIME architecture and components. (Left): Each SPACETIME layer carries weights that
model multiple companion SSMs, followed optionally by a nonlinear FFN. The SSMs are learned in parallel
(1) and computed as a single matrix multiplication (2). (Right): We stack these layers into a SPACETIME
network, where earlier layers compute SSMs as convolutions for fast sequence-to-sequence modeling and data
preprocessing, while a decoder layer computes SSMs as recurrences for dynamic forecasting.

Below we expand on our contributions that allow SPACETIME to improve expressivity, long-horizon
forecasting, and efficiency of time series modeling. In Sec. 3.1, we present our key building block, a
layer that parametrizes the companion matrix SSM (companion SSM) for expressive and autoregres-
sive modeling. In Sec. 3.2, we introduce a specific instantiation of the companion SSM to flexibly
forecast over long horizons. In Sec. 3.3, we provide an efficient inference algorithm that allows
SPACETIME to train and predict over long sequences in sub-quadratic time and space complexity.

3.1 THE MULTI-SSM SPACETIME LAYER

We discuss our first core contribution and key building block of our model, the SPACETIME layer,
which captures the companion SSM’s expressive properties, and prove that the SSM represents mul-
tiple fundamental processes. To scale up this expressiveness in a neural architecture, we then go over
how we represent and compute multiple SSMs in each SPACETIME layer. We finally show how the
companion SSM’s expressiveness allows us to build in various time series data preprocessing oper-
ations in a SPACETIME layer via different weight initializations of the same layer architecture.

3.1.1 EXPRESSIVE STATE-SPACE MODELS WITH THE COMPANION MATRIX

For expressive time series modeling, our SSM parametrization represents the state matrix A as a
companion matrix. Our key motivation is that A should allow us to capture autoregressive relation-
ships between a sample uk and various past samples uk−1, uk−2, . . . , uk−n. Such dependencies are
a basic yet essential premise for time series modeling; they underlie many fundamental time series
processes, e.g., those captured by standard ARIMA models. For example, consider the simplest
version of this, where uk is a linear combination of p prior samples (with coefficients ϕ1, . . . , ϕp)

uk = ϕ1uk−1 + ϕ2uk−2 + . . . ϕpuk−p (4)
i.e., a noiseless, unbiased AR(p) process in standard ARIMA time series analysis (Box et al., 1970).

To allow (3) to express (4), we need the hidden state xk to carry information about past samples.
However, while setting the state-space matrices as trainable neural net weights may suggest we can
learn arbitrary task-desirable A and B via supervised learning, prior work showed this could not be
done without restricting A to specific classes of matrices (Gu et al., 2021b; Gupta, 2022).

Fortunately, we find that a class of relatively simple A matrices suffices. We propose to set A ∈
Rd×d as the d× d companion matrix, a square matrix of the form:

(Companion Matrix) A =


0 0 . . . 0 a0
1 0 . . . 0 a1
0 1 . . . 0 a2
...

. . .
...

...
0 0 . . . 1 ad−1

 i.e., Ai,j =


1 for i− 1 = j

ai for j = d− 1

0 otherwise
(5)

Then simply letting state dimension d = p, assuming initial hidden state x0 = 0, and setting

a := [a0 a1 . . . ad−1]
T
= 0, B = [1 0 . . . 0]

T
, C = [ϕ1 . . . ϕp]
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allows the discrete SSM in (1, 2) to recover the AR(p) process in (4). We next extend this result in
Proposition 1, proving in App. B that setting A as the companion matrix allows the SSM to recover
a wide range of fundamental time series and dynamical system processes beyond the AR(p) process.

Proposition 1. A companion state matrix SSM can represent ARIMA (Box et al., 1970), exponential
smoothing (Winters, 1960; Holt, 2004), controllable linear time–invariant systems (Chen, 1984).

As a result, by training neural network layers that parameterize the companion SSM, we provably
enable these layers to learn the ground-truth parameters for multiple time series processes. In addi-
tion, as we only update a ∈ Rd (5), we can efficiently scale the hidden-state size to capture more
expressive processes with only O(d) parameters. Finally, by learning multiple such SSMs in a single
layer, and stacking multiple such layers, we can further scale up expressivity in a deep architecture.

Prior SSMs are insufficient. We further support the companion SSM by proving that existing
related SSM representations used in Gu et al. (2021a); Gupta (2022); Smith et al. (2022); Alcaraz
and Strodthoff (2022) cannot capture the simple yet fundamental AR(p) process. Such works,
including S4 and S4D, build on the Linear State-Space Layer (LSSL) (Gu et al., 2021b), and cannot
represent AR processes due to their continuous-time or diagonal parametrizations of A.
Proposition 2. No class of continuous-time LSSL SSMs can represent the noiseless AR(p) process.
We defer the proof to App. B.1. In Sec. 4.2.1, we support this analysis with empirical results,
showing that these prior SSMs fit synthetic AR processes less accurately than the companion SSM.
This suggests the companion matrix resolves a fundamental limitation in related work for time series.

3.1.2 LAYER ARCHITECTURE AND MULTI-SSM COMPUTATION

Architecture. To capture and scale up the companion SSM’s expressive and autoregressive model-
ing capabilities, we model multiple companion SSMs in each SPACETIME layer’s weights. SPACE-
TIME layers are similar to prior work such as LSSLs, with A, B, C as trainable weights, and D
added back as a skip connection. To model multiple SSMs, we add a dimension to each matrix. For
s SSMs per SPACETIME layer, we specify weights A ∈ Rs×d×d, B ∈ Rd×s, and C ∈ Rs×d. Each
slice in the s dimension represents an individual SSM. We thus compute s outputs and hidden states
in parallel by following (1) and (2) via simple matrix multiplications on standard GPUs.

To model dependencies across individual SSM outputs, we optionally follow each SPACETIME layer
with a one-layer nonlinear feedforward network (FFN). The FFN thus mixes the m outputs across a
SPACETIME layer’s SSMs, allowing subsequent layers to model dependencies across SSMs.

Computation. To compute the companion SSM, we could use the recurrence in (1). However, this
sequential operation is slow on modern GPUs, which parallelize matrix multiplications. Luckily, as
described in Gu et al. (2021a) we can also compute the SSM as a 1-D convolution. This enables
parallelizable inference and training. To see how, note that given a sequence with at least k inputs
and hidden state x0 = 0, the hidden state and output at time-step k by induction are:

xk =

k−1∑
j=0

Ak−1−jBuj and yk =

k−1∑
j=0

CAk−1−jBuj (6)

We can thus compute hidden state xk and output yk as 1-D convolutions with “filters” as
F x = (B,AB,A2B, . . . ,Aℓ−1B) (Hidden State Filter) (7)

F y = (CB,CAB,CA2B, . . . ,CAℓ−1B) (Output Filter) (8)
xk = (F x ∗ u)[k] and yk = (F y ∗ u)[k] (9)

So when we have inputs available for each output (i.e., equal-sized input and output sequences) we
can obtain outputs by first computing output filters F y (8), and then computing outputs efficiently
with the Fast Fourier Transform (FFT). We thus compute each encoder SSM as a convolution.

For now we note two caveats. Having inputs for each output is not always true, e.g., with long hori-
zon forecasting. Efficient inference also importantly requires that F y can be computed efficiently,
but this is not necessarily trivial for time series: we may have long input sequences with large k.

Fortunately we later provide solutions for both. In Sec. 3.2, we show how to predict output samples
many time-steps ahead of our last input sample via a “closed-loop” forecasting SSM. In Sec. 3.3
we show how to compute both hidden state and output filters efficiently over long sequences via an
efficient inference algorithm that handles the repeated powering of Ak.
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3.1.3 BUILT-IN DATA PREPROCESSING WITH COMPANION SSMS

We now show how beyond autoregressive modeling, the companion SSM also enables SPACETIME
layers to do standard data preprocessing techniques used to handle nonstationarities. Consider dif-
ferencing and smoothing, two classical techniques to handle nonstationarity and noise:

u′
k = uk − uk−1 (1st-order differencing)

∣∣∣ u′
k =

1

n

n−1∑
i=0

uk−i (n-order moving average smoothing)

We explicitly build these preprocessing operations into a SPACETIME layer by simply initializing
companion SSM weights. Furthermore, by specifying weights for multiple SSMs, we simultane-
ously perform preprocessing with various orders in one forward pass. We do so by setting a = 0 and
B = [1, 0, . . . , 0]T , such that SSM outputs via the convolution view (6) are simple sliding windows
/ 1-D convolutions with filter determined by C. We can then recover arbitrary n-order differencing
or average smoothing via C weight initializations, e.g., (see App. D.7.1 for more examples),

C =

[
1 −2 1 0 0 . . . 0

1/n . . . 1/n 0 0 . . . 0

]
(2nd-order differencing)

(n-order moving average smoothing) (10)

3.2 LONG HORIZON FORECASTING WITH CLOSED-LOOP SSMS

We now discuss our second core contribution, which enables long horizon forcasting. Using a slight
variation of the companion SSM, we allow the same constant size SPACETIME model to forecast
over many horizons. This forecasting SSM recovers the flexible and stateful inference of RNNs,
while retaining the faster parallelizable training of computing SSMs as convolutions.

Challenges and limitations. For forecasting, a model must process an input lag sequence of length
ℓ and output a forecast sequence of length h, where h ̸= ℓ necessarily. Many state-of-the-art neural
nets thus train by specifically predicting h-long targets given ℓ-long inputs. However, in Sec. 4.2.2
we find this hurts transfer to new horizons in other models, as they only train to predict specific
horizons. Alternatively, we could output horizons autoregressively through the network similar to
stacked RNNs as in SASHIMI (Goel et al., 2022) or DeepAR (Salinas et al., 2020). However, we
find this can still be relatively inefficient, as it requires passing states to each layer of a deep network.

