Graph Data Selection for Domain Adaptation:
A Model-Free Approach

Ting-Wei Li Ruizhong Qiu Hanghang Tong
University of Illinois University of Illinois University of Illinois
Urbana-Champaign, IL USA Urbana-Champaign, IL USA Urbana-Champaign, IL USA
twli@illinois.edu rqbQ@illinois.edu htong@illinois.edu
Abstract

Graph domain adaptation (GDA) is a fundamental task in graph machine learning,
with techniques like shift-robust graph neural networks (GNNs) and specialized
training procedures to tackle the distribution shift problem. Although these model-
centric approaches show promising results, they often struggle with severe shifts
and constrained computational resources. To address these challenges, we propose
a novel model-free framework, GRADATE (GRAph DATa sElector), that selects
the best training data from the source domain for the classification task on the target
domain. GRADATE picks training samples without relying on any GNN model’s
predictions or training recipes, leveraging optimal transport theory to capture and
adapt to distribution changes. GRADATE is data-efficient, scalable and meanwhile
complements existing model-centric GDA approaches. Through comprehensive
empirical studies on several real-world graph-level datasets and multiple covariate
shift types, we demonstrate that GRADATE outperforms existing selection methods
and enhances off-the-shelf GDA methods with much fewer training data.

1 Introduction

Graphs have emerged as a fundamental data structure for representing complex relationships across
diverse domains, from modeling molecular interactions in biological networks [23l 16, 137, 85]] to
capturing user behaviors in recommendation systems [[15 19} 18} 9] [73]]. In graph-level classification
tasks [64] 166} 81} 20, 138]], where the goal is to categorize graph structures, the distribution shift
between source and target domains poses significant challenges. While numerous graph neural
network (GNN) methods have been proposed for graph domain adaptation (GDA) [61}[12]162 155! 34],
they predominantly relies on model architecture design and training strategies, which are inherently
model-dependent and brittle. This model-centricity introduces practical challenges: (i) the need
for extensive resources to train and validate different architectural variants and (ii) the ignorance
of source data quality. To address these aforementioned issues, rather than relying on sophisticated
GNN architectures or training procedures, we aim to answer a fundamental question:

How to select the most relevant source domain data, based on available validation data, for better
graph-level classification accuracy evaluated on the target domain ?

In this paper, we propose a model-free method, GRADATE (GRAph DATa sElector), that selects a
subset of important training data in the source domain independently of any specific GNN model
design, making it both data-efficient and versatile. GRADATE reduces computational overhead and
enables quick adaptation to unseen graph domains based on available validation data. Conceptually,
GRADATE first leverages Fused Gromov-Wasserstein (FGW) distance [57]] to compare graph samples.
We provide a theoretical justification to demonstrate FGW’s unique advantage over multi-layer GNNs
for graph comparison. Then, FGW is used as a building block to measure the dataset-level distance
between training and validation sets, which is termed as Graph Dataset Distance (GDD). Through

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

theoretical analysis, we demonstrate that the domain generalization gap between source and target
domain is upper-bounded by GDD, which naturally motivates us to minimize this GDD between
training and validation sets by identifying the optimal subset of training graph data. At the core of
GRADATE lies our novel optimization procedure, GREAT (GDD shRinkagE via spArse projecTion),
that interleaves between (i) optimal transport-based distribution alignment with gradient updates on
training sample weights and (ii) projection of training sample weights to sparse probability simplex.
This dual-step process systematically increases the weights of beneficial training samples while
eliminating the influence of detrimental samples that could harm generalization performance.

By extensive experiments on six real-world graph-level datasets and two types of covariate shifts,
we first show that GRADATE significantly outperforms existing data-efficient selection methods.
When coupled with vanilla GNNs that are only trained on its selected data, GRADATE even surpasses
state-of-the-art GDA methods. Intriguingly, the practical implications of GRADATE extend beyond
mere data selection. By operating independently of model architecture, GRADATE can seamlessly
complement existing off-the-shelf GDA methods, further enhancing their performance through better
data curation while significantly improving the data-efficiency.

