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ABSTRACT

Supervised fine-tuning (SFT) with expert demonstrations often suf-
fers from the imitation problem, where models reproduce correct re-
sponses without internalizing the underlying reasoning. We propose
CRITIQUE-GUIDED DISTILLATION (CGD), a multi-stage training frame-
work that augments SFT with teacher-generated explanatory critiques and
refined responses. Instead of directly imitating teacher outputs, a student learns
to map the triplet of prompt, its own initial response, and teacher critique into the
refined teacher response, thereby capturing both what to output and why. Our
analyses show that CGD consistently reduces refinement uncertainty, improves
alignment between critiques and responses, and enhances sample efficiency.
On reasoning benchmarks, CGD achieves substantial gains across LLaMA and
Qwen families, including +15.0% on AMC23 and +12.2% on MATH-500, while
avoiding the format drift issues observed in prior critique-based fine-tuning.
Importantly, on LLaMA-3.1-8B CGD approaches or exceeds the performance of
SimpleRL-Zero, which is a DeepSeek-R1 replication, while requiring 60x less
compute. Beyond reasoning, CGD maintains or improves general instruction-
following and factual accuracy, matching baseline performance on IFEval,
MUSR, TruthfulQA, and BBH. In contrast, prior critique-based methods degrade
these capabilities (e.g., -21% on IFEval). Taken together, these results establish
CGD as a robust and generalizable alternative to both conventional SFT and
RL-based methods, offering a more efficient path toward advancing the reasoning
and safety of large language models.

1 INTRODUCTION

Supervised fine-tuning (SFT) is a foundational technique for teaching large language models
(LLMs) to perform diverse downstream tasks by mimicking expert-annotated outputs (Wei et al.,
2022; Sanh et al., 2022). Despite its success, vanilla SFT has notable limitations: it increases
model’s tendency to hallucinate (Gekhman et al. [2024), exhibits limited out-of-distribution gen-
eralization (Chu et al., 2025), and struggles to generalize to harder problem instances (Sun et al.,
20245 [20235)). These shortcomings raise fundamental questions about SFT’s capacity for robust, and
complex reasoning.

An alternative approach to improve reasoning leverages critique and revision at inference time: a
model generates an initial answer, critiques it, then refines its output based on that critique (Kim!
et al., 2023} [Madaan et al.| [2023; |Shinn et al., [2023}; |Saunders et al.| [2022)). While effective, these
multi-pass prompting methods incur high computational costs and latency during deployment.

To integrate critique signals without extra inference costs, recent works has moved these steps into
training. Rejection Sampling Fine-Tuning (RFT) (Yuan et al., [2023) trains the model on its own
generated outputs that are verified or ranked by a reward model, thus incorporating value-based
feedback. Critique Fine-Tuning (CFT) instead trains a student model to reproduce teacher-generated
critiques (Wang et al., 2025). Although CFT outperforms vanilla SFT on several math benchmarks,
prolonged CFT can induce output-format drift, overfitting to critique patterns rather than stable
answer structures and its gains are sensitive to the quality of the critiques provided.

In this work, we introduce CRITIQUE-GUIDED DISTILLATION (CGD) (Fig. , a novel multi-
step fine-tuning paradigm in which a student model learns to transform its own initial outputs into
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high-quality refinements, rather than just generating critiques. Concretely, we condition a teacher
model to produce both critiques and corresponding corrected answers, and train the student to map
its raw response to the teacher’s refined version by conditioning it on the critique. By internalizing
not only how to identify errors but also what a polished response looks like, CGD closes the loop
between diagnosis and correction. Importantly, the use of initial answers and critiques is restricted to
the training phase: at inference time CGD requires only the original prompt and produces the refined
answer in a single pass, with no need for critiques. This design both avoids format drift compared
to CFT (Fig.[I) and eliminates the inference-time overhead of multi-pass critique methods.

SFT

Prompt ?

Calculate the mass of a nitride
anion containing 2.408 x 1024
nitrogen-based electrons.

% Language Model

Gold Label Q

A nitride ion (N37) has 10
electrons.

Number of atoms = 2.408 x 1024
+10

Mass = 3.373 x 1023 x
1.66053904 x 10 27 = 5.605 x
10 3kg

CFT
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Calculate the mass of a nitride
anion containing 2.408 x 1024
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Number of atoms = 2.408 x
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v
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v
Critique Q
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Conclusion: wrong [END]

Ours: Critique-Guided Distillation
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Refined Answer Q

Number of atoms = 2.408 x 1024 + 10

Mass ~ 3.373 x 1023 x 1.66053904 x 10 27 =
5.605 x 10 3 kg

Figure 1: Comparing Supervised fine-tuning (SFT), Critique Fine-Tuning (CFT) and
CRITIQUE-GUIDED DISTILLATION (CGD). Unlike CFT, which trains the student to generate
critiques, CGD conditions training on both the initial answer and critique but at test time generates
the final answer directly in a single pass.

By conditioning answer generation on the critique, CGD avoids format drift (the model continues
to generate answers, not critiques) and ensures feedback is explicit and grounded. We empirically
validate CGD on mathematical reasoning and broad knowledge benchmarks, observing +17.5% and
+15.0% absolute accuracy gains over SFT and CFT respectively on the challenging AMC23 dataset
for LLaMA3.1-8B Instruct student model. Similarly, on OlympiadBench, CGD achieves a
+12.9% gain over SFT and +8.0% over CFT. For S1.1-3B student model, CGD achieves +12.2%
gain +7.5% over CFT on MATH-500 and AMC23, respectively, further reinforcing its effectiveness
on hard math reasoning. Figure 2] visualizes this performance trend, showing that CGD consistently
improves over strong baselines such as Distilled SFT, which only trains the student to imitate the
teacher’s refined answers given the input prompt, and CFT across all evaluation tasks. In contrast,
CGD explicitly conditions the student on the input prompt, its own initial answer, and the teacher’s
critique, enabling the model to internalize not just what the correct refinement is but why the refine-
ment is needed. This richer supervision leads to more robust and generalizable reasoning behavior.

In summary, our contributions are as follows:

¢ We introduce CRITIQUE-GUIDED DISTILLATION (CGD), a novel and efficient fine-
tuning framework that trains a student model on the full cycle of self-correction: from
a flawed initial answer, to a critique, to a refined output.

* We demonstrate through extensive experiments that CGD achieves state-of-the-art perfor-
mance, outperforming strong distillation and critique-based baselines. For LLaMA3.1-8B
Instruct and S1.1-3B, CGD achieves absolute gains of +5.4% and +7.2% respec-
tively over the next best method, CFT, on five math reasoning benchmarks.

* We conduct a thorough suite of ablation studies, proving CGD’s robustness. Our method
shows consistent gains across different model families (LLaMA (Grattafiori et al.| [2024)),
S1.1 (Muennighoft et al.,[2025)), Mixtral (Jiang et al.,[2024), and OLMo (Groeneveld et al.,
2024)), training datasets (Weblnstruct (Yue et al.| [2024), and MetaMathQA (Yu et al.|
20244)), and is significantly more stable to hyperparameter changes than CFT.
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Figure 2: Performance comparison of CGD, using a LLaMA3.3-70B Instruct teacher
model to generate critiques and refined answers, with 100K samples from WeblInstruct (Yue
2024). The LLaMA3.1-8B Instruct student model is trained using the input prompt,
initial answer and the the critique as input, and the refined answer as the target. Baselines in-
clude Distilled SFT, which uses only the input prompt as input to imitate refined answers from
the same teacher (LLaMA3.3-70B Instruct) model on the same Weblnstruct data, and CFT,

which trains on GPT-40-generated critiques (Wang et al., 2025).

* We also analyze CGD using a set of diagnostic probes (results in Appendix|[C). Our findings
reveal that CGD training using an informative critique, results in a robust model.

2 RELATED WORK
We organize prior work under the following broad categories.

Supervised Fine-Tuning Limitations Standard supervised fine-tuning (SFT) trains Large Lan-
guage Models (LLMs) to mimic expert demonstrations, but it often induces the imitation prob-
lem, where models reproduce outputs without internalizing reasoning processes. Previous studies
show that fine-tuning language models on new knowledge increases model’s tendency to halluci-
nate (Gekhman et al.| [2024). Furthermore, fine-tuned models exhibit poor out-of-distribution per-
formance (Chu et al.,|[2025)), and gains on familiar data often come at the cost of reliability on unseen

distributions (Li et a1l|, 2025)).

Recent work has also shown that SFT on reasoning trajectories can substantially boost mathemati-
cal problem-solving with only a few thousand examples (Muennighoff et all,[2025} [Ye et al,[2025).
Nonetheless, vanilla SFT still struggles to generalize to harder problem instances, leaving open the
question of its limits on complex reasoning (Sun et al.,2024}; 2025). These limitations motivate in-
tegrating critique-and-correction mechanisms beyond naive answer imitation to achieve more robust
reasoning and improved downstream performance.

Self-Correction and Critiques Prior work has shown that LLMs can critique their own out-
puts and then refine those outputs based on self-generated feedback, yielding stronger reasoning
and improved downstream performance (Kim et al) 2023} [Madaan et al} 2023} [Saunders et all},
[2022). However, these methods depend on multi-pass prompting with LLMs and incur substantial
inference-time overhead. To address this, several fine-tuning approaches have been proposed to en-
dow smaller-scale models with self-correction capabilities (Shridhar et all, 2023}, [Yu et al.| [2024b).
Shridhar et al.| (2023)) leverage a large LLM to generate initial predictions, feedback, and refined re-
sults, while [Yu et al.| (2024b) further mitigates train—test misalignment by having the student model
produce its own initial outputs. Nevertheless, all of these methods still require a separate critique
and refinement pass at inference time, adding unwanted latency.

