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ABSTRACT

In this paper, we study the adversarial robustness of deep neural networks for
classification tasks. We look at the smallest magnitude of possible additive per-
turbations that can change the output of a classification algorithm. We provide
a matrix-theoretic explanation of the adversarial fragility of deep neural network
for classification. In particular, our theoretical results show that neural network’s
adversarial robustness can degrade as the input dimension d increases. Analytically
we show that neural networks’ adversarial robustness can be only 1/

√
d of the

best possible adversarial robustness. Our matrix-theoretic explanation is consistent
with an earlier information-theoretic feature-compression-based explanation for
the adversarial fragility of neural networks.

1 Introduction

Deep learning or neural network based classifiers are known to offer high classification accuracy in
many classification tasks. However, it is also observed that deep learning based classifiers often suffer
from adversarial fragility and have low robustness under adversarial perturbations Szegedy et al.
(2014); Goodfellow et al. (2014). For example, when a small amount of adversarial noise is added to
the signal input of a deep learning classifier, its output can dramatically change from an accurate label
to an inaccurate label, even though the input signal is barely changed according to human perceptions.
The reason why the deep learning classifier is often fragile has remained a mystery, even though there
have been various theories explaining this phenomenon, see e.g. Akhtar & Mian (2018); Yuan et al.
(2017); Huang et al. (2018); Wu et al. (2024); Wang et al. (2023) for surveys.

These studies, however, have not yet resulted in a consensus on the important question: a theoretical
explanation for adversarial fragility. Instead, we currently have multiple competing theoretical
explanations, which include (a) quasi-linearity/smoothness of the decision function in AI classifiers
Goodfellow et al. (2014); Li & Spratling (2023); Kanai et al. (2023); Eustratiadis et al. (2022), (b)
high curvature of the decision boundary Fawzi et al. (2016); Reza et al. (2023); Singla et al. (2021),
(c) closeness of the classification boundary to the data sub-manifold Tanay & Griffin (2016); Zeng
et al. (2023); Xu et al. (2022), and (d) information-theoretic feature compression hypothesis Xie
et al. (2019). In Ilyas et al. (2019), the authors argued that the adversarial fragility of neural network
possibly came from the neural network utilizing non-robust features for classification. However, there
are recent works, for example Li et al. (2023), which show that non-robust features might not be able
to fully explain the adversarial fragility of neural network based classifiers.

Besides these works, there are results trying to use high dimensional statistical analysis tools to
theoretically understand the adversarial robustness of classification models. An asymptotically exact
formula given in Hassani & Javanmard (2022) shows that higher overparametrization leads to a worse
robust generalization error for the adversarially-trained models. The performance of high-dimensional
linear models is studied in Donhauser et al. (2021) and Javanmard et al. (2020) which showed that
the robust generalization error of adversarially-trained models becomes worse as the models become
more overparameterized. The analysis in Taheri et al. (2021) is for the adversarially-trained linear
model in the high-dimensional regime where the dimension of data grows with the size of the training
data-set at a constant ratio for binary classification. In Taheri et al. (2021), the authors precisely
analyzed the performance of adversarial training with ℓ2 and ℓ∞-norm bounded perturbations in
binary classification for Gaussian mixture and generalized linear models. It was shown in Tsipras
et al. (2019) that there exists a trade-off between the standard accuracy of a model and its robustness
to adversarial perturbations. It is also observed that using more data can improve this trade-off
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Carmon et al. (2022); Min et al. (2021); Najafi et al. (2019); Raghunathan et al. (2019); Rebuffi et al.
(2021).

Despite these efforts, there is still not clear consensus or theoretical understanding of the fundamental
reason for the adversarial fragility of neural network based classifiers Li et al. (2023). It might be
tempting to explain the adversarial fragility of neural network based classifiers purely as the gap
between the average-case performance (the performance of the classifier under random average-
case noise) and the worst-case performance (the performance of the classifier under well-crafted
worst-case perturbation), for example through the linearity of the model Goodfellow et al. (2014).
However, we argue that this average-case-versus-worst-case gap cannot explain the dramatic fragility
of deep learning based classifiers. Firstly, it is common that there is a gap between average-case and
worst-case performance: it exists for almost every classifier (even including theoretically optimal
classifiers), and is not particularly tied to neural network based classifiers. Secondly, we can show
that there exists good-performing classifiers whose worst-case performance are provably orders
of dimension better than the worst-case performance of deep learning based classifiers. So there
are deeper reasons for the adversarial fragility of neural network based classifiers than just the
worst-case-versus-average-case degradation.

In this paper, we study the adversarial robustness of deep neural networks for classification tasks from
a different perspective than the current literature. We focus on comparing the worst-case performance
of neural network based classifiers and optimal classifiers. We look at the smallest magnitude of
possible additive perturbations that can change the output of the classification algorithm. We provide
a matrix-theoretic explanation of the adversarial fragility of deep neural network. In particular,
our theoretical results show that neural network’s adversarial robustness can degrade as the input
dimension d increases. Analytically we show that neural networks’ adversarial robustness can be
only 1/

√
d of the best possible adversarial robustness.

This Paper’s Comparison Optimal classifier Neural network based classifier
Worst-case performance

In particular, in this paper, through concrete classification examples and matrix-theoretic derivations,
we show that the adversarial fragility of neural network based classifiers comes from the fact that
very often neural network only uses a subset (or compressed features) of all the features to perform
the classification tasks. Thus in adversarial attacks, one just needs to add perturbations to change the
small subsets of features used by the neural networks. This conclusion from matrix-theoretic analysis
is consistent with the earlier information-theoretic feature-compression-based hypothesis that neural
network based classifier’s fragility comes from its utilizing compressed features for final classification
decisions Xie et al. (2019). Different from Xie et al. (2019) which gave a higher-level explanation
based on the feature compression hypothesis and high-dimensional geometric analysis, this paper
gives the analysis of adversarial fragility building on concrete neural network architectures and
classification examples. Our results are derived for linear and non-linear, for two-layer and general
multiple-layer neural networks with different assumptions on network weights, and for different
classification tasks. As a byproduct, we developed a characterization of the distribution of the QR
decomposition of the products of random Gaussian matrices in Lemma 3.

