BOUNDED WORKING MEMORY FOR LLMS: REPRODUCING HUMAN RECALL DYNAMICS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a cognitively inspired working memory module for large language models (LLMs) that enables efficient narrative recall under capacity constraints. Our approach decomposes input text into structured memory chunks using four methods—semantic, phrase, sentence, and schematic chunking—and integrates prioritization strategies based on salience, connectivity, and temporal decay. These mechanisms enforce a bounded memory capacity, inspired by Miller's number, while preserving information critical for downstream recall. We evaluate the framework on the Naturalistic Free Recall dataset, where models must reconstruct long-form narratives from compressed memory representations. Memory-augmented LLMs achieve higher semantic similarity to human recall transcripts than random baselines, while exhibiting structured retrieval effects such as primacy and recency. These results demonstrate that chunk-based working memory improves the plausibility and efficiency of LLM recall, offering a scalable approach for constrained-context reasoning and memory alignment.

Figure 1: **Cognitive Working Memory.** Narrative input is segmented into chunks and prioritized by salience, connectivity, and recency, ensuring that only cognitively relevant units are retained. The resulting memory buffer forms the basis for reconstructive LLM recall, emulating human working memory dynamics.

1 Introduction

Large language models (LLMs) have achieved remarkable performance across diverse natural language tasks, yet they struggle with a fundamental challenge that humans navigate effortlessly: reasoning and recall under strict memory constraints. While current approaches expand context windows to millions of tokens (Bulatov et al., 2022; Beltagy et al., 2020) or retrieve from vast external databases (Borgeaud et al., 2021), human cognition demonstrates that effective recall emerges not from unlimited storage, but from bounded memory mechanisms that selectively retain, organize, and reconstruct information.

Human working memory has strict capacity limits. A well-known estimate places capacity around 7 ± 2 chunks (Miller G, 1956), with later refinements suggesting a lower range of about four chunks depending on context (Cowan, 2001). Despite these limits, humans recall complex narratives through mechanisms such as hierarchical chunking that compresses information into meaningful units (Gobet et al., 2001), event segmentation and schema-driven organization (Baldassano et al., 2017), forgetting mechanisms including interference and replacement (Malleret et al., 2024), and reconstructive recall that infers coherent narratives from sparse traces (Xu et al., 2024). These processes explain why humans exhibit systematic recall patterns, such as primacy and recency effects, even when processing information that far exceeds capacity.

Current LLMs fail to replicate these human-like recall characteristics for two reasons. First, they assume unlimited memory access, leading to inefficient processing where attention becomes diluted as context grows (Chi et al., 2024; Liu et al., 2024). Second, they lack the selective mechanisms that enable humans to prioritize, compress, and reconstruct information under constraints. Existing memory-augmented systems, such as Memory Networks (Weston et al., 2015), Differentiable Neural Computers (Graves et al., 2016), and recent structured approaches like MemTree (Rezazadeh et al., 2025), improve retrieval but do not enforce bounded working memory.

Our central hypothesis is that mimicking human bounded memory can improve recall quality while also providing computational efficiency. To test this, we develop a chunk-based working memory architecture that enforces strict capacity limits through cognitively inspired mechanisms: multigranular chunking (semantic, syntactic, episodic), salience-based prioritization, temporal decay, and reconstructive generation from compressed memory states.

Our key contributions are threefold:

- We propose a cognitively inspired LLM memory module that enforces bounded working memory capacity using chunking and forgetting mechanisms, in contrast to prior unbounded approaches.
- We demonstrate that our bounded memory system reproduces characteristic human recall behaviors, including primacy and recency effects and reconstructive recall patterns not observed in full-transcript baselines.
- We evaluate on the Naturalistic Free Recall dataset, enabling direct comparison between model outputs and human behavioral data—to our knowledge, the first systematic evaluation of LLM memory systems against human free-recall benchmarks.

Our results show that cognitively constrained memory systems achieve structured, human-like recall while reducing computational load, suggesting that limitations can serve as beneficial inductive biases for generalization in long-context reasoning.