More recently, Critique Fine-Tuning (CFT) (Wang et all, 2025)) trains a student model to generate
teacher-generated critiques, enabling single-pass answer generation and greatly reducing inference
cost. However, because CFT focuses on producing critique tokens, it is prone to output-format
drift.In contrast, CGD directly fine-tunes students on the refined answer, preserving output consis-
tency while retaining critique-driven improvements and outperforming CFT on reasoning tasks.
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Feedback Mechanisms for Self-Refinement To study the impact of granularity of feedback on
self-refinement, DeCRIM breaks high-level instructions into fine-grained constraints to guide tar-
geted corrections (Ferraz et al., |2024). LLMRefine leverages human-defined error categories to
produce pinpointed feedback, enabling precise adjustments to model outputs (Xu et al., |2024; [Paul
et al., 2024). DCR further modularizes this pipeline by separating error detection, critique genera-
tion, and final refinement into distinct stages (Wadhwa et al., 2024)).

Other approaches enhance correction accuracy by incorporating external tools, such as code execu-
tors for programming tasks (Chen et al., [2023a; [2024)), formal proof assistants for mathematical
reasoning (First et al.,|2023)), and search engines for factual validation (Gao et al., 2023 |Gou et al.|
2024) to supply auxiliary information. In contrast, our method rely solely on a large teacher LLM
to provide general-purpose critiques, avoiding reliance on task-specific external signals.

Pedagogical and Explanation-Guided Feedback Insights from education research stress the im-
portance of actionable, theory-grounded feedback. Importantly, the quality of feedback is critical:
if critiques are vague or generic, they may not guide learning. As the FELT framework (Borges
et al., 2023) emphasizes, feedback must be actionable and specific rather than generic to be effec-
tive. Explanation-Guided Active Distillation (ELAD) (Zhang et al., |2024) actively selects high-
uncertainty examples via explanation-step uncertainties, reducing annotation cost while preserving
student performance. Other work uses LLMs to supply real-time explanatory feedback to human tu-
tors (Lin et al.| [2023) and employs sequence labeling to highlight desired versus undesired response
components for targeted improvement (Lin et al., 2024). These works collectively underscore the
power of explanation-rich feedback, motivating CGD’s explicit incorporation of critiques as condi-
tioning signals to enable models to learn both what is correct and why revisions matter.

3 CRITIQUE-GUIDED DISTILLATION (CGD)
In this section we describe CGD and provide analysis of its training procedure.

Step1: Student model generates initial answer y' ~ Sem(y' | x)

. .. 2
anion containing 2.408 x 1024 Number of atoms = 2.408 x 1024 + 7 Mass =~......

o Prompt o Initial Answer X
Calculate the mass of a nitride > % Student Model —» Each nitrogen atom has 7 electrons.
nitrogen-based electrons.

Step2: Teacher model generafes critique and refined answer C~ sz(C [ x,y) y~ T¢(}7 [ x,y',c)

Initial Answer X A o Critique Q

Each nitrogen atom has 7 . The student incorrectly assumed 7 electrons per
electrons. —> Teacher Model — nitrogen atom. A nitride ion (N3°) has 10
Number of atoms = 2.408 x 1024 o, ° electrons ........

+7 Mass =~...... Conclusion: wrong [END]

v

o Refined Answer 0
Number of atoms = 2.408 x 1024 + 10
Mass = 3.373 x 1023 x 1.66053904 x 10 27 =
5.605 x 10 3 kg
Step3: Supervise-finetune student model
to generate refined answer

£(6) = Ex,y,c,y[—log Se(y|x, y', €)] o 9 — @ Student Model —» e

Figure 3: Overview of CRITIQUE-GUIDED DISTILLATION (CGD). Overview of Critique-
Guided Distillation (CGD). During training, the student produces an initial response, the teacher
supplies a critique and refined answer, and the student is fine-tuned to map from (prompt, initial
answer, critique) — refined answer. At inference, however, only the prompt is provided, and the
student directly outputs the refined answer in one pass.

3.1 OVERVIEW

The key intuition behind CGD is to train a student model to perform a complete reasoning loop:
from generating an initial answer, to understanding a critique of that answer, to producing a final,
refined output. By internalizing not only how to identify its own errors but also how to correct them,
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the student learns a more robust and generalizable reasoning process. This approach, summarized
in Figure 3] proceeds in three main stages:
1. Initial Answer Generation: The student baseline Sy, , produces a noisy response y' ~ Sp, . (-|x).

2. Critique Generation: The teacher model T} critiques this response, generating a textual expla-
nation of its flaws or merits, ¢ ~ Ty (-|z,y').

3. Refined Answer Generation: The teacher produces a gold-standard, refined answer § ~
Ty(-|x,y’, c), conditioned on all prior context.

This training-time-only intervention ensures that feedback is explicit and grounded. By conditioning
the final answer generation on the critique, CGD avoids the format drift seen in methods like CFT,
as the model’s objective remains to generate answers, not critiques.

3.2 TRAINING OBJECTIVE

The student is fine-tuned on the augmented dataset ((z, 4, ¢), §) using a standard language modeling
objective. As summarized in Algorithm[I] the goal is to minimize the negative log-likelihood of the
teacher’s refined answer, conditioned on the full context:

E(e) = ]E(z,y/,c,g})[_ log SG(Q ‘ -T,y/7 C)] (1)

Crucially, at inference time, CGD requires only a single forward pass, making it identical in com-
putational cost to standard SFT.

Algorithm 1 CRITIQUE-GUIDED DISTILLATION (CGD)

Input: Dataset D = {x;,y;} Y ,, Student Sy,, ,, Teacher T}

init?

1:

2: Output: Fine-tuned student Sy

3: Initialize augmented dataset D’ < ()

4: for each x; € D do

5:  Generate initial answer: y; ~ Sy, ., (y|x;)
6:  Generate critique: ¢; ~ Ty(c|xi,y.)

7: Generate refined answer: §; ~ Ty (9|2, 5, ¢;)
$ D' D U{ (i, o i 1))

9: end for
10: Train Sy on D’ by minimizing £(6)
11: return Sy

From a probabilistic perspective, the CGD framework can be interpreted as a form of Bayesian
inference. The student’s initial output distribution, P(y|z), acts as a prior belief. The critique ¢
serves as new evidence. The goal of the student is to learn the posterior distribution P(y|z, ¢), which
is proportional to the likelihood of the critique given a refined answer, P(c|z, y), multiplied by the
prior. By training the student to match the teacher’s refined answer ¢ (which is drawn from a high-
quality posterior), CGD systematically reduces the model’s uncertainty in line with the critique’s
guidance, formalizing why it produces more confident and accurate predictions.

4 EXPERIMENTS

Our experiments are designed to show that CRITIQUE-GUIDED DISTILLATION (CGD) is a highly
efficient and effective method for improving the reasoning capabilities of LLMs. We demonstrate
that CGD significantly outperforms strong fine-tuning baselines, including standard SFT, Distilled
SFT, and CFT, across a diverse suite of challenging math and reasoning benchmarks. Further-
more, we show that CGD is dramatically more compute-efficient than contemporary reinforcement
learning methods and exhibits superior robustness to hyperparameter choices compared to other
critique-based techniques. This efficient learning of a robust self-correction skill is the mechanism
that directly contributes to the superior performance on downstream benchmarks.
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4.1 EXPERIMENTAL SETUP
4.1.1 DATASETS

We consider two datasets for training: Weblnstruct (Yue et al., [2024)), and MetaMathQA (Yu et al.,
2024a). Weblnstruct is a web-crawled instruction dataset that spans a wide range of topics, including
Math, Physics, Chemistry, and more. MetaMathQA is a dataset based on GSM8K (Cobbe et al.,
2021b) and MATH (Hendrycks et al., 2021) which synthesizes more questions and answers by
rephrasing and other augmentation techniques. We randomly sample 100k examples from each
dataset as training data.

We evaluate on two sets of benchmarks capturing both mathematical reasoning and broader
STEM-oriented problem solving. Group 1: Math Reasoning comprises MATH500 (Hendrycks
et al., 2021)), Minerva-Math (Lewkowycz et al., 2022)), GSM8K (Cobbe et al.| [2021a), Olympiad-
Bench (He et al.l [2024), and AMC23. Group 2: General Reasoning includes TheoremQA (Chen
et al.| 2023b), GPQA (Rein et al., [2023)), and MMLU-Pro (Wang et al., 2024).

To evaluate model capabilities beyond math and science reasoning, we also report results on the
following datasets to evaluate general instruction-following and question answering abilities: IFE-
val (Zhou et al.|[2023)), MUSR (Sprague et al.,|2024), Truthful QA (Lin et al.||2022), and BIG-Bench
Hard (BBH) (Suzgun et al., [2022).

4.1.2 BASELINE AND TRAINING SETTINGS

We evaluate CGD across two student—teacher pairs to test both within-family and cross-family ro-
bustness:

* LLaMA family: LLaMA3.1-8B Instruct as the student model, and
LLaMA3.3-70B Instruct as the teacher model.

e Qwen family: S1.1 —3 as the student model, and S1 .1 —32 as the teacher model.