Closed-loop SSM solution. Our approach is similar to autoregression, but only applied at a single
SPACETIME layer. We treat the inputs and outputs as distinct processes in a multi-layer network,
and add another matrix K to each decoder SSM to model future input time-steps explicitly. ū =
(ū0, . . . , ūℓ−1) be the input sequence to a decoder SSM and u = (u0, . . . , uℓ−1) be the original
input sequence, we jointly train A,B,C,K such that xk+1 = Axk +Būk, and

ŷk+1 = Cxk+1 (where ŷk+1 = yk+1 = uk+1) (11)
ˆ̄uk+1 = Kxk+1 (where ˆ̄uk+1 = ūk+1) (12)

We thus train the decoder SPACETIME layer to explicitly model its own next time-step inputs with
A,B,K, and model its next time-step outputs (i.e., future time series samples) with A,B,C. For
forecasting, we first process the lag terms via (11) and (12) as convolutions

xk =
∑k−1

j=0 A
k−1−jBuj and ˆ̄uk = K

∑k−1
j=0 A

k−1−jBūj (13)

for k ∈ [0, ℓ − 1]. To forecast h future time-steps, with last hidden state xℓ we first predict future
input ˆ̄uℓ via (12). Plugging this back into the SSM and iterating for h− 1 future time-steps leads to

xℓ+i = (A+BK)ixℓ for i = 1, . . . , h− 1 (14)

⇒ (yℓ, . . . , yℓ+h−1) =
(
C(A+BK)ixℓ

)
i∈[h−1]

(15)

We can thus use Eq. 15 to get future outputs without sequential recurrence, using the same FFT
operation as for Eq. 8, 9. This flexibly recovers O(ℓ + h) time complexity for forecasting h future
time-steps, assuming that powers (A+BK)h are taken care of. Next, we derive an efficient matrix
powering algorithm to take care of this powering and enable fast training and inference in practice.

3.3 EFFICIENT INFERENCE WITH THE COMPANION SSM

We finally discuss our third contribution, where we derive an algorithm for efficient training and
inference with the companion SSM. To motivate this section, we note that prior efficient algorithms
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Algorithm 1 Efficient Output Filter F y Computation

Require: A is a companion matrix parameterized by the last column a ∈ Rd, B ∈ Rd, C̃ = C(I −Aℓ) ∈
Rd, sequence length ℓ.

1: Define quad(u, v) ∈ Rℓ for vectors u, v ∈ Rd: compute q = u∗v (linear convolution), zero-pad to length
ℓ⌈d/ℓ⌉, split into ⌈d/ℓ⌉ chunks of size ℓ of the form [q(1), . . . , q(⌈d/ℓ⌉)] and return the length-ℓ Fourier
transform of the sum Fℓ(q

(1) + · · ·+ q(⌈d/ℓ⌉)).
2: Compute the roots of unity z = [ω̄0, . . . , ω̄ℓ−1] where ω = exp(−2πi/ℓ).
3: Compute F̃ y = quad(C̃,B) + quad(C̃, a) ∗ quad(ed,B)/(z − quad(ed, a)) ∈ Rℓ, where ed =

[0, . . . , 0, 1] is the d-th basis vector.
4: Return the inverse Fourier transform F y = F−1

ℓ (F̃ y).

to compute powers of the state matrix A were only proposed to handle specific classes of A, and do
not apply to the companion matrix (Gu et al., 2021a; Goel et al., 2022; Gu et al., 2022).

Recall from Sec. 3.1.2 that for a sequence of length ℓ, we want to construct the output filter F y =
(CB, . . . ,CAℓ−1B), where A is a d×d companion matrix and B,C are d×1 and 1×d matrices.
Naı̈vely, we could use sparse matrix multiplications to compute powers CAjB for j = 0, . . . , ℓ−1
sequentially. As A has O(d) nonzeros, this would take O(ℓd) time. We instead derive an algorithm
that constructs this filter in O(ℓ log ℓ + d log d) time. The main idea is that rather than computing
the filter directly, we can compute its spectrum (its discrete Fourier transform) more easily, i.e.,

F̃ y[m] := F(F y) =
∑ℓ−1

j=0 CAjωmjB = C(I −Aℓ)(I −Aωm)−1B, m = 0, 1, . . . , ℓ− 1.

where ω = exp(−2πi/ℓ) is the ℓ-th root of unity. This reduces to computing the quadratic form of
the resolvent (I−Aωm)−1 on the roots of unity (the powers of ω). Since A is a companion matrix,
we can write A as a shift matrix plus a rank-1 matrix, A = S + aeTd . Thus Woodbury’s formula
reduces this computation to the resolvent of a shift matrix (I − Sωm)−1, with a rank-1 correction.
This resolvent can be shown analytically to be a lower-triangular matrix consisting of roots of unity,
and its quadratic form can be computed by the Fourier transform of a linear convolution of size d.
Thus one can construct F y

k by linear convolution and the FFT, resulting in O(ℓ log ℓ+ d log d) time.

We validate in Sec. 4.2.3 that Algorithm 1 leads to a wall-clock time speedup of 2× compared to
computing the output filter naı̈vely by powering A. In App. B.2, we prove the time complexity
O(ℓ log ℓ+d log d) and correctness of Algorithm 1. We also provide an extension to the closed-loop
SSM, which can also be computed in subquadratic time as A+BK is a shift plus rank-2 matrix.

4 EXPERIMENTS

We test SPACETIME on a broad range of time series forecasting and classification tasks. In Sec. 4.1,
we evaluate whether SPACETIME’s contributions lead to state-of-the-art results on standard bench-
marks. To help explain SPACETIME’s performance and validate our contributions, in Sec. 4.2
we then evaluate whether these gains coincide with empirical improvements in expressiveness
(Sec. 4.2.1), forecasting flexibility (Sec. 4.2.2), and training efficiency (Sec. 4.2.3).

4.1 MAIN RESULTS: TIME SERIES FORECASTING AND CLASSIFICATION

For forecasting, we evaluate SPACETIME on 40 forecasting tasks from the popular Informer (Zhou
et al., 2021) and Monash (Godahewa et al., 2021) benchmarks, testing on horizons 8 to 960 time-
steps long. For classification, we evaluate SPACETIME on seven medical ECG or speech audio
classification tasks, which test on sequences up to 16,000 time-steps long. For all results, we report
mean evaluation metrics over three seeds. ✗ denotes the method was computationally infeasible on
allocated GPUs, e.g., due to memory constraints (same resources for all methods; see App. C for
details). App. C also contains additional dataset, implementation, and hyperparameter details.

Informer (forecasting). We report univariate time series forecasting results in Table 1, comparing
against recent state-of-the-art methods (Zeng et al., 2022; Zhou et al., 2022a), related state-space
models (Gu et al., 2021a), and other competitive deep architectures. We include extended results on
additional horizons and multivariate forecasting in App. D.2. We find SPACETIME obtains lowest
MSE and MAE on 14 and 11 forecasting settings respectively, 3× more than prior state-of-the-art.
SPACETIME also outperforms S4 on 15 / 16 settings, supporting the companion SSM representation.

Monash (forecasting). We also evaluate on 32 datasets in the Monash forecasting benchmark (Go-
dahewa et al., 2021), spanning domains including finance, weather, and traffic. For space, we report
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Table 1: Univariate forecasting results on Informer ETT datasets. Best results in bold. SPACETIME results
reported as means over three seeds. Additional datasets, horizons, and method comparisons in App. D.2

Methods SpaceTime NLinear FILM S4 FedFormer Autoformer Informer ARIMA

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1

96 0.054 0.181 0.053 0.177 0.055 0.178 0.316 0.490 0.079 0.215 0.071 0.206 0.193 0.377 0.058 0.184
192 0.066 0.207 0.069 0.204 0.072 0.207 0.345 0.516 0.104 0.245 0.114 0.262 0.217 0.395 0.073 0.209
336 0.069 0.212 0.081 0.226 0.083 0.229 0.825 0.846 0.119 0.270 0.107 0.258 0.202 0.381 0.086 0.231
720 0.076 0.222 0.080 0.226 0.090 0.240 0.190 0.355 0.142 0.299 0.126 0.283 0.183 0.355 0.103 0.253

E
T

T
h2

96 0.119 0.268 0.129 0.278 0.127 0.272 0.381 0.501 0.128 0.271 0.153 0.306 0.213 0.373 0.273 0.407
192 0.151 0.306 0.169 0.324 0.182 0.335 0.332 0.458 0.185 0.330 0.204 0.351 0.227 0.387 0.315 0.446
336 0.169 0.332 0.194 0.355 0.204 0.367 0.655 0.670 0.231 0.378 0.246 0.389 0.242 0.401 0.367 0.488
720 0.188 0.352 0.225 0.381 0.241 0.396 0.630 0.662 0.278 0.420 0.268 0.409 0.291 0.439 0.413 0.519

E
T

T
m

1 96 0.026 0.121 0.026 0.122 0.029 0.127 0.651 0.733 0.033 0.140 0.056 0.183 0.109 0.277 0.033 0.136
192 0.039 0.152 0.039 0.149 0.041 0.153 0.190 0.372 0.058 0.186 0.081 0.216 0.151 0.310 0.049 0.169
336 0.051 0.173 0.052 0.172 0.053 0.175 0.428 0.581 0.084 0.231 0.076 0.218 0.427 0.591 0.065 0.196
720 0.074 0.213 0.073 0.207 0.071 0.205 0.254 0.433 0.102 0.250 0.110 0.267 0.438 0.586 0.089 0.231

E
T

T
m

2 96 0.060 0.179 0.063 0.182 0.065 0.189 0.153 0.318 0.067 0.198 0.065 0.189 0.088 0.225 0.211 0.340
192 0.090 0.222 0.090 0.223 0.094 0.233 0.183 0.350 0.102 0.245 0.118 0.256 0.132 0.283 0.237 0.371
336 0.113 0.255 0.117 0.259 0.124 0.274 0.204 0.367 0.130 0.279 0.154 0.305 0.180 0.336 0.264 0.396
720 0.166 0.318 0.170 0.318 0.173 0.323 0.482 0.567 0.178 0.325 0.182 0.335 0.300 0.435 0.310 0.441

Count 14 11 4 4 1 1 0 0 0 0 0 0 0 0 0 0

Table 2: ECG statement classification on PTB-XL (100 Hz version). Base-
line AUROC from Strodthoff et al. (2021) (error bars in App. D.4).

