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ABSTRACT

Supervised fine-tuning (SFT) with expert demonstrations often suf-
fers from the imitation problem, where models reproduce correct re-
sponses without internalizing the underlying reasoning. We propose
CRITIQUE-GUIDED DISTILLATION (CGD), a multi-stage training frame-
work that augments SFT with teacher-generated explanatory critiques and
refined responses. Instead of directly imitating teacher outputs, a student learns
to map the triplet of prompt, its own initial response, and teacher critique into
the refined teacher response, thereby capturing both what to output and why.
On mathematical reasoning benchmarks, CGD achieves substantial gains across
LLaMA and Qwen families: +15.0% on AMC23 and +12.2% on MATH-500
over CFT, while avoiding the format drift that plagues critique-based methods.
Cross-family validation on Qwen2.5-Math-7B with diverse teachers (Claude
Sonnet 3.7 to weaker open-source models) achieves state-of-the-art performance
(50.4 avg, +22.6% over base) with 144× less compute than RL methods.
Critically, despite training on data containing no code, CGD generalizes to
out-of-distribution benchmarks: +4.88% on HumanEval (code generation), and
preserved or improved performance on GPQA, MUSR, TruthfulQA, and BBH,
while CFT suffers catastrophic forgetting (-21.3% on IFEval). These results
establish CGD as a cost-effective intermediate training paradigm that can serve
as a warm-start before reasoning SFT or RL, offering a scalable enhancement to
modern LLM training workflows.

1 INTRODUCTION

Supervised fine-tuning (SFT) is a foundational technique for teaching large language models
(LLMs) to perform diverse downstream tasks by mimicking expert-annotated outputs (Wei et al.,
2022; Sanh et al., 2022). Despite its success, vanilla SFT has notable limitations: it increases
model’s tendency to hallucinate (Gekhman et al., 2024), exhibits limited out-of-distribution gen-
eralization (Chu et al., 2025), and struggles to generalize to harder problem instances (Sun et al.,
2024; 2025). These shortcomings raise fundamental questions about SFT’s capacity for robust, and
complex reasoning.

An alternative approach to improve reasoning leverages critique and revision at inference time: a
model generates an initial answer, critiques it, then refines its output based on that critique (Kim
et al., 2023; Madaan et al., 2023; Shinn et al., 2023; Saunders et al., 2022). While effective, these
multi-pass prompting methods incur high computational costs and latency during deployment.

To integrate critique signals without extra inference costs, recent works has moved these steps into
training. Rejection Sampling Fine-Tuning (RFT) (Yuan et al., 2023) trains the model on its own
generated outputs that are verified or ranked by a reward model, thus incorporating value-based
feedback. Critique Fine-Tuning (CFT) instead trains a student model to reproduce teacher-generated
critiques (Wang et al., 2025). Although CFT outperforms vanilla SFT on several math benchmarks,
prolonged CFT can induce output-format drift, overfitting to critique patterns rather than stable
answer structures and its gains are sensitive to the quality of the critiques provided.
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In this work, we introduce CRITIQUE-GUIDED DISTILLATION (CGD) (Fig. 1), a novel multi-
step fine-tuning paradigm in which a student model learns to transform its own initial outputs into
high-quality refinements, rather than just generating critiques. Concretely, we condition a teacher
model to produce both critiques and corresponding corrected answers, and train the student to map
its raw response to the teacher’s refined version by conditioning it on the critique. By internalizing
not only how to identify errors but also what a polished response looks like, CGD closes the loop
between diagnosis and correction. Importantly, the use of initial answers and critiques is restricted to
the training phase: at inference time CGD requires only the original prompt and produces the refined
answer in a single pass, with no need for critiques. This design both avoids format drift compared
to CFT (Fig. 1) and eliminates the inference-time overhead of multi-pass critique methods.

            Language Model

SFT
Prompt
Calculate the mass of a nitride 
anion containing 2.408 × 10²⁴ 
nitrogen-based electrons.

Gold Label
A nitride ion (N³⁻) has 10 
electrons.  
Number of atoms = 2.408 × 10²⁴ 
÷ 10  
Mass ≈ 3.373 × 10²³ × 
1.66053904 × 10⁻²⁷ = 5.605 × 
10⁻³ kg  

CFT Ours: Critique-Guided Distillation
Prompt
Calculate the mass of a nitride 
anion containing 2.408 × 10²⁴ 
nitrogen-based electrons.

Student Answer
Each nitrogen atom has 7 
electrons.  
Number of atoms = 2.408 × 
10²⁴ ÷ 7  Mass ≈  ……

Critique
The student incorrectly assumed 7 
electrons per nitrogen atom. A 
nitride ion (N³⁻) has 10 electrons 
……..  
Conclusion: wrong [END]

Prompt
Calculate the mass of a nitride anion containing 
2.408 × 10²⁴ nitrogen-based electrons.

Student Answer
Each nitrogen atom has 7 electrons.  
Number of atoms = 2.408 × 10²⁴ ÷ 7  Mass ≈  
……
Critique 
The student incorrectly assumed 7 electrons per 
nitrogen atom. A nitride ion (N³⁻) has 10 
electrons ……..  

Refined Answer
Number of atoms = 2.408 × 10²⁴ ÷ 10  
Mass ≈ 3.373 × 10²³ × 1.66053904 × 10⁻²⁷ = 
5.605 × 10⁻³ kg  

            Language Model

            Language Model

Figure 1: Comparing Supervised fine-tuning (SFT), Critique Fine-Tuning (CFT) and
CRITIQUE-GUIDED DISTILLATION (CGD). Unlike CFT, which trains the student to generate
critiques, CGD conditions training on both the initial answer and critique but at test time generates
the final answer directly in a single pass.

By conditioning answer generation on the critique, CGD avoids format drift (the model continues
to generate answers, not critiques) and ensures feedback is explicit and grounded. Critically, while
CFT suffers from catastrophic forgetting (-21.3% drop on IFEval instruction-following), CGD pre-
serves general capabilities while improving reasoning. We empirically validate CGD on mathe-
matical reasoning and broad knowledge benchmarks, observing +17.5% and +15.0% absolute accu-
racy gains over SFT and CFT respectively on the challenging AMC23 dataset for LLaMA3.1-8B
Instruct. Similarly, on OlympiadBench, CGD achieves a +12.9% gain over SFT and +8.0% over
CFT. For S1.1-3B, CGD achieves +12.2% and +7.5% gains over CFT on MATH-500 and AMC23,
respectively. Figure 2 visualizes this performance trend, showing that CGD consistently improves
over strong baselines such as Distilled SFT and CFT across all evaluation tasks. In contrast to prior
methods, CGD explicitly conditions the student on the input prompt, its own initial answer, and the
teacher’s critique, enabling the model to internalize not just what the correct refinement is but why
the refinement is needed. This richer supervision leads to more robust and generalizable reasoning
behavior.

In summary, our contributions are as follows:

• We introduce CRITIQUE-GUIDED DISTILLATION (CGD), a novel and efficient fine-
tuning framework that trains a student model on the full cycle of self-correction: from
a flawed initial answer, to a critique, to a refined output.

• We demonstrate that CGD achieves state-of-the-art performance, outperforming strong dis-
tillation and critique-based baselines. On LLaMA3.1-8B Instruct and S1.1-3B,
CGD achieves absolute gains of +5.4% and +7.2% over CFT on math reasoning bench-
marks with particularly strong improvements on challenging tasks (+15.0% AMC23,
+8.0% OlympiadBench). Cross-family validation on Qwen2.5-Math-7B (using diverse
teachers from Claude Sonnet 3.7 to weaker open-source models) achieves +22.6% gain
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Figure 2: Performance comparison of CGD, using a LLaMA3.3-70B Instruct teacher
model to generate critiques and refined answers, with 100K samples from WebInstruct (Yue
et al., 2024). The LLaMA3.1-8B Instruct student model is trained using the input prompt,
initial answer and the the critique as input, and the refined answer as the target. Baselines in-
clude Distilled SFT, which uses only the input prompt as input to imitate refined answers from
the same teacher (LLaMA3.3-70B Instruct) model on the same WebInstruct data, and CFT,
which trains on GPT-4o-generated critiques (Wang et al., 2025).

over base (27.8 → 50.4) and state-of-the-art results with 144× less compute than re-
inforcement learning (RL) methods (8 vs 1152 GPU-hours). This positions CGD as
a cost-effective intermediate training paradigm that can precede reasoning SFT or RL in
modern training pipelines.

• Despite training on data containing no code (WebInstruct spans Math, Physics, Chem-
istry, and Business, but excludes code), CGD transfers to OOD benchmarks including
HumanEval (+4.88% pass@1 on code generation), while preserving or improving perfor-
mance on GPQA, MUSR, TruthfulQA, and BBH. By contrast, CFT suffers catastrophic
forgetting (-21.3% on IFEval), demonstrating CGD’s unique advantage in learning broadly
transferable reasoning skills beyond domain-specific patterns.

• We conduct thorough ablation studies across model families (LLaMA (Grattafiori et al.,
2024), Qwen/S1.1 (Muennighoff et al., 2025), Mixtral (Jiang et al., 2024), OLMo (Groen-
eveld et al., 2024)), training datasets (WebInstruct (Yue et al., 2024), MetaMathQA (Yu
et al., 2024a)), and diagnostic analyses (Appendix C), proving CGD’s robustness. Our
method is significantly more stable to hyperparameter changes than CFT and produces
models with improved confidence and reasoning quality.

2 RELATED WORK

Supervised Fine-Tuning Limitations. Standard supervised fine-tuning (SFT) trains Large Lan-
guage Models (LLMs) to mimic expert demonstrations, but it often induces the imitation prob-
lem, where models reproduce outputs without internalizing reasoning processes. Previous studies
show that fine-tuning language models on new knowledge increases model’s tendency to halluci-
nate (Gekhman et al., 2024). Furthermore, fine-tuned models exhibit poor out-of-distribution per-
formance (Chu et al., 2025), and gains on familiar data often come at the cost of reliability on unseen
distributions (Li et al., 2025).

Recent work has also shown that SFT on reasoning trajectories can substantially boost mathemati-
cal problem-solving with only a few thousand examples (Muennighoff et al., 2025; Ye et al., 2025).
Nonetheless, vanilla SFT still struggles to generalize to harder problem instances, leaving open the
question of its limits on complex reasoning (Sun et al., 2024; 2025). These limitations motivate in-
tegrating critique-and-correction mechanisms beyond naive answer imitation to achieve more robust
reasoning and improved downstream performance.

Distillation from Reasoning Traces and Self-Correction. Knowledge distillation from large
teachers has proven effective for improving student reasoning (Hinton et al., 2015). ORCA (Mukher-
jee et al., 2023) and subsequent work (Mitra et al., 2024) distill reasoning by training students on
detailed explanation traces (step-by-step CoT) generated by GPT-4. MoDE-CoTD (Li et al., 2024)
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advances this using mixture of LoRA experts for complex reasoning. While effective, these meth-
ods distill the teacher’s reasoning process for solving problems from scratch. In contrast, CGD
trains students to correct their own errors, learning from student mistakes rather than imitating
teacher traces. This conditions on actual failure modes, aligning correction with student-specific
weaknesses.