2 PROBLEM STATEMENT

In this section, we review basic notations and architectures for deep learning based classifiers.

We will denote the ℓ2 norm of an vector x ∈ Rn by ∥x∥ or ∥x∥2 =
√∑n

i=1 |xi|2. Let a neural
network based classifier G(·) : Rd → Rk be implemented through a l-layer neural network which
has l − 1 hidden layers and has l + 1 columns of neurons (including the neurons at the input layer
and output layer). We denote the number of neurons at the inputs of layers 1, 2, ..., and l as n1, n2,
...., and nl respectively. At the output of the output layer, the number of neurons is nl+1 = k, where
k is the number of classes.

We define the bias terms in each layer as δ1 ∈ Rn2 , δ2 ∈ Rn3 , · · · , δl−1 ∈ Rnl , δl ∈ Rnl+1 , and the
weight matrices Hi for the i-th layer is of dimension Rni+1×ni .

The element-wise activation functions in each layer are denoted by σ(·), and some commonly used
activation functions include ReLU and leaky ReLU. So the output y when the input is x is given by
y = G(x) = σ(Hlσ(Hl−1 · · ·σ(H1x+ δ1) · · ·+ δl−1) + δl).
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3 FEATURE COMPRESSION LEADS TO SIGNIFICANT DEGRADATION IN
ADVERSARIAL ROBUSTNESS

In this section, we start presenting the main results of this paper. In particular, we first give theoretical
analysis of linear neural network based classifiers’ adversarial robustness, and show that the worst-
case performance of neural network based classifiers can be orders of magnitude worse than the
worst-case performance of optimal classifiers. We then generalize our results to analyze the worst-
case performance of non-linear neural network based classifiers for classification tasks with more
complicatedly-distributed data.

Theorem 1. Consider d training data points (xi, i), where i = 1, 2, · · · , d, each xi is a d-dimensional
vector with each of its elements following the standard Gaussian distribution N (0, 1), and each i is
a distinct label. Consider a two-layer (will be extended to multiple layers in later theorems) neural
network whose hidden layer’s output is z = σ(H1x+ δ1), where H1 ∈ Rm×d, z ∈ Rm×1, and m is
the number of hidden layer neurons.

For each class i, suppose that the output for that class at the output layer of the neural network is
given by

fi(x) = wT
i σ(H1x+ δ1),

where wi ∈ Rm×1. By the softmax function, the probability for class i is given by oi =
efi∑k
i efi

.

To simplify our analysis, suppose that the hidden layer’s activation function is identity (which will
be extended to general functions in Theorem 7), and that H1 is a matrix with orthogonal columns
satisfying HT

1 H1 = Im×m (which will be extended to general H1 in Theorem 4).

For each class i, suppose that the neural network satisfies

fj(xi) =

{
1, if j = i,

0, if j ̸= i.
(1)

Then we have:

• with high probability, for every ϵ > 0, the smallest distance between any two data points is

min
i ̸=j, i=1,2,...,d, j=1,2,...,d

∥xi − xj∥2 ≥ (1− ϵ)
√
2d.

For each class i, one would need to add a perturbation e of size e ≥ (1−ϵ)
√
2d

2 to change
the classification decision if the minimum-distance classification rule is used.

• For each i, with high probability, one can add a perturbation e of size ∥e∥2 ≤ C such that
the classification result of the neural network is changed, namely

fj(xi + e) > fi(xi + e)

for a certain j ̸= i, where C is a constant independent of d and m.

Proof. To prove the first claim, we need the following lemma (proof provided in the appendix).

Lemma 2. Suppose that Z1, Z2, ... and Zd are i.i.d. random variables following the standard
Gaussian distribution N (0, 1). Let α be a constant smaller than 1. Then the probability that∑d

i=1 Z
2
i ≤ αd is at most

(
α(e1−α)

) d
2 . Moreover, as α → 0, the natural logarithm of this

probability divided by d goes to negative infinity.

We consider each pair of xi and xj . Then xi − xj will be a d-dimensional vector with elements as
independent zero-mean Gaussian random variables with variance 2. So by Lemma 2,we know with
high probability that the distance between xi and xj will be at least (1− ϵ)

√
2d. By taking the union

bound over
(
d
2

)
pairs of vectors, we have proved the first claim.

We let X = [x1,x2, ..., xd] be a Rd×d matrix with its columns as xi’s. Without loss of generality,
we assume that the ground-truth signal is xd corresponding to label d.

3
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Then we consider the QR decomposition of H1X ,
H1X = Q1R,

where Q1 ∈ Rm×d satisfies QT
1 ×Q1 = Id×d, and Rm×d is an upper-triangular matrix. We further

consider the QR decomposition of X as
X = Q2R,

where Q2 ∈ Rd×d and Q1 = H1Q2. Note that the two matrices R above are the same matrix due to
orthogonality of H1.

Because of condition (1), the weight matrix H2 between the hidden layer and the output layer is

H2 = R−1QT
2 H

T
1 = R−1QT

1 .

So when the input to the neural network is

xd = Q2 × [R1,d, R2,d, R3,d . . . Rd−2,dRd−1,dRd,d]
T ,

the d outputs at the d output neurons are

y = H2H1xd = H2H1Q2



R1,d

R2,d

R3,d

. . .
Rd−2,d

Rd−1,d

Rd,d

 =



0
0
0
. . .
0
0
1

 .