2 RELATED WORK

Human Cognition Mechanisms. Human working memory operates under strict capacity constraints of about 7 ± 2 chunks (Miller G, 1956), refined to approximately four chunks with context-dependent variability (Cowan, 2001). These limits enable efficient processing through mechanisms such as hierarchical chunking that compresses information into meaningful units (Gobet et al., 2001) and event segmentation that parses continuous experience into discrete chunks (Baldassano et al., 2017). Cognitive neuroscience further suggests that working memory capacity is flexibly managed through dynamic gating and interference, where new information actively displaces old through competition (Malleret et al., 2024; Barbosa et al., 2020). Importantly, recall is reconstructive rather than reproductive, shaped by prior knowledge and schemas (Xu et al., 2024; Spens & Burgess, 2024), enabling generalization from sparse memory traces via probabilistic inference processes (Franklin et al., 2020). These findings highlight that bounded memory is not a weakness but a core feature of cognition, allowing efficient, structured recall despite strict capacity limits.

Memory Models for Long-Context LLMs. Efforts to extend memory in LLMs generally pursue two directions: unbounded scaling and structured organization, both without bounded working memory. Scaling-based models include the Recurrent Memory Transformer for million-token processing (Bulatov et al., 2022), Longformer with sparse attention (Beltagy et al., 2020), and Transformer-XL with recurrence across segments (Dai et al., 2019). Retrieval-based systems such as RETRO retrieve from trillion-token databases (Borgeaud et al., 2021). State space models like Mamba achieve linear complexity through selective state updates (Gu & Dao, 2024; Dao, 2024), while memory-efficient attention methods such as FlashAttention improve computational throughput (Dao et al., 2022; Dao, 2023).

Structured organization approaches attempt to impose hierarchy or graph structure on stored information. RAPTOR recursively clusters and summarizes content into tree structures (Sarthi et al., 2024), GraphRAG organizes long contexts into graph-based communities (Edge et al., 2025), and MemTree introduces dynamic hierarchical memory that evolves as new information arrives (Rezazadeh et al., 2025). Foundational work such as Memory Networks (Weston et al., 2015) and the Dif-

ferentiable Neural Computer (Graves et al., 2016) established the principle of external memory, but assumed effectively unlimited growth. Cognitive architectures like ACT-R also model competition-based recall but focus on symbolic declarative memory (Stocco et al., 2024).

Despite these advances, current LLMs exhibit fundamental limitations with long contexts: "lost in the middle" degradation (Liu et al., 2024), attention dilution as sequence length increases (Chi et al., 2024), and information over-squashing in deep transformers (Barbero et al., 2024).

From this, we introduce a bounded working memory module for LLMs, the first to be systematically evaluated against human recall data, showing that cognitive constraints enable primacy, recency, and reconstructive recall—establishing memory limits as beneficial inductive biases.

3 METHOD

We propose a cognitively inspired chunk-based working memory (WM) module for LLMs that enforces strict capacity constraints. Following Miller's number (Miller G, 1956; Cowan, 2001), WM is modeled as a bounded buffer of size M. The module operates in two stages: (i) chunk proposal — extracting candidate units from narrative text using multiple cognitively motivated strategies; and (ii) prioritization and selection — scoring candidates and retaining only the top M for recall. Here we describe the chunk proposal stage.

3.1 Chunking Methods

Because the effective unit of human memory is context-dependent and shaped by prior knowledge (Gobet et al., 2001), we implement four complementary chunking strategies. Formally, given a narrative transcript $S = (w_1, \ldots, w_L)$, each chunker defines an extraction function

$$f_{\text{type}}: S \mapsto C^{\text{type}} = \{c_1, \dots, c_{n_{\text{type}}}\},\tag{1}$$

where C_{type} is a set of candidate chunks of that type.

Semantic Chunking. We model semantic clustering (Bousfield, 1953; Collins & Quillian, 1969; Anderson & Bower, 2014) by grouping distributionally similar words. Words are tokenized, stop words removed (NLTK), and embeddings $\{e_i\}$ obtained. For a given seed w_j , a semantic chunk is defined as:

$$C_j^{\text{sem}} = \{ w_i \mid \cos(e_i, e_j) > \tau, \, |C_j^{\text{sem}}| \le k \},$$
 (2)

with similarity threshold $\tau=0.2$ and maximum size k. This operationalizes spreading activation models where semantically related items form associative clusters.