Prior work has also shown that LLMs can critique their own outputs and refine them based on self-
generated feedback (Kim et al., 2023; Madaan et al., 2023; Saunders et al., 2022). However, these
methods depend on multi-pass prompting and incur substantial inference-time overhead. To address
this, several fine-tuning approaches endow smaller models with self-correction capabilities (Shridhar
et al., 2023; Yu et al., 2024b), but still require separate critique and refinement passes at inference.

More recently, Critique Fine-Tuning (CFT) (Wang et al., 2025) trains students to generate teacher
critiques, enabling single-pass generation. However, CFT focuses on producing critique tokens,
causing output-format drift. In contrast, CGD directly fine-tunes on the refined answer, preserving
output consistency while retaining critique-driven improvements and outperforming CFT on reason-
ing tasks.

Feedback Quality and Mechanisms for Self-Refinement. The quality and specificity of feed-
back critically determines learning effectiveness. Education research emphasizes that feedback must
be actionable and specific rather than generic to drive meaningful improvement (Borges et al., 2023).
Building on these principles, ELAD (Zhang et al., 2024) actively selects high-uncertainty examples
via explanation-step uncertainties to provide targeted supervision, reducing annotation costs while
preserving student performance. Similarly, work on tutorial systems demonstrates that real-time ex-
planatory feedback to human tutors improves learning outcomes (Lin et al., 2023), while sequence
labeling approaches highlight desired versus undesired response components for targeted improve-
ment (Lin et al., 2024). These findings collectively underscore that explanation-rich feedback en-
ables models to learn both what is correct and why, motivating CGD’s explicit incorporation of
critiques as conditioning signals.

Beyond feedback quality, various works study different granularities and mechanisms for self-
refinement. DeCRIM breaks high-level instructions into fine-grained constraints to guide targeted
corrections (Ferraz et al., 2024), while LLMRefine leverages human-defined error categories to pro-
duce pinpointed feedback (Xu et al., 2024; Paul et al., 2024). DCR further modularizes this pipeline
by separating error detection, critique generation, and final refinement into distinct stages (Wadhwa
et al., 2024). Other approaches enhance correction accuracy by incorporating external tools—code
executors for programming (Chen et al., 2023a; 2024), proof assistants for mathematics (First et al.,
2023), and search engines for factual validation (Gao et al., 2023; Gou et al., 2024). In contrast,
our method relies solely on a large teacher LLM to provide general-purpose critiques, avoiding
task-specific external signals while maintaining broad applicability.

3 CRITIQUE-GUIDED DISTILLATION (CGD)

In this section we describe CGD and provide analysis of its training procedure.

3.1 OVERVIEW

The key intuition behind CGD is to train a student model to perform a complete reasoning loop:
from generating an initial student answer, to understanding a critique of that answer, to producing
a final, refined output. By internalizing not only how to identify its own errors but also how to
correct them, the student learns a more robust and generalizable reasoning process. This approach,
summarized in Figure 3, proceeds in three main stages:

1. Student Answer Generation: The student baseline Sθinit produces a noisy response y′ ∼
Sθinit(·|x).

2. Critique Generation: The teacher model Tϕ critiques this response, generating a textual expla-
nation of its flaws or merits, c ∼ Tϕ(·|x, y′).

3. Refined Answer Generation: The teacher produces a gold-standard, refined answer ŷ ∼
Tϕ(·|x, y′, c), conditioned on all prior context.
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        Prompt
Calculate the mass of a nitride 
anion containing 2.408 × 10²⁴ 
nitrogen-based electrons.

            Student Model
Student Answer
Each nitrogen atom has 7 electrons.  
Number of atoms = 2.408 × 10²⁴ ÷ 7  Mass ≈……

Student Answer
Each nitrogen atom has 7 
electrons.  
Number of atoms = 2.408 × 10²⁴ 
÷ 7  Mass ≈……

            Teacher Model

        Critique
The student incorrectly assumed 7 electrons per 
nitrogen atom. A nitride ion (N³⁻) has 10 
electrons ……..  
Conclusion: wrong [END]

       Refined Answer
Number of atoms = 2.408 × 10²⁴ ÷ 10  
Mass ≈ 3.373 × 10²³ × 1.66053904 × 10⁻²⁷ = 
5.605 × 10⁻³ kg  

            Student Model

Step1: Student model generates initial answer

Step2: Teacher model generates critique and refined answer

Step3: Supervise-finetune student model 
to generate refined answer

Figure 3: Overview of CRITIQUE-GUIDED DISTILLATION (CGD). During training, the student
produces an initial response, the teacher supplies a critique and refined answer, and the student is
fine-tuned to map from (prompt, student answer, critique)→ refined answer. At inference, however,
only the prompt is provided, and the student directly outputs the refined answer in one pass.

This training-time-only intervention ensures that feedback is explicit and grounded. By conditioning
the final answer generation on the critique, CGD avoids the format drift seen in methods like CFT,
as the model’s objective remains to generate answers, not critiques.

3.2 TRAINING OBJECTIVE

The student is fine-tuned on the augmented dataset ((x, y′, c), ŷ) using a standard language modeling
objective. As summarized in Algorithm 1, the goal is to minimize the negative log-likelihood of the
teacher’s refined answer, conditioned on the full context:

L(θ) = E(x,y′,c,ŷ)[− logSθ(ŷ | x, y′, c)]. (1)

Crucially, at inference time, CGD requires only a single forward pass, making it identical in com-
putational cost to standard SFT.

Algorithm 1 CRITIQUE-GUIDED DISTILLATION (CGD)

1: Input: Dataset D = {xi, yi}Ni=1, Student Sθinit
, Teacher Tϕ

2: Output: Fine-tuned student Sθ

3: Initialize augmented dataset D′ ← ∅
4: for each xi ∈ D do
5: Generate student answer: y′i ∼ Sθinit

(y|xi)
6: Generate critique: ci ∼ Tϕ(c|xi, y

′
i)

7: Generate refined answer: ŷi ∼ Tϕ(ŷ|xi, y
′
i, ci)

8: D′ ← D′ ∪ {(xi, y
′
i, ci, ŷi)}

9: end for
10: Train Sθ on D′ by minimizing L(θ)
11: return Sθ

From a probabilistic perspective, the CGD framework can be interpreted as a form of Bayesian
inference. The student’s initial output distribution, P (y|x), acts as a prior belief. The critique c
serves as new evidence. The goal of the student is to learn the posterior distribution P (y|x, c), which
is proportional to the likelihood of the critique given a refined answer, P (c|x, y), multiplied by the
prior. By training the student to match the teacher’s refined answer ŷ (which is drawn from a high-
quality posterior), CGD systematically reduces the model’s uncertainty in line with the critique’s
guidance, formalizing why it produces more confident and accurate predictions (see Section 4.3.2).
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4 EXPERIMENTS

Our experiments are designed to show that CRITIQUE-GUIDED DISTILLATION (CGD) is a highly
efficient and effective method for improving the reasoning capabilities of LLMs. We demonstrate
that CGD significantly outperforms strong fine-tuning baselines, including standard SFT, Distilled
SFT, and CFT, across a diverse suite of challenging math and reasoning benchmarks. Furthermore,
we show that CGD is dramatically more compute-efficient than recent RL methods and exhibits
superior robustness to hyperparameter choices compared to other critique-based techniques. This
efficient learning of a robust self-correction skill is the mechanism that directly contributes to the
superior performance on downstream benchmarks.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We consider two datasets for training: WebInstruct (Yue et al., 2024), and MetaMathQA (Yu et al.,
2024a). WebInstruct is a web-crawled instruction dataset that spans a wide range of topics, including
Math, Physics, Chemistry, and more. MetaMathQA is a dataset based on GSM8K (Cobbe et al.,
2021b) and MATH (Hendrycks et al., 2021) which synthesizes more questions and answers by
rephrasing and other augmentation techniques. We randomly sample 100k examples from each
dataset as training data.

We evaluate on two sets of benchmarks capturing both mathematical reasoning and broader
STEM-oriented problem solving. Group 1: Math Reasoning comprises MATH500 (Hendrycks
et al., 2021), Minerva-Math (Lewkowycz et al., 2022), GSM8K (Cobbe et al., 2021a), Olympiad-
Bench (He et al., 2024), and AMC23. Group 2: General Reasoning includes TheoremQA (Chen
et al., 2023b), GPQA (Rein et al., 2023), and MMLU-Pro (Wang et al., 2024).

To evaluate model capabilities beyond math and science reasoning, we also report results on the
following datasets to evaluate general instruction-following and question answering abilities: IFE-
val (Zhou et al., 2023), MUSR (Sprague et al., 2024), TruthfulQA (Lin et al., 2022), and BIG-Bench
Hard (BBH) (Suzgun et al., 2022).

4.1.2 BASELINE AND TRAINING SETTINGS

We evaluate CGD across two student–teacher pairs to test both within-family and cross-family ro-
bustness:

• LLaMA family: LLaMA3.1-8B Instruct as the student model, and
LLaMA3.3-70B Instruct as the teacher model.

• Qwen family: S1.1-3B1 as the student model, and S1.1-32B2 as the teacher model.

We compare CGD to three supervised fine-tuning baselines: (i) Standard SFT: fine-tunes the stu-
dent model to generate gold answers conditioned only on the input prompt. (ii) Distilled SFT: fine-
tunes the student to reproduce the teacher’s refined answers, where each refinement is obtained by
prompting the teacher with the input prompt, the student’s initial answer, and the teacher-generated
critique. (iii) Critique Fine-Tuning (CFT): fine-tunes the student to generate the teacher-provided
critiques conditioned on the input prompt and the student’s initial answer.3

All experiments are trained on 16 Nvidia A100 GPUs for 30 minutes, amounting to a total of 8
A100 GPU-hours per experiment, using identical data splits and hyperparameters across methods
(see Appendix A for more details).