We compare CGD to three supervised fine-tuning baselines: (i) Standard SFT: fine-tunes the stu-
dent model to generate gold answers conditioned only on the input prompt. (ii) Distilled SFT: fine-
tunes the student to reproduce the teacher’s refined answers, where each refinement is obtained by
prompting the teacher with the input prompt, the student’s initial answer, and the teacher-generated
critique. (iii) Critique Fine-Tuning (CFT): fine-tunes the student to generate the teacher-provided
critiques conditioned on the input prompt and the student’s initial answer

All experiments are trained on 16 Nvidia A100 GPUs for 30 minutes, amounting to a total of 8
A100 GPU-hours per experiment, using identical data splits and hyperparameters across methods
(see Appendix [A]for more details).

4.2 MAIN RESULTS

We report the evaluation results of training on Weblnstruct in Table We evaluate two
student—teacher pairs: LLaMA3.1-8B Instruct with LLaMA3.3-70B Instruct as the
teacher, and S1.1-3B with S1.1-32B as the teacher. In addition to our CFT experiments using
LLaMA3.3-70B Instruct, we also include a variant of CFT that uses SOK examples distilled
with GPT-4o0, sourced from Wang et al.| (2025)) (denoted as CFT* with GPT-40). A full breakdown
of additional results, including ablation studies on different model architectures, teacher models, on
math-specific training data (MetaMathQA), hyperparameter sensitivity, and critique composition, is
provided in Appendix

Across both families, CGD consistently improves over CFT across both math and general reasoning
benchmarks. On LLaMA3.1-8B Instruct, CGD improves over CFT by +5.4 points on math

"https://huggingface.co/simplescaling/s1.1-3B

2https://huggingface.co/simplescaling/s1.1-32B

3Due to licensing and regulatory restrictions, we were unable to directly use certain models (e.g., Qwen) as
students or pair GPT-40 as a teacher. Accordingly, our experiments focus on the LLaMA and S1.1 families,
where such usage is permitted.
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Table 1: Evaluation of fine-tuning methods on two student models: LLaMA3.1-8B
Instruct and S1.1-3B. Results are reported across math-focused (Group 1) and general
reasoning (Group 2) benchmarks, using WebInstruct as training set. All methods are fine-tuned
on 100K Weblnstruct samples, except CEFT* with GPT-40, which uses the 50K examples from We-
blnstructCFT (Wang et al., [2025). CGD consistently achieves the best average performance across
both families. Bold numbers indicate best performance, underlines mark second-best. The A rows
report CGD’s improvement over the CFT baseline for each student.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATHS500 Minerva-Math GSMS8K OlympiadBench AMC23 Avg. | TheoremQA GPQA MMLU-PRO Avg.
LLaMA3.1-8B Instruct 50.6 335 853 14.5 225 413 27.6 30.8 312 299
+SFT 41.2 24.6 80.7 10.8 20.0 355 22.1 333 393 31.6
+ Distilled SFT 53.4 327 85.3 19.6 27.5 43.7 28.9 31.8 35.1 31.9
+ CFT* with GPT-40 54.8 33.1 86.2 18.2 25.0 43.5 35.0 30.3 40.8 36.4
+CFT 51.8 327 84.8 15.7 22.5 41.5 28.2 343 342 324
+CGD 54.2 33.6 85.7 23.7 375 469 34.0 359 403 36.7
A =CGD - CFT 24 0.9 0.9 8.0 15.0 54 5.8 1.6 6.1 43
S1.1-3B 54.0 16.9 76.8 20.6 30.0 354 21.6 16.7 13.7 17.9
+SFT 55.4 18.8 76.8 19.6 30.0 40.1 228 29.8 36.9 29.8
+ Distilled SFT 60.6 22.1 83.1 204 225 41.7 349 293 36.4 335
+CFT 49.6 21.0 713 19.3 27.5 389 259 26.7 359 295
+CGD 61.8 279 82.5 23.1 35.0 46.1 328 31.8 357 334
A =CGD - CFT 12.2 6.9 52 3.8 7.5 7.2 5.6 5.0 -0.2 3.5

reasoning (Group 1) and +4.3 points on general reasoning (Group 2), with particularly strong gains
on OlympiadBench (+8.0) and AMC23 (+15.0). On S1.1-3B, CGD achieves even larger average
gains of +7.2 points on math reasoning and +3.5 points on general reasoning, including notable
improvements on MATH500 (+12.2), Minerva-Math (+6.9), AMC23 (+7.5), and OlympiadBench
(+3.8). Together, these results show that critique-guided training enhances reasoning ability more
broadly than CFT and distilled SFT across diverse student—teacher settings.

These results demonstrate that CGD generalizes effectively across different model scales and ar-
chitectures, systematically strengthening reasoning accuracy on diverse math benchmarks while
improving general-purpose performance. For additional context, we note that CFT* with GPT-4o
(trained on 50K samples) achieves competitive results, in some cases surpassing LLaMA3.3-70B-
based CFT. This aligns with prior findings that the quality of the teacher model plays a central role
in the effectiveness of critique-based training (Wang et al., 2025]).

We additionally evaluate on IFEval, MUSR, TruthfulQA, and BIG-Bench Hard (BBH) (Table
[2). CGD matches or surpasses all baselines, confirming that critique-conditioned training pre-
serves general instruction-following and question-answering abilities. By contrast, CFT’s IFEval
accuracy falls from 76.6% to 55.6%, likely because CFT is optimized to predict critiques rather
than final answers, which is an objective that can disrupt format-sensitive instruction following.

Our results clarify the role of critique-based super- Tuple 2: Effect of different fine-tuning
vision. While CFT provides mixed benefits, some- strategies on Llama 3.1-8B Instruct across
times improving reasoning on certain models (Wang giverse benchmarks. While Distilled
et al., 2025; |Gandhi et al.| [2025), but often degrad- gpT and CGD preserve or improve per-
ing general instruction-following (Table [2), it lacks formance, CFT severely degrades general
robustness across families and scales. In contrast, capabilities, highlighting the importance of
CGD consistently improves both math reasoning model-specific inductive biases when apply-
and general capabilities across model families and ing critique-based supervision.

sizes, highlighting its reliability as a critique-aware

P . v Method IFEval MUSR TruthfulQA BBH
training paradigm (Wei et al., 2023} |Ouyang et al. Q

LLaMA3.1-8B Instruct 76.9 37.8 54.0 48.3

2022). +SFT 766 369 52,0 48.0

+ Distilled SFT 715 39.0 53.9 47.0

+ CFT* w/ GPT4o 55.6 35.0 53.5 442

+ CGD 76.1 39.3 54.5 47.1

4.2.1 COMPARISON
WITH RL-BASED METHODS

Reinforcement learning (RL) has recently been

shown to significantly enhance the reasoning capabilities of LLMs (Shao et al.l [2024; [DeepSeek-
Al et al, 2025} [Zeng et al 2025). To situate CGD within this line of work, we compare against
SimpleRL-Zero (Zeng et al., [2025), an open replication of DeepSeek-R1 that applies reinforcement
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learning directly to LLaMA3.1-8B. We report the official numbers released by the SimpleRL au-
thorsﬂ and compare them with our results on the same base model (LLaMA3.1-8B).

Table [3] shows that SimpleRL-Zero achieves modest gains on OlympiadBench and AMC23, but
struggles on broader math benchmarks such as MATHS500 and Minerva-Math. By contrast, CGD
provides a more balanced improvement profile: it surpasses SimpleRL-Zero on MATHS500 (+6.4),
Minerva-Math (+3.3), and OlympiadBench (+1.7). Performance on AIME24 remains low for both
approaches due to the difficulty of this benchmark. Overall, CGD achieves a higher average score
(11.9 vs. 10.6) despite using far less compute.

Table 3: Comparison of CGD with RL-based training (SimpleRL-Zero) on LLaMA3.1-8B
base. RL training requires orders of magnitude more resources, whereas CGD provides balanced
improvements across reasoning benchmarks with far greater efficiency.

Method MATH500 Minerva-Math OlympiadBench AMC23 AIME24 Avg.
SimpleRL-Zero (official) 23.0 9.6 5.3 15.0 0.0 10.6
CGD (ours) 29.4 12.9 7.0 10.0 0.0 11.9

Beyond accuracy, efficiency is a central consideration. Training SimpleRL-Zero requires 32 xH100
GPUs for 1.5 days, along with long-horizon sampling during training. In contrast, CGD achieves
its gains with only 8 x A100 GPUs (40GB each, substantially weaker than H100s) for ~5 hour of
fine-tuning, and inference requires no additional decoding overhead. This represents well over an
order of magnitude reduction in compute cost. Importantly, our aim is not to outperform RL-based
methods, but to show that CGD can approach or exceed them on several tasks while being more
resource-efficient and stable across benchmarks. Similarly, multi-pass inference-time methods like
Self-Refine (Madaan et al.,|2023) would incur at least a 3-4x increase in latency and cost per query,
whereas CGD adds no overhead compared to a standard SFT model.

4.2.2 THE ROLE OF THE CRITIQUE AS A LEARNING SIGNAL

To isolate the impact of the critique as a learning signal during fine-tuning, we compare our full
CGD method against a key ablation variant, “CGD without Critique.” In this ablation, the model
is trained on the exact same data and targets, but with the critique removed from the input prompt.
This forces the model to learn the transformation from a flawed student answer to the refined answer
without explicit guidance.