In summary, our main contributions in this paper are as follows:

1. Theoretical justification of FGW distance. We show in Theorem [3.1] that the output distance
of multi-layer GNNs is upper-bounded by Fused Gromov—Wasserstein distance [S7] between
graphs, which motivates us to use FGW as a building block to compare graphs.

2. Novel graph dataset distance formulation. Through Theorem we prove that the graph
domain generalization gap is upper-bounded by a notion of Graph Dataset Distance (GDD).

3. A strong model-free graph selector. We introduce GRADATE (GRAph DATa sElector) as the
first model-free method tailored for domain shift problem for graph-level classification tasks,
complementing the predominant model-centric GDA methods (see Section @.2).

4. A data-efficient and powerful GDA method. We show that trained with data selected by
GRADATE, even vanilla GNN can beat sophisticated GDA baselines (see Section 4.3).

5. A universal GDA model enhancer. We demonstrate that the data selected by GRADATE
can be combined with GDA methods to further enhance their performance and efficiency (see

Section [.4).

The rest of the paper is organized as follows. Section |[2|introduces needed background knowledge.
Section [3] details our definition of Graph Dataset Distance (GDD) and proposed GRADATE, followed
by experimental results in Section[d] Section [5] presents related works. Finally, the conclusion is
provided in Section [f]

2 Preliminaries

In this section, we briefly introduce optimal transport and graph optimal transport, which are funda-
mental background related to our proposed method. We also provide the formal problem formulation
of graph domain adaptation (GDA) in Appendix [K]

2.1 Optimal Transport

Optimal transport (OT) [27] defines a distance between probability distributions. It is defined as
follows: given cost function d(-,-) : X x X — R=" and probability distributions p, q € P(X’), where
X is a metric space, OT(p, q, d) = MiNrer(p,q) [y« v 4@ 2)7(2, 2") dedz’, where II(p, q) is the
set of couplings with marginals p and q.lFor %lllpervised learning scenarios, we consider the empirical

measures: p = = > "' 8, and q = = > j—1 0/, where 0 is the Dirac delta function. With the

m .
pairwise cost matrix M = [d(z;,2)];;, we can re-formulate the OT problem as OT(p,q,d) =

OT(p,q, M) = MiNyeri(p,q) 22;1 Z;n:l M, mij.

Optimal Transport Dataset Distance (OTDD). Alvarez-Melis and Fusi [2] construct a distance
metric between datasets, where each dataset is represented as a collection of feature-label pairs
z = (z,y) € Z(= X x). The authors propose label-specific distributions, which can be seen as
distributions over features X of data samples with a specific label y, i.e. a;,(X) £ P(X|Y = y). The
metric on the space of feature-label pairs can thus be defined as a combination of feature distance and

label distance: dz((z,y), (v',y")) £ (dx(z,2")" + ¢ - d(a, ozy/)r)l/r, where dy is a metric on X,

d(ay, ay/) is the label distance between distributions of features associated with labels y and 3/, 7 > 1
is the order of the distances and ¢ > 0 is a pre-defined weight parameter. Consider two datasets Dy =
{27« (@5,97) Yiem) De = {2} : (2}, y}) }iein,) and their corresponding uniform empirical distribu-
tions p,q € Z, wherep = Y1, n%‘szf andq =31, 712522’ OTDD between D and D; is com-

puted as: OTDD(Dy, D;) = OT(p,q,dz) = OT(p,q,M) = Minycr1(p,q) E(zs7zt),\,ﬂ[d2(2’5, 24,
where I1(p, q) is the set of valid couplings and M = [dz (2, 2})];; is the pairwise cost matrix.