1https://huggingface.co/simplescaling/s1.1-3B
2https://huggingface.co/simplescaling/s1.1-32B
3Due to licensing and regulatory restrictions, we were unable to directly use certain models (e.g., Qwen) as

students or pair GPT-4o as a teacher. Accordingly, our experiments focus on the LLaMA and S1.1 families,
where such usage is permitted.
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4.2 MAIN RESULTS

We report the evaluation results of training on WebInstruct in Table 1. We evaluate two
student–teacher pairs: LLaMA3.1-8B Instruct with LLaMA3.3-70B Instruct as the
teacher, and S1.1-3B with S1.1-32B as the teacher. In addition to our CFT experiments us-
ing LLaMA3.3-70B Instruct, we also include a variant of CFT that uses 50K examples dis-
tilled with GPT-4o, sourced from Wang et al. (2025) (denoted as CFT∗ with GPT-4o). Cross-family
validation on Qwen2.5-Math-7B is presented in Section 4.3. A full breakdown of additional re-
sults, including ablation studies on different model architectures, teacher models, on math-specific
training data (MetaMathQA), hyperparameter sensitivity, and critique composition, is provided in
Appendix B

Table 1: Evaluation of fine-tuning methods on LLaMA3.1-8B Instruct and S1.1-3B. Re-
sults are reported across math-focused (Group 1) and general reasoning (Group 2) benchmarks using
WebInstruct as training set (100K samples). CGD consistently achieves the best average perfor-
mance across both families. Bold: best, underline: 2nd. ∆ rows show CGD improvement over CFT.
Cross-family validation on Qwen2.5-Math-7B is presented separately in Table 3.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATH500 Minerva-Math GSM8K OlympiadBench AMC23 Avg. TheoremQA GPQA MMLU-PRO Avg.
LLaMA3.1-8B Instruct 50.6 33.5 85.3 14.5 22.5 41.3 27.6 30.8 31.2 29.9

+ SFT 41.2 24.6 80.7 10.8 20.0 35.5 22.1 33.3 39.3 31.6
+ Distilled SFT 53.4 32.7 85.3 19.6 27.5 43.7 28.9 31.8 35.1 31.9
+ CFT∗ with GPT-4o 54.8 33.1 86.2 18.2 25.0 43.5 35.0 30.3 40.8 36.4
+ CFT 51.8 32.7 84.8 15.7 22.5 41.5 28.2 34.3 34.2 32.4
+ CGD 54.2 33.6 85.7 23.7 37.5 46.9 34.0 35.9 40.3 36.7

∆ = CGD - CFT 2.4 0.9 0.9 8.0 15.0 5.4 5.8 1.6 6.1 4.3

S1.1-3B 54.0 16.9 76.8 20.6 30.0 35.4 21.6 16.7 13.7 17.9
+ SFT 55.4 18.8 76.8 19.6 30.0 40.1 22.8 29.8 36.9 29.8
+ Distilled SFT 60.6 22.1 83.1 20.4 22.5 41.7 34.9 29.3 36.4 33.5
+ CFT 49.6 21.0 77.3 19.3 27.5 38.9 25.9 26.7 35.9 29.5
+ CGD 61.8 27.9 82.5 23.1 35.0 46.1 32.8 31.8 35.7 33.4

∆ = CGD - CFT 12.2 6.9 5.2 3.8 7.5 7.2 5.6 5.0 -0.2 3.5

CGD consistently improves over CFT across both families. On LLaMA3.1-8B, CGD achieves
+5.4 average gain on math reasoning (Group 1) and +4.3 on general reasoning (Group 2), with
particularly strong improvements on OlympiadBench (+8.0) and AMC23 (+15.0). On S1.1-3B,
CGD achieves even larger gains of +7.2 on math and +3.5 on general reasoning, including no-
table improvements on MATH500 (+12.2), Minerva-Math (+6.9), and AMC23 (+7.5). These results
demonstrate that critique-guided training enhances reasoning ability more broadly than CFT and
distilled SFT across diverse student–teacher settings.

We additionally evaluate on out-of-distribution benchmarks (Table 2). CGD matches or surpasses
all baselines, confirming that critique-conditioned training preserves or improves humanities, logic,
factual QA, instruction-following and question-answering abilities. By contrast, CFT’s IFEval ac-
curacy falls from 76.6% to 55.6%, likely because CFT is optimized to predict critiques rather
than final answers, which is an objective that can disrupt format-sensitive instruction following.

Table 2: Effect of different fine-tuning
strategies on LLaMA3.1-8B Instruct
across diverse benchmarks. While CGD
preserve or improve performance, CFT
severely degrades general capabilities.

Method IFEval MUSR TruthfulQA BBH
LLaMA3.1-8B Instruct 76.9 37.8 54.0 48.3

+ SFT 76.6 36.9 52.0 48.0
+ Distilled SFT 77.5 39.0 53.9 47.0
+ CFT∗ w/ GPT4o 55.6 35.0 53.5 44.2
+ CGD 76.1 39.3 54.5 47.1

Code Generation (HumanEval). To validate
domain-agnostic generalization, we evaluated
LLaMA3.1-8B Instruct models on Hu-
manEval (Chen et al., 2021) (Python code gen-
eration) zero-shot, without any code training
data. CGD achieves +4.88% Pass@1 improve-
ment (59.75% → 64.63%) over LLaMA3.1-8B
Instruct, and outperforming CFT (+4.27%).
This demonstrates CGD’s self-correction trans-
fers to structured generation tasks, confirming it
learns generalizable reasoning patterns beyond
domain-specific heuristics.
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4.3 CROSS-FAMILY VALIDATION ON QWEN2.5-7B-MATH

To further validate the robustness and cross-family effectiveness of our approach, we apply CGD
to the Qwen2.5-7B-Math model and compare against multiple strong baselines. We evaluate
against: (1) the official Critique Fine-Tuning (CFT) checkpoint 4, trained with GPT-4o as teacher,
and (2) our method with both a frontier teacher (Claude Sonnet 3.7) and a weaker open-source
teacher (S1.1-32B).

The results in Table 3 demonstrate several key findings. First, CGD with Claude Sonnet 3.7
achieves the strongest overall performance (50.4 avg), outperforming CFT (48.9) and represent-
ing a +22.6% gain over the base model (27.8 → 50.4). Second, even when using the signifi-
cantly weaker S1.1-32B teacher, CGD maintains competitive performance (49.0 avg, +21.2%
over base), demonstrating teacher robustness. This demonstrates again with another model family
that CGD can achieve state-of-the-art performance without relying on the most powerful closed-
source models, highlighting its practical advantages for resource-constrained settings. Third, the
consistent gains across architectures validate that CGD generalizes effectively across model fam-
ilies, scales, and teacher qualities: LLaMA3.1-8B (+15.0% on AMC23, +8.0% on Olympiad-
Bench), S1.1-3B (+10.7% on math reasoning, +3.9% on general reasoning over base model),
and Qwen2.5-Math-7B (+22.6% over base). Additional ablations on Mixtral-8x7B and
OLMo-7B are provided in Appendix B.

Table 3: Cross-family validation on Qwen2.5-Math-7B. CGD achieves the strongest perfor-
mance with both frontier (Claude Sonnet 3.7) and open-source (S1.1-32B) teachers, outperforming
CFT (trained with GPT-4o).

Method Teacher Model MATH500 Minerva-Math OlympiadBench AMC23 AIME24 Avg.
Qwen2.5-Math-7B (Base) - 55.4 13.6 19.9 40.0 10.0 27.8

CFT GPT-4o 79.2 45.2 40.7 62.5 16.7 48.9

CGD (Ours) Claude Sonnet 3.7 79.4 44.1 41.2 67.5 20.0 50.4
CGD (Ours) S1.1-32B 79.6 48.5 41.3 62.5 13.3 49.0

4.3.1 COMPARISON WITH RL-BASED METHODS

Reinforcement learning (RL) has recently been shown to significantly enhance the reasoning capa-
bilities of LLMs (Shao et al., 2024; DeepSeek-AI et al., 2025). To situate CGD within this line of
work, we compare against SimpleRL-Zero (Zeng et al., 2025), an open replication of DeepSeek-R1
framework. We report the official numbers released by the SimpleRL 5 and compare them with our
results on both LLaMA3.1-8B and Qwen2.5-7B-Math base models.

On the LLaMA3.1-8B base, CGD provides a more balanced improvement profile than SimpleRL-
Zero, surpassing it on key benchmarks like MATH500 (+6.4) and achieving a higher average score.
To demonstrate the generalizability of this efficiency, we extend the comparison to the stronger
Qwen2.5-7B-Math base. Here again, CGD achieves a better average score (50.4 vs. 48.9) while
showing significant gains over SimpleRL-Zero on Minerva-Math (+10.6 points, 44.1 vs. 33.5) and
OlympiadBench (+3.3 points, 37.9 vs. 41.2).

Table 4: Comparison with RL-based training (SimpleRL-Zero). CGD achieves comparable or
superior performance to the computationally intensive RL method across two different base models,
while requiring 144x less training compute.

Model Data Size GPU Hours MATH500 Minerva-Math OlympiadBench AMC23 AIME24 Avg.
LLaMA3.1-8B

+ SimpleRL-Zero 8K×12 1152 23.0 9.6 5.3 15.0 0.0 10.6
+ CGD 50K 8 29.4 12.9 7.0 10.0 0.0 11.9

Qwen2.5-Math-7B
+ SimpleRL-Zero 8K×12 1152 77.2 33.5 37.9 62.5 33.3 48.9
+ CGD 50K 8 79.4 44.1 41.2 67.5 20.0 50.4

SimpleRL-Zero requires over 1100 GPU-hours with complex, long-horizon sampling (32×H100
GPUs). In contrast, CGD achieves comparable or superior results with only 8 GPU-hours (8×A100

4https://huggingface.co/TIGER-Lab/Qwen2.5-Math-7B-CFT
5https://github.com/hkust-nlp/simpleRL-reason
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GPUs, substantially weaker than H100s), representing a 144× reduction in training compute. This
positions CGD as a cost-effective intermediate training paradigm that can precede reasoning SFT or
RL in modern training pipelines. Unlike multi-pass inference methods (e.g., Self-Refine (Madaan
et al., 2023)) that incur 3-4× latency increases, CGD adds no inference overhead.

4.3.2 THE ROLE OF THE CRITIQUE AS A LEARNING SIGNAL

To isolate the impact of the critique as a learning signal during fine-tuning, we compare our full
CGD method against a key ablation variant, CGD without Critique. In this ablation, the model is
trained on the exact same data and targets, but with the critique removed from the input prompt.
This forces the model to learn the transformation from a flawed student answer to the refined answer
without explicit guidance.

As shown in Figure 4, the inclusion of the critique during training consistently and significantly
improves performance on the challenging reasoning benchmarks. The gains are particularly large
on complex reasoning tasks such as Minerva-Math and AMC23. This result demonstrates that the
critique is not merely redundant context but is a crucial component of the training signal. It provides
an explicit reasoning path that enables the model to learn the difficult self-correction skill more
effectively, leading to better generalization on downstream tasks.

Connection to Diagnostic Findings. These performance improvements are directly explained by
our diagnostic analyses (Appendix C). We find that CGD-trained models exhibit statistically signif-
icantly lower entropy (p < 10−4) compared to strong baselines when performing self-correction,
indicating higher confidence in their reasoning. Moreover, the critique enables 27% more efficient
gradient norms during training, providing a clearer optimization signal. Quantitative overlap analy-
sis (Appendix C.6) reveals only 16.6% token overlap and 5.7% bigram overlap between training and
test data, confirming that performance gains result from learned reasoning skills rather than mem-
orization. On challenging AIME 2024 problems, CGD achieves 5× higher accuracy than the base
model with 4.4× longer reasoning chains (477 vs 2110 words), demonstrating genuine improvement
in complex problem-solving ability rather than pattern matching. To understand the mechanisms
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Figure 4: Performance comparison of CGD with and without the critique as input during train-
ing, evaluated on eight benchmarks. The critique provides a crucial learning signal, leading to
consistent accuracy improvements across both the LLaMA3.1-8B Instruct (a) and S1.1-3B
(b) student models.

behind this improvement, we conducted a series of diagnostic probes (see Appendix C for full de-
tails and figures). These analyses reveal that the CGD training process creates a more robust and
efficient model. We find that the critique provides a more efficient optimization path during training,
reducing the required gradient norm by 27%. This efficient learning translates into a model that is
statistically significantly more confident (lower entropy, p < 10−4) than strong distillation baselines
when performing the complex self-correction task. This suggests that CGD’s performance gains are
driven by its unique ability to instill a robust, decisive, and efficient self-correction capability.