Task AUROC All Diag Sub-diag Super-diag Form Rhythm

SPACETIME 0.936 0.941 0.933 0.929 0.883 0.967
S4 0.938 0.939 0.929 0.931 0.895 0.977
Inception-1D 0.925 0.931 0.930 0.921 0.899 0.953
xRN-101 0.925 0.937 0.929 0.928 0.896 0.957
LSTM 0.907 0.927 0.928 0.927 0.851 0.953
Transformer 0.857 0.876 0.882 0.887 0.771 0.831
Wavelet + NN 0.849 0.855 0.859 0.874 0.757 0.890

Table 3: Speech audio
classification

Method Acc. (%)

SPACETIME 97.29
S4 98.32
LSSL ✗
WaveGan-D 96.25
Transformer ✗
Performer 30.77
CKConv 71.66

results in Table 20 (App. D.3). We compare against 13 classical and deep learning baselines. SPACE-
TIME achieves best RMSE on 7 tasks and sets new state-of-the-art average performance across all
32 datasets. SPACETIME’s relative improvements also notably grow on long horizon tasks (Fig. 6).

ECG (multi-label classification). Beyond forecasting, we show that SPACETIME can also perform
state-of-the-art time series classification. To classify sequences, we use the same sequence model
architecture in Sec. 3.1. Like prior work (Gu et al., 2021a), we simply use the last-layer FFN to
project from number of SSMs to number of classes, and mean pooling over length before a softmax
to output class logits. In Table 2, we find that SPACETIME obtains best or second-best AUROC on
five out of six tasks, outperforming both general sequence models and specialized architectures.

Speech Audio (single-label classification). We further test SPACETIME on long-range audio clas-
sification on the Speech Commands dataset (Warden, 2018). The task is classifying raw audio
sequences of length 16,000 into 10 word classes. We use the same pooling operation for classifica-
tion as in ECG. SPACETIME outperforms domain-specific architectures, e.g., WaveGan-D (Donahue
et al., 2018) and efficient Transformers, e.g., Performer (Choromanski et al., 2020) (Table 3).

4.2 IMPROVEMENT ON CRITERIA FOR EFFECTIVE TIME SERIES MODELING

For further insight into SPACETIME’s performance, we now validate that our contributions improve
expressivity (4.2.1), forecasting ability (4.2.2), and efficiency (4.2.3) over existing approaches.

4.2.1 EXPRESSIVITY

To first study SPACETIME’s expressivity, we test how well SPACETIME can fit controlled autoregres-
sive processes. To validate our theory on SPACETIME’s expressivity gains in Sec. 3.1, we compare
against recent related SSM architectures such as S4 (Gu et al., 2021a) and S4D (Gu et al., 2022).

For evaluation, we generate noiseless synthetic AR(p) sequences. We test if models learn the true
process by inspecting whether the trained model weights recover transfer functions specified by the
AR coefficients (Oppenheim, 1999). We use simple 1-layer 1-SSM models, with state-space size
equal to AR p, and predict one time-step given p lagged inputs (the smallest sufficient setting).

In Fig. 3 we compare the trained forecasts and transfer functions (as frequency response plots) of
SPACETIME, S4, and S4D models on a relatively smooth AR(4) process and sharp AR(6) process.
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Figure 3: AR(p) expressiveness benchmarks. SPACETIME captures AR processes more precisely than simi-
lar deep SSM models, forecasting future samples and learning ground-truth transfer functions more accurately.

Table 4: Longer horizon forecasting on Informer ETTh
datasets. Mean standardized MSE reported. SPACETIME ob-
tains lower MSE when trained to forecast longer horizons.

Dataset Horizon 720 960 1080 1440 1800 1920

ETTh1 NLinear 0.080 0.089 0.085 0.094 0.102 0.104
SPACETIME 0.075 0.074 0.072 0.080 0.081 0.088

ETTh2 NLinear 0.224 0.273 0.290 0.329 0.450 0.493
SPACETIME 0.188 0.225 0.265 0.299 0.438 0.459
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Figure 4: Forecasting transfer. Mean MSE (±1
SD). SPACETIME transfers more accurately and
consistently to new horizons than NLinear.

Our results support the relative expressivity of SPACETIME’s companion matrix SSM. While all
models accurately forecast the AR(4) time series, only SPACETIME recovers the ground-truth trans-
fer functions for both, and notably forecasts the AR(6) process more accurately (Fig. 3c, d).

4.2.2 LONG-HORIZON FORECASTING

To next study SPACETIME’s improved long horizon forecasting capabilities, we consider two addi-
tional long horizon tasks. First, we test on much longer horizons than prior settings (c.f., Table 1).
Second, we test a new forecasting ability: how well methods trained to forecast one horizon transfer
to longer horizons at test-time. For both, we use the popular Informer ETTh datasets. We compare
SPACETIME with NLinear—the prior state-of-the-art on longer-horizon ETTh datasets—an FCN
that learns a dense linear mapping between every lag input and horizon output (Zeng et al., 2022).

We find SPACETIME outperforms NLinear on both long horizon tasks. On training to predict long
horizons, SPACETIME consistently obtains lower MSE than NLinear on all settings (Table 4). On
transferring to new horizons, SPACETIME models trained to forecast 192 time-step horizons transfer
more accurately and consistently to forecasting longer horizons up to 576 time-steps (Fig. 4). This
suggests SPACETIME’s autoregressive forecasting more convincingly learns the time series process;
rather than only fitting to the specified horizon, the same model can generalize to new horizons.

4.2.3 EFFICIENCY
Table 5: Train wall-clock time.
ETTh1 seconds per epoch.

Method # params sec/epoch

SPACETIME 148k 66
→ No Algorithm 1 148k 132

S4 151k 49
Transformer 155k 240
LSTM 145k 336
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Figure 5: Wall-clock scaling.
SPACETIME scales near-linearly.

To finally study if our companion matrix algorithm enables efficient
training on long sequences, we conduct two speed benchmarks. We
(1) compare the wall-clock time per training epoch of SPACETIME
to standard sequence models, e.g., LSTMs and Transformers, with
similar pararemeter counts, and (2) empirically test our theory in
Sec. 3.3, which suggests SPACETIME trains near-linearly with se-
quence length and state dimension. For (1), we use ETTh1 data
with lag and horizon 720 time-steps long. For (2), we use synthetic
data, scaling sequences from 100−2000 time-steps long.

On (1) we find SPACETIME reduces clock time on ETTh1 by 73%
and 80% compared to Transformers and LSTMs (Table 5). Our
efficient algorithm (Sec. 3.3) is also important; it speeds up train-
ing by 2×, and makes SPACETIME’s training time competitive
with efficient models such as S4. On (2), we find SPACETIME
also scales near-linearly with input sequence length, achieving 91%
faster training time versus similarly recurrent LSTMs (Fig. 5).

5 CONCLUSION

We introduce SPACETIME, a state-space time series model. We achieve high expressivity by mod-
eling SSMs with the companion matrix, long-horizon forecasting with a closed-loop SSM variant,
and efficiency with a new algorithm to compute the companion SSM. We validate SPACETIME’s
proposed components on extensive time series forecasting and classification tasks.
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6 ETHICS STATEMENT

A main objective of our work is to improve the ability to classify and forecast time series, which has
real-world applications in many fields. These applications may have high stakes, such as classifying
abnormalities in medical time series. In these situations, incorrect predictions may lead to harmful
patient outcomes. It is thus critical to understand that while we aim to improve time series modeling
towards these applications, we do not solve these problems. Further analysis and development
into where models fail in time series modeling is necessary, including potentials intersections with
research directions such as robustness and model biases when aiming to deploy machine learning
models in real world applications.

7 REPRODUCIBILITY

We include code to reproduce our main results in Table 1 in the supplementary material. We pro-
vide training hyperparameters and dataset details for each benchmark in Appendix C, discussing
the Informer forecasting benchmark in Appendix C.1, the Monash forecasting benchmark in Ap-
pendix C.2, and the ECG and speech audio classification benchmarks in Appendix C.3. We provide
proofs for all propositions and algorithm complexities in Appendix B.
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A RELATED WORK

A.1 CLASSICAL APPROACHES

Classical approaches in time series modeling include the Box-Jenkins method (Box and Jenkins,
1968), exponential smoothing (Hyndman et al., 2008; Winters, 1960), autoregressive integrated
moving average (ARIMA) (Box et al., 1970), and state-space models (Hamilton, 1994). In such
approaches, the model is usually manually selected based analyzing time series features (e.g., sea-
sonality and order of non-stationarity), where the selected model is then fitted for each individ-
ual time series. While classical approaches may be more interpretable than recent deep learning
techniques, the domain expertise and manual labor needed to succesfully apply them renders them
infeasible to the common setting of modeling thousands, or millions, of time series.