As shown in Figure [ the inclusion of the critique during training consistently and significantly
improves performance on the challenging reasoning benchmarks. The gains are particularly large
on complex reasoning tasks such as Minerva-Math and AMC23. This result demonstrates that the
critique is not merely redundant context but is a crucial component of the training signal. It provides
an explicit reasoning path that enables the model to learn the difficult self-correction skill more
effectively, leading to better generalization on downstream tasks. To understand the mechanisms
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Figure 4: Performance comparison of CGD with and without the critique as input during train-
ing, evaluated on eight benchmarks. The critique provides a crucial learning signal, leading to
consistent accuracy improvements across both the LLaMA3.1-8B Instruct (a)and S1.1-3B
(b) student models.

behind this improvement, we conducted a series of diagnostic probes (see Appendix[C]for full details

*nttps://github.com/hkust-nlp/simpleRL-reason
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and figures). These analyses reveal that the CGD training process forges a more robust and efficient
reasoning agent. We find that the critique provides a more efficient optimization path during training,
reducing the required gradient norm by 27%. This efficient learning translates into a model that is
statistically significantly more confident (lower entropy, p < 10~%) than strong distillation baselines
when performing the complex self-correction task. This suggests that CGD’s performance gains are
driven by its unique ability to instill a robust, decisive, and efficient self-correction capability.

4.2.3 TRAINING STABILITY AND HYPERPARAMETER ROBUSTNESS

To ensure a rigorous and fair comparison, we evaluate the learning rate sensitivity of CGD against
the CFT baseline using the same teacher model (LLaMA3.3-70B Instruct) and identical
prompts from the Weblnstruct subset (Table [d). Both methods are trained on 100K critique-
augmented examples under identical training schedules, varying only the learning rate between
1 x 107% and 5 x 10~¢. While CFT’s performance significantly degrades at the higher learning
rate, dropping by over 9 points on average, CGD remains robust and outperforms CFT across all
metrics regardless of learning rate. These results suggest that CGD’s structured self-correction task
with the use of both critiques and refined answers enables more stable optimization and better gen-
eralization, even under suboptimal hyperparameter choices, whereas CFT remains brittle to training
dynamics despite access to the same supervision signals.

Table 4: Comparison of CGD and CFT using 100K Weblnstruct critique-augmented samples.
CGD consistently outperforms CFT across all benchmarks and is relatively robust to learning rate
changes, while CFT exhibits significant performance degradation at higher learning rates. The Avg.
column reflects average performance across all tasks.

Method MATHS500 Minerva-Math GSMSK OlympiadBench AMC23 TheoremQA \ Avg.
CFT (LR =1 x 109) 51.8 32.7 84.8 15.7 225 28.5 \ 39.3
CFT (LR =5 x 1079) 334 10.3 82.9 10.1 27.5 16.1 30.1
CGD (LR=1 x 107%) 54.2 33.6 85.7 237 37.5 34.0 \ 44.8
CGD (LR =5 x 107%) 55.0 30.1 823 21.6 325 31.9 422

5 LIMITATIONS AND FUTURE WORK

Our work demonstrates that CGD is an effective and efficient method for teaching self-correction.
Our limitations point to several opportunities for future work: first, the performance gains are mod-
ulated by the student model’s receptivity to the critique-and-refine format, suggesting that a model’s
architectural priors and alignment tuning are key factors. Second, the multi-stage data generation
process, while more efficient than RL, still presents a practical computational cost.

These considerations motivate two exciting research directions. To address the data generation cost,
future work could explore single-stage distillation methods that teach self-correction without requir-
ing explicit, pre-generated critiques. We believe the most impactful direction, however, lies in using
the explanatory nature of critiques to improve model safety and alignment. Systematically engineer-
ing critiques to penalize factual inaccuracies, logical fallacies, or harmful content could provide a
scalable and interpretable framework for building more trustworthy Al.

6 CONCLUSION

We introduced CRITIQUE-GUIDED DISTILLATION (CGD), a simple yet powerful fine-tuning
framework that teaches models not only what the correct answer is but also why it is correct. By con-
ditioning a student model on its own mistake and an explanatory teacher critique, our method learns
a robust self-correction skill and preserves the answer-generation format without any inference-time
overhead. Our experiments show that CGD significantly outperforms strong baselines, including
standard and distilled SFT, across a diverse suite of challenging mathematics and general reasoning
benchmarks. On LLaMA3.1-8B and S1.1-3B, this results in an average performance gain of
5.4% and 7.2% over the strongest critique-based baseline (CFT), respectively. By directly embed-
ding explanatory feedback into the training loop, CGD offers a promising and efficient path toward
developing more capable and reliable language models.
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7 USE OF LARGE LANGUAGE MODELS (LLMS)

For this submission, large language models (LLMs) were used solely as a general-purpose writing
assistant to paraphrase and smooth the authors’ original text. LLMs did not generate new scientific
content or contribute research ideas. All research questions, methods, analyses, and conclusions
were designed and authored entirely by the human researchers. In addition, while LLMs were em-
ployed in experiments, their role was strictly as experimental components rather than collaborators
in ideation or writing. The authors take full responsibility for all content presented in this paper.

8 ETHICS STATEMENT

This work relies exclusively on publicly available or synthetic datasets (e.g., Weblnstruct,
MetaMathQA). No human subjects, private, or sensitive data were used. The proposed
CRITIQUE-GUIDED DISTILLATION (CGD) framework is designed to improve reasoning robust-
ness and efficiency of large language models. We do not anticipate any direct societal risks beyond
those already inherent to general LLM research. All authors have read and adhere to the ICLR Code
of Ethics.

9 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. Section 4 of the main pa-
per details datasets, baselines, and training setups, while Appendix A provides full hyperparameter
configurations. Appendix B reports extensive ablations across models, teachers, datasets, and train-
ing dynamics. Appendix D includes representative data samples, and Appendix E supplies code
instructions with configuration files and scripts. An anonymized code archive is provided in the
supplementary materials to enable end-to-end reproduction of our experiments.
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SUPPLEMENTARY MATERIAL

In this supplementary material, we provide the following additional details for our work.

* Appendix [A} Experimental Setup Details. We provide full details on our training and
evaluation hyperparameters.

¢ Appendix Additional Benchmark Results. We present extensive ablation studies,
including results on different student and teacher models, learning rate sensitivity analyses,
and training curves.

+ Appendix [C; Detailed Diagnostic Analyses. We provide the full methodology, quanti-
tative results, and qualitative visualizations for the experiments that analyze the internal
behavior of the CGD-trained models.

+ Appendix[D} Data Examples. We provide a representative training data sample, and qual-
itative analysis of model responses.

+ Appendix[E; Code Instructions. Provides a summary of the codebase and instructions for
reproducing training and evaluation results.
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A EXPERIMENTAL SETUP AND HYPERPARAMETERS

A.1 EXPERIMENTAL SETUP

All experiments were conducted using NVIDIA A100 40GB GPUs. For training large-scale models,
we employed DeepSpeed ZeRO-3 optimization for efficient memory and compute scaling across
multiple GPUs, which enables optimizer state partitioning, gradient partitioning, and activation
checkpointing to support training with larger batch sizes and model sizes.

We evaluate model performance using exact match accuracy, averaged over the test sets, and report
mean performance over three random seeds to account for training variability.

A.2 HYPERPARAMETERS

We provide the key hyperparameters used in training our models across all experiments. Unless
otherwise noted, these values were held constant.

Table 5: Summary of hyperparameters used in our experiments.

Hyperparameter Value
Batch size 64
Learning rate le-6
Optimizer AdamW
Scheduler type cosine
Max sequence length 8192
Number of epochs 1
Warmup ratio 0.1

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATION STUDIES

In this section, we analyze the mechanisms behind CGD’s effectiveness and study the impact of ab-
lation studies. We demonstrate CGD’s robustness across different training datasets and hyperparam-
eters. We further analyze the impact of the training data’s critique composition in Appendix
finding that a balanced mixture of feedback yields the most robust model.

B.1.1 ABLATION: GENERALIZATION TO MATH-SPECIFIC TRAINING DATA

To test the generalizability of our method, we conducted experiments using MetaMathQA, a math-
reasoning-focused dataset. As shown in Table [§f CGD again demonstrates strong performance,
outperforming all baselines on on Group 1 and Group 2. This confirms that the benefits of the CGD
framework are not limited to a specific data source. Notably, CGD surpasses the strongest baseline,
i.e., CFT, on the advanced MATHS500 and OlympiadBench challenges, yet shows slightly lower
performance on Minerva-Math and GSM8K, which consist of middle-school to undergraduate-level
problems.

B.1.2 ABLATION: RESULTS ON DIFFERENT STUDENT MODELS

To assess the generality of our approach beyond the LLaMA model family, we repli-
cate our main fine-tuning comparisons using Mixtral-8x7B Instruct v0.1 and
OLMo-2-1124-7B-Instruct as the student models. Table [7] summarizes the results for
both Mixtral-8x7B Instruct v0.1 and OLMo-2-1124-7B-Instruct student models
across both math-focused and general reasoning benchmarks, with all models trained on the same
100K Weblnstruct prompts.