4.3.3 TRAINING STABILITY AND HYPERPARAMETER ROBUSTNESS

To ensure a rigorous and fair comparison, we evaluate the learning rate sensitivity of CGD against
the CFT baseline using the same teacher model (LLaMA3.3-70B Instruct) and identical
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prompts from the WebInstruct subset (Table 5). Both methods are trained on 100K critique-
augmented examples under identical training schedules, varying only the learning rate between
1 × 10−6 and 5 × 10−6. While CFT’s performance significantly degrades at the higher learning
rate, dropping by over 9 points on average, CGD remains robust and outperforms CFT across all
metrics regardless of learning rate. These results suggest that CGD’s structured self-correction task
with the use of both critiques and refined answers enables more stable optimization and better gen-
eralization, even under suboptimal hyperparameter choices, whereas CFT remains brittle to training
dynamics despite access to the same supervision signals.

Table 5: Comparison of CGD and CFT using 100K WebInstruct critique-augmented samples.
CGD consistently outperforms CFT across all benchmarks and is relatively robust to learning rate
changes, while CFT exhibits significant performance degradation at higher learning rates. The Avg.
column reflects average performance across all tasks.

Method MATH500 Minerva-Math GSM8K OlympiadBench AMC23 TheoremQA Avg.

CFT (LR = 1× 10−6) 51.8 32.7 84.8 15.7 22.5 28.5 39.3
CFT (LR = 5× 10−6) 33.4 10.3 82.9 10.1 27.5 16.1 30.1

CGD (LR = 1× 10−6) 54.2 33.6 85.7 23.7 37.5 34.0 44.8
CGD (LR = 5× 10−6) 55.0 30.1 82.3 21.6 32.5 31.9 42.2

5 LIMITATIONS AND FUTURE WORK

While CGD achieves strong results, performance gains depend on the student model’s receptivity
to critique-conditioned training, influenced by architectural priors and alignment. The multi-stage
data generation, though more efficient than RL, incurs upfront computational cost. Preliminary
analyses show that CGD serves as a cost-effective intermediate training paradigm that can be used
as a warm-start before reasoning SFT or RL, providing a scalable enhancement to modern LLM
training workflows.

Notably, CGD improves reasoning without exposing the student to hidden chain-of-thought (CoT)
traces, avoiding ”thinking+answer” concatenations. Future work could explore integrating CGD
with explicit CoT supervision (e.g., combining critiques with intermediate reasoning steps or think-
ing field as the critique and the answer field as the refined answer), single-stage distillation, and
leveraging critiques for safety alignment by penalizing inaccuracies or harmful content.

6 CONCLUSION

We introduced CRITIQUE-GUIDED DISTILLATION (CGD), a simple yet powerful fine-tuning
framework that teaches models not only what the correct answer is but also why it is correct. By
conditioning a student on its own mistake and an explanatory critique, our method learns a robust
self-correction skill and preserves answer format without inference-time overhead. Experiments
show that CGD significantly outperforms strong baselines across diverse mathematics and gen-
eral reasoning benchmarks. On LLaMA3.1-8B and S1.1-3B, this yields average gains of 5.4%
and 7.2% over CFT with particularly strong improvements on challenging benchmarks (+15.0%
AMC23, +8.0% OlympiadBench). Additional cross-family validation on Qwen2.5-Math-7B
using both frontier (Claude Sonnet 3.7) and weaker open-source teachers (S1.1-32B) achieves
state-of-the-art performance (50.4 avg, +22.6% over base) while using 144× less compute than RL
methods, confirming robustness across model families, scales, and teacher qualities.

Critically, despite training on data containing no code (WebInstruct spans Math, scientific domains,
and Business, but excludes code), CGD generalizes to out-of-distribution benchmarks: +4.88%
pass@1 on HumanEval (code generation), and preserved or improved performance on GPQA,
MUSR, TruthfulQA, and BBH. By contrast, CFT suffers from catastrophic forgetting with a -21.3%
drop on IFEval, highlighting CGD’s advantage in preserving general capabilities while improving
reasoning. These findings position CGD as a cost-effective intermediate training paradigm that can
precede reasoning SFT or RL in modern training pipelines, offering a scalable path toward more
capable and reliable language models.
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7 USE OF LARGE LANGUAGE MODELS (LLMS)

For this submission, large language models (LLMs) were used solely as a general-purpose writing
assistant to paraphrase and smooth the authors’ original text. LLMs did not generate new scientific
content or contribute research ideas. All research questions, methods, analyses, and conclusions
were designed and authored entirely by the human researchers. In addition, while LLMs were em-
ployed in experiments, their role was strictly as experimental components rather than collaborators
in ideation or writing. The authors take full responsibility for all content presented in this paper.

8 ETHICS STATEMENT

This work relies exclusively on publicly available or synthetic datasets (e.g., WebInstruct,
MetaMathQA). No human subjects, private, or sensitive data were used. The proposed
CRITIQUE-GUIDED DISTILLATION (CGD) framework is designed to improve reasoning robust-
ness and efficiency of large language models. We do not anticipate any direct societal risks beyond
those already inherent to general LLM research. All authors have read and adhere to the ICLR Code
of Ethics.

9 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. Section 4 of the main pa-
per details datasets, baselines, and training setups, while Appendix A provides full hyperparameter
configurations. Appendix B reports extensive ablations across models, teachers, datasets, and train-
ing dynamics. Appendix D includes representative data samples, and Appendix E supplies code
instructions with configuration files and scripts. An anonymized code archive is provided in the
supplementary materials to enable end-to-end reproduction of our experiments.
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Beatriz Borges, Niket Tandon, Tanja Käser, and Antoine Bosselut. Let me teach you: Pedagogical
foundations of feedback for language models. arXiv preprint arXiv:2307.00279, 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. CodeT: Code generation with generated tests. In International Conference on Learning
Representations, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. TheoremQA: A theorem-driven question answering dataset. In Houda Bouamor,

11

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2107.03374


Preprint. Under review

Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 7889–7901, Singapore, December 2023b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.489. URL https:
//aclanthology.org/2023.emnlp-main.489/.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIqPiq.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a. URL https://arxiv.
org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021b.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia
Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, and Nanyun Peng. Llm self-correction
with decrim: Decompose, critique, and refine for enhanced following of instructions with multiple
constraints, 2024. URL https://arxiv.org/abs/2410.06458.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1229–
1241, 2023.

12

https://aclanthology.org/2023.emnlp-main.489/
https://aclanthology.org/2023.emnlp-main.489/
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.06458


Preprint. Under review

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, et al. Rarr: Researching and revising what
language models say, using language models. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 16477–16508, 2023.

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, Amir Feder, Roi Reichart, and Jonathan
Herzig. Does fine-tuning llms on new knowledge encourage hallucinations? In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 7765–7784,
2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Sx038qxjek.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
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SUPPLEMENTARY MATERIAL

In this supplementary material, we provide the following additional details for our work.

• Appendix A: Experimental Setup Details. We provide full details on our training and
evaluation hyperparameters.

• Appendix B: Additional Benchmark Results. We present extensive ablation studies,
including results on different student and teacher models, learning rate sensitivity analyses,
and training curves.
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• Appendix C: Detailed Diagnostic Analyses. We provide the full methodology, quanti-
tative results, and qualitative visualizations for the experiments that analyze the internal
behavior of the CGD-trained models.

• Appendix D: Critique and Refinement Generation Prompts. We provide the exact
prompts used for generating teacher critiques and refined answers during training data cre-
ation.

• Appendix E: Data Examples. We provide a representative training data sample, and qual-
itative analysis of model responses.

• Appendix F: Code Instructions. Provides a summary of the codebase and instructions for
reproducing training and evaluation results.

A EXPERIMENTAL SETUP AND HYPERPARAMETERS

A.1 EXPERIMENTAL SETUP

All experiments were conducted using NVIDIA A100 40GB GPUs. For training large-scale models,
we employed DeepSpeed ZeRO-3 optimization for efficient memory and compute scaling across
multiple GPUs, which enables optimizer state partitioning, gradient partitioning, and activation
checkpointing to support training with larger batch sizes and model sizes.

We evaluate model performance using exact match accuracy, averaged over the test sets, and report
mean performance over three random seeds to account for training variability.

A.2 HYPERPARAMETERS

We provide the key hyperparameters used in training our models across all experiments. Unless
otherwise noted, these values were held constant.

Table 6: Summary of hyperparameters used in our experiments.

Hyperparameter Value
Batch size 64
Learning rate 1e-6
Optimizer AdamW
Scheduler type cosine
Max sequence length 8192
Number of epochs 1
Warmup ratio 0.1

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATION STUDIES

In this section, we analyze the mechanisms behind CGD’s effectiveness and study the impact of ab-
lation studies. We demonstrate CGD’s robustness across different training datasets and hyperparam-
eters. We further analyze the impact of the training data’s critique composition in Appendix B.1.4,
finding that a balanced mixture of feedback yields the most robust model.

B.1.1 ABLATION: GENERALIZATION TO MATH-SPECIFIC TRAINING DATA

To test the generalizability of our method, we conducted experiments using MetaMathQA, a math-
reasoning-focused dataset. As shown in Table 7, CGD again demonstrates strong performance,
outperforming all baselines on on Group 1 and Group 2. This confirms that the benefits of the CGD
framework are not limited to a specific data source. Notably, CGD surpasses the strongest baseline,
i.e., CFT, on the advanced MATH500 and OlympiadBench challenges, yet shows slightly lower
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performance on Minerva-Math and GSM8K, which consist of middle-school to undergraduate-level
problems.

Table 7: Comparison of fine-tuning methods on LLaMA3.1-8B Instruct across math and
reasoning tasks using 100K MetaMathQA examples with LLaMA3.3-70B Instruct as the
teacher model. Optimal results are highlighted in bold, while suboptimal outcomes are under-
lined. The Avg. columns represent the average performance across Groups 1 and 2, respectively.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATH500 Minerva-Math GSM8K OlympiadBench AMC23 Avg. TheoremQA GPQA MMLU-PRO Avg.
LLaMA3.1-8B Instruct 50.6 33.5 85.3 14.5 22.5 41.3 27.6 30.8 31.2 29.9

+ SFT 47.8 29.8 85.5 13.6 27.5 40.8 28.1 32.8 37.0 32.6
+ Distilled SFT 50.2 33.5 79.8 18.5 35.0 43.4 31.2 28.8 28.1 29.4
+ CFT 52.8 36.4 88.6 17.2 32.5 45.5 31.1 30.7 38.3 33.4
+ CGD 59.0 34.6 87.3 21.8 32.5 47.0 34.1 30.3 36.1 33.5

∆ = CGD - CFT 6.2 -2.2 -1.3 4.6 0.0 1.5 3.0 -0.5 -2.2 0.1

B.1.2 ABLATION: RESULTS ON DIFFERENT STUDENT MODELS

To assess the generality of our approach beyond the LLaMA model family, we repli-
cate our main fine-tuning comparisons using Mixtral-8x7B Instruct v0.1 and
OLMo-2-1124-7B-Instruct as the student models. Table 8 summarizes the results for
both Mixtral-8x7B Instruct v0.1 and OLMo-2-1124-7B-Instruct student models
across both math-focused and general reasoning benchmarks, with all models trained on the same
100K WebInstruct prompts.