A.2 DEEP LEARNING APPROACHES

Recurrent models. Common deep learning architectures for modeling sequence data are the family
of recurrent neural networks, which include GRUs (Chung et al., 2014), LSTMs (Hochreiter and
Schmidhuber, 1997), and DeepAR (Salinas et al., 2020). However, due to the recurrent nature of
RNNs, they are slow to train and may suffer from vanishing/exploding gradients, making them
difficult to train (Pascanu et al., 2013).
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Deep State Space models. Recent work has investigated combining the expressive strengths of
SSMs with the scalable strengths of deep neural networks (Rangapuram et al., 2018; Gu et al.,
2021a). Rangapuram et al. (2018) propose to train a global RNN that transforms input covariates
to sequence-spcific SSM parameters; however, one downside of this approach is that they inherit
the drawbacks of RNNs. More recent approaches, such as LSSL (Gu et al., 2021b), S4 (Gu et al.,
2021a), S4D (Gu et al., 2022), and S5 (Smith et al., 2022), directly parameterize the layers of a
neural network with multiple linear SSMs, and overcome common recurrent training drawbacks
by leveraging the convolutional view of SSMs. While deep SSM models have been shown great
promise in time series modeling, we show in our work – which builds off deep SSMs – that current
deep SSM approaches are not able to capture autoregressive processes due to their continuous nature.

Neural differential equations as nonlinear state spaces. (Chen et al., 2018) parametrizes the
vector field of continuous–time autonomous systems. These models, termed Neural Differential
Equations (NDEs) have seen extensive application to time series and sequences, first by Rubanova
et al. (2019) and then by Kidger et al. (2020); Morrill et al. (2021); Massaroli et al. (2021) with
the notable extension to Neural Controlled Differential Equations (Neural CDEs). Neural CDEs
can be considered the continuous–time, nonlinear version of state space models and RNNs (Kidger,
2022). Rather than introducing nonlinearity between linear state space layers, Neural CDEs model
nonlinear systems driven by a control input.

The NDE framework has been further applied by Poli et al. (2019) to model graph time series
via Neural Graph Differential Equations. In Queiruga et al. (2020), a continuous-depth ResNet
generalization based on ODEs is proposed, and in Kim et al. (2021) numerical techniques to enable
learning of stiff dynamical systems with Neural ODEs are investigated. The idea of parameterizing
the vector field of a differential equation with a neural network, popularized by NDEs, can be traced
back to earlier works (Funahashi and Nakamura, 1993; Zhang et al., 2014; Weinan, 2017).

Transformers. While RNNs and its variants have shown some success at time series modeling, a
major limitation is their applicability to long input sequences. Since RNNs are recurrent by nature,
they require long traversal paths to access past inputs, which leads to vanishing/exploding gradients
and as a result struggle with capturing long-range dependencies.

To counteract the long-range dependency problem with RNNs, a recent line of work considers Trans-
formers for time series modeling. The motivation is that due to the attention mechanism, a Trans-
former can directly model dependencies between any two points in the input sequence, indepen-
dently of how far apart the points are. However, the high expressivity of the attention mechanism
comes at the cost of the time and space complexity being quadratic in sequence length, making
Transformers infeasible for very long sequences. As a result, many works consider specialized
Transformer architectures with sparse attention mechanisms to bring down the quadratic complex-
ity. For example, Beltagy et al. (2020) propose LogSparse self-attention, where a cell attends to
a subset of past cells (as opposed to all cells), where closer cells are attended to more frequently,
proportional to the log of their distance, which brings down complexity from O(ℓ2) to O(ℓ(log ℓ)2).
Zhou et al. (2021) propose ProbSparse self-attention, which achieves O(ℓ log ℓ) time and memory
complexity, where they propose a generative style decoder to speed inference. Liu et al. (2022) pro-
pose a pyramidal attention mechanism which shows linear time and space complexity with sequence
length. Autoformer (Wu et al., 2021) suggests more specialization is needed in time series with a
decomposition forecasting architecture, which extracts long-term stationary trend from the seasonal
series and utilizes an auto-correlation mechanism, which discovers the period-based dependencies.
Zhou et al. (2022b) believes previous attempts of Transformer-based architectures do not capture
global statistical properties, and to do so requires an attention mechanism in the frequency domain.
Conformer (Gulati et al., 2020) stacks convolutional and self-attention modules into a shared layer to
combine the strengths of local interactions from convolutional modules and global interactions from
self-attention modules. Perceiver AR (Hawthorne et al., 2022) builds on the Perceiver architecture,
which reduces the computational complexity of transformers by performing self-attention in a latent
space, and extends Perceiver’s applicability to causal autoregressive generation.

While these works have shown exciting progress on time series forecasting, their proposed architec-
tures are specialized to handle specific time series settings (e.g., long input sequences, or seasonal
sequences), and are commonly trained to output a fixed target horizon length (Zhou et al., 2021),
i.e., as direct multi-step forecasting (DMS) Chevillon (2007). Thus, while effective at specific fore-
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casting tasks, their setups are not obviously applicable to a broad range of time series settings (such
as forecasting arbitrary horizon lengths, or generalizing to classification or regression tasks).

Moreover, Zeng et al. (2022) showed that simpler alternatives to Transformers, such as data
normalization plus a single linear layer (NLinear), can outperform these specialized Transformer
architectures when similarly trained to predict the entire fixed forecasting horizons. Their results
suggest that neither the attention mechanism nor the proposed modifications of these time series
Transformers may be best suited for time series modeling. Instead, the success of these prior works
may just be from learning to forecast the entire horizon with fully connected dependencies between
prior time-step inputs and future time-step outputs, where a fully connected linear layer is sufficient.

Other deep learning methods. Other works also investigate pure deep learning architectures with
no explicit temporal components, and show these models can also perform well on time series fore-
casting. Oreshkin et al. (2019) propose N-BEATS, a deep architecture based on backward and
forward residual links. Even simpler, Zeng et al. (2022) investigate single linear layer models for
time series forecasting. Both works show that simple architectures are capable of achieving high
performance for time series forecasting. In particular, with just data normalization, the NLinear
model in Zeng et al. (2022) obtained state-of-the-art performance on the popular Informer bench-
mark Zhou et al. (2021). Given an input sequence of past lag terms and a target output sequence of
future horizon terms, for every horizon output their model simply learns the fully connected depen-
dencies between that output and every input lag sample. However, FCNs such as NLinear also carry
inefficient downsides. Unlike Transformers and SSM-based models, the number of parameters for
FCNs scales directly with input and output sequence length, i.e., O(ℓh) for ℓ inputs and h outputs.
Meanwhile, SPACETIME shows that the SSM can improve the modeling quality of deep architec-
tures, while maintaining constant parameter count regardless of input or output length. Especially
when forecasting long horizons, we achieve higher forecasting accuracy with smaller models.

B PROOFS AND THEORETICAL DISCUSSION

B.1 EXPRESSIVITY RESULTS

Proposition 1. An SSM with a companion state matrix can represent

i. ARIMA (Box et al., 1970)

ii. Exponential smoothing

iii. Controllable LTI systems (Chen, 1984)

Proof of Proposition 1. We show each case separately. We either provide a set of algebraic manipu-
lations to obtain the desired model from a companion SSM, or alternatively invoke standard results
from signal processing and system theory.

i. We start with a standard ARMA(p, q) model

yk = uk +

q∑
i=1

θiuk−i +

p∑
i=1

ϕiyk−ipi

We consider two cases:

Case (1): Outputs y are a shifted (lag–1) version of the inputs u

yk+1 = yk +

q∑
i=1

θiyk−i +

p∑
i=1

ϕiyk−i+1pi

= (1 + ϕ1yk) +

q∑
i=1

(θi + ϕi+1)yk−i +

p∑
i=q+1

θiyk−i

(16)

where, without loss of generality, we have assumed that p > q for notational convenience. The
autoregressive system (16) is equivalent to
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[
A B
C D

]
=



0 0 . . . 0 0 1
1 0 . . . 0 0 0
...

... . . .
...

...
...

0 0 . . . 0 0 0
0 0 . . . 1 0 0

(1 + ϕ1) (θ1 + ϕ2) . . . θd−1 θd 0

 .

in state-space form, with x ∈ Rd and d = max(p, q). Note that the state-space formulation is not
unique.

Case (2): Outputs y are ”shaped noise”. The ARMA(p,q) formulation (classically) defines in-
puts u as white noise samples1, ∀k : p(uk) is a normal distribution with mean zero and some
variance. In this case, we can decompose the output as follows:

yar
k =

p∑
i=1

ϕiyk−ipi yma
k = uk +

q∑
i=1

θiuk−i

such that yk = yar
k + yma

k . The resulting state-space models are:

[
Aar Bar

Car Dar

]
=



0 0 . . . 0 0 1
1 0 . . . 0 0 0
...

... . . .
...

...
...

0 0 . . . 0 0 0
0 0 . . . 1 0 0
ϕ1 ϕ2 . . . ϕp−1 ϕp 0

 .

and

[
Ama Bma

Cma Dma

]
=



0 0 . . . 0 0 1
1 0 . . . 0 0 0
...

... . . .
...

...
...

0 0 . . . 0 0 0
0 0 . . . 1 0 0
θ1 θ2 . . . θq−1 θq 1

 .

Note that Aar ∈ Rp×p,Ama ∈ Rq×q . More generally, our method can represent any ARMA process
as the sum of two SPACETIME heads: one taking as input the time series itself, and one the driving
signal u.

ARIMA ARIMA processes are ARMA(p, q) applied to differenced time series. For example,
first-order differencing yk = uk − uk−1. Differencing corresponds to high–pass filtering of the
signal y, and can be thus be realized via a convolution (Strang and Nguyen, 1996).

Any digital filter that can be expressed as a difference equation admits a state–space representation
in companion form (Oppenheim, 1999), and hence can be learned by SPACETIME.

ii. Simple exponential smoothing (SES) (Brown, 1959)

yk = αyk−1 + α(1− α)yk−2 + · · ·+ α(1− α)p−1yk−p (17)

is an AR process with a parametrization involving a single scalar 0 < α < 1 and can thus be
represented in companion form as shown above.

iii. Let (A,B,C) be any controllable linear system. Controllability corresponds to invertibility
of the Krylov matrix (Chen, 1984, Thm 6.1, p145)

K(A,B) = [B,AB, . . . ,Ad−1B], K(A,B) ∈ Rd×d.