We let e = Q2 × ebasis, where ebasis = (0, 0, ..., 0, Rd−1,d−1 − Rd−1,d,−Rd,d)
T . We claim

that under such a perturbation e, the input will be xd + e and we will have fd(xd + e) = 0 and
fd−1(xd + e) = 1. In fact, when the input is xd + e, the output at the d output neurons is given by

y = R−1





R1,d

R2,d

R3,d

. . .
Rd−2,d

Rd−1,d

Rd,d

+



0
0
0
. . .
0

Rd−1,d−1 −Rd−1,d

−Rd,d



 .

We focus our attention on the outputs of the last two output neurons, and show that the classification
result will be changed to an incorrect one under the current perturbation. To see this, we first notice
that the inverse of R is an upper triangular matrix given by

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . .

0 0 0 . . . 0 1
Rd−1,d−1

− Rd−1,d

Rd−1,d−1·Rd,d

0 0 0 . . . 0 0 1
Rd,d

 ,

where we only explicitly write down the last two rows.

We know that xd = Q2R:,d, where R:,d is the last column of R. Then (fd−1(xd + e), fd(xd + e))T

is equal to

[
0 0 0 . . . 1

Rd−1,d−1
− Rd−1,d

Rd−1,d−1·Rd,d

0 0 0 . . . 0 1
Rd,d

]


0 +R1,d

0 +R2,d

0 +R3,d

. . .
0 +Rd−2,d

(Rd−1,d−1 −Rd−1,d) +Rd−1,d

(−Rd,d) +Rd,d

 (2)

=

[Rd−1,d−1

Rd−1,d−1
+ 0

Rd−1,d−1·Rd,d

0

]
=

[
1
0

]
. (3)
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The magnitude of this perturbation is

∥e∥2 = ∥Q2ebasis∥2 =
√
(Rd−1,d−1 −Rd−1,d)2 + (−Rd,d)2 ≤ |Rd−1,d−1|+ |Rd−1,d|+ |Rd,d|.

By random matrix theory Hassibi & Vikalo (2005); Xu et al. (2004), Rd,d is the absolute value of a
random variable following the standard Gaussian distribution N (0, 1). Moreover, Rd−1,d−1 is the
square root of a random variable following the chi-squared distribution of degree 2; and Rd−1,d is a
standard normal random variable. Thus, there exists a constant C such that, with high probability,
under an error e with ∥e∥2 ≤ C, the predicted label of the neural network will be changed.

Remarks: Note that xd =
∑d

i=1(Q2):,iRi,d, where (Q2):,i is the i-th column of Q2. However, to
attack this classifier, we only need to attack the features in the direction (Q2):,d which the classifier
uses for making decisions.

Now we go beyond 2-layer neural networks, and moreover, consider the general case where H1, H2,
H3, ..., and Hl−1 are general matrices whose elements are i.i.d. standard normal random variables,
instead of being orthonormal matrices. For these general matrices, we have the following novel
characterization of the QR decomposition of their products (see the proof in the appendix).

Lemma 3. Let H = Hl−1 · · ·H2H1, where each Hi (1 ≤ i ≤ l − 1) is an ni+1 × ni matrix
composed of i.i.d. standard zero-mean unit-variance Gaussian random variables, and Hi’s are jointly
independent. Here without loss of generality, we assume that for every i, ni+1 ≥ ni.

We let R1, R2, ...., and Rl−1 be l − 1 independent upper triangular matrices of dimension n1 × n1

with random elements in the upper-triangular sections. In particular, for each Ri, 1 ≤ i ≤ l − 1, its
off-diagonal elements in the strictly upper triangular section are i.i.d. standard Gaussian random
variables following distribution N (0, 1); its diagonal element in the j-th row is the square root of a
random variable following the chi-squared distribution of degree ni+1 − j + 1, where 1 ≤ j ≤ n1.

Suppose that we perform QR decomposition on H , namely H = QR, where R is of dimension
n1 × n1. Then R follows the same probability distribution as Rl−1Rl−2 · · ·R2R1, namely the
product of R1, R2, ..., and Rl−1.

Now we are ready to extend Theorem 1 to more general multiple-layer neural network with general
weights.

Theorem 4. Consider d data points (xi, i), where i = 1, 2, · · · , d, each xi is a d-dimensional vector
with each of its elements following the standard Gaussian distribution N (0, 1), and each i is a
distinct label. Consider a multiple-layer linear neural network whose hidden layers’ output is

z = Hl−1...H1x, (4)

where Hi ∈ Rni+1×ni , and n1 = d. For each class i, suppose that the output for that class at the
output layer of the neural network is given by fi(x) = wT

i z, where wi ∈ Rnl+1×1. By the softmax
function, the probability for class i is given by oi =

efi∑k
i efi

. For each class i, suppose that the neural
network satisfies

fj(xi) =

{
1, if j = i,

0, if j ̸= i.
(5)

Then we have:

• with high probability, for every ϵ > 0, the smallest distance between any two data points is

min
i ̸=j, i=1,2,...,d, j=1,2,...,d

∥xi − xj∥2 ≥ (1− ϵ)
√
2d.

For each class i, one would need to add a perturbation e of size e ≥ (1−ϵ)
√
2d

2 to change
the classification decision if the minimum-distance classification rule is used.

• For each class i, with high probability, one can add a perturbation e of size ∥e∥2 ≤ C such
that the classification result of the neural network is changed, namely

fj(xi + e) > fi(xi + e)

for a certain j ̸= i, where C is a constant independent of d.