Notably, we find that our method, CGD, consistently outperforms the baselines in both task groups
for a different student model Mixtral-8x7B Instruct as shown in Table[7l On math reason-
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Table 6: Comparison of fine-tuning methods on LLaMA3.1-8B Instruct across math and
reasoning tasks using 100K MetaMathQA examples with LLaMA3.3-70B Instruct as the
teacher model. Optimal results are highlighted in bold, while suboptimal outcomes are under-
lined. The Avg. columns represent the average performance across Groups 1 and 2, respectively.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATHS500 Minerva-Math GSMS8K OlympiadBench AMC23 Avg. | TheoremQA GPQA MMLU-PRO Avg.
LLaMA3.1-8B Instruct 50.6 335 85.3 14.5 225 413 27.6 30.8 312 299
+SFT 47.8 29.8 85.5 13.6 275 40.8 28.1 328 37.0 32,6
+ Distilled SFT 50.2 335 79.8 18.5 35.0 434 312 28.8 28.1 29.4
+CFT 52.8 36.4 88.6 17.2 325 45.5 31.1 30.7 38.3 334
+CGD 59.0 34.6 873 21.8 325 47.0 34.1 303 36.1 335
A =CGD -CFT 6.2 =22 -1.3 4.6 0.0 1.5 3.0 -0.5 =22 0.1

Table 7: Evaluation of fine-tuning methods on Mixtral-8x7B Instruct across math-focused
(Group 1) and general reasoning (Group 2) benchmarks, using WeblInstruct as the training
set. CGD achieves the strongest performance in both groups, despite Mixtral being a different ar-
chitecture than LLaMA. All methods are fine-tuned on 100K Weblnstruct samples. Bold numbers
denote the best, and underlined values indicate the second-best performance. The A row shows
CGD’s gains over the CFT baseline.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATHS00 Minerva-Math GSM8K OlympiadBench AMC23 Avg. | TheoremQA GPQA MMLU-PRO Avg.
Mixtral-8x7B Instruct 29.6 15.4 69.4 8.9 7.5 26.2 21.2 21.7 24.7 225
+SFT 314 15.6 65.6 79 5.0 25.1 20.4 20.5 25.2 22.0
+CFT 35.6 20.6 63.8 11.1 10.0 282 23.6 31.8 16.0 23.8
+CGD 39.0 239 75.0 11.7 7.5 314 26.4 25.8 233 25.1
A =CGD - CFT 34 33 11.2 0.8 -2.5 32 2.8 -6.0 713 1.3
OLMo-2-1124-7B-Instruct 354 16.5 81.9 11.0 75 30.5 23.0 28.3 34.1 28.5
+SFT 36.4 15.1 80.5 11.0 12.5 31.1 19.1 28.1 34.1 272
+ CFT 359 16.8 81.2 11.8 10.0 31.1 193 274 334 26.7
+CGD 374 16.9 83.2 12.1 20.0 339 242 28.3 34.2 282
A =CGD - CFT 1.5 0.1 2.0 0.3 10.0 28 | 4.9 -1.1 0.7 1.5

ing tasks (Group 1), CGD achieves a +3.2% improvement over CFT. This includes substantial gains
on GSM8K (+11.2%), Minerva-Math (+3.3%), and MATHS500 (+3.4%), confirming transferability
to a different architecture. In general reasoning tasks (Group 2), CGD shows a +1.3% average im-
provement over CFT, with notable gains on MMLU-PRO (+7.3%) and TheoremQA (+2.8%). While
performance slightly declines on AMC23 (-2.5%) and GPQA (-6.0%) relative to CFT, these drops
are not large enough to offset the overall performance improvements.

In contrast, CGD yields smaller gains on OLMo, i.e., 0.4 points less gain on Group 1 Avg. com-
pared to Mixtral. While OLMo and Mixtral are similar in scale and baseline strength, they may
differ in their ability to absorb critique-structured inputs. One possible explanation is differences in
alignment data quality and fine-tuning objectives: prior work ( (Bai et al., [2022} |Liang et al., 2025;
Moon et al.,[2025; Liu et al.,2024)) suggests that models tuned with richer dialogue-style data better
leverage multi-step feedback. These results highlight that CGD is most effective when the student
has been trained with supervision formats resembling critique/refinement, and they motivate deeper
investigation into model-specific receptivity to critique-based training.

Importantly, CGD achieves consistently higher scores than SFT and CFT across most benchmarks,
suggesting that distillation from critiques offers a more stable supervision signal than critique gen-
eration alone. These results generalize our main findings and further support the modularity and
versatility of our proposed training framework, highlighting that critique-based supervision is effec-
tive even for non-LLaMA models.

B.1.3 ABLATION: RESULTS USING DIFFERENT TEACHER MODELS

We find that CGD provides consistent improvements over the base LLaMA3.1-8B Instruct
model across both math and general reasoning benchmarks, regardless of the choice of teacher
model as shown in Table[8] Using LLaMA3.3-70B Instruct as the teacher yields strong gains,
particularly in general reasoning tasks, while adopting the open-weight S1.1-32B teacher leads to
even stronger performance on several challenging math benchmarks. For example, CGD with S1.1
improves AMC23 accuracy by +20.0 absolute points (22.5 = 42.5). These results suggest that
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the benefits of CGD are not limited to teacher scale or architecture family; even when transferring
critiques from a non-LLaMA teacher, the student acquires improved reasoning ability.

We emphasize that the teacher ablation in Table [§| holds the student fixed (LLaMA3.1-8B) while
varying the teacher model. In contrast, the S1.1-3B results presented in Table [I] focus on the
student-side generalization, where the model itself is smaller and trained with critiques and re-
sponses from S1.1-32B.

Importantly, these findings support the claim that CGD’s effectiveness is not solely determined by
the raw strength of the teacher, but also by the structured way in which critiques are generated
and incorporated during training. While stronger teachers such as GPT-4o or future generations of
S1.1 may offer further improvements, our preliminary experiments already demonstrate that critique
quality and integration play a critical role in driving gains. In other words, CGD does more than
transfer answers, i.e., it teaches the student how to reason through structured critique, enabling
performance improvements that extend beyond what is achievable with standard distillation.

Table 8: Comparison of CGD using different teacher models on the student model
LLaMA3.1-8B Instruct across math (Group 1) and general reasoning (Group 2) bench-
marks, using WeblInstruct as the training set. Using S1.1 as the teacher model achieves a
stronger performance in complex math-reasoning tasks, despite S1. 1 being a different architecture
than LLaMA.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATH500 Minerva-Math GSMS8K OlympiadBench AMC23 Avg. | TheoremQA GPQA MMLU-PRO Avg.

Initialized from LLaMA3.1-8B Instruct
LLaMA3.1-8B Instruct 50.6 335 853 14.5 225 41.3 27.6 30.8 312 29.9
+ CGD with LLaMA3.3-70B 54.2 33.6 85.7 23.7 37.5 46.9 34.0 35.9 40.3 36.7
+ CGD with S1.1-32B 56.8 37.1 86.8 16.7 42.5 48.0 322 343 40.4 35.7
Teacher Models
LLaMA3.3-70B Instruct 753 55.9 96.1 393 65.0 66.3 53.6 37.9 70.6 54.0
S1.1-32B 92.9 58.1 94.8 63.6 85.0 78.9 64.4 46.0 48.3 529

B.1.4 ABLATION: IMPACT OF CRITIQUE CORRECTNESS MIXTURE

To investigate the impact of the training data composition, we conducted an ablation study using the
Weblnstruct dataset, training five models on data with varying ratios of correct and incorrect student
answers (as indicated by the critique’s conclusion). We kept the total sample size (25k) and all other
hyperparameters identical across runs. The results, averaged over our math reasoning benchmarks
(MATHS00, Minerva-Math, etc.), are shown in Figure E} We observe a non-linear relationship:
models trained on a balanced mixture of both correct and incorrect examples (specifically the 50/50
split) achieve the highest performance. This suggests that for a model to learn a truly generalizable
self-correction skill, it must be exposed to a diverse range of both positive and negative feedback,
preventing it from learning a simple heuristic like “always agree with the critique.”

B.2 EPOCH-ACCURACY CURVES

Figure [6] shows the progression of final accuracy across training epochs for CRITIQUE-GUIDED
DISTILLATION (CGD) on six math-focused benchmarks. We observe that performance is generally
stable throughout training, with no substantial drops in accuracy for any dataset. While the upward
trends are not particularly pronounced, the lack of degradation suggests that our method is robust to
overfitting and avoids catastrophic forgetting. In particular, benchmarks such as MATH (increases
from 55.8 to 56.7) and OlympiadBench (increases from 22 to 23.3) show modest improvements,
indicating some continued learning over time. These curves offer cautious empirical support for the
consistency and stability of our fine-tuning process.

B.3 LEARNING-RATE SENSITIVITY

Figure [/| depicts how both methods respond to changes in learning rate. Figures (a) and (b) show
the accuracy vs. learning-rate curves for our approach and CFT, respectively. Our method exhibits a
smooth decline as the learning rate increases (Fig. [7p), whereas CFT’s performance degrades more

sharply (Fig.[7b).
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six benchmarks.
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B.4 TRAINING LOSS ANALYSIS
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Figure 8: Training loss comparison between CGD and CFT. The x-axis indicates normalized
training progress, and the y-axis shows loss.

We present training loss curves comparing CRITIQUE-GUIDED DISTILLATION (CGD) and
Critique-Finetuning (CFT) methods in Figure[8] The x-axis represents normalized training progress
(%), and the y-axis shows the training loss.