Phrase Chunking. Psycholinguistic work suggests humans compress input into phrasal units under temporal constraints (Christiansen & Chater, 2016). Using spaCy dependency parsing, each sentence is analyzed for verb heads v and their arguments (subject s, object o). Each phrase chunk is an SVO triple:

$$C^{\text{ph}} = (s, v, o), \quad s, v, o \in S. \tag{3}$$

This aligns with the Now-or-Never bottleneck: linguistic input must be rapidly reduced into manageable relational units.

Sentence Chunking. Humans often recall the *gist* of a sentence rather than verbatim content (Baddeley, 2000). We represent this episodic gist as subject–relation–object tuples using the REBEL relation-extraction model:

$$C^{\text{sent}} = (s, r, o). \tag{4}$$

For example, "Barack Obama served as the 44th president of the United States" becomes $C^{\text{sent}} = (\text{Barack Obama, served as, president})$. Sentence chunking thus approximates the *episodic buffer* in multicomponent WM theory, which binds information into coherent, retrievable units.

Schematic Chunking. Narrative recall is also shaped by schemas (Bartlett & Burt, 1933; Haven, 2007). We segment each story into N episodes and extract structured event elements using a transformer-based event extraction model. Each episode is represented as:

$$E_i = (\text{Character}_i, \text{Goal}_i, \text{Obstacle}_i, \text{Outcome}_i), \quad C^{\text{sch}} = \{E_1, \dots, E_N\}.$$
 (5)

These schema-based chunks mirror how humans parse narratives into high-level story frames, supporting efficient encoding and reconstructive recall.

3.2 Chunk Prioritization

After candidate chunks are generated, the bounded working memory module must select only M for storage. Selection is guided by three mechanisms: (i) salience-based scoring, (ii) network connectivity, and (iii) streaming replacement dynamics. Together, these mechanisms enforce cognitive plausibility while approximating human recall constraints.

Salience-Based Chunk Scoring. Following linguistic salience theories (Boguraev, 1997), we assume that nouns and verbs serve as proxies for informational richness. Each chunk c_i is assigned a salience score:

$$Score(c_i) = \alpha N_i + \beta V_i + \epsilon_i, \tag{6}$$

where N_i and V_i are the counts of noun and verb tokens within the chunk, $\alpha, \beta \in \mathbb{R}$ are weights, and $\epsilon_i \sim U(0, \delta)$ adds stochasticity. The random noise term simulates variability in human memory and aligns with probabilistic models of cognition and Bayesian retrieval frameworks (Jacobs & Kruschke, 2011).

Chunk Network Construction. To capture relationships among chunks, we construct an undirected weighted graph G = (V, E) where each node $c_i \in V$ represents a chunk. Edges encode both semantic similarity and narrative proximity:

$$w_{ij} = \frac{\cos(e_i, e_j)}{1 + |p_i - p_j|},\tag{7}$$

where e_i is the embedding of chunk c_i and p_i its position in the narrative. This emphasizes semantically similar and narratively close chunks. For each chunk, we compute its strongest connection:

$$W_i = \max_{j \neq i} w_{ij}. \tag{8}$$

Chunks with the top- $k\ W_i$ values are prioritized for storage, approximating spreading activation in local semantic networks. This mechanism mirrors the CHREST architecture, where chunk formation is guided by familiarity and hierarchical structure (Gobet et al., 2001), and is consistent with neuromorphic and semantic memory models (Li et al., 2016; Jones et al., 2015; Spens & Burgess, 2024).

Streaming Replacement Mechanism. To model the temporal dynamics of working memory, we implement a streaming update policy with limited capacity $M = \{m_1, \dots, m_k\}$, where k is the maximum buffer size. For an incoming chunk c_t :

if
$$|M| < k$$
, $M \leftarrow M \cup \{c_t\}$. (9)

Otherwise, a chunk $m_j \in M$ is selected for replacement according to an exponential decay weighting:

$$w_j = \exp(\lambda \cdot j), \quad P_j = \frac{w_j}{\sum_{\ell=1}^k w_\ell}, \quad \lambda > 0,$$
 (10)

where j=1 denotes the oldest and j=k the most recent. A chunk is dropped by sampling from the multinomial distribution $\{P_1,\ldots,P_k\}$, and c_t replaces it. This mechanism retains recent chunks with higher probability, simulating the steep forgetting curve observed in cognitive psychology.