5
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Proof. The first part is proved in Theorem 1. For the second part, we use Lemma 3. From the
proof of Theorem 1, we know we just need to add perturbation with magnitude at most |Rd−1,d−1|+
|Rd−1,d| + |Rd,d|, where R the upper triangular matrix resulting from the QR decomposition of
Hl−1...H1. Moreover, by Lemma 3,

|Rd−1,d−1|+ |Rd−1,d|+ |Rd,d| ≤ ∥Rl−1∥1B ...∥R1∥1B ,

where ∥Ri∥1B is the sum of the absolute values of elements in the bottom 2 × 2 submatrix of Ri.
Because with high probability, ∥Rl−1∥1B , ..., ∥R1∥1B will all be bounded by a constant D at the
same time, we can find a perturbation of size bounded by a constant Dl such that changes the output
decision of the neural network classifier.

So far we have assumed for multiple-layer neural network, the following condition holds: for each
class i, suppose that the neural network satisfies

fj(xi) =

{
1, if j = i,

0, if j ̸= i.
(6)

This condition facilitates characterizing the adversarial robustness of neural networks via random-
matrix-theoretic analysis of the QR decomposition of a Gaussian matrix. For general last layer’s
weights which do not necessarily satisfy this condition, we have the following results.

Theorem 5. Consider a multi-layer linear neural network for the classification problem in Theorem
1. Suppose that the input signal x corresponds to a ground-truth class i. Let us consider an attack
target class j ̸= i. Let the last layer’s weight vectors for class i and j be wi and wj respectively.
Namely the output layer’s outputs for class i and j are respectively:

fi(x) = wT
i Hl−1...H1x, and fj(x) = wT

j Hl−1...H1x,

where Hi ∈ Rni+1×ni , and n1 = d. We define two probing vectors (each of dimension d × 1) for
class i and class j as

probei = (wT
i Hl−1...H1)

T , and probej = (wT
j Hl−1...H1)

T .

Suppose we have the following QR decomposition:

[probei, probej ] = Q

[
r11 r12
0 r22

]
,

where Q ∈ Rd×2. We let the projections of xi and xj onto the subspace spanned by the two columns
of Q be x̃i and x̃j respectively. We assume that

[x̃i, x̃j ] = Q

[
ai1 aj1
ai2 aj2

]
.

If for some input x+∆, fj(x+∆) > fi(x+∆), then we say that the perturbation ∆ changes the
label from class i to class j. To change the predicted label from class i to class j, we only need to
add perturbation ∆ to x on the subspace spanned by the two columns of Q, and the magnitude of ∆
satisfies

∥∆∥ ≤ |r11ai1 − (r12ai1 + r22ai2)|
∥probei − probej∥

≤
√
a2i1 + a2i2.

Proof. Suppose x = xi is the ground-truth signal. We use pi and pj as shorts for probei and probej .
So

⟨pi,xi⟩ = r11ai1, ⟨pj ,xi⟩ = r12ai1 + r22ai2.

We want to add ∆ to x such that ⟨pi,xi +∆⟩ < ⟨pj ,xi +∆⟩. Namely, ⟨pi −pj ,∆⟩ < −⟨pi,xi⟩+
⟨pj ,xi⟩. This is equivalent to

⟨pj − pi,∆⟩ > ⟨pi,xi⟩ − ⟨pj ,xi⟩ = r11ai1 − (r12ai1 + r22ai2).

We also know that
⟨pj − pi,∆⟩ = (r12 − r11)∆1 + r22∆2

6
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So, by the Cauchy-Schwarz inequality, we can pick a ∆ such that

⟨pj − pi,∆⟩ = ∥∆∥2
√

(r12 − r11)2 + r222.

So there exists an arbitrarily small constant ϵ > 0 and perturbation vector ∆ such that

∥∆∥ ≤

∣∣∣∣∣r11ai1 − (r12ai1 + r22ai2)√
(r12 − r11)2 + r222

∣∣∣∣∣+ ϵ, and ⟨pi,xi +∆⟩ < ⟨pj ,xi +∆⟩, (7)

leading to a misclassified label because fj(x+∆) > fi(x+∆).

As we can see from Theorem 5, one just needs to change the components of x in the subspace
spanned by the two probing vectors. This explains the adversarial fragility of neural network based
classifiers from the feature compression perspective more concretely based on the neural network
architecture: one needs to only attack the compressed features used for classification decisions to
fool the classifiers into making wrong decisions.

4 WHEN EXPONENTIALLY MANY DATA POINTS EXIST WITHIN A CLASS

In the following, we consider a case (proof provided in the appendix) where the number of data points
(2d−1) within a class is much larger than the dimension of the input data vector, and the data points
of different classes are more complicatedly distributed than considered in previous theorems.

Theorem 6. Consider 2d data points (xi, yi), where i = 1, 2, · · · , 2d, xi ∈ Rd is the input data, and
yi is the label. For each i, we have xi = Azi, where zi is a d× 1 vector with each of its elements
being +1 or −1, and A is a d× d random matrix with each element following the standard Gaussian
distribution N (0, 1). The ground-truth label yi is +1 if zi(d) = +1 (namely zi’s last element is +1),
and is −1 if zi(d) = −1. We let C+1 denote the set of xi such that the corresponding zi(d) (or label)
is +1, and let C−1 denote the set of xi such that the corresponding zi(d) (or label) is −1.

Consider a two-layer neural network for classification whose hidden layer output is σ(H1x+ δ1),
where H1 ∈ Rm×d is a random matrix with each of its elements being Gaussian, and δ1 is the vector
of bias. For each class C+1 or C−1, suppose that the output layer of the neural network is given by

f+1(x) = wT
+1σ(H1x+ δ1) and f−1(x) = wT

−1σ(H1x+ δ1).

Suppose that the hidden layer’s activation function is identity, and that H1 is a matrix with orthogonal
columns satisfying HT

1 H1 = Im×m (for simplicity of analysis even though the results also extend to
H1 being general matrices, and also to multiple-layer networks with non-linear activation functions).