From the plot, the CFT curve exhibits a noticeable initial spike in loss, which can be attributed
to a format drift during early training. This is due to the model being trained on a critique-style
instruction following dataset immediately after pretraining or SFT tuned on QA-style instructions.
The shift from generating answers to critiquing Q&A pairs likely introduces a mismatch in expected
input-output format, temporarily destabilizing the loss. As training progresses, however, the model
adapts, and the loss curve stabilizes and declines.

In contrast, the CGD method shows a more stable and smooth decrease in loss throughout training,
suggesting a more consistent and format-aligned supervision signal. This supports the hypothesis
that CGD, by leveraging structured critiques without drastic task shifts, offers a gentler optimization
trajectory and better alignment with initial model capabilities.

C DETAILED DIAGNOSTIC ANALYSES

This section provides the detailed methodology, full quantitative results, and visual analyses for the
diagnostic experiments summarized in the main paper. All diagnostic experiments were conducted
on a set of 500 samples randomly drawn from the OpenMathInstruct 2 dataset using LLaMA3.1-8B
Instruct student model with the same hyperparameters.

C.1 DIAGNOSTIC EXPERIMENTS

Entropy Calculation. To measure predictive confidence, we performed a forward pass for each
model on the diagnostic dataset, using the full ‘(Prompt + Student Answer + Critique)’ context. This
context is formatted using the model’s specific chat template. We then isolated the model’s logits for
the single, next token that would begin the ‘Refined Answer*. These logits were converted to a prob-
ability distribution via the softmax function, and the Shannon entropy (H(X) = — > p(z) log p(z))
was calculated. A lower entropy value indicates higher confidence in the prediction.

Gradient Norm Calculation. To measure learning signal efficiency, we took each final trained
model and performed a single forward and backward pass on a diagnostic sample to compute the
cross-entropy loss against the target answer. We then calculated the total L2 norm of the full param-
eter gradient vector. This was done for two input conditions: one ‘With Critique’ and one ‘Without
Critique’, allowing for a controlled analysis of the critique’s impact on the update signal. Analysis
of Table[I0|reinforces the fact that conditioned on an informative critique the model is able to better
predict the final response. This reduces the loss and in turn the magnitude of the gradient norm. We
observed this trend during the entire period as well.

21



Under review as a conference paper at ICLR 2026

Attention Analysis. To analyze the model’s internal reasoning, we generated answers with max-
imum 8192 tokens for each sample and collected the attention matrices from all 32 layers. These
scores were then aggregated by averaging across all attention heads and normalized to represent the
percentage of attention paid by each generated token to three distinct sections of the prompt: the
‘Problem’, the ‘Student Answer’, and the ‘Critique’.

C.2 QUANTITATIVE ANALYSIS OF MODEL CONFIDENCE

The behavioral differences observed in our case study are supported by our quantitative diagnostics.
As shown in Table [9] the key finding is that the CGD model is statistically significantly more con-
fident (lower entropy) than all other generative baselines on the self-correction task. The statistical
significance of this result (p < 10~* vs. Distilled SFT) confirms that the CGD training process
forges a uniquely robust and decisive reasoning agent.

Table 9: Summary of predictive confidence (Mean Entropy), averaged over 500 samples from
OpenMathlnstruct 2. Lower entropy is better. Significance markers (¥, **, ***) denote the p-value
of a paired t-test comparing each baseline to our CGD model.

Model Mean Entropy
Baseline SFT 6.56™**
SFT 6.627**
Distilled SFT 6.497**
CGD 6.44

Significance: *** p < 0.001

Table 10: Gradient norm analysis for the final trained CGD model. The presence of a critique
provides a more efficient signal, reducing the update magnitude by 27%.

CGD Model Condition Mean Gradient Norm Std. Dev. Gradient Norm

Without Critique 2446.9 2011.9
With Critique 1802.7 1765.5

C.3 ATTENTION MECHANISM ANALYSIS

To provide a deeper mechanistic view of the CGD model’s reasoning process, we analyzed its in-
ternal attention patterns, averaged over 50 samples from the OpenMathInstruct 2 dataset. For each
sample, we generated up to 8192 new tokens, allowing the model to complete its reasoning naturally.
Our key finding is that the model employs a sophisticated, multi-phase reasoning strategy, using the
critique as a foundational signal that is internalized early and acted upon during generation. This is
illustrated across three complementary visualizations.

Figure [9] presents the model’s attention flow across different layers during the generation of an
answer. Starting at the first layer and all the way to the middle layers, there is significant attention
on both the critique and the student response. This shows that the model has learned to exploit the
signals in an informative critique and the noisy student response (e.g., with attention to the Critique
at 48.1% and the Student Answer at 36.0% at the very first generation step). In the later layers of
the model, the primary focus is on getting the correct response and hence most of the attention is on
the problem.

Figure [10| confirms how different pieces of information are processed at different levels of abstrac-
tion. The plot shows the average attention paid to each prompt section across all 32 layers. The
results show that direct attention to the Critique’s raw tokens peaks at the very input (31.9% at
Layer 0), suggesting a strong initial intake of the signal. The model’s focus then shifts to the Stu-
dent Answer, with attention peaking in the semantic middle layers (22.1% at Layer 13), precisely
where attention to the critique also sees a secondary rise. This could be attributed to the fact that the
model’s most abstract reasoning, understanding the flaw and synthesizing the correction, happens in
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Figure 9: Average attention flow of the CGD model. All layers shown begin with a “planning”
step, focusing on the Critique (48.1%) and Student Answer (36.0%). The final layer (bottom right)
then pivots sharply to an “execution” phase, focusing on the Problem (> 90%), while the first layer

(top left) continues to process the Critique. Shaded regions represent the 95% confidence interval
over 50 samples.

the middle of the network. Finally, attention to the Problem details consolidates and peaks in the
late layers (94.8% at Layer 25) as the model formulates its final output.
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Figure 10: Average attention paid to each prompt section across all 32 transformer layers. The
patterns suggest an early intake of the Critique (peak at Layer 0), followed by a deep processing of
the Student Answer in conjunction with the critique in the semantic middle layers (peak at Layer
13). Attention to the Problem dominates in the final layers.

Finally, Figure [TT] provides a high-level summary of attention from different layers, broken down
by generation phase, which reinforces these findings. The heatmaps for later, more semantic layers
(16 and 31) visualize the “plan-then-execute” pattern, showing that the initial generation phases are
dominated by attention to the critique (48.1% for Layer 31 at token 1). This is consistent with a
model that has learned to use the critique as a foundational guide to initiate and structure its reason-
ing process. These observed attention patterns suggest that the CGD has acquired a sophisticated
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reasoning process: it internalizes the critique’s guidance at an early stage and then acts upon this
internalized knowledge in its final, semantic layers to plan and execute a corrected solution. The
following section provides a direct behavioral test of this hypothesis.
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Figure 11: Aggregated heatmap of attention by generation phase for representative layers. The
bright cells for the Critique in the first column for Layer 16 and 31 (48.1% and 45.5%) confirm
that the initial planning phase is critique-driven, acting on the signal internalized by the early layers.
The sustained brightness for the Critique in the Layer O heatmap illustrates its role in early-stage

processing.

C.4 CASE STUDY: COUNTERFACTUAL ANALYSIS

To test whether CGD learns a functional skill of robust reasoning beyond simple contextual under-
standing, we performed a qualitative case study. We presented both the baseline Llama 3.1 Instruct
model and our final CGD-trained model with a problem from our test set under two conditions. In
the Factual condition, we provided the original, correct critique from our dataset. In the Counter-
factual condition, we provided a generic but nonsensical critique that was irrelevant to the problem
(e.g., incorrectly referencing a “quadratic formula” for a number theory problem). We then eval-
uated the correctness of the final generated answer in all four scenarios. Table [IT] summarizes the
results for a representative sample.

The results demonstrate a clear behavioral divergence. While both models produce the correct an-
swer when given a factual critique, their responses to flawed guidance differ significantly. The base-
line model proves brittle; it is functionally derailed by the nonsensical critique, failing to produce a
correct answer. The CGD model, in contrast, exhibits superior robustness. While we have not per-
formed experiments at scale to isolate the reason for the robustness, we hypothesize that during the
course of CGD training, the model learns to discriminate between informative and non-informative
critique, and even ignore the non-informative critique to arrive at the correct response.

Case Study: Counterfactual Analysis on Sample #42

The goal of this analysis is to test for a functional understanding of critiques. The problem’s gold-standard
answer is 2310.
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Table 11: Counterfactual analysis results for a representative sample (Sample #42). While both

models are correct with factual guidance, only the CGD model is robust to the flawed, counterfactual
critique.

Model Outcome (Factual Critique) Outcome (Counterfactual Critique)
LLaMAS3.1-8B Instruct CORRECT INCORRECT (Derailed)
CGD CORRECT CORRECT (Robust)

BASELINE MODEL ANALYSIS

Condition: Factual Critique
Correctness: CORRECT
Full Output:

To find the smallest positive integer divisible by five distinct prime
— numbers, we need to understand the concept of prime numbers
— first...

2 x 3 x5 % 7 x 11 = 2310

Therefore, the smallest positive integer divisible by five distinct
— prime numbers is 2310. This result is a direct consequence of the
— multiplication of the smallest prime numbers, which are the

— fundamental building blocks of all other numbers.