From rank(K) = d, it follows that there exists a a ∈ Rd

a0B + a1AB + · · ·+ ad−1A
d−1B +AdB = 0.

1Other formulations with forecast residuals are also common.
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Thus

AK = [AB,A2B, . . . ,AdB]

= [AB,A2B, . . . ,Ad−1B︸ ︷︷ ︸
column left shift of K

, −(a0B + a1Ab+ · · ·+ ad−1A
d−1B)︸ ︷︷ ︸

linear combination, columns of K

]

= K(Sf − ae⊤d−1)

where G = (Sf − ae⊤d−1) is a companion matrix.

AK = KG ⇐⇒ G = K−1AK.

Therefore G is similar to A. We can then construct a companion form state space (G,B,C,D)
from A using the relation above.

Proposition 2. No class of continuous-time LSSL SSMs can represent the noiseless AR(p) process.

Proof of Proposition 2. Recall from Sec. 3.1.1 that a noiseless AR(p) process is defined by

yt =

p∑
i=1

ϕiyt−i = ϕ1yt−1 + . . .+ ϕpyt−p (18)

with coefficients ϕ1, . . . , ϕp. This is represented by the SSM

xt+1 = Sxt +But (19)
yt = Cxt +Dut (20)

when S ∈ Rp×p is the shift matrix, B ∈ Rp×1 is the first basis vector e1, C ∈ R1×p is a vector of
coefficients ϕ1, . . . , ϕp, and D = 0, i.e.,

S =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 0

 , B = [1 0 . . . 0]
T
, C = [ϕ1 . . . ϕp] (21)

We prove by contradiction that a continuous-time LSSL SSM cannot represent such a process. Con-
sider the following solutions to a continuous-time system and a system (18), both in autonomous
form

xcontt+1 = eAxt xdisct+1 = Sxt.

It follows
xcontt+1 = xdisct+1 ⇐⇒ eA = S

⇐⇒ A = log (S).

we have reached a contradiction by (Culver, 1966, Theorem 1), as S is singular by definition and
thus its matrix logarithm does not exist.

B.2 EFFICIENCY RESULTS

We first prove that Algorithm 1 yields the correct output filter F y . We then analyze its time com-
plexity, showing that it takes time O(ℓ log ℓ + d log d) for sequence length ℓ and state dimension
d.
Theorem 1. Algorithm 1 returns the filter F y = (CB, . . . ,CAℓ−1B).
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Proof. We follow the outline of the proof in Section 3.3. Instead of computing F y directly, we
compute its spectrum (its discrete Fourier transform):

F̃ y[m] := F(F y) =

ℓ−1∑
j=0

CAjωmjB = C(I−Aℓ)(I−Aωm)−1B = C̃(I−Aωm)−1B, m = 0, 1, . . . , ℓ−1.

where ω = exp(−2πi/ℓ) is the ℓ-th root of unity.

This reduces to computing the quadratic form of the resolvent (I −Aωm)−1 on the roots of unity
(the powers of ω). Since A is a companion matrix, we can write A as a shift matrix plus a rank-1
matrix, A = S + aeTd , where ed is the d-th basis vector [0, . . . , 0, 1] and the shift matrix S is:

S =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

Thus Woodbury’s matrix identity (i.e., Sherman–Morrison formula) yields:

(I −Aωm)−1 = (I − ωmS − ωmae⊤d )
−1

= (I − ωmS)−1 +
(I − ωmS)−1ωmae⊤d (I − ωmS)−1

1− ωme⊤d (I − ωmS)−1a
.

This is the resolvent of the shift matrix (I − ωmS)−1, with a rank-1 correction. Hence

F̃ y = C̃(I − ωmS)−1B +
C̃(I − ωmS)−1ae⊤d (I − ωmS)−1B

ω−m − e⊤d (I − ωmS)−1a
. (22)

We now need to derive how to compute the quadratic form of a resolvent of the shift matrix effi-
ciently. Fortunately the resolvent of the shift matrix has a very special structure that closely relates
to the Fourier transform. We show analytically that:

(I − ωmS)−1 =


1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1

 .
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It is easy to verify by multiplying this matrix with I − ωmS to see if we obtain the identity matrix.
Recall that multiplying with S on the left just shifts all the columns down by one index. Therefore:

1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1

 (I − ωmS)

=


1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1

− ωmS


1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1



=


1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1

− ωm


0 0 . . . 0 0
1 0 . . . 0 0
ωm 1 . . . 0 0

...
...

. . .
...

...
ω(d−2)m ω(d−3)m . . . 1 0



=


1 0 . . . 0 0
ωm 1 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ωm 1

−


0 0 . . . 0 0
ωm 0 . . . 0 0
ω2m ωm . . . 0 0

...
...

. . .
...

...
ω(d−1)m ω(d−2)m . . . ω 0


=I.

Thus the resolvent of the shift matrix indeed has the form of a lower-triangular matrix containing
the roots of unity.

Now that we have the analytic formula of the resolvent, we can derive its quadratic form, given some
vectors u, v ∈ Rd. Substituting in, we have

uT (I − ωmS)−1v = u1v1 + u2v1ω
m + u2v2 + u3v1ω

2m + u3v2ω
m + u3v1 + . . . .

Grouping terms by powers of ω, we see that we want to compute u1v1 + u2v2 + · · · + udvd, then
u2v1 +u3v2 + · · ·+udvd−1, and so on. The term corresponding to ωkm is exactly the k-th element
of the linear convolution u∗v. Define q = u∗v, then uT (I−ωmS)−1v is just the Fourier transform
of u ∗ v. To deal with the case where d > ℓ, we note that the powers of roots of unity will repeat, so
we just need to extend the output of u ∗ v to be multiples of ℓ, then split them into chunk of size ℓ,
then sum them up and take the length-ℓ Fourier transform. This is exactly the procedure quad(u, v)
defined in Algorithm 1.

Once we have derived the quadratic form of the resolvent (I −ωmS)−1, simply plugging it into the
Woodbury’s matrix identity (Equation (22)) yields Algorithm 1.

We analyze the algorithm’s complexity.
Theorem 2. Algorithm 1 has time complexity O(ℓ log ℓ + d log d) for sequence length ℓ and state
dimension d.

Proof. We see that computing the quadratic form of the resolvent (I − ωmS)−1 involves a linear
convolution of size d and a Fourier transform of size ℓ. The linear convolution can be done by
performing an FFT of size 2d on both inputs, multiply them pointwise, then take the inverse FFT of
size 2d. This has time complexity O(d log d). The Fourier transform of size ℓ has time complexity
O(ℓ log ℓ).

The whole algorithm needs to compute four such quadratic form, hence it takes time O(ℓ log ℓ +
d log d).
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Remark. We see that the algorithm easily extends to the case where the matrix A is a companion
matrix plus low-rank matrix (of some rank k). We can write A as the sum of the shift matrix and a
rank-(k+1) matrix (since A itself is the sum of a shift matrix and a rank-1 matrix). Using the same
strategy, we can use the Woodbury’s matrix identity for the rank-(k+1) case. The running time will
then scale as O(k(ℓ log ℓ+ d log d)).

B.3 COMPANION MATRIX STABILITY

Normalizing companion parameters for bounded gradients
Proposition 3 (Bounded SPACETIME Gradients). Given s, the norm of the gradient of a SPACE-
TIME layer is bounded for all k < s if

d−1∑
i=0

|ai| = 1

Proof. Without loss of generality, we assume x0 = 0. Since the solution at time s is

ys = C

s−1∑
i−1

As−i−1Bui

we compute the gradient w.r.t uk as
dys
duk

= CAs−k−1B. (23)

The largest eigenvalue of A
max{eig(A)} =

≤ max
{
1,

d−1∑
i=0

|ai|
}

Corollary of Gershgorin (Hirst and Macey, 1997, Theorem 1)

= 1 using
∑
i

|ai| = 1

is 1, which implies convergence of the operator CAs−k−1B. Thus, the gradients are bounded.

We use the proposition above to ensure gradient boundedness in SPACETIME layers by normalizing
a every forward pass.

C EXPERIMENT DETAILS

C.1 INFORMER FORECASTING

Dataset details. In Table 1, we evaluate all methods with datasets and horizon tasks from the In-
former benchmark (Zhou et al., 2021). We use the datasets and horizons evaluated on in recent
works (Wu et al., 2021; Zhou et al., 2022b;a; Zeng et al., 2022), which evaluate on electricity trans-
former temperature time series (ETTh1, ETTh2, ETTm1, ETTm2) with forecasting horizons {96,
192, 336, 720}. We extend this comparison in Appendix D.2 to all datasets and forecasting horizons
in Zhou et al. (2021), which also consider weather and electricity (ECL) time series data.

Training details. We train SPACETIME on all datasets for 50 epochs using AdamW opti-
mizer (Loshchilov and Hutter, 2017), cosine scheduling, and early stopping based on best validation
standardized MSE. We performed a grid search over number of SSMs {64, 128} and weight decay
{0, 0.0001}. Like prior forecasting works, we treat the input lag sequence as a hyperparameter, and
train to predict each forecasting horizon with either 336 or 720 time-step-long input sequences for
all datasets and horizons. For all datasets, we use a 3-layer SPACETIME network with 128 SSMs
per layer. We train with learning rate 0.01, weight decay 0.0001, batch size 32, and dropout 0.25.

