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ABSTRACT

We introduce a cognitively inspired working memory module for large lan-
guage models (LLMs) that enables efficient narrative recall under capacity con-
straints. Our approach decomposes input text into structured memory chunks us-
ing four methods—semantic, phrase, sentence, and schematic chunking—and in-
tegrates prioritization strategies based on salience, connectivity, and temporal de-
cay. These mechanisms enforce a bounded memory capacity, inspired by Miller’s
number, while preserving information critical for downstream recall. We evaluate
the framework on the Naturalistic Free Recall dataset, where models must recon-
struct long-form narratives from compressed memory representations. Memory-
augmented LLMs achieve higher semantic similarity to human recall transcripts
than random baselines, while exhibiting structured retrieval effects such as pri-
macy and recency. These results demonstrate that chunk-based working memory
improves the plausibility and efficiency of LLM recall, offering a scalable ap-
proach for constrained-context reasoning and memory alignment.

Figure 1: Cognitive Working Memory. Narrative input is segmented into chunks and prioritized
by salience, connectivity, and recency, ensuring that only cognitively relevant units are retained. The
resulting memory buffer forms the basis for reconstructive LLM recall, emulating human working
memory dynamics.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across diverse natural lan-
guage tasks, yet they struggle with a fundamental challenge that humans navigate effortlessly: rea-
soning and recall under strict memory constraints. While current approaches expand context win-
dows to millions of tokens (Bulatov et al., 2022; Beltagy et al., 2020) or retrieve from vast external
databases (Borgeaud et al., 2021), human cognition demonstrates that effective recall emerges not
from unlimited storage, but from bounded memory mechanisms that selectively retain, organize, and
reconstruct information.

Human working memory has strict capacity limits. A well-known estimate places capacity around
7 ± 2 chunks (Miller G, 1956), with later refinements suggesting a lower range of about four
chunks depending on context (Cowan, 2001). Despite these limits, humans recall complex nar-
ratives through mechanisms such as hierarchical chunking that compresses information into mean-
ingful units (Gobet et al., 2001), event segmentation and schema-driven organization (Baldassano
et al., 2017), forgetting mechanisms including interference and replacement (Malleret et al., 2024),
and reconstructive recall that infers coherent narratives from sparse traces (Xu et al., 2024). These
processes explain why humans exhibit systematic recall patterns, such as primacy and recency ef-
fects, even when processing information that far exceeds capacity.
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Current LLMs fail to replicate these human-like recall characteristics for two reasons. First, they
assume unlimited memory access, leading to inefficient processing where attention becomes diluted
as context grows (Chi et al., 2024; Liu et al., 2024). Second, they lack the selective mechanisms
that enable humans to prioritize, compress, and reconstruct information under constraints. Existing
memory-augmented systems, such as Memory Networks (Weston et al., 2015), Differentiable Neural
Computers (Graves et al., 2016), and recent structured approaches like MemTree (Rezazadeh et al.,
2025), improve retrieval but do not enforce bounded working memory.

Our central hypothesis is that mimicking human bounded memory can improve recall quality while
also providing computational efficiency. To test this, we develop a chunk-based working memory
architecture that enforces strict capacity limits through cognitively inspired mechanisms: multi-
granular chunking (semantic, syntactic, episodic), salience-based prioritization, temporal decay, and
reconstructive generation from compressed memory states.

Our key contributions are threefold:

• We propose a cognitively inspired LLM memory module that enforces bounded work-
ing memory capacity using chunking and forgetting mechanisms, in contrast to prior un-
bounded approaches.

• We demonstrate that our bounded memory system reproduces characteristic human recall
behaviors, including primacy and recency effects and reconstructive recall patterns not ob-
served in full-transcript baselines.

• We evaluate on the Naturalistic Free Recall dataset, enabling direct comparison between
model outputs and human behavioral data—to our knowledge, the first systematic evalua-
tion of LLM memory systems against human free-recall benchmarks.

Our results show that cognitively constrained memory systems achieve structured, human-like recall
while reducing computational load, suggesting that limitations can serve as beneficial inductive
biases for generalization in long-context reasoning.