Condition: Counterfactual Critique
Correctness: INCORRECT (Derailed by the flawed critique.)

Full Output:
...A more accurate approach would be to understand that the smallest
— positive integer... is actually their least common multiple
— (LCM) ...

To find the LCM of 2, 3, 5, 7, and 11, we can list the multiples of
— each number and find the smallest number that appears in all the
— lists:

Multiples of 2: 2, 4, 6, 10, 14, 22, 30, 42, 70, 110, 154, 330,...
Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
— 45, 48, 51,..., 1542, 1545, 1548, 1551, 1554, 1557, 1560, 1563,
— 1566, 1569,

CGD-TRAINED MODEL ANALYSIS

Condition: Factual Critique
Correctness: CORRECT
Parsed Answer: 2310

Full Output:

S

# Finding the Smallest Positive Integer Divisible by Five Distinct
Prime Numbers

!

|

o find the smallest positive integer divisible by five distinct prime
numbers, we need to follow a straightforward approach that
involves identifying the five smallest distinct prime numbers and
then multiplying them together. This method is based on the
fundamental principle that prime numbers are the building blocks
of all other numbers, and

reroeord

### Definition of Prime Numbers

Before proceeding, it's essential to understand what prime numbers
— are. Prime numbers are natural numbers greater
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### Identifying the Five Smallest Distinct Prime Numbers

The first five prime numbers in ascending order are 2, 3, 5, 7, and
— 11. These numbers are distinct, meaning they are all different
— from one another,

### Multiplication of the Prime Numbers

To find the smallest positive integer divisible by these five distinct
— prime numbers, we multiply them together:

2 « 3 5 % 7 % 11 = 2310

This calculation is straightforward and demonstrates the direct
— application of the initial logic. By multiplying the smallest
— prime numbers,

### Conclusion

Therefore, the smallest positive integer divisible by five distinct
— prime numbers is indeed 2310. This result is a direct consequence
— of multiplying the five smallest distinct prime numbers together.
— The approach taken is logical and mathematically sound,

—

n summary, the process of finding the smallest positive integer
divisible by five distinct prime numbers involves identifying the
five smallest prime numbers, which are 2, 3, 5, 7, and 11, and
then multiplying them together. This method ensures that the
resulting product is the smallest possible integer that is
divisible by each of the five distinct primes, making 2310 the
correct answer to the problem.

rerglrd

Condition: Counterfactual Critique
Correctness: CORRECT

Parsed Answer: 2310

Full Output:

To find the smallest positive integer divisible by five distinct prime
— numbers, we need to follow a systematic approach that involves

— However, the initial step involves understanding what prime

— numbers are and how to identify them.

Prime numbers are natural numbers greater than 1 that have no positive
—

The five smallest distinct prime numbers are indeed 2, 3, 5, 7, and
— 11. These are the first five prime numbers in the sequence of
— prime numbers.

Now, to find the smallest positive integer divisible by these five
— distinct prime numbers,

The calculation is as follows:
2 « 3 x5 x 7 x 11 = 2310

Therefore, the smallest positive integer divisible by five distinct
— prime numbers is indeed 2310. This number is the product of the
— five smallest distinct prime numbers, ensuring that it is

— divisible by each of them without leaving a remainder.
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In conclusion, the approach to finding the smallest positive integer
— divisible by five distinct prime numbers involves identifying the
— prime numbers, understanding their properties, and then

— calculating their product. The result, 2310, is the smallest

— number that meets the criteria of being divisible by five distinct
— prime numbers.

Conclusion: The CGD model exhibits superior robustness and instruction-following. It correctly
solves the problem under both conditions while adhering to the specified output format. The
baseline model, while capable of reasoning correctly, is brittle to both complex instructions and
\irrelevant, noisy feedback.

C.5 BAYESIAN INTERPRETATION

Finally, we interpret critique conditioning as a Bayesian posterior update. Let the student’s ini-
tial output y define a prior distribution p(y|x), and let the critique ¢ provide new evidence about
correctness. The teacher’s refinement can be viewed as a posterior distribution:

Se(g ‘ x,y',c) X T¢(C | ‘T,y/,g) X Sinit(g ‘ %y/) . (2)

Student posterior Teacher likelihood Student prior

Here, Sinit(¢ | «,y’) is the student’s original (prior) distribution over responses, while Ty (c |
x,%’, 1) acts as a scoring function that up-weights those 7 values better aligned with the critique.
Note that the teacher “likelihood” need not be normalized; the proportionality sign indicates that
normalization is implicit when forming the posterior.

In practice, CGD minimizes the KL divergence between the student’s posterior and the teacher-
defined target distribution, which directly implements Equation [2]in training via Algorithm[I]} This
interpretation highlights how critique guidance sharpens the student’s prior into a more informative
posterior, explaining the observed empirical gains.

D EXAMPLE CGD TRAINING DATA SAMPLE

To better understand how CRITIQUE-GUIDED DISTILLATION (CGD) enables improved response
quality without format drift, we present a representative CGD training data sample. The CGD train-
ing pipeline involves three components: a student’s initial answer, a teacher-generated critique that
identifies specific flaws and explains the reasoning behind them, and a refined answer that incorpo-
rates the critique to correct the initial output. The full input tuple (prompt, student, critique, refined
answer) is only used during training, and inference remains unchanged from standard decoding.

In the example, the student incorrectly assumes the number of electrons per nitrogen atom when
calculating the mass of a nitride anion. The critique explicitly identifies this conceptual error, and
the refined answer provides the correct computation with an explanation of the correct electronic
configuration of the ion. This structured format teaches the model both the nature of the mistake and
the reasoning needed to arrive at a correct solution, demonstrating how CGD effectively enhances
model performance while preserving answer format consistency.

CGD WeblInstruct Training Data Sample

Question: Calculate the mass of a nitride anion that contains 2.408 x 10%* nitrogen-based electrons.
Student’s Initial Answer: To calculate the mass of the nitride anion, we first need to determine the number
of nitrogen atoms in the anion. Since each nitrogen atom has 7 electrons, we can divide the total number of
electrons by 7 to find the number of nitrogen atoms:

Total number of electrons  2.408 x 10%
7 - 7

The mass of a single nitrogen atom is approximately 14.007 u (unified atomic mass units). We can multiply

the number of nitrogen atoms by the mass of a single nitrogen atom to find the total mass of the nitride

anion:

Number of nitrogen atoms = = 3.443 x 10*
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Mass of nitride anion = 3.443 x 10% x 14.007u = 4.835 x 10*°u

To convert the mass from unified atomic mass units to kilograms, we use the conversion factor 1u =
1.66053904 x 10~2" kg:

Mass in kg = 4.835 x 10%° x 1.66053904 x 10~2" = 8.033 x 10" kg

So, the mass of the nitride anion is approximately 8.033 x 10~? kg or 80.33 g.

Critique: The solution provided attempts to calculate the mass of a nitride anion based on the number of
nitrogen-based electrons. Let’s review the steps and calculations for accuracy and clarity.

1. Determination of the Number of Nitrogen Atoms: The solution starts by dividing the total number
of electrons by 7 to find the number of nitrogen atoms. This assumes each nitrogen atom has 7 electrons,
which is true for neutral nitrogen. However, the question refers to a nitride anion, typically N>~ which has
gained 3 electrons for a total of 10 electrons per atom. Thus, the correct calculation should be:

2.408 x 10%*
10
2. Calculation of the Mass: Using the corrected number of nitrogen atoms and the same atomic mass:

Number of nitrogen atoms = =2.408 x 10**

Mass = 2.408 x 10%% x 14.007u = 3.373 x 10**u

3. Conversion to Kilograms:

Mass in kg = 3.373 x 10%* x 1.66053904 x 10™2" = 5.605 x 10" kg

The original solution incorrectly calculates the number of nitrogen atoms based on an incorrect assump-
tion about the number of electrons per nitrogen atom in a nitride anion. This leads to an incorrect mass
calculation. Conclusion: Wrong.

Refined Answer: Step 1: Determine the correct number of electrons per nitrogen atom in a nitride anion
A nitride anion (N37) has 10 electrons, which includes the 7 original electrons from the neutral nitrogen
atom plus 3 additional electrons gained to form the anion.

Step 2: Calculate the number of nitrogen atoms in the nitride anion

To find the number of nitrogen atoms, divide the total number of electrons by the number of electrons per
nitrogen atom in the anion, which is 10.

Total fel 2.4 10**
Number of nitrogen atoms = ota numbiroo clectrons _ 0813 0 = 2.408 x 10*

Step 3: Calculate the mass of the nitride anion in unified atomic mass units (u)
The mass of a single nitrogen atom is approximately 14.007 u. Multiply the number of nitrogen atoms by
the mass of a single nitrogen atom:

Mass = 2.408 x 10%% x 14.007 = 3.373 x 10**u

Step 4: Convert the mass of the nitride anion from unified atomic mass units (u) to kilograms
Use the conversion factor 1u = 1.66053904 x 10~27 kg:

Mass in kg = 3.373 x 10°* x 1.66053904 x 102" = 5.605 x 10 kg

The final answer is:
5.605 x 10~ kg

D.1 QUALITATIVE COMPARISON OF GENERATED RESPONSES

In the qualitative comparison of generated responses, the Critique Fine-Tuning (CFT) method ex-
hibits a notable format drift, deviating from the expected answer format by producing Conclusion
section and token at the end of each response. This behavior arises because CFT is trained to gener-
ate critiques, inadvertently leading the model to adopt a more elaborate response style. In contrast,
the Critique-Guided Distillation (CGD) approach maintains the original response format while en-
hancing answer quality.