Together, these three mechanisms enforce bounded, selective recall by combining linguistic salience, semantic connectivity, and temporal decay. This provides a cognitively grounded policy for constructing an M-slot working memory from an overcomplete set of candidate chunks.

3.3 COGNITIVE WORKING MEMORY MODEL

With chunking strategies and prioritization mechanisms defined, we construct a cognitive working memory (WM) model capable of selecting and storing a bounded set of salient chunks. The model is designed to simulate free recall by making a key cognitive assumption: there is no universally optimal chunking strategy. Instead, individuals exhibit idiosyncratic encoding patterns shaped by personal cognitive processes. To capture this diversity, our framework systematically explores combinations of chunking methods (semantic, phrase, sentence, schematic) with prioritization mechanisms (salience-based, network-based, streaming). Each configuration defines a distinct memory agent.

228

229

230

216

217 218

219

220

221

222

223

Participant-Specific Model Fitting. To evaluate the alignment of memory agents with human recall, we leverage the Naturalistic Free Recall dataset, which pairs stories across participants (Pieman-Eyespy and Baseball-Oregon Trail). Since each participant recalls two stories, we adopt a cross-story validation procedure: one story is used to identify the best-fitting agent configuration, and the paired story is used to test generalization. This design avoids data leakage and ensures that models are not simply overfitting to a single narrative.

231 232 233

234

235

236

For example, when modeling a participant who recalled both *Pieman* and *Eyespy*, we first use the Eyespy recall transcript as reference. Candidate memory agents are compared by assessing how well the chunks they generate from *Pieman* align with the participant's recall from *Eyespy*. The best-fitting agent is then evaluated on the held-out story, testing whether the chosen chunkingprioritization profile generalizes to novel material.

237 238 239

240

241

242

Similarity as Cognitive Alignment. We measure alignment between model-generated chunks and human recall using lexical and embedding-based similarity. Exact word overlap is not required; instead, semantically aligned paraphrases are credited, reflecting reconstructive recall in human memory. This provides a proxy for *cognitive alignment*—the extent to which a bounded-memory agent reproduces recall patterns characteristic of a given participant.

243 244 245

Reconstructive Generation. Once a final set of M prioritized chunks is selected, they form the simulated WM buffer. These chunks are then supplied as context to an instruction-tuned LLM with the prompt: "Reproduce the story based on the given context". The LLM's task is to reconstruct a coherent narrative from the compressed representation.

247 248 249

250

251

252

246

Although the number of available chunks is severely limited, they are selected for semantic richness and narrative salience. This tests whether the LLM can regenerate a full storyline from sparse but informative memory traces, mirroring how humans reconstruct narratives from partial recall. We evaluate the regenerated narratives for both fidelity (semantic similarity to the original text) and generalization (alignment with human recall patterns).

253 254 255

This integration of chunking, prioritization, and reconstructive generation yields a cognitively inspired memory model that enforces bounded WM constraints while testing the recall capacity of LLMs under psychologically plausible conditions.

3.4 EVALUATION METRICS

260 261 262

We evaluate the quality of LLM-generated narratives under bounded working memory by combining semantic, event-level, and cognitive-psychology-inspired metrics. These measures assess not only fidelity to the source material but also alignment with human recall patterns from the Naturalistic Free Recall dataset.

263 264 265

266

267

268

269

Semantic Similarity. To quantify narrative fidelity, we compute ModernBERTScore, a contextual similarity metric that compares generated narratives against both the original story transcript and the participant's recall. This embedding-based metric captures semantic overlap beyond surface-level token matching, thereby assessing whether the LLM reconstructs meaningful story content from sparse, prioritized chunks. Higher scores indicate stronger alignment with human recall and story semantics.