Table 8: Evaluation of fine-tuning methods on Mixtral-8x7B Instruct across math-focused
(Group 1) and general reasoning (Group 2) benchmarks, using WebInstruct as the training
set. CGD achieves the strongest performance in both groups, despite Mixtral being a different ar-
chitecture than LLaMA. All methods are fine-tuned on 100K WebInstruct samples. Bold numbers
denote the best, and underlined values indicate the second-best performance. The ∆ row shows
CGD’s gains over the CFT baseline.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATH500 Minerva-Math GSM8K OlympiadBench AMC23 Avg. TheoremQA GPQA MMLU-PRO Avg.
Mixtral-8x7B Instruct 29.6 15.4 69.4 8.9 7.5 26.2 21.2 21.7 24.7 22.5

+ SFT 31.4 15.6 65.6 7.9 5.0 25.1 20.4 20.5 25.2 22.0
+ CFT 35.6 20.6 63.8 11.1 10.0 28.2 23.6 31.8 16.0 23.8
+ CGD 39.0 23.9 75.0 11.7 7.5 31.4 26.4 25.8 23.3 25.1

∆ = CGD - CFT 3.4 3.3 11.2 0.8 -2.5 3.2 2.8 -6.0 7.3 1.3
OLMo-2-1124-7B-Instruct 35.4 16.5 81.9 11.0 7.5 30.5 23.0 28.3 34.1 28.5

+ SFT 36.4 15.1 80.5 11.0 12.5 31.1 19.1 28.1 34.1 27.2
+ CFT 35.9 16.8 81.2 11.8 10.0 31.1 19.3 27.4 33.4 26.7
+ CGD 37.4 16.9 83.2 12.1 20.0 33.9 24.2 28.3 34.2 28.2

∆ = CGD - CFT 1.5 0.1 2.0 0.3 10.0 2.8 4.9 -1.1 0.7 1.5

Notably, we find that our method, CGD, consistently outperforms the baselines in both task groups
for a different student model Mixtral-8x7B Instruct as shown in Table 8. On math reason-
ing tasks (Group 1), CGD achieves a +3.2% improvement over CFT. This includes substantial gains
on GSM8K (+11.2%), Minerva-Math (+3.3%), and MATH500 (+3.4%), confirming transferability
to a different architecture. In general reasoning tasks (Group 2), CGD shows a +1.3% average im-
provement over CFT, with notable gains on MMLU-PRO (+7.3%) and TheoremQA (+2.8%). While
performance slightly declines on AMC23 (-2.5%) and GPQA (-6.0%) relative to CFT, these drops
are not large enough to offset the overall performance improvements.

In contrast, CGD yields smaller gains on OLMo, i.e., 0.4 points less gain on Group 1 Avg. com-
pared to Mixtral. While OLMo and Mixtral are similar in scale and baseline strength, they may
differ in their ability to absorb critique-structured inputs. One possible explanation is differences in
alignment data quality and fine-tuning objectives: prior work ( (Bai et al., 2022; Liang et al., 2025;
Moon et al., 2025; Liu et al., 2024)) suggests that models tuned with richer dialogue-style data better
leverage multi-step feedback. These results highlight that CGD is most effective when the student
has been trained with supervision formats resembling critique/refinement, and they motivate deeper
investigation into model-specific receptivity to critique-based training.
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Importantly, CGD achieves consistently higher scores than SFT and CFT across most benchmarks,
suggesting that distillation from critiques offers a more stable supervision signal than critique gen-
eration alone. These results generalize our main findings and further support the modularity and
versatility of our proposed training framework, highlighting that critique-based supervision is effec-
tive even for non-LLaMA models.

Understanding Variation in Gains Across Model Families. Our experiments reveal an important
empirical pattern: CGD shows consistent improvements across model families, but the magnitude
varies. Based on existing literature on instruction-tuning and data quality (Bai et al., 2022; Liang
et al., 2025; Moon et al., 2025; Liu et al., 2024), we believe two factors best account for this variation:
(A) alignment data quality and receptivity to critique-structured inputs, and (B) architectural
and pretraining-induced inductive biases.

Prior work has shown that the quality and format of instruction-tuning data strongly affects down-
stream alignment and task performance (Bai et al., 2022; Liang et al., 2025). Models exposed to
richer, more diverse, or interactive alignment data tend to make better use of supervision signals
structured as dialogue, critique, or contrastive feedback. This is consistent with our empirical pat-
tern:

• LLaMA3.1-8B (extensively instruction-tuned): large gains (+15.0% AMC23, +8.0% Olympiad-
Bench, +5.4% math avg over CFT)

• S1.1-3B (math-specialized with strong reasoning priors): large gains (+10.7% math reasoning avg
over base, +7.2% over CFT)

• Qwen2.5-Math-7B (math-specialized with strong reasoning priors): large gains (+22.6% over
base, 27.8%→ 50.4% avg)

• Mixtral-8x7B (MoE): modest gains (+3.2% avg over CFT)

• OLMo-7B (different pretraining corpus): modest gains (+2.8% avg over CFT)

These correlations suggest that a model’s prior alignment to supervision and its baseline reasoning
ability can amplify the benefit of CGD. While our current results support this interpretation, fu-
ture work needs to perform more controlled experiments to gain deeper insights into this important
phenomenon.

B.1.3 ABLATION: RESULTS USING DIFFERENT TEACHER MODELS

We find that CGD provides consistent improvements over the base LLaMA3.1-8B Instruct
model across both math and general reasoning benchmarks, regardless of the choice of teacher
model as shown in Table 9. Using LLaMA3.3-70B Instruct as the teacher yields strong gains,
particularly in general reasoning tasks, while adopting the open-weight S1.1-32B teacher leads to
even stronger performance on several challenging math benchmarks. For example, CGD with S1.1
improves AMC23 accuracy by +20.0 absolute points (22.5 ⇒ 42.5). These results suggest that
the benefits of CGD are not limited to teacher scale or architecture family; even when transferring
critiques from a non-LLaMA teacher, the student acquires improved reasoning ability.

We emphasize that the teacher ablation in Table 9 holds the student fixed (LLaMA3.1-8B) while
varying the teacher model. In contrast, the S1.1-3B results presented in Table 1 focus on the
student-side generalization, where the model itself is smaller and trained with critiques and re-
sponses from S1.1-32B.

Importantly, these findings support the claim that CGD’s effectiveness is not solely determined by
the raw strength of the teacher, but also by the structured way in which critiques are generated
and incorporated during training. While stronger teachers such as GPT-4o or future generations of
S1.1 may offer further improvements, our preliminary experiments already demonstrate that critique
quality and integration play a critical role in driving gains. In other words, CGD does more than
transfer answers, i.e., it teaches the student how to reason through structured critique, enabling
performance improvements that extend beyond what is achievable with standard distillation.
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Table 9: Comparison of CGD using different teacher models on the student model
LLaMA3.1-8B Instruct across math (Group 1) and general reasoning (Group 2) bench-
marks, using WebInstruct as the training set. Using S1.1 as the teacher model achieves a
stronger performance in complex math-reasoning tasks, despite S1.1 being a different architecture
than LLaMA.

Math Reasoning Tasks (Group 1) General Reasoning Tasks (Group 2)
Method MATH500 Minerva-Math GSM8K OlympiadBench AMC23 Avg. TheoremQA GPQA MMLU-PRO Avg.

Initialized from LLaMA3.1-8B Instruct

LLaMA3.1-8B Instruct 50.6 33.5 85.3 14.5 22.5 41.3 27.6 30.8 31.2 29.9
+ CGD with LLaMA3.3-70B 54.2 33.6 85.7 23.7 37.5 46.9 34.0 35.9 40.3 36.7
+ CGD with S1.1-32B 56.8 37.1 86.8 16.7 42.5 48.0 32.2 34.3 40.4 35.7

Teacher Models

LLaMA3.3-70B Instruct 75.3 55.9 96.1 39.3 65.0 66.3 53.6 37.9 70.6 54.0
S1.1-32B 92.9 58.1 94.8 63.6 85.0 78.9 64.4 46.0 48.3 52.9

B.1.4 ABLATION: IMPACT OF CRITIQUE CORRECTNESS MIXTURE

To investigate the impact of the training data composition, we conducted an ablation study using the
WebInstruct dataset, training five models on data with varying ratios of correct and incorrect student
answers (as indicated by the critique’s conclusion). We kept the total sample size (25k) and all other
hyperparameters identical across runs. The results averaged over our math reasoning benchmarks
(MATH500, Minerva-Math, etc.), are shown in Figure 5. We observe a non-linear relationship:
models trained on a balanced mixture of both correct and incorrect examples (specifically the 50/50
split) achieve the highest performance. This suggests that for a model to learn a truly generalizable
self-correction skill, it must be exposed to a diverse range of both positive and negative feedback,
preventing it from learning a simple heuristic like ”always agree with the critique”.
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Figure 5: Performance on an average of math benchmarks for models trained on different
mixtures of correct/incorrect student answers. A balanced 50/50 mixture yields the most robust
model.

B.2 EPOCH-ACCURACY CURVES

Figure 6 shows the progression of final accuracy across training epochs for CRITIQUE-GUIDED
DISTILLATION (CGD) on six math-focused benchmarks. We observe that performance is generally
stable throughout training, with no substantial drops in accuracy for any dataset. While the upward
trends are not particularly pronounced, the lack of degradation suggests that our method is robust to
overfitting and avoids catastrophic forgetting. In particular, benchmarks such as MATH (increases
from 55.8 to 56.7) and OlympiadBench (increases from 22 to 23.3) show modest improvements,
indicating some continued learning over time. These curves offer cautious empirical support for the
consistency and stability of our fine-tuning process.
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Figure 6: Accuracy over training epochs for CGD on six math-focused benchmarks. While
trends are modest, performance remains stable throughout, indicating resistance to overfitting and
catastrophic forgetting.

B.3 LEARNING-RATE SENSITIVITY

Figure 7 depicts how both methods respond to changes in learning rate. Figures (a) and (b) show
the accuracy vs. learning-rate curves for our approach and CFT, respectively. Our method exhibits a
smooth decline as the learning rate increases (Fig. 7a), whereas CFT’s performance degrades more
sharply (Fig. 7b).
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Figure 7: Accuracy vs. learning rate for (a) CGD (our method) and (b) the CFT baseline across
six benchmarks.

B.4 TRAINING LOSS ANALYSIS
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Figure 8: Training loss comparison between CGD and CFT. The x-axis indicates normalized
training progress, and the y-axis shows loss.
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We present training loss curves comparing CRITIQUE-GUIDED DISTILLATION (CGD) and
Critique-Finetuning (CFT) methods in Figure 8. The x-axis represents normalized training progress
(%), and the y-axis shows the training loss.

From the plot, the CFT curve exhibits a noticeable initial spike in loss, which can be attributed
to a format drift during early training. This is due to the model being trained on a critique-style
instruction following dataset immediately after pretraining or SFT tuned on QA-style instructions.
The shift from generating answers to critiquing Q&A pairs likely introduces a mismatch in expected
input-output format, temporarily destabilizing the loss. As training progresses, however, the model
adapts, and the loss curve stabilizes and declines.