2 RELATED WORK

Human Cognition Mechanisms. Human working memory operates under strict capacity con-
straints of about 7± 2 chunks (Miller G, 1956), refined to approximately four chunks with context-
dependent variability (Cowan, 2001). These limits enable efficient processing through mechanisms
such as hierarchical chunking that compresses information into meaningful units (Gobet et al., 2001)
and event segmentation that parses continuous experience into discrete chunks (Baldassano et al.,
2017). Cognitive neuroscience further suggests that working memory capacity is flexibly managed
through dynamic gating and interference, where new information actively displaces old through
competition (Malleret et al., 2024; Barbosa et al., 2020). Importantly, recall is reconstructive rather
than reproductive, shaped by prior knowledge and schemas (Xu et al., 2024; Spens & Burgess, 2024),
enabling generalization from sparse memory traces via probabilistic inference processes (Franklin
et al., 2020). These findings highlight that bounded memory is not a weakness but a core feature of
cognition, allowing efficient, structured recall despite strict capacity limits.

Memory Models for Long-Context LLMs. Efforts to extend memory in LLMs generally pur-
sue two directions: unbounded scaling and structured organization, both without bounded work-
ing memory. Scaling-based models include the Recurrent Memory Transformer for million-token
processing (Bulatov et al., 2022), Longformer with sparse attention (Beltagy et al., 2020), and
Transformer-XL with recurrence across segments (Dai et al., 2019). Retrieval-based systems such
as RETRO retrieve from trillion-token databases (Borgeaud et al., 2021). State space models like
Mamba achieve linear complexity through selective state updates (Gu & Dao, 2024; Dao, 2024),
while memory-efficient attention methods such as FlashAttention improve computational through-
put (Dao et al., 2022; Dao, 2023).

Structured organization approaches attempt to impose hierarchy or graph structure on stored infor-
mation. RAPTOR recursively clusters and summarizes content into tree structures (Sarthi et al.,
2024), GraphRAG organizes long contexts into graph-based communities (Edge et al., 2025), and
MemTree introduces dynamic hierarchical memory that evolves as new information arrives (Reza-
zadeh et al., 2025). Foundational work such as Memory Networks (Weston et al., 2015) and the Dif-
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ferentiable Neural Computer (Graves et al., 2016) established the principle of external memory, but
assumed effectively unlimited growth. Cognitive architectures like ACT-R also model competition-
based recall but focus on symbolic declarative memory (Stocco et al., 2024).

Despite these advances, current LLMs exhibit fundamental limitations with long contexts: “lost in
the middle” degradation (Liu et al., 2024), attention dilution as sequence length increases (Chi et al.,
2024), and information over-squashing in deep transformers (Barbero et al., 2024).

From this, we introduce a bounded working memory module for LLMs, the first to be systematically
evaluated against human recall data, showing that cognitive constraints enable primacy, recency, and
reconstructive recall—establishing memory limits as beneficial inductive biases.

3 METHOD

We propose a cognitively inspired chunk-based working memory (WM) module for LLMs that
enforces strict capacity constraints. Following Miller’s number (Miller G, 1956; Cowan, 2001), WM
is modeled as a bounded buffer of size M . The module operates in two stages: (i) chunk proposal
— extracting candidate units from narrative text using multiple cognitively motivated strategies; and
(ii) prioritization and selection — scoring candidates and retaining only the top M for recall. Here
we describe the chunk proposal stage.

3.1 CHUNKING METHODS

Because the effective unit of human memory is context-dependent and shaped by prior knowledge
(Gobet et al., 2001), we implement four complementary chunking strategies. Formally, given a
narrative transcript S = (w1, . . . , wL), each chunker defines an extraction function

ftype : S 7→ C type = {c1, . . . , cntype}, (1)

where Ctype is a set of candidate chunks of that type.

Semantic Chunking. We model semantic clustering (Bousfield, 1953; Collins & Quillian, 1969;
Anderson & Bower, 2014) by grouping distributionally similar words. Words are tokenized, stop
words removed (NLTK), and embeddings {ei} obtained. For a given seed wj , a semantic chunk is
defined as:

Csem
j = {wi | cos(ei, ej) > τ, |Csem

j | ≤ k}, (2)

with similarity threshold τ = 0.2 and maximum size k. This operationalizes spreading activation
models where semantically related items form associative clusters.