Event-Level Recall Probability. Following the methodology of the *Naturalistic Free Recall* study, each story is segmented into discrete events $E = \{e_1, \ldots, e_T\}$. Generated recall sentences are mapped to events via cosine similarity between sentence and event embeddings. An event is marked as recalled if at least one recall sentence maps to it as the closest match. This yields a binary recall matrix $R \in \{0,1\}^{N \times T}$, where $R_{i,e} = 1$ if participant i recalled event e, and N is the number of participants. Event-level recall probability is defined as:

$$P_{\text{recall}}(e) = \frac{1}{N} \sum_{i=1}^{N} R_{i,e}.$$
 (11)

We estimate confidence intervals via bootstrap resampling (10,000) iterations, reporting the 2.5th and 97.5th percentiles. To test statistical significance, we perform a permutation test in which participant labels within each column of R are shuffled 10,000 times, yielding a null distribution of recall probabilities. Events whose observed probabilities exceed the 97.5th percentile of this distribution are considered significant.

Serial Position and Boundary Effects. To capture hallmark recall phenomena, we compute: (i) the probability of first recall (event first mentioned in the output), (ii) the probability of last recall (final event recalled), and (iii) the serial position curve, which tracks recall likelihood as a function of original event order. Consistent with cognitive psychology (Miller G, 1956; Cowan, 2001), we expect a U-shaped curve reflecting *primacy* (enhanced recall of early events) and *recency* (retention of later events in WM).

Baseline Comparisons. To contextualize performance, we evaluated two baselines. In the *random memory assignment* condition, each agent was given randomly sampled chunks matched in length and semantic density but independent of the story or participant, testing whether structured chunking and prioritization improve recall beyond chance. In the *full-transcript recall* condition, agents were provided the complete story transcript without memory constraints, establishing an upper bound on recall performance by simulating unconstrained access to all narrative information.

These baselines together assess whether bounded, cognitively inspired memory mechanisms yield recall behavior that is both more structured than random selection and more human-like than unconstrained full-transcript access.

4 RESULTS

4.1 Memory Agent Simulation and Chunk Generation

We first evaluate whether memory-augmented LLM agents can mimic human recall patterns using the *Naturalistic Free Recall* dataset, which includes paired participant recalls for *Pieman–Eyespy* and *Baseball–Oregon Trail*. Consistent with the dataset structure, we instantiated 116 memory agents for *Pieman–Eyespy* and 113 for *Baseball–Oregon Trail*. Each agent was paired with the same stimulus as a human participant, with recall simulated through cognitively inspired chunking and prioritization.

Each narrative pair was evaluated bidirectionally: one story served as the target for recall, while its pair served as the reference for constructing the agent's chunking profile—then reversed. This cross-story validation ensured that memory models generalized across narratives rather than overfitting to a single stimulus. Table 1 illustrates representative mappings between dataset participants and their corresponding memory agents, including the working memory configuration and generated chunks.

Following chunk generation, each agent stored between 7 and 9 prioritized chunks, consistent with Miller's number. These memory traces formed the basis for reconstructive recall in the LLM simulation.

4.2 LLM RECALL GENERATION AND SEMANTIC FIDELITY

Once the WM buffer was constructed, each agent was prompted to regenerate the target narrative using the stored chunks as context. For all simulations, we used OpenAI GPT-4 with determinis-

Participant ID	Agent ID		Generated Chunks (sample)
P1_pieman	P1	Schema-Streaming-7	Dean McGowan; to replace Fordham's traditionally working- to middle-class students with wealthier, more prestigious ones; Dean McGowan; Dean is covered with cream; Pie Man; Write it up; capeless; fled the scene
P2_pieman	P2	Sentence–Scoring–7	beer tell me all about it said to be the same as; I gave the figure a name instance of; boo that rule rule instance of; I said, "Yes, Angela." Angela performer

Table 1: Mapping between dataset participants and memory agents. Each dataset participant is paired with a memory agent configured using specific chunking and prioritization strategies under bounded working memory (M=7). The table shows example generated chunks illustrating how narratives were segmented into cognitively inspired units.