In contrast, the CGD method shows a more stable and smooth decrease in loss throughout training,
suggesting a more consistent and format-aligned supervision signal. This supports the hypothesis
that CGD, by leveraging structured critiques without drastic task shifts, offers a gentler optimization
trajectory and better alignment with initial model capabilities.

C DETAILED DIAGNOSTIC ANALYSES

This section provides the detailed methodology, full quantitative results, and visual analyses for the
diagnostic experiments summarized in the main paper. All diagnostic experiments were conducted
on a set of 500 samples randomly drawn from the OpenMathInstruct 2 dataset using LLaMA3.1-8B
Instruct student model with the same hyperparameters.

C.1 DIAGNOSTIC EXPERIMENTS

Entropy Calculation. To measure predictive confidence, we performed a forward pass for each
model on the diagnostic dataset, using the full ‘(Prompt + Student Answer + Critique)’ context. This
context is formatted using the model’s specific chat template. We then isolated the model’s logits for
the single, next token that would begin the ‘Refined Answer‘. These logits were converted to a prob-
ability distribution via the softmax function, and the Shannon entropy (H(X) = −

∑
p(x) log p(x))

was calculated. A lower entropy value indicates higher confidence in the prediction.

Gradient Norm Calculation. To measure learning signal efficiency, we took each final trained
model and performed a single forward and backward pass on a diagnostic sample to compute the
cross-entropy loss against the target answer. We then calculated the total L2 norm of the full param-
eter gradient vector. This was done for two input conditions: one ‘With Critique’ and one ‘Without
Critique’, allowing for a controlled analysis of the critique’s impact on the update signal. Analysis
of Table 11 reinforces the fact that conditioned on an informative critique the model is able to better
predict the final response. This reduces the loss and in turn the magnitude of the gradient norm. We
observed this trend during the entire period as well.

Attention Analysis. To analyze the model’s internal reasoning, we generated answers with max-
imum 8192 tokens for each sample and collected the attention matrices from all 32 layers. These
scores were then aggregated by averaging across all attention heads and normalized to represent the
percentage of attention paid by each generated token to three distinct sections of the prompt: the
‘Problem’, the ‘Student Answer’, and the ‘Critique’.

C.2 QUANTITATIVE ANALYSIS OF MODEL CONFIDENCE

The behavioral differences observed in our case study are supported by our quantitative diagnostics.
As shown in Table 10, the key finding is that the CGD model is statistically significantly more con-
fident (lower entropy) than all other generative baselines on the self-correction task. The statistical
significance of this result (p < 10−4 vs. Distilled SFT) confirms that the CGD training process
forges a uniquely robust and decisive reasoning agent.

C.3 ATTENTION MECHANISM ANALYSIS

To provide a deeper mechanistic view of the CGD model’s reasoning process, we analyzed its in-
ternal attention patterns, averaged over 50 samples from the OpenMathInstruct 2 dataset. For each
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Table 10: Summary of predictive confidence (Mean Entropy), averaged over 500 samples from
OpenMathInstruct 2. Lower entropy is better. Significance markers (*, **, ***) denote the p-value
of a paired t-test comparing each baseline to our CGD model.

Model Mean Entropy
Baseline SFT 6.56∗∗∗

SFT 6.62∗∗∗

Distilled SFT 6.49∗∗∗

CGD 6.44
Significance: *** p < 0.001

Table 11: Gradient norm analysis for the final trained CGD model. The presence of a critique
provides a more efficient signal, reducing the update magnitude by 27%.

CGD Model Condition Mean Gradient Norm Std. Dev. Gradient Norm
Without Critique 2446.9 2011.9
With Critique 1802.7 1765.5

sample, we generated up to 8192 new tokens, allowing the model to complete its reasoning naturally.
Our key finding is that the model employs a sophisticated, multi-phase reasoning strategy, using the
critique as a foundational signal that is internalized early and acted upon during generation. This is
illustrated across three complementary visualizations.

Figure 9 presents the model’s attention flow across different layers during the generation of an
answer. Starting at the first layer and all the way to the middle layers, there is significant attention
on both the critique and the student response. This shows that the model has learned to exploit the
signals in an informative critique and the noisy student response (e.g., with attention to the Critique
at 48.1% and the Student Answer at 36.0% at the very first generation step). In the later layers of
the model, the primary focus is on getting the correct response and hence most of the attention is on
the problem.

Figure 10 confirms how different pieces of information are processed at different levels of abstrac-
tion. The plot shows the average attention paid to each prompt section across all 32 layers. The
results show that direct attention to the Critique’s raw tokens peaks at the very input (31.9% at
Layer 0), suggesting a strong initial intake of the signal. The model’s focus then shifts to the Stu-
dent Answer, with attention peaking in the semantic middle layers (22.1% at Layer 13), precisely
where attention to the critique also sees a secondary rise. This could be attributed to the fact that the
model’s most abstract reasoning, understanding the flaw and synthesizing the correction, happens in
the middle of the network. Finally, attention to the Problem details consolidates and peaks in the
late layers (94.8% at Layer 25) as the model formulates its final output.

Finally, Figure 11 provides a high-level summary of attention from different layers, broken down
by generation phase, which reinforces these findings. The heatmaps for later, more semantic layers
(16 and 31) visualize the “plan-then-execute” pattern, showing that the initial generation phases are
dominated by attention to the critique (48.1% for Layer 31 at token 1). This is consistent with a
model that has learned to use the critique as a foundational guide to initiate and structure its reason-
ing process. These observed attention patterns suggest that the CGD has acquired a sophisticated
reasoning process: it internalizes the critique’s guidance at an early stage and then acts upon this
internalized knowledge in its final, semantic layers to plan and execute a corrected solution. The
following section provides a direct behavioral test of this hypothesis.

C.4 CASE STUDY: COUNTERFACTUAL ANALYSIS

To test whether CGD learns a functional skill of robust reasoning beyond simple contextual under-
standing, we performed a qualitative case study. We presented both the baseline Llama 3.1 Instruct
model and our final CGD-trained model with a problem from our test set under two conditions. In
the Factual condition, we provided the original, correct critique from our dataset. In the Counter-
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Figure 9: Average attention flow of the CGD model. All layers shown begin with a ”planning”
step, focusing on the Critique (48.1%) and Student Answer (36.0%). The final layer (bottom right)
then pivots sharply to an ”execution” phase, focusing on the Problem (> 90%), while the first layer
(top left) continues to process the Critique. Shaded regions represent the 95% confidence interval
over 50 samples.
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Figure 10: Average attention paid to each prompt section across all 32 transformer layers. The
patterns suggest an early intake of the Critique (peak at Layer 0), followed by a deep processing of
the Student Answer in conjunction with the critique in the semantic middle layers (peak at Layer
13). Attention to the Problem dominates in the final layers.
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Figure 11: Aggregated heatmap of attention by generation phase for representative layers. The
bright cells for the Critique in the first column for Layer 16 and 31 (48.1% and 45.5%) confirm
that the initial planning phase is critique-driven, acting on the signal internalized by the early layers.
The sustained brightness for the Critique in the Layer 0 heatmap illustrates its role in early-stage
processing.
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factual condition, we provided a generic but nonsensical critique that was irrelevant to the problem
(e.g., incorrectly referencing a “quadratic formula” for a number theory problem). We then eval-
uated the correctness of the final generated answer in all four scenarios. Table 12 summarizes the
results for a representative sample.

The results demonstrate a clear behavioral divergence. While both models produce the correct an-
swer when given a factual critique, their responses to flawed guidance differ significantly. The
baseline model proves brittle; it is functionally derailed by the nonsensical critique, failing to pro-
duce a correct answer. The CGD model, in contrast, exhibits superior robustness by ignoring the
misleading critique and producing the correct answer based on its own problem analysis.

Interpretation. This counterfactual analysis provides critical evidence that CGD models learn rea-
soning principles rather than critique obedience. The model’s ability to ignore misleading critiques
demonstrates it internalized: (1) mathematical reasoning rules, (2) critique quality assessment, and
(3) independent problem-solving capability. This robustness emerges from exposure to diverse cri-
tique qualities during training—recall that our data mixture ablation (Figure 5 in main paper) shows
performance peaks with 50/50 correct/incorrect answer mixture rather than corrections-only. The
model learns to evaluate critique validity against its own understanding rather than blindly trusting
external feedback, developing an internal validation mechanism that distinguishes informative from
non-informative guidance.

Table 12: Counterfactual analysis results for a representative sample (Sample #42). While both
models are correct with factual guidance, only the CGD model is robust to the flawed, counterfactual
critique.

Model Outcome (Factual Critique) Outcome (Counterfactual Critique)
LLaMA3.1-8B Instruct CORRECT INCORRECT (Derailed)
CGD CORRECT CORRECT (Robust)

Case Study: Counterfactual Analysis on Sample #42
The goal of this analysis is to test for a functional understanding of critiques. The problem’s gold-standard
answer is 2310.

BASELINE MODEL ANALYSIS

Condition: Factual Critique
Correctness: CORRECT
Full Output:
To find the smallest positive integer divisible by five distinct prime

numbers, we need to understand the concept of prime numbers
first...

↪→
↪→
...
2 * 3 * 5 * 7 * 11 = 2310
Therefore, the smallest positive integer divisible by five distinct

prime numbers is 2310. This result is a direct consequence of the
multiplication of the smallest prime numbers, which are the
fundamental building blocks of all other numbers.

↪→
↪→
↪→

Condition: Counterfactual Critique
Correctness: INCORRECT (Derailed by the flawed critique.)
Full Output:
...A more accurate approach would be to understand that the smallest

positive integer... is actually their least common multiple
(LCM)...

↪→
↪→
To find the LCM of 2, 3, 5, 7, and 11, we can list the multiples of

each number and find the smallest number that appears in all the
lists:

↪→
↪→

Multiples of 2: 2, 4, 6, 10, 14, 22, 30, 42, 70, 110, 154, 330,...
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Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
45, 48, 51,..., 1542, 1545, 1548, 1551, 1554, 1557, 1560, 1563,
1566, 1569,

↪→
↪→

CGD-TRAINED MODEL ANALYSIS

Condition: Factual Critique
Correctness: CORRECT
Parsed Answer: 2310
Full Output:

## Finding the Smallest Positive Integer Divisible by Five Distinct
Prime Numbers↪→

To find the smallest positive integer divisible by five distinct prime
numbers, we need to follow a straightforward approach that
involves identifying the five smallest distinct prime numbers and
then multiplying them together. This method is based on the
fundamental principle that prime numbers are the building blocks
of all other numbers, and ...

↪→
↪→
↪→
↪→
↪→

### Definition of Prime Numbers

Before proceeding, it's essential to understand what prime numbers
are. Prime numbers are natural numbers greater ...↪→

### Identifying the Five Smallest Distinct Prime Numbers

The first five prime numbers in ascending order are 2, 3, 5, 7, and
11. These numbers are distinct, meaning they are all different
from one another, ...