Hardware details. All experiments were run on a single NVIDIA Tesla P100 GPU.
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C.2 MONASH FORECASTING

The Monash Time Series Forecasting Repository (Godahewa et al., 2021) provides an extensive
benchmark suite for time series forecasting models, with over 30 datasets (including various config-
urations) spanning finance, traffic, weather and medical domains. We compare SPACETIME against
13 baselines provided by the Monash benchmark: simple exponential smoothing (SES) (Gard-
ner Jr, 1985), Theta (Assimakopoulos and Nikolopoulos, 2000), TBATS (De Livera et al., 2011),
ETS (Winters, 1960), DHR–ARIMA (Hyndman and Athanasopoulos, 2018), Pooled Regression
(PR) (Trapero et al., 2015), CatBoost (Dorogush et al., 2018), FFNN, DeepAR (Salinas et al., 2020),
N-BEATS Oreshkin et al. (2019), WaveNet (Oord et al., 2016), vanilla Transformer (Vaswani et al.,
2017). A complete list of the datasets considered and baselines, including test results (average
RMSE across 3 seeded runs) is available in Table 20.

Training details. We optimize SPACETIME on all datasets using Adam optimizer for 40 epochs
with a linear learning rate warmup phase of 20 epochs and cosine decay. We initialize learning rate
at 0.001, reach 0.004 after warmup, and decay to 0.0001. We do not use weight decay or dropout.

We perform a grid search over number of layers {3, 4, 5, 6}, number of SSMs per layer {8, 16,
32, 64, 128} and number of channels (width of the model) {1, 4, 8, 16}. Hyperparameter tuning is
performed for each dataset. We pick the model based on best validation RMSE performance.

Hardware details. All experiments were run on a single NVIDIA GeForce RTX 3090 GPU.

C.3 TIME SERIES CLASSIFICATION

ECG classification (motivation and dataset description). Electrocardiograms (ECG) are com-
monly used as one of the first examination tools for assessing and diagnosing cardiovascular dis-
eases, which are a major cause of mortality around the world (Amini et al., 2021). However, ECG in-
terpretation remains a challenging task for cardiologists and general practitioners (Jablonover et al.,
2014; Cook et al., 2020). Incorrect interpretation of ECG can result in misdiagnosis and delayed
treatment, which can be potentially life-threatening in critical situations such as emergency rooms,
where an accurate interpretation is needed quickly.

To mitigate these challenges, deep learning approaches are increasingly being applied to interpret
ECGs. These approaches have been used for predicting the ECG rhythm class (Hannun et al., 2019),
detecting atrial fibrillation (Attia et al., 2019b), rare cardiac diseases like cardiac amyloidosis (Goto
et al., 2021), and a variety of other abnormalities (Attia et al., 2019a; Siontis et al., 2021). Deep
learning approaches have shown preliminary promise in matching the performance of cardiologists
and emergency residents in triaging ECGs, which would permit accurate interpretations in settings
where specialists may not be present (Ribeiro et al., 2020; Hannun et al., 2019).

We use the publicly available PTB-XL dataset (Wagner et al., 2020a;b; Goldberger et al., 2000),
which contains 21,837 12-lead ECG recordings of 10 seconds each obtained from 18,885 patients.
Each ECG recording is annotated by up to two cardiologists with one or more of the 71 ECG state-
ments (labels). These ECG statements conform to the SCP-ECG standard (Secretary, 2009). Each
statement belongs to one or more of the following three categories – diagnostic, form, and rhythm
statements. The diagnostic statements are further organised in a hierarchy containing 5 superclasses
and 24 subclasses.

This provides six sets of annotations for the ECG statements based on the different categories and
granularities: all (all ECG statements), diagnostic (only diagnostic statements including both sub-
class and superclass statements), diagnostic subclass (only diagnostic subclass statements), diag-
nostic superclass (only diagnostic superclass statements), form (only form statements), and rhythm
(only rhythm statements). These six sets of annotations form different prediction tasks which are re-
ferred to as all, diag, sub-diag, super-diag, form, and rhythm respectively. The diagnostic superclass
task is multi-class classification, and the other tasks are multi-label classification.

ECG classification training details. To tune SPACETIME and S4, we performed a grid search over
the learning rate {0.01, 0.001}, model dropout {0.1, 0.2}, number of SSMs per layer {128, 256},
and number of layers {4, 6}, and chose the parameters that resulted in highest validation AUROC.
The SSM state dimension was fixed to 64, with gated linear units as the non-linearity between
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stacked layers. We additionally apply layer normalization. We use a cosine learning rate scheduler,
with a warmup period of 5 epochs. We train all models for 100 epochs.

Speech Commands training details. To train SPACETIME, we use the same hyperparameters used
by S4: a learning rate of 0.01 with a plateau scheduler with patience 20, dropout of 0.1, 128 SSMs
per layer, 6 layers, batch normalization, trained for 200 epochs.

Hardware details. For both ECG and Speech Commands, all experiments were run on a single
NVIDIA Tesla A100 Ampere 40 GB GPU.

D EXTENDED EXPERIMENTAL RESULTS

D.1 EXPRESSIVITY ON DIGITAL FILTERS

We experimentally verify whether SPACETIME can approximate the input–output map of digital
filter admitting a state–space representation, with improved generalization over baseline models
given test inputs of unseen frequencies.

We generate a dataset of 1028 sinusoidal signals of length 200

x(t) = sin (2πωt)

where ω ∈ [2, 40]
⋃

[50, 100] in the training set and ω ∈ (40, 50) in the test set. The outputs are
obtained by filtering x, i.e., y = F(x) where F is in the family of digital filters.

We introduce common various sequence-to-sequence layers or models as baselines: the original S4
diagonal plus low–rank (Gu et al., 2021a), a single-layer LSTM, a single 1d convolution (Conv1d),
a dense linear layer (NLinear), a single self–attention layer. All models are trained for 800 epochs
with batch size 256, learning rate 10−3 and Adam. We repeat this experiment for digital filters of
different orders (Oppenheim, 1999). The results are shown in Figure 8. SPACETIME learns to match
the frequency response of the target filter, producing the correct output for inputs at test frequencies.

Table 6: Comparing sequence models on the task of approximating the input–output map defined by
digital filters of different orders. Test RMSE on held-out inputs at unseen frequencies.

Filter Order SPACETIME S4 Conv1D LSTM NLinear Transformer

Butterworth 2 0.0055 0.0118 0.0112 0.0115 1.8420 0.5535
3 0.0057 0.3499 0.0449 0.0231 1.7085 0.6639
10 0.0039 0.8077 0.4747 0.2753 1.5162 0.7191

Chebyshev 1 2 0.0187 0.0480 0.0558 0.0285 1.9313 0.2452
3 0.0055 0.0467 0.0615 0.0178 1.8077 0.4028
10 0.0620 0.6670 0.1961 0.1463 1.5069 0.7925

Chebyshev 2 2 0.0112 0.0121 0.0067 0.0019 0.4101 0.0030
3 0.0201 0.0110 0.0771 0.0102 0.4261 0.0088
10 0.0063 0.6209 0.3361 0.1911 1.5584 0.7936

Elliptic 2 0.0001 0.0300 0.0565 0.0236 1.9150 0.2445
3 0.0671 0.0868 0.0551 0.0171 1.8782 0.4198
10 0.0622 0.0909 0.1352 0.1344 1.4901 0.7368

D.2 INFORMER FORECASTING

Univariate long horizon forecasts with Informer splits. Beyond the ETT datasets and horizons
evaluated on in Table 7, we also compare SPACETIME to alternative time series methods on the
complete datasets and horizons used in the original Informer paper (Zhou et al., 2021). We compare
against recent architectures which similarly evaluate on these settings, including ETSFormer (Woo
et al., 2022), SCINet (Liu et al., 2021), and Yformer (Madhusudhanan et al., 2021), and other com-
parison methods found in the Informer paper, such as Reformer (Kitaev et al., 2020) and ARIMA.
SPACETIME obtains best results on 20 out of 25 settings, the most of any method.
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Table 7: Univariate forecasting results on Informer datasets. Best results in bold. SPACETIME obtains best
MSE on 19 out of 25 and best MAE on 20 out of 25 dataset and horizon tasks.

Methods SPACETIME ETSFormer SCINet S4 Yformer Informer LogTrans Reformer N-BEATS DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.026 0.124 0.030 0.132 0.031 0.132 0.061 0.191 0.082 0.230 0.098 0.247 0.103 0.259 0.222 0.389 0.042 0.156 0.107 0.280 0.108 0.284 0.115 0.275
48 0.038 0.153 0.041 0.154 0.051 0.173 0.079 0.220 0.139 0.308 0.158 0.319 0.167 0.328 0.284 0.445 0.065 0.200 0.162 0.327 0.175 0.424 0.168 0.330
168 0.066 0.209 0.065 0.203 0.081 0.222 0.104 0.258 0.111 0.268 0.183 0.346 0.207 0.375 1.522 1.191 0.106 0.255 0.239 0.422 0.396 0.504 1.224 0.763
336 0.069 0.212 0.071 0.215 0.094 0.242 0.080 0.229 0.195 0.365 0.222 0.387 0.230 0.398 1.860 1.124 0.127 0.284 0.445 0.552 0.468 0.593 1.549 1.820
720 0.075 0.226 0.079 0.227 0.176 0.343 0.116 0.271 0.226 0.394 0.269 0.435 0.273 0.463 2.112 1.436 0.269 0.422 0.658 0.707 0.659 0.766 2.735 3.253