For input xi, suppose that the neural network satisfies

f+1(xi) =

{
+1, if zi(d) = +1,

−1, if zi(d) = −1.
, and f−1(xi) =

{
+1, if zi(d) = −1,

−1, if zi(d) = +1.
(8)

Let the last element of zi corresponding to the ground-truth input xi be denoted by ‘bit’. Then

• with high probability, there exists a constant α > 0 such that the smallest dis-
tance between any two data points in the different classes is at least α

√
d, namely

minxi∈C+1, xj∈C−1
∥xi − xj∥2 ≥ α

√
d.

• Given a data x = xi, with high probability, one can add a perturbation e of size ∥e∥2 ≤ D
such that f−bit(xi + e) > fbit(xi + e), where D is a constant independent of d.

As we can see in the proof, because the neural network makes classification decision based on the
compressed features in the direction of the vector Q:,d, namely the last column of Q1, one can
successfully attack the classifier along the directions of Q:,d using a much smaller magnitude of
perturbation. Using the results of QR decomposition for products of Gaussian matrices in Lemma 3,
the proofs of Theorem 4 and Theorem 5, we can obtain similar results in Theorem 6 for multiple-layer
neural network models with general non-orthogonal weights.
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5 WHEN THE NEURAL NETWORKS ARE GENERAL MULTIPLE-LAYER
NON-LINEAR NEURAL NETWORKS

In this section, we present results showing the adversarial fragility of general non-linear multiple-layer
neural network based classifiers. The results in this section show that one just needs to change the
classifier’s input along the direction of “compression” the classifier imposed on the input data, in
order to change the outputs of the classifier towards predicting another label.

Theorem 7. Consider a multi-layer neural network for classification and an arbitrary point x ∈ Rd.

From each class i, let the closest point in that class to x be denoted by x+ xi. We take ϵ > 0 as a
small positive number. For each class i, We let the the neural network based classifier’s output at its
output layer be fi(x), and we denote the gradient of fi(x) by ∇fi(x).

We consider the points x+ ϵx1 and x+ ϵx2. Suppose that the input to the classifier is x+ ϵx1. Then
we can add a perturbation e to x+ ϵx1 such that

f1(x+ ϵx1 + e) = f1(x+ ϵx2) and f2(x+ ϵx1 + e) = f2(x+ ϵx2).

Moreover, the magnitude of e satisfies

∥e∥2 ≤ ϵ∥P∇f1(x),∇f2(x)(x1 − x2)∥2,

where P∇f1(x),∇f2(x) is the projection onto the subspace spanned by ∇f1(x) and ∇f2(x).

If ∇f1(x), ∇f2(x), and x2 − x1 all have independent standard Gaussian random variables as their
elements, changing from x+ ϵx1 to x+ ϵx2 will be O(d) times more difficult (in terms of the square
of the magnitude of the needed perturbation) than just changing the classifier’s label locally using
adversarial perturbations.

Remarks: In order to make the classifier wrongly think the input is x + ϵx2 instead of the true
signal x+ ϵx1 at the two output neurons for class 1 and 2, one just needs to add a small perturbation
instead of adding a full perturbation ϵ(x2 − x1), due to compression of x2 − x1 along the directions
of gradients ∇f1(x) and ∇f2(x). We can also add a small perturbation e to x + ϵx1 such that
f2(x+ ϵx1 + e)− f1(x+ ϵx1 + e) = f2(x+ ϵx2)− f1(x+ ϵx2), with small magnitude ∥e∥2 ≤
ϵ∥P∇(f1(x)−f2(x))(x1 − x2)∥2, where P∇(f1(x)−f2(x)) is the projection onto the subspace spanned
by ∇f1(x)−∇f2(x).

From the proof of Theorem 7 in the appendix, we can see that in order for the neural network to have
good adversarial robustness locally around x, the direction of x2 − x1 should be in the span of the
gradients ∇f1(x) and ∇f2(x). However, the subspace spanned by ∇f1(x) and ∇f2(x) may only
contain “compressed ” parts of of ϵ(x2−x1), making it possible to use smaller-magnitude perturbation
to change the classifier outputs than using a ϵ(x2 − x1) perturbation, but as effectively.

6 NUMERICAL RESULTS

In this section, we present our numerical results verifying theoretical predictions on adversarial
fragility. In particular, we focus on the setting described in Theorem 6 (linear networks) and Theorem
7 (non-linear networks).

We first let d denote the dimension of the input for the neural network. Then, for each i (i =
1, 2, · · · , 2d), we have xi = Azi, where zi is a d× 1 vector with each of its elements being +1 or
−1, and A is a d× d random matrix with each element following the standard Gaussian distribution
N (0, 1). The ground-truth label yi is +1 if zi(d) = +1 (namely zi’s last element is +1), and is
−1 if zi(d) = −1. Then X is a d× 2d matrix where each column of X represents an input data of
dimension d.

Linear networks: Next, we train a linear neural network with one hidden layer for classification.
The input layer of the neural network has dimension d, the hidden layer has 3000 neurons, and the
output layer is of dimension 2. We denote the 3000× d weight matrix between the input layer and
the hidden layer as H1, and the weight matrix between the hidden layer and the output layer as a
2× 3000 matrix H2. We use identity activation function and we use the Adam package in PyTorch

8
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Table 1: Cosine of angles of trained models with training accuracy equal to 1, d = 12.

Experiment No. 1 2 3 4 5 6 7 8 9 10
cos(θ1) −0.1970 −0.1907 −0.6017 −0.2119 −0.2449 −0.5054 −0.7794 −0.5868 −0.1655 −0.4739
cos(θ2) −0.9992 −0.9992 −0.9984 −0.9994 −0.9955 −0.9988 −0.0795 −0.9972 −0.9993 −0.9942

ϕ 0.1812 0.1870 0.5888 0.2048 0.2032 0.4985 0.0738 0.5895 0.1480 0.4497

for training. The loss function we use in the training process is the Cross-Entropy loss function. We
initialize the weights by uniform distribution 1. The number of epochs is 20.