2.2 Graph Optimal Transport

The Fused Gromov-Wasserstein (FGW) distance [57] integrates the Wasserstein distances [52] and
the Gromov-Wasserstein distances [54, [42]]. Formally, a graph G with n nodes can be represented
as a distribution over vectors in a d-dimensional space, where d is the dimension of the node
feature. The features are represented as X € R"*? and the structure can be summarized in an
adjacency matrix A € R™*™. We further augment G a probability distribution p € R"™ over
nodes in the graph, where Z?:l p; = land p; > 0,Vi € [n]. To compute FGW distance
between two attributed graphs (G = {A1,X1,p1} and Go = {As,Xo,p2}), we use pairwise
feature distance as inter-graph distance matrix and adjacency matrices as intra-graph similarity
matrices. The FGW distance is defined as the solution of the following optimization problem:

FGW,(G1,G2) & FGW ([X1[i] — Xa[4]|l+)ij, A1, As, P1, P2, @)

= (min (1 a)|Xa (i) — Xelj)[5 + alAi(i, k) — Aa (G, 1) (i,) (k, l)) ;

II s
mEI(p1,p2) gkl

where II(p1, p2) £ {m|71,, = p1, 7 1,, = pa, ™ > 0} is the collection of feasible couplings
between p; and ps, « € [0, 1] acts as a trade-off parameter, and r > 1 is the order of the distances.

3 Methodology

In this section, we propose our framework, GRAph DATa sElector, abbreviated as GRADATE. In
Section 3.1] we first introduce Theorem [3.1] to motivate our use of LinearFGW [46] for graph
distance computation. After that, we define the Graph Dataset Distance (GDD), which measures
the discrepancy between graph sets. In Section [3.2] we provide Theorem [3.3to bound the domain
generalization gap using GDD and then propose a GDD minimization problem that is solved by
a novel optimization algorithm, GREAT (GDD shRinkagE via spArse projecTion). Finally, we
introduce GRADATE that combines GDD computation and GREAT to select the most important
subset of the training data to solve graph domain adaptation problem (definition is detailed in

Appendix [K).
3.1 Graph Dataset Distance (GDD): A Novel Notion to Compare Graph Datasets

3.1.1 FGW Distance For Graph Comparison

Challenges in Graph Distance Computation. To find the optimal samples that can achieve bet-
ter performance on the target domain, we first need an efficient way that can accurately capture
the discrepancy among graphs. To achieve this, most methods rely on Graph Neural Networks
(GNNGs) [62] 121155, 172] to obtain meaningful representations of these structured objects. However,
these approaches face critical limitations: (i) high computational complexity to train on full training
set and (ii) sensitivity to GNN hyper-parameters. To address these drawbacks, we propose to use
FGW distance [57] for replacing GNNs. As demonstrated in the following Theorem 3.1, FGW offers
provable advantages that make it more suitable than GNNs to compare attributed graphs.

Theorem 3.1. Given two graphs G, = (A1,X1) and Gy = (A2, Xs), for a k-layer graph neural
network (GNN) f with ReLU activations, under regularity assumptions in Appendix we have

dw(f(G1), f(G2)) < C-FGWg(G1,G2),)

where dw denotes the r-Wasserstein distance, C' and [3 are constants depending on GNN f, regularity
constants and k.

Proof. The proof is in Appendix O

Implication of Theorem [3.1] We have the following two main insights: (i) since the theorem
holds for any possible k-layer GNNs, with ReLU activations, FGW is provably able to capture the
differences between attributed graphs in a way that upper-bounds the discrepancy between learned
GNN representations; (ii) to the best of our knowledge, this is the first time that FGW is proved to be
the distance metric that enjoys this theoretical guarantee, and hence we adopt it as the major basis for
our graph data selection method.

Practical Consideration. We utilize LinearFGW [46]] as an efficient approximation of FGW dis-
tance. Formally, LinearFGW defines a distance metric dpincarrGw (-, -) Where diincarrow (G, G;) is
the LinearFGW distance between any pair of graphs G;, G;. LineartFGW offers an approximation to
FGW with linear time complexity with respect to the number of training graphs. While we omit the
details of LinearFGW here for brevity, they can be found in Appendix [A]and Algorithm I}