E
T

T
h2

24 0.064 0.189 0.087 0.232 0.070 0.194 0.095 0.234 0.082 0.221 0.093 0.240 0.102 0.255 0.263 0.437 0.078 0.210 0.098 0.263 3.554 0.445 0.199 0.381
48 0.095 0.230 0.112 0.263 0.102 0.242 0.191 0.346 0.172 0.334 0.155 0.314 0.169 0.348 0.458 0.545 0.123 0.271 0.163 0.341 3.190 0.474 0.304 0.462
168 0.144 0.300 0.169 0.325 0.157 0.311 0.167 0.333 0.174 0.337 0.232 0.389 0.246 0.422 1.029 0.879 0.244 0.393 0.255 0.414 2.800 0.595 2.145 1.068
336 0.169 0.333 0.216 0.379 0.177 0.340 0.189 0.361 0.224 0.391 0.263 0.417 0.267 0.437 1.668 1.228 0.270 0.418 0.604 0.607 2.753 0.738 2.096 2.543
720 0.188 0.352 0.226 0.385 0.253 0.403 0.187 0.358 0.211 0.382 0.277 0.431 0.303 0.493 2.030 1.721 0.281 0.432 0.429 0.580 2.878 1.044 3.355 4.664

E
T

T
m

1

24 0.010 0.074 0.013 0.084 0.019 0.088 0.024 0.117 0.024 0.118 0.030 0.137 0.065 0.202 0.095 0.228 0.031 0.117 0.091 0.243 0.090 0.206 0.120 0.290
48 0.019 0.101 0.020 0.107 0.045 0.143 0.051 0.174 0.048 0.173 0.069 0.203 0.078 0.220 0.249 0.390 0.056 0.168 0.219 0.362 0.179 0.306 0.133 0.305
96 0.026 0.121 0.030 0.132 0.072 0.198 0.086 0.229 0.143 0.311 0.194 0.372 0.199 0.386 0.920 0.767 0.095 0.234 0.364 0.496 0.272 0.399 0.194 0.396
288 0.051 0.176 0.053 0.179 0.117 0.266 0.160 0.327 0.150 0.316 0.401 0.554 0.411 0.572 1.108 1.245 0.157 0.311 0.948 0.795 0.462 0.558 0.452 0.574
672 0.078 0.220 0.075 0.214 0.180 0.328 0.292 0.466 0.305 0.476 0.512 0.644 0.598 0.702 1.793 1.528 0.207 0.370 2.437 1.352 0.639 0.697 2.747 1.174

W
ea

th
er

24 0.088 0.205 - - - - 0.125 0.254 - - 0.117 0.251 0.136 0.279 0.231 0.401 - - 0.128 0.274 0.219 0.355 0.302 0.433
48 0.134 0.258 - - - - 0.181 0.305 - - 0.178 0.318 0.206 0.356 0.328 0.423 - - 0.203 0.353 0.273 0.409 0.445 0.536
168 0.221 0.349 - - - - 0.198 0.333 - - 0.266 0.398 0.309 0.439 0.654 0.634 - - 0.293 0.451 0.503 0.599 2.441 1.142
336 0.268 0.380 - - - - 0.300 0.417 - - 0.297 0.416 0.359 0.484 1.792 1.093 - - 0.585 0.644 0.728 0.730 1.987 2.468
720 0.345 0.451 - - - - 0.245 0.375 - - 0.359 0.466 0.388 0.499 2.087 1.534 - - 0.499 0.596 1.062 0.943 3.859 1.144

E
C

L

48 0.184 0.306 - - - - 0.222 0.350 0.194 0.322 0.239 0.359 0.280 0.429 0.971 0.884 - - 0.204 0.357 0.879 0.764 0.524 0.595
168 0.250 0.353 - - - - 0.331 0.421 0.260 0.361 0.447 0.503 0.454 0.529 1.671 1.587 - - 0.315 0.436 1.032 0.833 2.725 1.273
336 0.288 0.382 - - - - 0.328 0.422 0.269 0.375 0.489 0.528 0.514 0.563 3.528 2.196 - - 0.414 0.519 1.136 0.876 2.246 3.077
720 0.355 0.446 - - - - 0.428 0.494 0.427 0.479 0.540 0.571 0.558 0.609 4.891 4.047 - - 0.563 0.595 1.251 0.933 4.243 1.415
960 0.393 0.478 - - - - 0.432 0.497 0.595 0.573 0.582 0.608 0.624 0.645 7.019 5.105 - - 0.657 0.683 1.370 0.982 6.901 4.260

Count 19 20 2 2 0 0 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8: Multivariate forecasting results on Informer datasets. Best results in bold. SPACETIME obtains
MSE and MAE competitive with NLinear, the prior state-of-the-art.

Methods SPACETIME NLinear FiLM S4 FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 720 0.499 0.480 0.440 0.453 0.465 0.472 1.074 0.814 0.506 0.507 0.514 0.512 1.181 0.865
ETTh2 720 0.402 0.434 0.394 0.436 0.439 0.456 2.973 1.333 0.463 0.474 0.515 0.511 3.647 1.625
ETTm1 720 0.408 0.415 0.433 0.422 0.420 0.420 0.738 0.655 0.543 0.49 0.671 0.561 1.166 0.823
ETTm2 720 0.358 0.378 0.368 0.384 0.393 0.422 2.074 1.074 0.421 0.415 0.433 0.432 3.379 1.338

Multivariate signals. We additionally compare the performance of SPACETIME to state-of-the-art
comparison methods on ETT multivariate settings. We focus on horizon length 720, the longest
evaluated in prior works. In Table 8, we find SPACETIME is competitive with NLinear, which
achieves best performance among compparison methods. SPACETIME also notably outperforming
S4 by large margins, supporting the companion matrix representation once more.

D.3 MONASH FORECASTING

We report the results across all datasets in Table 20. We also investigate the performance of models
by aggregating datasets based on common characteristics. Concretely, we generate sets of tasks2

based on the following properties:

• Large dataset: the dataset contains more than 2000 effective training samples.

• Long context: the models are provided a context of length greater than 20 as input.

• Long horizon: and the models are asked to forecast longer than 20 steps in the future.

Figure 6 shows the average x/13 model ranking in terms of test RMSE across splits. We contex-
tualize SPACETIME results with best classical and deep learning methods (TBATS and DeepAR).
SPACETIME relative performance is noticeably higher when context and forecasting horizons are
longer, and when a larger number of samples is provided during training.

2A task can belong to multiple splits, resulting in overlapping splits. For example, a task can involve both
long context as well as long forecasting horizon.
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Figure 6: Relative test RMSE rankings (∗/13 models) across different slices of the 33 datasets in the Monash
repository (Godahewa et al., 2021). SPACETIME sets best overall ranking across all tasks and is significantly
more accurate on tasks involving long forecast horizon and larger number of training samples.

D.4 ECG CLASSIFICATION

In addition to our results table in the main paper, we also provide the mean and standard deviations
of the two models we ran in house (SPACETIME and S4) in Table 9.

Table 9: ECG statement classification on PTB-XL (100 Hz version). We report the mean and standard
deviation over three random seeds for the three methods we ran in house.

Task AUROC All Diag Sub-diag Super-diag Form Rhythm

SPACETIME 93.6(0.13) 94.1(0.12) 93.3(0.34) 92.9(0.09) 88.3(0.63) 96.7(0.05)
S4 93.8(0.38) 93.9(0.15) 92.9(0.11) 93.1(0.07) 89.5(0.66) 97.7(0.04)
Transformer 85.7(0.30) 87.6(0.41) 88.2(0.20) 88.7(0.28) 77.1(0.45) 83.1(0.72)

D.5 EFFICIENCY RESULTS

We additionally empirically validate that SPACETIME trains in near-linear time with horizon se-
quence length. We also use synthetic data, scaling horizon from 1− 1000.
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Figure 7: Train wall-clock time as we scale horizon length for SPACETIME, S4, LSTM, and Trans-
former.
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D.6 SPACETIME ABLATIONS

To better understand how the proposed SPACETIME SSMs lead to the improved empirical perfor-
mance, we include ablations on the individual closed-loop forecasting SSM (Section 3.2) and pre-
processing SSMs (Section 3.1.3).

D.6.1 CLOSED-LOOP FORECASTING SSM

To study how the closed-loop SSM improves long horizon forecasting accuracy, we remove the
closed-loop SSM component in our default SPACETIME forecasting architecture (c.f., Appendix D.7,
and compare the default SPACETIME with one without any closed-loop SSMs on Informer forecast-
ing tasks. For models without closed-loop SSMs, we replace the last layer with the standard “open-
loop” SSM framework in Section 3.1.2), and keep all other layers the same. Finally, for baseline
comparison against another SSM without the closed-loop component, we compare against S4.

In Table 10, we report standardized MSE on Informer ETT datasets. Adding the closed-loop SSM
consistently improves forecasting accuracy, on average lowering relative MSE by 33.2%. Mean-
while, even without the closed-loop SSM, SPACETIME outperforms S4, again suggesting that the
companion matrix parameterization is beneficial for autoregressive time series forecasting.

Table 10: Closed-loop SSM Ablation We ablate the closed-loop SSM component in SPACETIME, comparing
against the prior S4 SSM on four Informer time series forecasting tasks. Removing the closed-loop SSM
consistently hurts forecasting accuracy for SPACETIME.

ETTh1 (720) ETTh2 (720) ETTm1 (720) ETTm2 (720)

Method / Ablation MSE MAE MSE MAE MSE MAE MSE MAE

SPACETIME 0.076 0.222 0.188 0.352 0.074 0.213 0.166 0.318
SPACETIME No Closed-loop 0.114 0.271 0.278 0.431 0.156 0.310 0.213 0.365
S4 (No Closed-loop) 0.190 0.355 0.630 0.662 0.254 0.433 0.482 0.567

D.6.2 PREPROCESSING SSM

To study how the preprocessing SSM improves long horizon forecasting accuracy, we next compare
how SPACETIME performs with and without the weight-initializing preprocessing SSMs introduced
in Section 3.1.3. We compare the default SPACETIME architecture (Table 12 with (1) replacing
the preprocessing SSMs with randomly initialized default companion SSMs, and (2) removing the
preprocessing SSMs altogether. For the former, we preserve the number of layers, but now train
the first-layer SSM weights. For the latter, there is one-less layer, but the same number of trainable
parameters (as we fix and freeze the weights for each preprocessing SSM).