We consider d = 12. In each “run”, we first randomly generate a random matrix A, and generate the
data matrix X accordingly. In generating the data matrix X , we multiply each of A’s columns by 5
except for the last column (Note that this modification will not change the theoretical predictions in
Theorem 6. This is because the modification will not change the last column of matrix R in the QR
decomposition of A). Then we train a neural network as described above. We will keep the trained
neural network as a valid “experiment” for study if the trained network has a training accuracy of 1.
We keep generating “runs” until we have 10 valid “experiments” with training accuracy 1. Then, in
Table 1, we report the results of the 10 valid “experiments” for the case d = 12, where the accuracy
reaches 1 for each “experiment”.

We let W1 and W2 be the first row and the second row of W = H2H1, respectively. Note that W1

and W2 are just the two probing vectors mentioned in Theorem 5. For each valid “experiment”, we
consider two different angles, θ1 and θ2. θ1 is the angle between W1 −W2 and the last column of A.
In terms of physical meaning, the absolute value of cos(θ1) means how much of the feature (the last
column of A) is projected (or compressed) onto W1−W2 in the neural network to make classification
decisions. By similar derivation as in Theorem 5, | cos(θ1)| quantifies how much perturbation we
can add to the input signal such that the output of the classifier is changed to the opposite label. For
example, when | cos(θ1)| is 0.1970 in Experiment 1 of Table 1, we only need a perturbation 0.1970
of the ℓ2 magnitude of the last column of A (perturbation is added to the input of the neural network)
to change the output of this neural network to the opposite label. On the other hand, the optimal
decoder (the minimum distance decoder or classifier) would need the input to be changed by at least
the ℓ2 magnitude of the last column of A so that the output of the optimal decoder is changed to the
opposite label.

The second angle θ2 is the angle between the first row (namely W1) of W = H2H1 and the last row
of the inverse of A. As modeled in Theorem 6, W1 should be aligned or oppositely aligned with the
last row of the inverse of A, and thus the absolute value of cos(θ2) should be close to 1.

We also consider the quantity “fraction” ϕ, which is the ratio of the absolute value of Rd,d over
the ℓ2 magnitude of the last column of A. Theorem 6 theoretically predicts that | cos(θ1)| (or the
feature actual compression ratio) should be close to “fraction” (the theoretical feature compression
ratio).

From Table 1 (except for Experiment 7), one can see that Theorem 6, the actual compression of the
feature vector (the last column of the matrix A) onto the probing vectors (W1 −W2) and “fraction”
ϕ (the theoretical compression ratio) accurately predict the adversarial fragility of the trained neural
network for classification. For example, let us look at Experiment 9. The quantity of ϕ is 0.1480, and
thus Theorem 6 predicts that the adversarial robustness (namely smallest magnitude of perturbation to
change model’s classification result) of the theoretically-assumed neural network model is only 0.1480
of the best possible adversarial robustness offered by the optimal classifier. In fact, by the actual
computational trained neural network experiment, 0.1480 is indeed very close to | cos(θ1)|=0.1665,
which is the size of actual perturbation (relative to the ℓ2 magnitude of the last column of A) needed
to change the practically-trained classifier’s decision to the opposite label. We can also see that when
the theoretically predicted compression ratio ϕ is small, the actual adversarial robustness quantified
by | cos(θ1)| is also very small, experimentally validating Theorem 6’s purely theoretical predictions.
We also notice that | cos(θ2)| is very close to 1, matching the prediction of Theorem 6.

We further conduct 50 experiments and see that there are 20 experiments with training accuracy 1.
Among all these 20 experiments with training accuracy 1, we noticed that there are 18 cases with

1https://community.deeplearning.ai/t/default-weight-initialization-process-in-pytorch-custom-
module/436680
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Table 2: Averages of cosines of angles, for | cos(θ2)| > 0.9, d = 12

Avg. of | cos(θ1)| Avg. of |ϕ| Avg. of
∣∣∣| cos(θ1)| − |ϕ|

∣∣∣
0.3645 0.3280 0.0367

the absolute value of cos(θ2) over 0.9. Furthermore, for these 18 experiments, we report 3 statistical
values in Table 2.

From Table 2, we can observe that the average value of | cos(θ1)| is 0.3645. It means that on average,
we need 0.3645 of the ℓ2 magnitude of the last column of A be added to the input signal such that the
output of the classifier is changed to the opposite label. Moreover, we can conclude from Table 2
that on average, |ϕ| is 0.3280. It represents that the theoretical compression ratio needed to change
the classifier output is on average 0.3280. We also observe that average value of || cos(θ1)| − |ϕ|| is
0.0367, meaning the actual result is close to our theoretical analysis.

Nonlinear networks: We trained 1-hidden-layer ( and also multiple-hidden-layer) non-linear neural
networks to test for Theorem 7. We used ReLU activation functions in the hidden layer of the
neural network classifier. To generate vectors x, x1 and x2, we first define two vectors z+1 and
z−1 of dimension d. The first d − 1 elements of z+1 are the same as those of z−1, and take
random values +1 or −1. The last element of z+1 is +1 and the last element of z−1 is −1.
Then we define vectors b1 = Az+1, and another vector b2 = Az−1. For a stencil of 10 α-values
[0, 0.111, 0.222, 0.333, . . . , 0.776, 0.889, 1], let x = αb1+(1−α)b2 for every scalar α. In Theorem
7, take x1 = b1−x = (1−α)b1−(1−α)b2 and x2 = b2−x = αb2−αb1 for every scalar α. With
d = 12, we calculated the projection of x1 − x2 onto the subspace spanned by ∇f1(x)−∇f2(x)

as P∇f1(x)−∇f2(x)(x1 − x2). We define the following ratio ρ =
∥P∇f1(x)−∇f2(x)(x1−x2)∥2

∥x1−x2∥2
. By

Theorem 7 and the discussions that follow it, we know ρ is “compression rate” locally: the rate of the
compression of the critical feature x2 − x1 onto the gradient (the feature looked at by the classifier).
ρ is also the ratio of tolerable worst-case perturbation of the trained neural network classifier to that of
optimal classifier (locally). The smaller ρ is, the less adversarially robust the trained neural network
is, compared with optimal minimum-distance classifier.