3.1.2 Graph-Label Distance

With FGW as a theoretically grounded metric for model-free comparison between individual attributed
graphs, we further extend it to compare sets of labeled graphs across domains, which aids our domain
adaptation process. Inspired by OTDD [2] (detailed in Section [2.I)), we extend the original definition

of label distance to incorporate distributions in graph subsets S,.S’, namely af and ozg,l. Given
a set of labeled graphs D = {G;,y;}~, and label set)V, we formulate the graph-label distance
between label y €) in graph subset S = {QZS , yf }iels) € D and label 3 €) in graph subset
S = {gf’,yf'}j€|s,| C D as follows:

d(a;jv O‘i’/) = OT(pg, qi]” dLinearFGW)7 (2)

S _ 1 S _ 1
where py = o= Disys=y 053> Ay w5 =yl
ical measures with the distance metric measured by LinearFGW. Intuitively, we collect graphs in

subset S with label i and graphs in subset S’ with label 3’ as distributions. Then, we compute the
optimal transport distance between these distributions and define the distance as graph label distance.

> iys'—y Ogs: are label-specific uniform empir-
JY5 =YY

3.1.3 Graph Dataset Distance (GDD)

Building upon the aformentioned graph-label distance, we then propose the notion of Graph
Dataset Distance (GDD), which compares two graph subsets at a dataset-level. Specifi-
cally, based on Equation , we can define a distance metric dj z between graph subsets S, NI

ZZ((gfv y?)a (gjswv yf,)) = dLinearFGW(giS> g]S') +c- d(afa 0[511), (3)

which is a combination of LinearFGW distance and graph-label distance with a weight parameter
¢ > 0 balancing the importance of two terms. GDD can thus be defined as:

GDD(D¥,D%') = OT(p®, g%, d°), (4)

where p* = 57 3,151 005 y5) and Q% = 57 Liells'] 0(gs’ ys') are uniform empirical mea-
sures. We summarize the computation of GDD in Appendix [B]and Algorithm 2]

Remark 3.2. If we set ¢ = 0, GDD will omit the label information and only consider the distributional
differences of graph data themselves, which matches the setting of unsupervised GDA problem.

3.2 GRADATE: A Model-Free Graph Data Selector
3.2.1 GDD Bounds Domain Generaization Gap

We give the following Theorem to elucidate the utility of GDD and its relation to model per-
formance discrepancy between graph domains. In short, we seek to utilize empirical observations
in the source domain to minimize the expected risk calculated on the target domain P;, namely,
E(gy)~p,[L(f(G),y)], which promotes the model performance (i.e., lower expected risk) on the
target domain.

Theorem 3.3 (Graph Domain Generalization Gap). Define the cost function among graph-label pairs
as dy z with some positive c (via Equation (3)). Let w denote the source distribution weight. Suppose
that d z is C-Lipschitz. Then for any model f trained on a training set, we have

[£(f(9),y)] < E [L(f(G),y)]+C-GDD(DG", D),

(G,y)~q™! (G,y)~phin(w)

where GDD(Dun Dval) = OT(p'™in(w), ", dgz) is the graph dataset distance between the
weighted training dataset (defined by w) and target dataset.

Proof. The proof can be found in Appendix [F2] O

Implication of Theorem[3.3] If we can lower the GDD between training and validation data, the
discrepancy in the model performance with respect to training and validation sets may also decrease.
Specifically, under the scenario where distribution shift occurs, some source data might be irrelevant
or even harmful when learning a GNN model that needs to generalize well on the target domain. This
motivates us to present our main framework, GRADATE (GRAph DATa sElector), which selects the
best training data from the source domain for graph domain adaptation.

3.2.2 GDD Minimization Problem

Guided by the implication of Theorem 3.3] we formulate the GDD minimization problem as follows.

Definition 3.4 (Graph Dataset Distance Minimization). Given training and validation sets D" and
DY, we aim to find the best distribution weight w* that minimizes GDD betwen the training and
validation sets under the sparsity constraint. Namely,

w* =min OT(p""(w),q", d 5), sty wlil=1,w>0,wllo < [n-7], (5
i

i 1
where ptram (W) = Zze[n] Wié(girain’y(iruin) and anl = Zje[m] 6(g;a]7y;ul).