↪→
↪→

### Multiplication of the Prime Numbers

To find the smallest positive integer divisible by these five distinct
prime numbers, we multiply them together:↪→

2 * 3 * 5 * 7 * 11 = 2310

This calculation is straightforward and demonstrates the direct
application of the initial logic. By multiplying the smallest
prime numbers, ...

↪→
↪→

### Conclusion

Therefore, the smallest positive integer divisible by five distinct
prime numbers is indeed 2310. This result is a direct consequence
of multiplying the five smallest distinct prime numbers together.
The approach taken is logical and mathematically sound, ...

↪→
↪→
↪→

In summary, the process of finding the smallest positive integer
divisible by five distinct prime numbers involves identifying the
five smallest prime numbers, which are 2, 3, 5, 7, and 11, and
then multiplying them together. This method ensures that the
resulting product is the smallest possible integer that is
divisible by each of the five distinct primes, making 2310 the
correct answer to the problem.

↪→
↪→
↪→
↪→
↪→
↪→

Condition: Counterfactual Critique
Correctness: CORRECT
Parsed Answer: 2310
Full Output:
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To find the smallest positive integer divisible by five distinct prime
numbers, we need to follow a systematic approach that involves ...
However, the initial step involves understanding what prime
numbers are and how to identify them.

↪→
↪→
↪→

Prime numbers are natural numbers greater than 1 that have no positive
...↪→

The five smallest distinct prime numbers are indeed 2, 3, 5, 7, and
11. These are the first five prime numbers in the sequence of
prime numbers.

↪→
↪→

Now, to find the smallest positive integer divisible by these five
distinct prime numbers, ...↪→

The calculation is as follows:
2 * 3 * 5 * 7 * 11 = 2310

Therefore, the smallest positive integer divisible by five distinct
prime numbers is indeed 2310. This number is the product of the
five smallest distinct prime numbers, ensuring that it is
divisible by each of them without leaving a remainder.

↪→
↪→
↪→

In conclusion, the approach to finding the smallest positive integer
divisible by five distinct prime numbers involves identifying the
prime numbers, understanding their properties, and then
calculating their product. The result, 2310, is the smallest
number that meets the criteria of being divisible by five distinct
prime numbers.

↪→
↪→
↪→
↪→
↪→

Conclusion: The CGD model exhibits superior robustness and instruction-following. It correctly
solves the problem under both conditions while adhering to the specified output format. The
baseline model, while capable of reasoning correctly, is brittle to both complex instructions and
irrelevant, noisy feedback.

C.5 BAYESIAN INTERPRETATION

Finally, we interpret critique conditioning as a Bayesian posterior update. Let the student’s ini-
tial output y′ define a prior distribution p(y|x), and let the critique c provide new evidence about
correctness. The teacher’s refinement can be viewed as a posterior distribution:

Sθ(ŷ | x, y′, c)︸ ︷︷ ︸
Student posterior

∝ Tϕ

(
c | x, y′, ŷ

)︸ ︷︷ ︸
Teacher likelihood

× Sinit(ŷ | x, y′)︸ ︷︷ ︸
Student prior

. (2)

Here, Sinit(ŷ | x, y′) is the student’s original (prior) distribution over responses, while Tϕ(c |
x, y′, ŷ) acts as a scoring function that up-weights those ŷ values better aligned with the critique.
Note that the teacher ”likelihood” need not be normalized; the proportionality sign indicates that
normalization is implicit when forming the posterior.

In practice, CGD minimizes the KL divergence between the student’s posterior and the teacher-
defined target distribution, which directly implements Equation 2 in training via Algorithm 1. This
interpretation highlights how critique guidance sharpens the student’s prior into a more informative
posterior, explaining the observed empirical gains.

C.6 CRITIQUE-ANSWER OVERLAP ANALYSIS

To directly address concerns about potential answer leakage from critiques, we conducted token-
level and phrase-level overlap analysis on 50,000 training examples from our WebInstruct dataset.

Methodology. We computed two metrics: (1) Token-level overlap: percentage of unique tokens
appearing in both critique and refined answer, and (2) Bigram-level overlap: percentage of con-
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secutive two-word sequences (bigrams) shared between critique and refined answer. Token overlap
measures vocabulary sharing, while bigram overlap detects phrase-level copying.

Results. Our analysis reveals:

• Token overlap: 16.6% — Critiques and answers share individual mathematical terms (e.g., vari-
ables like x, y; operations like “differentiate”, “solve”; concepts like “equation”, “derivative”).
These tokens are universal mathematical vocabulary appearing in the problems themselves.

• Bigram overlap: 5.7% — Despite sharing vocabulary, critiques and answers combine terms into
different reasoning chains. Only 5.7% of consecutive word pairs overlap.

Interpretation. The low bigram overlap (5.7%) despite moderate token overlap (16.6%) demon-
strates that the model learns concepts (which mathematical terms to use) without memorizing pat-
terns (how to phrase solutions). This is learning “how to reason” rather than “what to copy.” The
model internalizes three content-independent capabilities: (1) mathematical vocabulary, (2) concept
application (when to use which operations), and (3) reasoning structure (how to organize multi-step
solutions). These capabilities transfer to new problems regardless of critique presence at inference.

C.7 REASONING QUALITY ON HARD PROBLEMS (AIME 2024)

To provide direct evidence that CGD develops genuine reasoning capability rather than pattern mem-
orization, we analyzed reasoning quality on AIME 2024, a set of 30 extremely challenging compe-
tition mathematics problems.

Methodology. We compared CGD-trained LLaMA3.1-8B against the base model on identical
test problems, measuring: (1) accuracy (Pass@1), (2) average reasoning length (words), (3) average
reasoning steps, and (4) number of problems solved exclusively by each method.

Table 13: Reasoning quality analysis on AIME 2024. CGD generates significantly more detailed
reasoning.

Metric Base Model CGD Improvement
Accuracy 3.3% (1/30) 16.7% (5/30) +13.3% (5×)
Avg reasoning length 477 words 2110 words 4.4× longer
Avg reasoning steps 16.4 49.5 3.0× more
Problems only this method solves 0 4 +4

Results.

Interpretation. CGD achieves 5× higher accuracy and generates 4.4× more detailed step-by-step
reasoning on identical hard problems. The dramatic increase in reasoning detail (477 → 2110 words)
demonstrates that CGD learns to produce comprehensive mathematical explanations, not just answer
patterns. This provides direct evidence that the model doesn’t rely on memorized patterns—it gen-
erates vastly more detailed reasoning than its base model on problems it has never seen, proving it
learned “how to reason” through critiques. The 4.4× increase in reasoning length and 3.0× increase
in reasoning steps show the model internalized mathematical problem-solving strategies that transfer
to new, difficult problems.

D CRITIQUE AND REFINEMENT GENERATION PROMPTS

For transparency and reproducibility, we provide the exact prompts used to generate critiques and
refined answers from the teacher model during the CGD training data creation process.
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D.1 CRITIQUE GENERATION PROMPT

Teacher Prompt for Generating Critiques
You are an expert in mathematics and reasoning. Your task is to carefully review a student’s solution to a
given problem and provide a detailed, constructive critique.
Problem: {problem}
Student’s Solution: {student answer}
Please analyze the student’s solution and provide a critique that:

• Identifies any errors, misconceptions, or gaps in reasoning

• Explains why these issues are problematic

• Suggests the correct approach or concepts needed

• Is clear, specific, and pedagogically helpful

Your critique should focus on the reasoning process and help guide the student toward the correct solution
without directly providing the full answer.

D.2 REFINED ANSWER GENERATION PROMPT

Teacher Prompt for Generating Refined Answers
You are an expert in mathematics and reasoning. Given a problem, a student’s initial attempt, and a critique
of that attempt, provide a complete and correct solution that addresses all the issues identified in the critique.
Problem: {problem}
Student’s Initial Solution: {student answer}
Critique: {critique}
Please provide a refined, complete solution that:

• Addresses all issues identified in the critique

• Shows clear, step-by-step reasoning

• Arrives at the correct answer

• Maintains mathematical rigor and clarity

E EXAMPLE CGD TRAINING DATA SAMPLE

To better understand how CRITIQUE-GUIDED DISTILLATION (CGD) enables improved response
quality without format drift, we present a representative CGD training data sample. The CGD train-
ing pipeline involves three components: a student’s initial answer, a teacher-generated critique that
identifies specific flaws and explains the reasoning behind them, and a refined answer that incorpo-
rates the critique to correct the initial output. The full input tuple (prompt, student, critique, refined
answer) is only used during training, and inference remains unchanged from standard decoding.

In the example, the student incorrectly assumes the number of electrons per nitrogen atom when
calculating the mass of a nitride anion. The critique explicitly identifies this conceptual error, and
the refined answer provides the correct computation with an explanation of the correct electronic
configuration of the ion. This structured format teaches the model both the nature of the mistake and
the reasoning needed to arrive at a correct solution, demonstrating how CGD effectively enhances
model performance while preserving answer format consistency.

CGD WebInstruct Training Data Sample

Question: Calculate the mass of a nitride anion that contains 2.408× 1024 nitrogen-based electrons.
Student’s Initial Answer: To calculate the mass of the nitride anion, we first need to determine the number
of nitrogen atoms in the anion. Since each nitrogen atom has 7 electrons, we can divide the total number of
electrons by 7 to find the number of nitrogen atoms:

Number of nitrogen atoms =
Total number of electrons

7
=

2.408× 1024

7
= 3.443× 1023
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The mass of a single nitrogen atom is approximately 14.007 u (unified atomic mass units). We can multiply
the number of nitrogen atoms by the mass of a single nitrogen atom to find the total mass of the nitride
anion:

Mass of nitride anion = 3.443× 1023 × 14.007 u = 4.835× 1025 u

To convert the mass from unified atomic mass units to kilograms, we use the conversion factor 1 u =
1.66053904× 10−27 kg:

Mass in kg = 4.835× 1025 × 1.66053904× 10−27 = 8.033× 10−2 kg

So, the mass of the nitride anion is approximately 8.033× 10−2 kg or 80.33 g.
Critique: The solution provided attempts to calculate the mass of a nitride anion based on the number of
nitrogen-based electrons. Let’s review the steps and calculations for accuracy and clarity.
1. Determination of the Number of Nitrogen Atoms: The solution starts by dividing the total number
of electrons by 7 to find the number of nitrogen atoms. This assumes each nitrogen atom has 7 electrons,
which is true for neutral nitrogen. However, the question refers to a nitride anion, typically N3−, which has
gained 3 electrons for a total of 10 electrons per atom. Thus, the correct calculation should be:

Number of nitrogen atoms =
2.408× 1024

10
= 2.408× 1023

2. Calculation of the Mass: Using the corrected number of nitrogen atoms and the same atomic mass:

Mass = 2.408× 1023 × 14.007 u = 3.373× 1024 u

3. Conversion to Kilograms:

Mass in kg = 3.373× 1024 × 1.66053904× 10−27 = 5.605× 10−3 kg

The original solution incorrectly calculates the number of nitrogen atoms based on an incorrect assump-
tion about the number of electrons per nitrogen atom in a nitride anion. This leads to an incorrect mass
calculation. Conclusion: Wrong.
Refined Answer: Step 1: Determine the correct number of electrons per nitrogen atom in a nitride anion
A nitride anion (N3−) has 10 electrons, which includes the 7 original electrons from the neutral nitrogen
atom plus 3 additional electrons gained to form the anion.
Step 2: Calculate the number of nitrogen atoms in the nitride anion
To find the number of nitrogen atoms, divide the total number of electrons by the number of electrons per
nitrogen atom in the anion, which is 10.