For every α, we calculate the sample mean and medians of ρ over 50 accurate 1-hidden-layer non-
linear neuron networks in Table 3. For example, when α = 0.444, ρ has a mean of 0.3272, meaning
the trained classifier is only 0.3272 (0.32722 ≈ 0.10 when considering the energy of perturbation) as
adversarially robust as the optimal minimum-distance classifier. The ratios are similarly small if we
train neural network classifiers with more layers. The ratios are even smaller when d increases.

α 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1
Avg. 0.3278 0.3275 0.3273 0.3270 0.3272 0.3275 0.3274 0.3281 0.3280 0.3276

Medium 0.3270 0.3261 0.3258 0.3255 0.3303 0.3307 0.3293 0.3322 0.3315 0.3324

Table 3: Averages and mediums of ρ

7 CONCLUSIONS

We study the adversarial robustness of deep neural networks for classification tasks. The adversarial
robustness of a classifier is defined as the smallest possible additive perturbations that can change the
classification output. We provide a matrix-theoretic explanation of the adversarial fragility of deep
neural network. Our theoretical results show that neural network’s adversarial robustness can degrade
as the input dimension d increases. Analytically we show that neural networks’ adversarial robustness
can be only 1/

√
d of the best possible adversarial robustness. Our matrix-theoretic explanation is

consistent with an earlier information-theoretic feature-compression-based explanation. Limitations
of this paper include the need to extend detailed theoretical analysis and numerical experiments to
more general data distributions, neural network architectures, and the need to further explore the
relationship between adversarial robustness and network parameters such as number of layers.
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A APPENDIX

A.1 PROOF OF LEMMA 2

Proof. Using the Chernoff Bound, we get that

P (

d∑
i=1

Z2
i ≤ dα) ≤ inf

t<0

E[Πie
tZ2

i ]

etdα
.

However, we know that

E(etZ
2
i ) =

∫ ∞

−∞
P (x)etx

2

dx =
1√
2π

∫ ∞

−∞
e(t−

1
2 )x

2

dx.

Evaluating the integral, we get

E(etZ
2
i ) =

1√
2π

(
2
√
π√

2− 4t

)
=

√
2√

2− 4t
.

This gives us

f(t) =
ΠiE(etZ

2
i )

etdα
=

( √
2

etα
√
2− 4t

)d

.

Since d ≥ 1 and the base is positive, minimizing f(t) is equivalent to maximizing etα
√
2− 4t. Taking

the derivative of this with respect to t, we get etα
(
α
√
2− 4t− 2√

2−4t

)
. Taking the derivative as 0,

we get t = α−1
2α . Plugging this back into f(t), we get

P (X ≤ dα) ≤
(
α(e1−α)

) d
2 = eg(α)d.

We now notice that the exponent g(α) = 1
2 log(αe

1−α) goes towards negative infinity as α → 0,
because log(α) goes to negative infinity as α → 0.

A.2 PROOF OF LEMMA 3

Proof. We prove this by induction over the layer index i. When i = 1, we can perform the QR
decomposition of H1 = Q1R1, where R1 is an upper triangular matrix of dimension n1 × n1, Q1 is
a matrix of dimension n2 × n1 with orthonormal columns. From random matrix theories Hassibi
& Vikalo (2005); Xu et al. (2004), we know that R1’s off-diagonal elements in the strictly upper
triangular section are i.i.d. standard Gaussian random variables following distribution N (0, 1).; its
diagonal element in the j-th row is the square root of a random variable following the chi-squared
distribution of degree n2 − j + 1.

Let us now consider H2 of dimension n3 × n2. Then

H2H1 = H2Q1R1.

Note that H2Q1 is a matrix of dimension n3 × n1, and the elements of H2Q1 are again i.i.d. random
variables following the standard Gaussian distribution N (0, 1). To see that, we first notice that because
the rows of H2 are independent Gaussian random variables, the rows of H2Q1 will be mutually
independent. Moreover, within each row of H2Q1, the elements are also independent N (0, 1) random
variables because the elements are the inner products between a vector of n2 independent N (0, 1)
elements and the orthonormal columns of Q1. With Q1 having orthogonal columns, these inner
products are thus independent because they are jointly Gaussian with 0 correlation.

Then we can replace H2Q1 with matrix H ′
2 of dimension n3 × n1, with elements of H ′

2 being i.i.d.
N (0, 1) random variables. We proceed to perform QR decomposition of H ′

2 = Q2R2, where R2 is
of dimension n1×n1. Again, from random matrix theories, we know that R2’s off-diagonal elements
in the strictly upper triangular section are i.i.d. standard Gaussian random variables following
distribution N (0, 1).; its diagonal element in the j-th row is the square root of a random variable
following the chi-squared distribution of degree n3 − j + 1.
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Because
H2H1 = Q2R2R1,

and the products of upper triangular matrices are still upper triangular matrices, Q2(R2R1) is the QR
decomposition of H2H1.