Question: True or false: there exists a graph with score (1, 1, 1, 2, 2, 3, 4, 5, 5). Answer with or

. (True or False)
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Answer: Let’s analyze the problem step by step.
Step 1: Understanding the problem
The problem asks whether there exists a graph whose score matches the given sequence (1, 1, 1, 2, 2, 3, 4,
5, 5). The score of a graph is determined by the number of vertices and edges in the graph. Specifically, the
score is calculated as

score = number of vertices — number of edges.

Step 2: Analyzing the score sequence
The given score sequence is (1, 1, 1, 2, 2, 3, 4, 5, 5). This sequence represents the difference between the
number of vertices and edges for a series of graphs. For example:

* A graph with score 1 could have 2 vertices and 1 edge.
* A graph with score 2 could have 3 vertices and 1 edge.

Step 3: Checking the feasibility of the sequence

To determine whether the sequence is valid, we need to verify if it is possible to construct a sequence of
graphs where the score increases monotonically and matches the given sequence. This involves checking
whether the number of vertices and edges can be adjusted to satisfy the score for each step.

Observations:

1. The sequence starts with 1, which is plausible for a graph with 2 vertices and 1 edge.

2. The sequence increases by 1 for the next three steps (1, 2, 3), which is consistent with adding
edges to a graph while keeping the number of vertices constant.

3. The sequence then increases by 1 again (3, 4, 5), which is also consistent with adding edges to a
graph while keeping the number of vertices constant.

4. The sequence ends with 5, which is plausible for a graph with 6 vertices and 1 edge.

Key Check: The sequence does not require any negative scores (i.e., more edges than vertices), which is a
valid mathematical possibility. Therefore, the sequence is feasible.

Step 4: Conclusion

The given score sequence (1, 1, 1, 2, 2, 3, 4, 5, 5) is valid and corresponds to a sequence of graphs with
increasing scores.

Conclusion: right

1 2

Question: Is the transformation T'(M) = [3 1

or . (True or False)

Answer: Step 1: Definition of an Isomorphism An isomorphism is a bijective linear transformation between
1 2
3 4
1. **Injectivity**: T(M;1) = T(Mz) = M; = M> 2. **Surjectivity**: For every M € R?*?, there
exists M’ € R**? such that T(M') = M 3. **Linearity**: T'(aM 4+ bM>) = aT (M) + bT (M) for
all a,b € Rand My, M, € R**?

Step 2: Linearity The transformation 7' (M)

] M from R?*2 to R?*? an isomorphism? Answer with

two vector spaces. For T'(M) = { } M to be an isomorphism, it must satisfy the following conditions:

= zl)) i] M is clearly linear because matrix multiplication is

distributive and associative. Thus, the linearity condition is satisfied.
Step 3: Injectivity To check injectivity, we need to verify whether T'(M1) = T (Mz) = M1 = Ma. Let
My, My € R**2 1f T(M,) = T(M>), then:

1 2 1 2
b =l i
This implies:
M, = My,

. R 2 . . . . e
since the matrix [3 4] is invertible (its determinant is nonzero). Therefore, 7' is injective.

Step 4: Surjectivity To check surjectivity, we need to verify whether for every M € R%*2, there exists
M’ € R**? such that T(M') = M. Let M € R**2. We solve for M’ such that:

1 2] .,
{3 ZJM_M
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This is equivalent to solving the system of linear equations:

| HHIE L

where M = {Z dl: The matrix B ﬂ is invertible (its determinant is nonzero), so the system has a

unique solution for any M. Therefore, 1" is surjective.
Step 5: Conclusion Since 7 is both injective and surjective, and it is linear, it is an isomorphism.
Conclusion: right

Generated Answer after CGD

Question: True or false: there exists a graph with score (1, 1, 1, 2, 2, 3, 4, 5, 5). Answer with or

. (True or False)

Answer: To determine if there exists a graph with the given score, we need to understand what a score in
graph theory represents.

A score of a graph is the sequence of the degrees of its vertices, listed in non-increasing order. The given
scoreis (1,1,1,2,2,3,4,5,5).

For a graph to exist with this score, it must be possible to construct a graph where the degrees of its vertices
match this sequence. The sum of the degrees of all vertices in a graph is twice the number of edges (since
each edge contributes to the degree count of two vertices). This sum is calculated as follows:

1+1+14+24+2+3+4+5+5=24
Since the sum of the degrees is 24, the number of edges in the graph must be 12 (because 24/2 = 12).

Now, let’s consider the degrees and how they can be distributed among vertices. The degrees are 1, 1, 1, 2,
2,3,4,5,5. To form a graph, we need to ensure that the degrees can be assigned to vertices in such a way
that the graph remains connected and that the degree of each vertex matches the given sequence.

Given the degrees, we can start by assigning the lowest degrees first. The three vertices with degree 1 must
be connected to each other, as they cannot be isolated. This forms a triangle, which is a connected subgraph.

Next, we assign the degrees 2. These vertices can be connected to any of the existing vertices, including
each other, as long as they are not isolated. Since we have two vertices with degree 2, they can be connected
to the vertices with degree 1, or to each other, or to any of the higher-degree vertices.

The vertex with degree 3 can be connected to any of the existing vertices, including the ones with degree 2,
or to the higher-degree vertices.

The vertices with degrees 4 and 5 can be connected to any of the existing vertices, including the ones with
lower degrees, as long as they are not isolated.

Given these constraints, it is possible to construct a graph that matches the given score. For example,
consider a graph with 9 vertices where:

1. Three vertices are connected in a triangle (degrees 1).
2. Two vertices are connected to each other and to one of the vertices in the triangle (degrees 2).

3. One vertex is connected to one of the vertices in the triangle and to one of the vertices with degree
2 (degree 3).

4. One vertex is connected to the vertices with degrees 1, 2, and 3 (degree 4).
5. Two vertices are connected to all other vertices, including the ones with degrees 1, 2, 3, and 4
(degrees 5).
This construction ensures that the degrees of the vertices match the given score, and the graph remains

connected.

Therefore, the statement that there exists a graph with the score (1, 1, 1, 2, 2, 3, 4, 5, 5) is true.

The final answer is:

& J
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Generated Answer after CGD

Question: Is the transformation T'(M) = [1 Z] M from R**? to R**? an isomorphism? Answer with

3
or . (True or False)

Answer: To determine if the transformation T'(M) = [1 2] M from R?*? to R?*? is an isomorphism,

3 4
we need to check if it satisfies the two properties of an isomorphism:

1. **Injectivity**: The transformation must be one-to-one, meaning that if 7'(M;) = T'(Mz), then M; =
M. 2. **Surjectivity**: The transformation must be onto, meaning that for every matrix N € R**?, there
exists a matrix M € R?*? such that T'(M) = N.

Let’s examine the transformation 7'(M) = B ﬂ M.

Given M = {Z Z} , we have:

|1 2|{|a b| _|la+2c 1b+2d
T(M) = [3 4] [c d} = {3a+4c 3b+4d]
Now, let’s check for injectivity:
Suppose T'(My) = T'(Mz). Then:
lay +2c1  1b1 + 2d: o las + 2co  1bs + 2ds
3a1 +4c1 3bi +4dy| — |3az +4ce  3bs + 4do

This implies that the corresponding elements of the two matrices are equal:

la; + 2¢1 = las + 2¢o

161 + 2d1 = 1bs + 2d»

3a1 + 4c1 = 3as + 4co

3b1 + 4dy = 3bs + 4d»
Simplifying, we get:

a1 =az, c1=c2, bi=bz, di=d2

Therefore, M1 = Mo, and the transformation is injective.
Next, let’s check for surjectivity:

Given any matrix N = {; f} € R?*?, we need to find a matrix M = [z b} such that T(M) = N.

h d
We have:
_|{la+2c 1b+2d| |e f
T(M) = {3a +dc 3b+ 4d] = {g h}
This gives us the following system of equations:
lat+2c=ce
1b+2d=f
3a+4c=g
3b+4d =h

Solving this system, we can find values for a, b, ¢, d that satisfy the equations. For example, one possible
solution is:

e f g—3e h—3f
=2 = b= 2 = = d=
“T1Te =5 =" 1
Therefore, we can find a matrix M that maps to any given matrix /N, and the transformation is surjective.
Since the transformation T'(M) = E’ ﬂ M is both injective and surjective, it is an isomorphism.

The final answer is:

- J
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E CODE INSTRUCTIONS

We include a code archive (code. zip) as part of the supplementary material. This package pro-
vides all necessary components to reproduce our key results and facilitate further experimentation.
Specifically, it includes:

Critique Generation and Refinement: Scripts for generating critiques from model out-
puts and refining answers using these critiques.

Evaluation Codebase: End-to-end evaluation pipelines for computing exact match accu-
racy and other relevant metrics across multiple benchmarks.

LLaMA-Factory Integration: The LLaMA-Factory framework to support Supervised
Fine-Tuning (SFT).

Configuration Files and Run Scripts: YAML/JSON config files and shell scripts used to
launch experiments across various model architectures and tasks.

Instructions for installing dependencies, setting up the environment, and running end-to-end training
and evaluation pipelines are included in the README . md file within the archive.
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