Figure 2: **Prompt with generated chunks and recalled story.** The memory agent receives only 7–9 prioritized chunks. The LLM reconstructs a plausible narrative, filling gaps with schema-driven inference. Errors and interpolations reflect the *Make-Sense Mandate*, where recall emphasizes coherence over verbatim accuracy.

tic decoding (temperature = 0, top_p = 1.0), ensuring reproducibility and attributing performance differences solely to memory model design.

Figure 2 shows an illustrative prompt with generated chunks and the corresponding recalled story. Despite operating with highly compressed and fragmentary memory inputs, the LLM produced coherent narratives that preserved core themes while interpolating missing details. This aligns with the *Make-Sense Mandate* (Haven, 2007), which holds that both humans and machines reconstruct narratives by imposing coherence on incomplete memory traces.

To quantify semantic fidelity, we computed ModernBERTScore between each agent's recall and two references: (i) the original narrative and (ii) the corresponding participant recall. Results are summarized in Table 2. Across all narratives, average similarity between memory-augmented LLM recalls and human transcripts was 0.75, while similarity to original stories was 0.78.

Overall, results demonstrate that memory-constrained LLMs produce recalls that are semantically aligned with both human free recall and original texts. While absolute similarity values are moderate due to variability in narrative expression, the closeness of the two distributions indicates that bounded working memory fosters human-like reconstructive recall rather than degrading semantic fidelity.

Story	WM	Dataset
Pieman	0.760	0.788
Oregon Trail	0.728	0.738
Eyespy	0.722	0.723
Baseball	0.767	0.784

Table 2: **Semantic similarity (ModernBERT).** Alignment of LLM recalls with humans and original stories.

Story	WM	Human	p-val
Pieman	37.5%	37.5%	1.0000
Oregon Trail	48.9%	31.3%	0.0852
Eyespy	40.8%	30.6%	0.2918
Baseball	43.6%	43.6%	1.0000

Table 3: Significantly recalled events. Event recall proportions for agents and humans. No significant differences at $\alpha=0.05$.

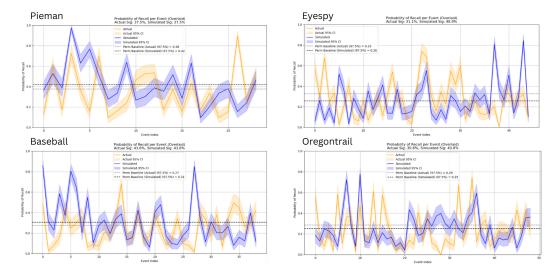


Figure 3: **Event-wise recall probability.** Curves for all four stories with bootstrapped 95% CIs. Dashed lines indicate null baselines from permutation tests.

4.3 RECALL PROBABILITY AND TEMPORAL STRUCTURE

We next examined whether memory-augmented LLM agents replicate core recall dynamics observed in human participants. Following the *Naturalistic Free Recall* methodology, we computed eventwise recall probability by mapping generated recalls to predefined story events. A binary recall matrix $R \in \{0,1\}^{N \times T}$ was constructed, and event recall probabilities $P_{\text{recall}}(e)$ were estimated with 10,000 bootstrap resamples. Statistical significance was assessed using permutation-based null baselines.

Figure 3 shows recall probability curves with 95% confidence intervals. In the *Pieman* story, 37.5% of events exceeded the null baseline, closely matching human recall in the dataset. Across all narratives, proportions of significantly recalled events did not differ from humans at p < 0.05 (Table 3), indicating that bounded-memory agents approximate human recall rates without exceeding them.

We further analyzed temporal recall structure. As shown in Figure 4, LLM agents preferentially recalled the first and last events of each story, consistent with primacy and recency effects. Figure 5 reports normalized serial position curves, which exhibit a U-shaped profile characteristic of human recall, with additional mid-story peaks reflecting salient plot points. These findings demonstrate that bounded-memory agents reproduce both event-level selectivity and temporal dynamics of human recall.