We assume that Hi+1Hi...H1 has a QR decomposition Qi+1Ri+1 · · ·R1. Then by the same argument
as going from H1 to H2H1, we have

Hi+2Hi+1Hi...H1 = Qi+2(Ri+2Qi+1Ri+1 · · ·R1)

working as the QR decomposition of Hi+2Hi+1Hi...H1, where Qi+2 is an ni+3 × n1 matrix with
orthonormal columns.

By induction over i, we complete the proof.

A.3 PROOF OF THEOREM.6

Proof. The proof of the first claim follows the same idea as in the proof of the first claim of Theorem
1. The only major difference is that we have 2d−1 × 2d−1 = 22(d−1) pairs of vectors to consider for
the union bound. For each pair of vector xi and xj , xi − xj still have i.i.d. Gaussian elements with
the variance of each element being at least 4. By Lemma 2 and the union bound, taking constant α
sufficiently small, the exponential decrease (in d) of the probability that ∥xi − xj∥ is smaller than
α
√
d will overwhelm the exponential growth (in d) of 22(d−1), proving the first claim of Theorem 6.

Without loss of generality, we assume that the ground-truth signal is xi corresponding to label +1.
Then we consider the QR decomposition of H1A,

H1A = Q1R,

where Q1 ∈ Rm×d satisfies QT ×Q = Id×d, and Rd×d is an upper-triangular matrix. We further let
the QR decomposition of A as

A = Q2R,
where Q2 ∈ Rd×d and Q1 = H1Q2. Notice that the two QR decompositions share the same R
because of HT

1 H1 = Im×m.

Then the weight for the class ‘+1’ is given by w+1 = 1
Rd,d

Q:,d, and the weight for the class ‘-1’ is
given by w−1 = − 1

Rd,d
Q:,d, where Q:,d is last column of matrix Q1. We let

e = Q2 × ebasis,

where ebasis = (0, 0, ..., 0, 0,−2Rd,d)
T . We claim that under such a perturbation e, the input will be

xi + e and we have
f+1(xi + e) = −1, and f−1(xi + e) = 1,

thus changing the classification result to the wrong label.

To see this, we first notice that the inverse of R is an upper triangular matrix given by

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . .

0 0 0 . . . 0 1
Rd−1,d−1

− Rd−1,d

Rd−1,d−1·Rd,d

0 0 0 . . . 0 0 1
Rd,d

 ,

where we only explicitly write down the last two rows.

We know that xi = Azi = Q2Rzi, so xi+e = Q2(Rzi+ebasis). Then (f+1(xi+e), f−1(xi+e))T

is equal to

[
0 0 0 . . . 0 + 1

Rd,d

0 0 0 . . . 0 − 1
Rd,d

]


R1,d

R2,d

R3,d

. . .
Rd−2,d

Rd−2,d

Rd,d − 2Rd,d

 =

[
−1
+1

]
. (9)
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The magnitude of this perturbation is

∥e∥2 = ∥Q2ebasis∥2 = 2Rd,d. (10)

By random matrix theory Hassibi & Vikalo (2005); Xu et al. (2004)for the QR decomposition of
the Gaussian matrix A, we know that Rd,d is the absolute value of a random variable following
the standard Gaussian distribution N (0, 1). Thus, there exists a constant D such that, with high
probability, under an error e with ∥e∥2 ≤ D, the predicted label of the neural network will be
changed.

A.4 PROOF OF THEOREM 7

Proof. Suppose that we add a perturbation q to the input x + ϵx1, namely the input becomes
x+ ϵx1 + q. Then

f1(x+ ϵx1+q) ≈ f1(x+ ϵx1)+∇f1(x)
Tq and f2(x+ ϵx1+q) ≈ f2(x+ ϵx1)+∇f2(x)

Tq

We want to pick a q such that

f1(x+ ϵx1 + q) ≈ f1(x+ ϵx2) and f2(x+ ϵx1 + q) ≈ f2(x+ ϵx2).

Apparently, we can take q = ϵ(x2 − x1) to make this happen. However, we claim we can potentially
take a perturbation of a much smaller size to achieve this goal. We note that

f1(x+ ϵx1 + q) ≈ f1(x) + ϵ∇f1(x)
Tx1 +∇f1(x)

Tq

and
f2(x+ ϵx1 + q) ≈ f2(x) + ϵ∇f2(x)

Tx1 +∇f2(x)
Tq.

We want
f1(x) + ϵ∇f1(x)

Tx1 +∇f1(x)
Tq = f1(x) + ϵ∇f1(x)

Tx2,

and
f2(x) + ϵ∇f2(x)

Tx1 +∇f2(x)
Tq = f2(x) + ϵ∇f2(x)

Tx2.

Namely, we want

ϵ∇f1(x)
Tx1 +∇f1(x)

Tq = ϵ∇f1(x)
Tx2, and ϵ∇f2(x)

Tx1 +∇f2(x)
Tq = ϵ∇f2(x)

Tx2.

So
∇f1(x)

Tq = ϵ∇f1(x)
T (x2 − x1), and ∇f2(x)

Tq = ϵ∇f2(x)
T (x2 − x1).

Then we can just let q be the projection of ϵ(x2 − x1) onto the subspace spanned by ∇f1(x) and
∇f2(x).

If ∇f1(x), ∇f2(x), and x2 − x1 all have independent standard Gaussian random variables as their
elements, then the square of the magnitude (in ℓ2 norm ) of that projection of x2 − x1 will follow a
chi-squared distribution of degree 2. At the same time, the square of the magnitude of x2 − x1 will
follow the chi-squared distribution with degree d. Moreover, as d → ∞, the square of the magnitude
of x2−x1 is Θ(d) with high probability. Thus changing from x+ ϵx1 to x+ ϵx2 will be O(d) times
more difficult than changing the classifier’s label using an adversarial attack.
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