In Table 11, we report standardized MSE on Informer ETT datasets. We find fixing the first layer
SSMs of a SPACETIME network to preprocessing SSMs consistently improves forecasting perfor-
mance, achieving 4.55% lower MSE on average than the ablation with just trainable companion
matrices. Including the preprocessing layer also improves MSE by 9.26% on average compared to
removing the layer altogether. These results suggest that preprocessing SSMs are beneficial for time
series forecasting, e.g., by performing classic time series modeling techniques on input data. Unlike
other approaches, SPACETIME is able to flexibly and naturally incorporate these operations into its
network layers via simple weight initializations of the same general companion SSM structure.

Table 11: Preprocessing SSM Ablation We ablate the preprocessing SSM layer in SPACETIME, comparing
against either replacing the SSMs with companion SSMs (Companion) or removing the layer (Removed).
Including preprocessing SSMs consistently improves forecasting accuracy.

ETTh1 (720) ETTh2 (720) ETTm1 (720) ETTm2 (720)

Method / Ablation MSE MAE MSE MAE MSE MAE MSE MAE

SpaceTime 0.076 0.222 0.188 0.352 0.074 0.213 0.166 0.318
SpaceTime No Preprocessing (Companion) 0.076 0.224 0.194 0.358 0.079 0.218 0.182 0.336
SpaceTime No Preprocessing (Removed) 0.078 0.227 0.204 0.367 0.087 0.232 0.188 0.326
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D.7 SPACETIME ARCHITECTURES

We provide the specific SPACETIME architecture configurations used for forecasting and classifi-
cation tasks. Each configuration follows the general architecture presented in Section 3.1 and Fig-
ure 2, and consists of repeated Multi-SSM SPACETIME layers. We first provide additional details on
specific instantiations of the companion SSMs we use in our models, e.g., how we instantiate pre-
processing SSMs to recover specific techniques (Section 3.1.3). We then include the layer-specific
details of the number and type of SSM used in each network.

D.7.1 SPECIFIC SSM PARAMETERIZATIONS

In Section 3.1.1, we described the general form of the companion SSM used in this work. By default,
for any individual SSM we learn the a column in A and the vectors B,C as trainable parameters in
a neural net module. We refer to these SSMs specifically as companion SSMs.

In addition, as discussed in Sections 3.1.1 and 3.1.3, we can also fix a, B, or C to specific values
to recover useful operations when computing the SSM outputs. We describe specific instantiations
of the companion SSM used in our models below (with dimensionality referring to one SSM).

Shift SSM. We fix the a vector in the companion state matrix A ∈ Rd×d to the 0 vector ∈ Rd,
such that A is the shift matrix (see Eq. 21 for an example). This is a generalization of a 1-D “sliding
window” convolution with fixed kernel size equal to SSM state dimension d. To see how, note that
if B is also fixed to the first basis vector e1 ∈ Rd×1, then this exactly recovers a 1-D convolution
with kernel determined by C.

Differencing SSM. As a specific version of the preprocessing SSM discussed in Section 3.1.3, we
fix a = 0, B = e1, and set C to recover various order differencing when computing the SSM, i.e.,

C = [1 0 0 0 0 . . . 0] (0-order differencing, i.e., an identity function) (24)

C = [1 −1 0 0 0 . . . 0] (1st-order differencing) (25)

C = [1 −2 1 0 0 . . . 0] (2nd-order differencing) (26)

C = [1 −3 3 −1 0 . . . 0] (3rd-order differencing) (27)

In this work, we only use the above 0, 1st, 2nd, or 3rd-order differencing instantiations. With
multiple differencing SSMs in a multi-SSM SPACETIME layer, we initialize differencing SSMs by
running through the orders repeatedly in sequence. For example, given five differencing SSMs, the
first four SSMs perform 0, 1st, 2nd, and 3rd-order differencing respectively, while the fifth performs
0-order differencing again.

Moving Average Residual (MA residual) SSM. As another version of the preprocessing SSM, we
can fix a = 0, B = e1, and set C such that the SSM outputs sample residuals from a moving
average applied over the input sequence. For an n-order moving average, we compute outputs with
C specified as

C = [1− 1/n, −1/n, . . . −1/n, 0 . . . 0] (n-order moving average residual) (28)

For each MA residual SSM, we randomly initialize the order by uniform-randomly sampling an
integer in the range [4, d], where d is again the state-space dimension size (recall C ∈ R1×d). We
pick 4 as a heuristic which was not finetuned; we leave additional optimization here for further work.

D.7.2 TASK-SPECIFIC SPACETIME ARCHITECTURES

Here, we provide layer-level details on the SPACETIME networks used in this work. For each task,
we describe number of layers, number of SSMs per layer, state-space dimension (fixed for all SSMs
in a network), and which SSMs are used in each layer.

Expanding on this last detail, as previously discussed in Section 3.1.2, in each SPACETIME layer we
can specify multiple SSMs in each layer, computing their outputs in parallel to produce a multidi-
mensional output that is fed as the input to the next SPACETIME layer. The “types” of SSMs do not
all have to be the same per layer, and we list the type (companion, shift, differencing, MA residual)
and closed-loop designation (standard, closed-loop) of the SSMs in each layer below.

For an additional visual overview of a SPACETIME network, please refer back to Figure 2.
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Table 12: SPACETIME forecasting architecture. For all SSMs, we keep state-space dimension d =
128. Repeated Identity denotes repeating the input to match the number of SSMs in the next layer,
i.e., 128 SSMs in this case. For each forecasting task, d′ denotes time series samples’ number of
features, ℓ denotes the lag size (number of past samples given as input), and h denotes the horizon
size (number of future samples to be predicted).

Layer Details Input Size Output Size

Decoder Linear 128× ℓ d′ × h

SSM Layer 3
[

Companion
(closed-loop)

]
× 128 128× ℓ 128× ℓ

SSM Layer 2
[

Companion
(standard)

]
× 128 128× ℓ 128× ℓ

SSM Layer 1

[
Differencing

(standard)

]
× 64

[
MA Residual

(standard)

]
× 64

128× ℓ 128× ℓ

Encoder Repeated Identity d’ × ℓ 128× ℓ

Forecasting: Informer and Monash. We describe the architecture in Table 12. We treat the first
SPACETIME layer as “preprocessing” layer, which performs differencing and moving average resid-
ual operations on the input sequence. We treat the last SPACETIME layer as a “forecasting” layer,
which autoregressively outputs future horizon predictions given the second-to-last layer’s outputs as
an input sequence.

Classification: ECG. We describe the architectures for each ECG classification task in Tables 13–
18. For all models, we use state-space dimension d = 64. As described in the experiments, for
classification we compute logits with a mean pooling over the output sequence, where pooling is
computed over the sequence length.

Classification: Speech Audio. We describe the architecture for the Speech Audio task in Table 19.
We use state-space dimension d = 1024. As described in the experiments, for classification we
compute logits with a mean pooling over the output sequence, where pooling is computed over the
sequence length.
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Table 13: SPACETIME architecture for ECG SuperDiagnostic classification. For all SSMs, we keep
state-space dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-
steps long. The number of classes c = 5.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1
[

Differencing
(standard)

]
× 256 256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 14: SPACETIME architecture for ECG SubDiagnostic classification. For all SSMs, we keep
state-space dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-
steps long. The number of classes c = 23.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1
[

Differencing
(standard)

]
× 256 256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 15: SPACETIME architecture for ECG Diagnostic classification. For all SSMs, we keep state-
space dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-steps
long. The number of classes c = 44.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1
[

Differencing
(standard)

]
× 256 256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 16: SPACETIME architecture for ECG Form classification. For all SSMs, we keep state-space
dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-steps long.
The number of classes c = 19.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1

[
Differencing

(standard)

]
× 192

[
MA Residual

(standard)

]
× 64

256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 17: SPACETIME architecture for ECG Rhythm classification. For all SSMs, we keep state-
space dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-steps
long. The number of classes c = 12.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5

[
Companion
(standard)

]
× 128

[
Shift

(standard)

]
× 128

256× ℓ 256× ℓ

SSM Layer 4

[
Companion
(standard)

]
× 128

[
Shift

(standard)

]
× 128

256× ℓ 256× ℓ

SSM Layer 3

[
Companion
(standard)

]
× 128

[
Shift

(standard)

]
× 128

256× ℓ 256× ℓ

SSM Layer 2

[
Companion
(standard)

]
× 128

[
Shift

(standard)

]
× 128

256× ℓ 256× ℓ

SSM Layer 1
[

Differencing
(standard)

]
× 256 256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 18: SPACETIME architecture for ECG All classification. For all SSMs, we keep state-space
dimension d = 64. Input samples have d′ = 12 features and are length ℓ = 1000 time-steps long.
The number of classes c = 71.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 5
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Shift
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1

[
Differencing

(standard)

]
× 192

[
MA Residual

(standard)

]
× 64

256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Table 19: SPACETIME architecture for Speech Audio classification. For all SSMs, we keep state-
space dimension d = 1024. Input samples have d′ = 1 features and are length ℓ = 16000 time-steps
long. The number of classes c = 10.

Layer Details Input Size Output Size

Classifier Mean Pooling c× ℓ c× 1

Decoder Linear 256× ℓ c× ℓ

SSM Layer 6
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 5
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 4
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 3
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 2
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

SSM Layer 1
[

Companion
(standard)

]
× 256 256× ℓ 256× ℓ

Encoder Linear d′ × ℓ 256× ℓ
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Figure 8: Testing the capability of different sequence–to–sequence models to approximate the input–
output map of digital filters. In blue, we show the output signal filtered by each model. The ground–
truth digital filter is a Butterworth of order 10.
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