Phrase Chunking. Psycholinguistic work suggests humans compress input into phrasal units un-
der temporal constraints (Christiansen & Chater, 2016). Using spaCy dependency parsing, each
sentence is analyzed for verb heads v and their arguments (subject s, object o). Each phrase chunk
is an SVO triple:

Cph = (s, v, o), s, v, o ∈ S. (3)

This aligns with the Now-or-Never bottleneck: linguistic input must be rapidly reduced into man-
ageable relational units.

Sentence Chunking. Humans often recall the gist of a sentence rather than verbatim content (Bad-
deley, 2000). We represent this episodic gist as subject–relation–object tuples using the REBEL
relation-extraction model:

Csent = (s, r, o). (4)

For example, “Barack Obama served as the 44th president of the United States” becomes Csent =
(Barack Obama, served as, president). Sentence chunking thus approximates the episodic buffer in
multicomponent WM theory, which binds information into coherent, retrievable units.

3
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Schematic Chunking. Narrative recall is also shaped by schemas (Bartlett & Burt, 1933; Haven,
2007). We segment each story into N episodes and extract structured event elements using a
transformer-based event extraction model. Each episode is represented as:

Ei = (Characteri,Goali,Obstaclei,Outcomei), Csch = {E1, . . . , EN}. (5)

These schema-based chunks mirror how humans parse narratives into high-level story frames, sup-
porting efficient encoding and reconstructive recall.

3.2 CHUNK PRIORITIZATION

After candidate chunks are generated, the bounded working memory module must select only M
for storage. Selection is guided by three mechanisms: (i) salience-based scoring, (ii) network con-
nectivity, and (iii) streaming replacement dynamics. Together, these mechanisms enforce cognitive
plausibility while approximating human recall constraints.

Salience-Based Chunk Scoring. Following linguistic salience theories (Boguraev, 1997), we as-
sume that nouns and verbs serve as proxies for informational richness. Each chunk ci is assigned a
salience score:

Score(ci) = αNi + βVi + ϵi, (6)

where Ni and Vi are the counts of noun and verb tokens within the chunk, α, β ∈ R are weights,
and ϵi ∼ U(0, δ) adds stochasticity. The random noise term simulates variability in human memory
and aligns with probabilistic models of cognition and Bayesian retrieval frameworks (Jacobs &
Kruschke, 2011).

Chunk Network Construction. To capture relationships among chunks, we construct an undi-
rected weighted graph G = (V,E) where each node ci ∈ V represents a chunk. Edges encode both
semantic similarity and narrative proximity:

wij =
cos(ei, ej)

1 + |pi − pj |
, (7)

where ei is the embedding of chunk ci and pi its position in the narrative. This emphasizes seman-
tically similar and narratively close chunks. For each chunk, we compute its strongest connection:

Wi = max
j ̸=i

wij . (8)

Chunks with the top-k Wi values are prioritized for storage, approximating spreading activation in
local semantic networks. This mechanism mirrors the CHREST architecture, where chunk forma-
tion is guided by familiarity and hierarchical structure (Gobet et al., 2001), and is consistent with
neuromorphic and semantic memory models (Li et al., 2016; Jones et al., 2015; Spens & Burgess,
2024).

Streaming Replacement Mechanism. To model the temporal dynamics of working memory, we
implement a streaming update policy with limited capacity M = {m1, . . . ,mk}, where k is the
maximum buffer size. For an incoming chunk ct:

if |M | < k, M ←M ∪ {ct}. (9)

Otherwise, a chunk mj ∈M is selected for replacement according to an exponential decay weight-
ing:

wj = exp(λ · j), Pj =
wj∑k
ℓ=1 wℓ

, λ > 0, (10)

where j = 1 denotes the oldest and j = k the most recent. A chunk is dropped by sampling from
the multinomial distribution {P1, . . . , Pk}, and ct replaces it. This mechanism retains recent chunks
with higher probability, simulating the steep forgetting curve observed in cognitive psychology.