Optimization Procedure (GREAT algorithm). To solve the above GDD minimization problem,
we propose GREAT (GDD shRinkagE via spArse projecTion) to optimize the weight w over the
entire training set. Starting from a uniform training weight vector w, GREAT iteratively refines the
importance of training samples through two key steps. In each iteration, it first computes the Graph
Dataset Distance (GDD) between the reweighted training distribution p"(w) and the validation

distribution q*¥, using a pairwise cost matrix D € R™*™ that encodes distances between individual
training and validation samples. The gradient of GDD with respect to w, denoted gy, is then used to
update the Weight Following this, the weight vector w is sparsified by retaining only the top-k
largest entries and re-normalized to remain on the probability simplex. After 7" such iterations, the
non-zero indices in the final w define the selected training subset S. The detailed algorithm procedure
is presented in Appendix [Cland Algorithm 3]

3.2.3 GRADATE

Combining GDD computation and optimization module GREAT, we summarize the main procedure
of GRADATE in Algorithm [4] (details can be found in Appendix [D). In short, given training and
validation data, GRADATE iteratively calculates GDD based on current training weight and searches
for a better one through GREAT. The final output of GRADATE corresponds to the selected subset of
training data that is best suitable for adaptation to the target domain. We further provide the time
complexity analysis of GRADATE as follows.

Time Complexity of GRADATE. Let N be the number of training graphs, M be the number of
validation graphs, n be the number of nodes in each graph (WLOG, we assume all graph share the
same size), L be the largest class size, 7 is the approximation error introduced by approximate OT
solvers E], K be the number of iterations for solving LinearFGW, and T the number of update steps
used in GREAT. The runtime complexity can be summarized in the following proposition.

"Note that we leverage the conclusion introduced in [26]] to compute this gradient (stated as Theorem .
2This is due to the entropic regularization in Sinkhorn iterations for empirical OT calculation.
3For empirical runtime behavior, we refer readers to Appendix @

Proposition 3.5 (Time Complexity Analysis [2 26} [1]). The off-line procedure of GRADATE (i.e.
can be computed before accessing the test set) has the time complexity O(NM Kn3 + NML3log L)
and the on-line procedure of GRADATE has the time complexity O(TN M log(max(N, M))7=3).

4 Experiments

We conduct extensive experiments to evaluate the effectiveness of GRADATE across six real-world
graph classification settings under two different types of distribution shift. Our experiments are
designed to answer the following research questions:

* (RQ1): How does GRADATE compare to existing data selection methods?
* (RQ2): How does GRADATE + vanilla GNNs compare to model-centric GDA methods?
¢ (RQ3): To what extent can GRADATE enhance the effectiveness of model-centric GDA methods?

We will answer these research questions in Section[d.2] #.3]and[.4] correspondingly.

4.1 General Setup

In this section, we state the details of datasets and settings of GRADATE and baseline methods.

Datasets and Graph Domains. We consider graph classification tasks conducted on six real-world
graph-level datasets, including IMDB-BINARY [69], IMDB-MULTI [69], MSRC_21 [45]],
ogbg-molbace [22], ogbg-molbbbp [22] and ogbg-molhiv [22]. The former three datasets are
from the TUDataset [44]; while the latter three datasets are from the OGB benchmark [22]]. We define
the graph domains by graph density and graph size, which are the types of covariate shift that are
widely studied in the literature [[72, 141} 156, 5,71} [10, |84]]. Specifically, graphs are sorted by corre-
sponding properties in an ascending order and split into train/val/test sets with ratios 60% /20% /20%.
For brevity, we provide results on graph density shift in the main content. Additional experiments on
graph size shift can be found in Appendix [G] We also include the empirical cumulative distribution
function (ECDF) plots of all settings in Appendix |P|to demonstrate the shift level.