4.4 BASELINE COMPARISONS

To contextualize performance, we compared structured memory agents with two baselines: (i) random memory assignment and (ii) full-transcript recall (no WM constraint). As expected, the full-transcript condition achieved the highest recall rates (Figure 6). Random memory assignment pro-

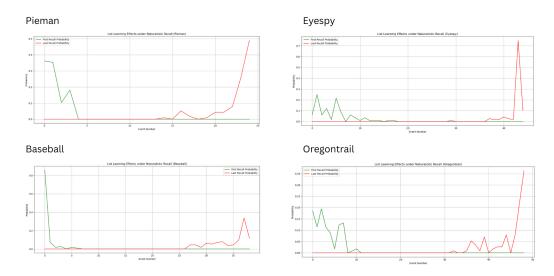


Figure 4: **Primacy and recency effects.** Probability of first and last recall across four stories, showing elevated likelihoods at story boundaries.

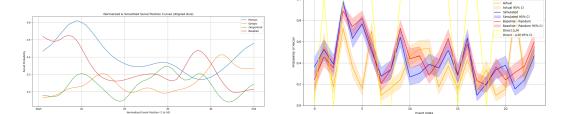


Figure 5: **Serial position curves.** Normalized recall probability across story events. U-shaped profiles capture primacy, recency, and schemadriven mid-story peaks.

Figure 6: **Baseline comparisons.** Recall probability for the *Pieman* story across structured memory, random memory, and full-transcript conditions. Structured memory reproduces human-like selectivity absent in random allocation.

duced recall curves resembling the structured model but lacked consistent event selectivity. In contrast, our bounded-memory agents reproduced hallmark phenomena—primacy, recency, and event salience—absent in random allocation. These results highlight that recall quantity alone is insufficient; cognitive plausibility requires selective, structured memory under capacity constraints.

5 CONCLUSION

We presented a cognitively inspired memory module for LLMs that enforces bounded working memory through chunking and prioritization. Our agents reproduced hallmark human recall patterns—including primacy, recency, and reconstructive coherence—while achieving recall performance statistically indistinguishable from humans on the *Naturalistic Free Recall* dataset.

Unlike full-transcript or random baselines, our model demonstrates that cognitive constraints, not recall quantity, drive human-like selectivity. These results establish bounded memory as a psychologically plausible and computationally efficient inductive bias, and they suggest a pathway toward more generalized memory models for LLMs that can support downstream tasks requiring structured, selective recall.

ETHICS STATEMENT

This work uses the publicly available *Naturalistic Free Recall* dataset, which consists of anonymized human recall transcripts. No personally identifiable information was collected or processed, and the study involves only secondary analysis of existing data. Our experiments focus on modeling memory mechanisms in large language models and do not involve deployment in sensitive or real-world decision-making contexts.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release all code, model configurations, and evaluation scripts after the blind review process. The release will include detailed instructions to replicate our experiments and extend the proposed framework to related tasks.

REFERENCES

- John R Anderson and G H Bower. *Human Associative Memory*. Psychology Press, London, England, February 2014.
- A Baddeley. The episodic buffer: a new component of working memory? *Trends Cogn. Sci.*, 4(11): 417–423, November 2000.
- Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and Kenneth A Norman. Discovering event structure in continuous narrative perception and memory. *Neuron*, 95(3):709–721.e5, August 2017.
- Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João Guilherme Madeira Araújo, Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information over-squashing in language tasks. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=93HCE8vTye.
- Joao Barbosa, Heike Stein, Rebecca L Martinez, Adrià Galan-Gadea, Sihai Li, Josep Dalmau, Kirsten C S Adam, Josep Valls-Solé, Christos Constantinidis, and Albert Compte. Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. *Nat. Neurosci.*, 23(8):1016–1024, August 2020.
- F C Bartlett and Cyril Burt. Remembering: A study in experimental and social psychology. *Br. J. Educ. Psychol.*, 3(2):187–192, June 1933.
- Iz Beltagy, Matthew Peters, and Arman Cohan. Longformer: The long-document transformer, 04 2020.
- Branimir Boguraev. Salience-based content characterisation of text documents. In *Intelligent Scalable Text Summarization*, 1997. URL https://aclanthology.org/W97-0702/.
- Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, T. W. Hennigan, Saffron Huang, Lorenzo Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre. Improving language models by retrieving from trillions of tokens. In *International Conference on Machine Learning*, 2021. URL https://api.semanticscholar.org/CorpusID: 244954723.
- W A Bousfield. The occurrence of clustering in the recall of randomly arranged associates. *J. Gen. Psychol.*, 49(2):229–240, October 1953.
- Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=Uynr3iPhksa.