Together, these three mechanisms enforce bounded, selective recall by combining linguistic salience,
semantic connectivity, and temporal decay. This provides a cognitively grounded policy for con-
structing an M -slot working memory from an overcomplete set of candidate chunks.
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3.3 COGNITIVE WORKING MEMORY MODEL

With chunking strategies and prioritization mechanisms defined, we construct a cognitive working
memory (WM) model capable of selecting and storing a bounded set of salient chunks. The model
is designed to simulate free recall by making a key cognitive assumption: there is no universally
optimal chunking strategy. Instead, individuals exhibit idiosyncratic encoding patterns shaped by
personal cognitive processes. To capture this diversity, our framework systematically explores com-
binations of chunking methods (semantic, phrase, sentence, schematic) with prioritization mech-
anisms (salience-based, network-based, streaming). Each configuration defines a distinct memory
agent.

Participant-Specific Model Fitting. To evaluate the alignment of memory agents with human
recall, we leverage the Naturalistic Free Recall dataset, which pairs stories across participants
(Pieman–Eyespy and Baseball–Oregon Trail). Since each participant recalls two stories, we adopt
a cross-story validation procedure: one story is used to identify the best-fitting agent configuration,
and the paired story is used to test generalization. This design avoids data leakage and ensures that
models are not simply overfitting to a single narrative.

For example, when modeling a participant who recalled both Pieman and Eyespy, we first use the
Eyespy recall transcript as reference. Candidate memory agents are compared by assessing how
well the chunks they generate from Pieman align with the participant’s recall from Eyespy. The
best-fitting agent is then evaluated on the held-out story, testing whether the chosen chunking–
prioritization profile generalizes to novel material.

Similarity as Cognitive Alignment. We measure alignment between model-generated chunks and
human recall using lexical and embedding-based similarity. Exact word overlap is not required; in-
stead, semantically aligned paraphrases are credited, reflecting reconstructive recall in human mem-
ory. This provides a proxy for cognitive alignment—the extent to which a bounded-memory agent
reproduces recall patterns characteristic of a given participant.

Reconstructive Generation. Once a final set of M prioritized chunks is selected, they form the
simulated WM buffer. These chunks are then supplied as context to an instruction-tuned LLM with
the prompt: “Reproduce the story based on the given context”. The LLM’s task is to reconstruct a
coherent narrative from the compressed representation.

Although the number of available chunks is severely limited, they are selected for semantic richness
and narrative salience. This tests whether the LLM can regenerate a full storyline from sparse but
informative memory traces, mirroring how humans reconstruct narratives from partial recall. We
evaluate the regenerated narratives for both fidelity (semantic similarity to the original text) and
generalization (alignment with human recall patterns).

This integration of chunking, prioritization, and reconstructive generation yields a cognitively in-
spired memory model that enforces bounded WM constraints while testing the recall capacity of
LLMs under psychologically plausible conditions.

3.4 EVALUATION METRICS

We evaluate the quality of LLM-generated narratives under bounded working memory by combining
semantic, event-level, and cognitive-psychology-inspired metrics. These measures assess not only
fidelity to the source material but also alignment with human recall patterns from the Naturalistic
Free Recall dataset.

Semantic Similarity. To quantify narrative fidelity, we compute ModernBERTScore, a contextual
similarity metric that compares generated narratives against both the original story transcript and the
participant’s recall. This embedding-based metric captures semantic overlap beyond surface-level
token matching, thereby assessing whether the LLM reconstructs meaningful story content from
sparse, prioritized chunks. Higher scores indicate stronger alignment with human recall and story
semantics.

5
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Event-Level Recall Probability. Following the methodology of the Naturalistic Free Recall
study, each story is segmented into discrete events E = {e1, . . . , eT }. Generated recall sentences
are mapped to events via cosine similarity between sentence and event embeddings. An event is
marked as recalled if at least one recall sentence maps to it as the closest match. This yields a binary
recall matrix R ∈ {0, 1}N×T , where Ri,e = 1 if participant i recalled event e, and N is the number
of participants. Event-level recall probability is defined as:

Precall(e) =
1

N

N∑
i=1

Ri,e. (11)

We estimate confidence intervals via bootstrap resampling (10,000 iterations), reporting the 2.5th
and 97.5th percentiles. To test statistical significance, we perform a permutation test in which par-
ticipant labels within each column of R are shuffled 10,000 times, yielding a null distribution of
recall probabilities. Events whose observed probabilities exceed the 97.5th percentile of this distri-
bution are considered significant.