Number of nitrogen atoms =
Total number of electrons

10
=

2.408× 1024

10
= 2.408× 1023

Step 3: Calculate the mass of the nitride anion in unified atomic mass units (u)
The mass of a single nitrogen atom is approximately 14.007 u. Multiply the number of nitrogen atoms by
the mass of a single nitrogen atom:

Mass = 2.408× 1023 × 14.007 = 3.373× 1024 u

Step 4: Convert the mass of the nitride anion from unified atomic mass units (u) to kilograms
Use the conversion factor 1 u = 1.66053904× 10−27 kg:

Mass in kg = 3.373× 1024 × 1.66053904× 10−27 = 5.605× 10−3 kg

The final answer is:
5.605× 10−3 kg

E.1 QUALITATIVE COMPARISON OF GENERATED RESPONSES

In the qualitative comparison of generated responses, the Critique Fine-Tuning (CFT) method ex-
hibits a notable format drift, deviating from the expected answer format by producing Conclusion
section and token at the end of each response. This behavior arises because CFT is trained to gener-
ate critiques, inadvertently leading the model to adopt a more elaborate response style. In contrast,
the Critique-Guided Distillation (CGD) approach maintains the original response format while en-
hancing answer quality.
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Generated Answer after CFT

Question: True or false: there exists a graph with score (1, 1, 1, 2, 2, 3, 4, 5, 5). Answer with True or

False . (True or False)
Answer: Let’s analyze the problem step by step.
Step 1: Understanding the problem
The problem asks whether there exists a graph whose score matches the given sequence (1, 1, 1, 2, 2, 3, 4,
5, 5). The score of a graph is determined by the number of vertices and edges in the graph. Specifically, the
score is calculated as

score = number of vertices − number of edges.

Step 2: Analyzing the score sequence
The given score sequence is (1, 1, 1, 2, 2, 3, 4, 5, 5). This sequence represents the difference between the
number of vertices and edges for a series of graphs. For example:

• A graph with score 1 could have 2 vertices and 1 edge.

• A graph with score 2 could have 3 vertices and 1 edge.

Step 3: Checking the feasibility of the sequence
To determine whether the sequence is valid, we need to verify if it is possible to construct a sequence of
graphs where the score increases monotonically and matches the given sequence. This involves checking
whether the number of vertices and edges can be adjusted to satisfy the score for each step.
Observations:

1. The sequence starts with 1, which is plausible for a graph with 2 vertices and 1 edge.

2. The sequence increases by 1 for the next three steps (1, 2, 3), which is consistent with adding
edges to a graph while keeping the number of vertices constant.

3. The sequence then increases by 1 again (3, 4, 5), which is also consistent with adding edges to a
graph while keeping the number of vertices constant.

4. The sequence ends with 5, which is plausible for a graph with 6 vertices and 1 edge.

Key Check: The sequence does not require any negative scores (i.e., more edges than vertices), which is a
valid mathematical possibility. Therefore, the sequence is feasible.
Step 4: Conclusion
The given score sequence (1, 1, 1, 2, 2, 3, 4, 5, 5) is valid and corresponds to a sequence of graphs with
increasing scores.
Conclusion: right

Generated Answer after CFT

Question: Is the transformation T (M) =

[
1 2
3 4

]
M from R2×2 to R2×2 an isomorphism? Answer with

True or False . (True or False)
Answer: Step 1: Definition of an Isomorphism An isomorphism is a bijective linear transformation between

two vector spaces. For T (M) =

[
1 2
3 4

]
M to be an isomorphism, it must satisfy the following conditions:

1. **Injectivity**: T (M1) = T (M2) ⇒ M1 = M2 2. **Surjectivity**: For every M ∈ R2×2, there
exists M ′ ∈ R2×2 such that T (M ′) = M 3. **Linearity**: T (aM1 + bM2) = aT (M1) + bT (M2) for
all a, b ∈ R and M1,M2 ∈ R2×2

Step 2: Linearity The transformation T (M) =

[
1 2
3 4

]
M is clearly linear because matrix multiplication is

distributive and associative. Thus, the linearity condition is satisfied.
Step 3: Injectivity To check injectivity, we need to verify whether T (M1) = T (M2) ⇒ M1 = M2. Let
M1,M2 ∈ R2×2. If T (M1) = T (M2), then:[

1 2
3 4

]
M1 =

[
1 2
3 4

]
M2

This implies:

M1 = M2,

since the matrix
[
1 2
3 4

]
is invertible (its determinant is nonzero). Therefore, T is injective.
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Step 4: Surjectivity To check surjectivity, we need to verify whether for every M ∈ R2×2, there exists
M ′ ∈ R2×2 such that T (M ′) = M . Let M ∈ R2×2. We solve for M ′ such that:[

1 2
3 4

]
M ′ = M

This is equivalent to solving the system of linear equations:[
1 2
3 4

] [
x1

x2

]
=

[
a b
c d

]
,

where M =

[
a b
c d

]
. The matrix

[
1 2
3 4

]
is invertible (its determinant is nonzero), so the system has a

unique solution for any M . Therefore, T is surjective.
Step 5: Conclusion Since T is both injective and surjective, and it is linear, it is an isomorphism.
Conclusion: right

Generated Answer after CGD

Question: True or false: there exists a graph with score (1, 1, 1, 2, 2, 3, 4, 5, 5). Answer with True or

False . (True or False)

Answer: To determine if there exists a graph with the given score, we need to understand what a score in
graph theory represents.
A score of a graph is the sequence of the degrees of its vertices, listed in non-increasing order. The given
score is (1, 1, 1, 2, 2, 3, 4, 5, 5).

For a graph to exist with this score, it must be possible to construct a graph where the degrees of its vertices
match this sequence. The sum of the degrees of all vertices in a graph is twice the number of edges (since
each edge contributes to the degree count of two vertices). This sum is calculated as follows:

1 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 5 = 24

Since the sum of the degrees is 24, the number of edges in the graph must be 12 (because 24/2 = 12).

Now, let’s consider the degrees and how they can be distributed among vertices. The degrees are 1, 1, 1, 2,
2, 3, 4, 5, 5. To form a graph, we need to ensure that the degrees can be assigned to vertices in such a way
that the graph remains connected and that the degree of each vertex matches the given sequence.

Given the degrees, we can start by assigning the lowest degrees first. The three vertices with degree 1 must
be connected to each other, as they cannot be isolated. This forms a triangle, which is a connected subgraph.

Next, we assign the degrees 2. These vertices can be connected to any of the existing vertices, including
each other, as long as they are not isolated. Since we have two vertices with degree 2, they can be connected
to the vertices with degree 1, or to each other, or to any of the higher-degree vertices.

The vertex with degree 3 can be connected to any of the existing vertices, including the ones with degree 2,
or to the higher-degree vertices.

The vertices with degrees 4 and 5 can be connected to any of the existing vertices, including the ones with
lower degrees, as long as they are not isolated.

Given these constraints, it is possible to construct a graph that matches the given score. For example,
consider a graph with 9 vertices where:

1. Three vertices are connected in a triangle (degrees 1).
2. Two vertices are connected to each other and to one of the vertices in the triangle (degrees 2).
3. One vertex is connected to one of the vertices in the triangle and to one of the vertices with degree

2 (degree 3).
4. One vertex is connected to the vertices with degrees 1, 2, and 3 (degree 4).
5. Two vertices are connected to all other vertices, including the ones with degrees 1, 2, 3, and 4

(degrees 5).

This construction ensures that the degrees of the vertices match the given score, and the graph remains
connected.

Therefore, the statement that there exists a graph with the score (1, 1, 1, 2, 2, 3, 4, 5, 5) is true.

The final answer is: True
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Generated Answer after CGD

Question: Is the transformation T (M) =

[
1 2
3 4

]
M from R2×2 to R2×2 an isomorphism? Answer with

True or False . (True or False)

Answer: To determine if the transformation T (M) =

[
1 2
3 4

]
M from R2×2 to R2×2 is an isomorphism,

we need to check if it satisfies the two properties of an isomorphism:
1. **Injectivity**: The transformation must be one-to-one, meaning that if T (M1) = T (M2), then M1 =
M2. 2. **Surjectivity**: The transformation must be onto, meaning that for every matrix N ∈ R2×2, there
exists a matrix M ∈ R2×2 such that T (M) = N .

Let’s examine the transformation T (M) =

[
1 2
3 4

]
M .

Given M =

[
a b
c d

]
, we have:

T (M) =

[
1 2
3 4

] [
a b
c d

]
=

[
1a+ 2c 1b+ 2d
3a+ 4c 3b+ 4d

]
Now, let’s check for injectivity:
Suppose T (M1) = T (M2). Then:[

1a1 + 2c1 1b1 + 2d1
3a1 + 4c1 3b1 + 4d1

]
=

[
1a2 + 2c2 1b2 + 2d2
3a2 + 4c2 3b2 + 4d2

]
This implies that the corresponding elements of the two matrices are equal:

1a1 + 2c1 = 1a2 + 2c2

1b1 + 2d1 = 1b2 + 2d2

3a1 + 4c1 = 3a2 + 4c2

3b1 + 4d1 = 3b2 + 4d2

Simplifying, we get:

a1 = a2, c1 = c2, b1 = b2, d1 = d2

Therefore, M1 = M2, and the transformation is injective.
Next, let’s check for surjectivity:

Given any matrix N =

[
e f
g h

]
∈ R2×2, we need to find a matrix M =

[
a b
c d

]
such that T (M) = N .

We have:

T (M) =

[
1a+ 2c 1b+ 2d
3a+ 4c 3b+ 4d

]
=

[
e f
g h

]
This gives us the following system of equations:

1a+ 2c = e

1b+ 2d = f

3a+ 4c = g

3b+ 4d = h

Solving this system, we can find values for a, b, c, d that satisfy the equations. For example, one possible
solution is:

a =
e

1
= e, b =

f

1
= f, c =

g − 3e

4
, d =

h− 3f

4
Therefore, we can find a matrix M that maps to any given matrix N , and the transformation is surjective.

Since the transformation T (M) =

[
1 2
3 4

]
M is both injective and surjective, it is an isomorphism.

The final answer is: True
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F CODE INSTRUCTIONS

We include a code archive (code.zip) as part of the supplementary material. This package pro-
vides all necessary components to reproduce our key results and facilitate further experimentation.
Specifically, it includes:

• Critique Generation and Refinement: Scripts for generating critiques from model out-
puts and refining answers using these critiques.

• Evaluation Codebase: End-to-end evaluation pipelines for computing exact match accu-
racy and other relevant metrics across multiple benchmarks.

• LLaMA-Factory Integration: The LLaMA-Factory framework to support Supervised
Fine-Tuning (SFT).

• Configuration Files and Run Scripts: YAML/JSON config files and shell scripts used to
launch experiments across various model architectures and tasks.

Instructions for installing dependencies, setting up the environment, and running end-to-end training
and evaluation pipelines are included in the README.md file within the archive.
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