Details of GRADATE and Baselines. To compute LinearFGW within GRADATE, we follow the
default parameter settings in its github repositoryE] The trade-off parameter « is computed in
{0.5, O.Q}E] and the order r is set to 2. The update step is fixed to 7" = 10 and the learning rate equal
to nn = 10~* across different settings. A popular model-free data valuation method is LAVA [26]].
We apply LAVA for graph data selection and make the following modifications. We first leverage
LinearFGW to form the pairwise distance matrix and compute GDD. LAVA then picks the smallest k
entries of the calibrated gradients as output. For the computation of GDD, we consider label signal
¢ € {0,5}. We also incorporate KIDD-LR [66] as a model-centric but data-efficient baseline, which
is a state-of-the-art graph dataset distillation method.

4.2 GRADATE as a Model-Free Graph Selector

To answer (RQ1), we compare GRADATE with other data-efficient methods, including (1) model-free
techniques: random selection and LAVA [26] and (2) model-centric techniques: KIDD-LR [66].

Experiment Setup. To test the effectiveness of these selection methods, we fix the backbone GNN
models in use to train the data selected by each method. Two popular GNN models are chosen,
including GCN [30] and GIN [65] with default hyper-parameters following Zeng et al. [81]] and the
corresponding original papers. We also consider results on GAT [58]] and GraphSAGE [18]. Please
see Appendix and for more details. Here we consider selection ratio 7 € [0.1,0.2,0.5].
More details on the architectures and training protocol can be found in Appendix [I}

Results. As shown in Tablem, across all datasets, GRADATE outperforms the baseline methods
under different selection ratios. It is also worth noting that even with few selected data, GRADATE

“https://github.com/haidnguyen0909/LinearFGW
3Since the datasets do not contain node features, we consider a larger « to place a greater emphasis on the
structural properties.

https://github.com/haidnguyen0909/LinearFGW/blob/main/main.py

GNN Architecture — | GCN | GIN

Dataset -
Selection Method | | 7 =10% 7=20% 7=>50% Full | T=10% T=20% 7 ="50% Full
Random 0.737+0.056 0.660+ 0012 0.868 0.009 0.600+ 0019 0.710+0.049 0.770+ 0.053
KiDD-LR 0.697+ 0041 0.787+0.034 0.810+0.022 0.682+ 0013 0.772+ 0020 0.795+0.014
IMDB-BINARY LAVA 0.620£0000 0.620£0000 062020000 OS2 | 07771 0019 079510007 0.800% 0007 O SO0
GRADATE | 0.805:0000 0.855:0024 0.890+0015 | 0.800+0008 0.832:0002 0.900+ 0013
Random 0.139+ 0032 0.092+ 0032 0.080=+ 0.000 0.102+ 0015 0.180+ 0005 0.156=+ 0.057
KiDD-LR 0.156+0.022 0.154+0046 0.171+0.052 0.058+0.044 0.093+0010 0.077+0.025
IMDB-MULTI LAVA 0.183+0.000 0.183+0.000 0.183 0.000 01020017 0.190+ 0009 0.177+ 0019 0.193+ 0.025 0143005
GRADATE | 0.588+0286 0.349+0323 0.611+0242 | 0.183+0073 0.266+0.133 0.361+0.162
Random 0.576+ 0029 0.702+0.045 0.830+ 0.004 0.427+0035 0.801+0046 0.857+ 0011
KiDD-LR 0.702+0.007 0.766+0.015 0.848+ 0.004 0.763+ 0025 0.792+ 0017 0.863+0.015
MSRC_21 LAVA 0.623+0.007 0.819+ 0012 0.895+0.012 0.860-+0007 0.667+ 0012 0.851+0007 0.933+ 0.004 0.883x0015
GRADATE | 0.719+0007 07970008 0.906: 0004 | 0.787+0046 0.860+0007 0.942: 0,008
Random 0.551+0100 03750012 0.581+0.039 0.637+0012 0.621+0027 0.537+0.085
b 1b KiDD-LR 0.592+ 0054 0.484+0.020 0.592:+ 0.008 0.61740073 0.613+ 0000 0.456+0041 0.589+ 0.035 0.56040.063
ogbg-mobace LAVA 0.627+0033 0.637+0030 0.637+0014 T 0.602+ 0028 0.633+0.048 0.672:+ 0.028 200006
GRADATE | 0.655+0046 0.578:+0035 0.614+ 0042 | 0.642:+0083 0.660+002 0.684: 0026
Random 0.567+0037 0.488+0088 0.478=+0.021 0.534+0084 0.648+0045 0.623+ 0019
ogbg-molbbb KiDD-LR 0.428+0.025 0.477+0080 0.457+0.013 0.478+0069 0.424+ 0005 0.450+0070 0.464+ 0052 0.6710034
E08 P LAVA 0.596+ 0058 0.566+ 0021 0.547+0.044 : 0.619+ 0044 0.642+ 0120 0.747+0024 o
GRADATE | 0.604+0065 0.601+0047 0.557+ 0001 [0.657+00%9 0.677x0072 0.715+0015
Random 0.603+0.005 0.615+0.004 0.621:+ 0.001 0.608+ 0015 0.609+ 0030 0.593+0.012
ogbg-molhiv KiDD-LR 0.590+ 0005 0.608+0.001 0.595+ 0.011 0.625+0001 0.597+ 0042 0.595+ 0039 0.608+ 0.020 0.596£0015
€08 LAVA 0.531+0035 0.594+0013 0.601+0013 0.614+0002 0.638+0020 0.641+0010 :
GRADATE | 0.607+0018 05990012 0.622: 0004 | 0.640+0013 0.651+:0022 0.658+ 0018