Serial Position and Boundary Effects. To capture hallmark recall phenomena, we compute: (i)
the probability of first recall (event first mentioned in the output), (ii) the probability of last recall
(final event recalled), and (iii) the serial position curve, which tracks recall likelihood as a function
of original event order. Consistent with cognitive psychology (Miller G, 1956; Cowan, 2001), we
expect a U-shaped curve reflecting primacy (enhanced recall of early events) and recency (retention
of later events in WM).

Baseline Comparisons. To contextualize performance, we evaluated two baselines. In the random
memory assignment condition, each agent was given randomly sampled chunks matched in length
and semantic density but independent of the story or participant, testing whether structured chunking
and prioritization improve recall beyond chance. In the full-transcript recall condition, agents were
provided the complete story transcript without memory constraints, establishing an upper bound on
recall performance by simulating unconstrained access to all narrative information.

These baselines together assess whether bounded, cognitively inspired memory mechanisms yield
recall behavior that is both more structured than random selection and more human-like than uncon-
strained full-transcript access.

4 RESULTS

4.1 MEMORY AGENT SIMULATION AND CHUNK GENERATION

We first evaluate whether memory-augmented LLM agents can mimic human recall patterns using
the Naturalistic Free Recall dataset, which includes paired participant recalls for Pieman–Eyespy
and Baseball–Oregon Trail. Consistent with the dataset structure, we instantiated 116 memory
agents for Pieman–Eyespy and 113 for Baseball–Oregon Trail. Each agent was paired with the
same stimulus as a human participant, with recall simulated through cognitively inspired chunking
and prioritization.

Each narrative pair was evaluated bidirectionally: one story served as the target for recall, while its
pair served as the reference for constructing the agent’s chunking profile—then reversed. This cross-
story validation ensured that memory models generalized across narratives rather than overfitting to
a single stimulus. Table 1 illustrates representative mappings between dataset participants and their
corresponding memory agents, including the working memory configuration and generated chunks.

Following chunk generation, each agent stored between 7 and 9 prioritized chunks, consistent with
Miller’s number. These memory traces formed the basis for reconstructive recall in the LLM simu-
lation.

4.2 LLM RECALL GENERATION AND SEMANTIC FIDELITY

Once the WM buffer was constructed, each agent was prompted to regenerate the target narrative
using the stored chunks as context. For all simulations, we used OpenAI GPT-4 with determinis-
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Participant ID Agent ID WM Model
(Method-Prio-M )

Generated
Chunks (sample)

P1 pieman P1 Schema–Streaming–7 Dean McGowan; to replace Fordham’s tradi-
tionally working- to middle-class students with
wealthier, more prestigious ones; Dean Mc-
Gowan; Dean is covered with cream; Pie Man;
Write it up; capeless; fled the scene. . .

P2 pieman P2 Sentence–Scoring–7 beer tell me all about it said to be the same as;
I gave the figure a name instance of; boo that
rule rule instance of; I said, “Yes, Angela.” An-
gela performer. . .

Table 1: Mapping between dataset participants and memory agents. Each dataset participant is
paired with a memory agent configured using specific chunking and prioritization strategies under
bounded working memory (M = 7). The table shows example generated chunks illustrating how
narratives were segmented into cognitively inspired units.

Figure 2: Prompt with generated chunks and recalled story. The memory agent receives only
7–9 prioritized chunks. The LLM reconstructs a plausible narrative, filling gaps with schema-driven
inference. Errors and interpolations reflect the Make-Sense Mandate, where recall emphasizes co-
herence over verbatim accuracy.

tic decoding (temperature = 0, top p = 1.0), ensuring reproducibility and attributing performance
differences solely to memory model design.

Figure 2 shows an illustrative prompt with generated chunks and the corresponding recalled story.
Despite operating with highly compressed and fragmentary memory inputs, the LLM produced co-
herent narratives that preserved core themes while interpolating missing details. This aligns with
the Make-Sense Mandate (Haven, 2007), which holds that both humans and machines reconstruct
narratives by imposing coherence on incomplete memory traces.

To quantify semantic fidelity, we computed ModernBERTScore between each agent’s recall and
two references: (i) the original narrative and (ii) the corresponding participant recall. Results are
summarized in Table 2. Across all narratives, average similarity between memory-augmented LLM
recalls and human transcripts was 0.75, while similarity to original stories was 0.78.