- Ta-Chung Chi, Ting-Han Fan, and Alexander Rudnicky. Attention alignment and flexible positional embeddings improve transformer length extrapolation. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024, pp. 132–148, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.10. URL https://aclanthology.org/2024.findings-naacl.10/.
 - Morten H Christiansen and Nick Chater. The Now-or-Never bottleneck: A fundamental constraint on language. *Behav. Brain Sci.*, 39(e62):e62, January 2016.
 - Allan M. Collins and M. Ross Quillian. Retrieval time from semantic memory. *Journal of Verbal Learning and Verbal Behavior*, 8(2):240–247, 1969. ISSN 0022-5371. doi: https://doi.org/10.1016/S0022-5371(69)80069-1. URL https://www.sciencedirect.com/science/article/pii/S0022537169800691.
 - N Cowan. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. *Behav. Brain Sci.*, 24(1):87–114; discussion 114–85, February 2001.
 - Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context, 2019. URL https://arxiv.org/abs/1901.02860.
 - Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL https://arxiv.org/abs/2307.08691.
 - Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=mZn2Xyh9Ec.
 - Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/2205.14135.
 - Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization, 2025. URL https://arxiv.org/abs/2404.16130.
 - Nicholas T Franklin, Kenneth A Norman, Charan Ranganath, Jeffrey M Zacks, and Samuel J Gershman. Structured event memory: A neuro-symbolic model of event cognition. *Psychol. Rev.*, 127(3):327–361, April 2020.
 - F Gobet, P C R Lane, S Croker, P C-H Cheng, G Jones, I Oliver, and J M Pine. Chunking mechanisms in human learning. *Trends Cogn. Sci.*, 5(6):236–243, June 2001.
 - Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network with dynamic external memory. *Nature*, 538(7626): 471–476, October 2016.
 - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=tEYskw1VY2.
 - Kendall Haven. Story Proof: The Science Behind the Startling Power of Story. 01 2007. ISBN 9781591585466. doi: 10.5040/9798216019312.
 - Robert A Jacobs and John K Kruschke. Bayesian learning theory applied to human cognition. *Wiley Interdiscip. Rev. Cogn. Sci.*, 2(1):8–21, January 2011.
 - M N Jones, J Willits, and S Dennis. *The Oxford handbook of computational and mathematical psychology*. Oxford University Press, 2015.

- Guoqi Li, Lei Deng, Dong Wang, Wei Wang, Fei Zeng, Ziyang Zhang, Huanglong Li, Sen Song, Jing
 Pei, and Luping Shi. Hierarchical chunking of sequential memory on neuromorphic architecture
 with reduced synaptic plasticity. *Front. Comput. Neurosci.*, 10:136, December 2016.
 - Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL https://aclanthology.org/2024.tacl-1.9/.
 - Gaël Malleret, Paul Salin, Stéphanie Mazza, and Gaën Plancher. Working memory forgetting: Bridging gaps between human and animal studies. *Neurosci. Biobehav. Rev.*, 163(105742): 105742, August 2024.
 - A Miller G. The magical number seven plus or minus two: some limits on our capacity for processing information. *Psychological review*, 63(2):81–97, 1956.
 - Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao. From isolated conversations to hierarchical schemas: Dynamic tree memory representation for LLMs. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=moXtEmCley.
 - Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning. RAPTOR: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=GN921JHCRw.
 - Eleanor Spens and Neil Burgess. A generative model of memory construction and consolidation. *Nat. Hum. Behav.*, 8(3):526–543, March 2024.
 - Andrea Stocco, Patrick Rice, Robert Thomson, Briana Smith, Don Morrison, and Christian Lebiere. An integrated computational framework for the neurobiology of memory based on the ACT-R declarative memory system. *Comput. Brain Behav.*, 7(1):129–149, March 2024.
 - Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks, 2015. URL https://arxiv.org/abs/1410.3916.
 - Zihao Xu, Pernille Hemmer, and Qiong Zhang. Towards a generalized bayesian model of reconstructive memory. *Comput. Brain Behav.*, September 2024.