Table 1: Performance comparison across data selection methods for graph density shift. We use
bold/underline to indicate the 1st/2nd best results. In most settings, GRADATE achieves the best
performance across datasets.

can already achieve or excess GNN performance trained with full data, showing the importance of
data quality in the source domain. The main reason is that because under distribution shift, a certain
number of harmful graphs exist in training set. These samples can mislead the model and degrade
generalization performance.

4.3 GRADATE as a GDA Method

We answer (RQ2) by directly compare the combination of GRADATE and vanilla GNNs (including
non-domain-adapted GCN, GIN, GAT and GraphSAGE) with state-of-the-art GDA models. We fix
the sparsity ratio 7 to 20% across all selection methods.

Experiment Setup. The four GDA methods we consider include AdaGCN [12], GRADE [61]],
ASN [83] and UDAGCN [62]. We conduct GDA experiments based on the codebase of
OpenGDA [53]]. We include more details of model-specific parameter settings in Appendix [J|
We set the training set as the source domain and the validation set as the target domain. For GDD

computation, we set label signal ¢ = 0 to match the requirement of unsupervised GDA methods.
Results on graph size shift can be found in Appendix

Results. Results are in Table@ For model-centric GDA methods trained with full training data, the
severe domain shift prohibits these methods from learning rich knowledge to perform well on the test
data in the target domain. Instead, GRADATE finds the most useful data in the training set that results
in simple GNN models with extraordinary classification accuracy while maintaining data efficiency.
In addition, similar to the observation in Section[d.2] GRADATE selects non-trivial training data that
outperforms other model-free data selection methods. In Appendix

4.4 GRADATE as a Model-Free GDA Enhancer

In order to answer (RQ3), we combine GRADATE with off-the-shelf GDA methods to study whether
fewer but better training data can lead to even stronger adaptation performance.

Experiment Setup. Coupled with 10%, 20%, 50% data selected by each model-free method (i.e.,
random, LAVA and GRADATE), four GDA baselines (considered in Section @]) are directly run on
the shrunk training dataset with the same validation dataset under graph density shift. For results on
graph size shift, we refer the readers to Appendix [G.5}