Overall, results demonstrate that memory-constrained LLMs produce recalls that are semantically
aligned with both human free recall and original texts. While absolute similarity values are mod-
erate due to variability in narrative expression, the closeness of the two distributions indicates that
bounded working memory fosters human-like reconstructive recall rather than degrading semantic
fidelity.

7
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Story WM Dataset
Pieman 0.760 0.788

Oregon Trail 0.728 0.738
Eyespy 0.722 0.723

Baseball 0.767 0.784

Table 2: Semantic similarity (Mod-
ernBERT). Alignment of LLM recalls
with humans and original stories.

Story WM Human p-val
Pieman 37.5% 37.5% 1.0000

Oregon Trail 48.9% 31.3% 0.0852
Eyespy 40.8% 30.6% 0.2918

Baseball 43.6% 43.6% 1.0000

Table 3: Significantly recalled events. Event re-
call proportions for agents and humans. No sig-
nificant differences at α = 0.05.

Figure 3: Event-wise recall probability. Curves for all four stories with bootstrapped 95% CIs.
Dashed lines indicate null baselines from permutation tests.

4.3 RECALL PROBABILITY AND TEMPORAL STRUCTURE

We next examined whether memory-augmented LLM agents replicate core recall dynamics observed
in human participants. Following the Naturalistic Free Recall methodology, we computed event-
wise recall probability by mapping generated recalls to predefined story events. A binary recall
matrix R ∈ {0, 1}N×T was constructed, and event recall probabilities Precall(e) were estimated
with 10,000 bootstrap resamples. Statistical significance was assessed using permutation-based null
baselines.

Figure 3 shows recall probability curves with 95% confidence intervals. In the Pieman story, 37.5%
of events exceeded the null baseline, closely matching human recall in the dataset. Across all narra-
tives, proportions of significantly recalled events did not differ from humans at p < 0.05 (Table 3),
indicating that bounded-memory agents approximate human recall rates without exceeding them.

We further analyzed temporal recall structure. As shown in Figure 4, LLM agents preferentially
recalled the first and last events of each story, consistent with primacy and recency effects. Figure 5
reports normalized serial position curves, which exhibit a U-shaped profile characteristic of human
recall, with additional mid-story peaks reflecting salient plot points. These findings demonstrate that
bounded-memory agents reproduce both event-level selectivity and temporal dynamics of human
recall.

4.4 BASELINE COMPARISONS

To contextualize performance, we compared structured memory agents with two baselines: (i) ran-
dom memory assignment and (ii) full-transcript recall (no WM constraint). As expected, the full-
transcript condition achieved the highest recall rates (Figure 6). Random memory assignment pro-
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Figure 4: Primacy and recency effects. Probability of first and last recall across four stories,
showing elevated likelihoods at story boundaries.

Figure 5: Serial position curves. Normalized
recall probability across story events. U-shaped
profiles capture primacy, recency, and schema-
driven mid-story peaks.

Figure 6: Baseline comparisons. Recall prob-
ability for the Pieman story across structured
memory, random memory, and full-transcript
conditions. Structured memory reproduces
human-like selectivity absent in random alloca-
tion.

duced recall curves resembling the structured model but lacked consistent event selectivity. In con-
trast, our bounded-memory agents reproduced hallmark phenomena—primacy, recency, and event
salience—absent in random allocation. These results highlight that recall quantity alone is insuffi-
cient; cognitive plausibility requires selective, structured memory under capacity constraints.

5 CONCLUSION

We presented a cognitively inspired memory module for LLMs that enforces bounded working
memory through chunking and prioritization. Our agents reproduced hallmark human recall pat-
terns—including primacy, recency, and reconstructive coherence—while achieving recall perfor-
mance statistically indistinguishable from humans on the Naturalistic Free Recall dataset.

Unlike full-transcript or random baselines, our model demonstrates that cognitive constraints, not
recall quantity, drive human-like selectivity. These results establish bounded memory as a psycho-
logically plausible and computationally efficient inductive bias, and they suggest a pathway toward
more generalized memory models for LLMs that can support downstream tasks requiring structured,
selective recall.

9
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the study involves only secondary analysis of existing data. Our experiments focus on modeling
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world decision-making contexts.
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