7

Dataset

Type Model Data IMDB-BINARY IMDB-MULTI MSRC_21 ogbg-molbace ogbg-molbbbp ogbg-molhiv
AdaGCN Full 0.808=+ 0.015 0.073+ 0.000 0.319+ 0.032 0.607+ 0.068 0.778+ 0.002 0.428+ 0011
GDA GRADE Full 0.822+0.012 0.123+ 0.061 0.804+ 0.011 0.683=0.016 0.489 0.005 0.564+ 0.005
ASN Full 0.782+0.030 0.119+0.047 0.833+0.033 0.580+ 0.065 0.476=+ 0.027 0.516+0.021
UDAGCN Full 0.807+0.013 0.114+0.049 0.351+0.019 0.541+0.034 0.522+0.015 0.451+0.030
Random 20% 0.660+ 0.012 0.092+ 0.032 0.702+ 0.045 0.529+0.124 0.528+0.030 0.598+ 0.003
GCN LAVA 20% 0.620+ 0.000 0.092+ 0.032 0.819+0.011 0.541+0.067 0.503+ 0.043 0.591+0.030
GRADATE 20% 0.830+ 0.021 0.349+0.323 0.797+ 0.008 0.585+ 0.074 0.571+0.035 0.583+ 0.006
Random 20% 0.710+ 0.049 0.180+ 0.005 0.801+ 0.046 0.622+ 0.028 0.480+ 0.041 0.590+ 0.033
GIN LAVA 20% 0.778+ 0.045 0.170+ 0.009 0.851+0.012 0.655+0.067 0.644+ 0.021 0.638+0.012
GRADATE 20% 0.832+ 0.025 0.266+0.133 0.860+ 0.007 0.662+ 0.006 0.665+ 0.053 0.644+ 0.017
Vanilla Random 20% 0.662+ 0.029 0.067+ 0.005 0.713+ 0.008 0.472+ 0.034 0.486= 0.041 0.593+ 0.012
GAT LAVA 20% 0.835+ 0.002 0.790+ 0.002 0.842+ 0.026 0.515+0.019 0.511+0.069 0.602+ 0.017
GRADATE 20% 0.858+ 0.005 0.800+0.133 0.857+ 0.008 0.518+0.026 0.538+ 0.098 0.598+ 0.004
Random 20% 0.738+ 0.059 0.132+ 0.036 0.731+ 0.027 0.459=+ 0.057 0.472+ 0.016 0.602-+ 0.006
LAVA 20% 0.835+ 0.005 0.570+ 0.292 0.827+0.015 0.514+0.132 0.491+ 0.095 0.537+0.067
GraphSAGE
GRADATE 20% 0.855+ 0.005 0.580+ 0.281 0.842+ 0.007 0.536+ 0.062 0.533+0.037 0.541+0.014

Table 2: Performance comparison across GDA and vanilla methods for graph density shift. We
use bold/underline to indicate the 1st/2nd best results. GRADATE can consistently achieve top-2
performance across all datasets.

Results. As shown in Table@ for most of the settings, GRADATE selects data that is the most benefi-
cial to adapting to the target set. Notably, across many settings, only 10% or 20% GRADATE-selected
data can outperform naively applying GDA methods on the full training data. This suggests that
GRADATE can indeed improve data-efficiency by promoting the quality of training data. Furthermore,
by effective data selection performed by GRADATE, the difficulty of addressing the domain shift can
be lowered significantly and thus result in better adaptation performance.

4.5 Further Discussion

LAVA vs GRADATE. The modified version of LAVA utilizes LinearFGW to compare graphs and
selects the training data with the smallest gradient value w.r.t. GDD. In contrast, GRADATE aims at
finding optimal training data that directly minimizes GDD, which has a complete different motivation
and enjoys a theoretical justification. Empirically, we also observe the superiority of GRADATE in
most cases. Occasionally, LAVA achieve marginally better results than GRADATE, which may be
attributed to the approximation error of LinearFGW and thus over-optimization on GDD.

Random vs GRADATE. From Table[2] we found GRADATE occasionally underperforms random
selection with GraphSAGE, possibly because the neighbor sampling strategy introduces noise into
global representations, weakening the supervision signal even for well-chosen training graphs.

Selection Ratio vs GNN Performance. From Tables|[1|&[3] we find that a larger selection ratio may
not always guarantee a better performance for selection methods including LAVA and GRADATE.
This is because, under severe distribution shift between domains, a larger portion of training data
may actually contain patterns that are irrelevant or even harmful to the target domain.

Effect of label signal c. 'While we treat c as a tunable hyper-parameter that can be optimized for
different settings (i.e. various combinations of dataset, shift types and selection ratio), we empirically
find that searching within {0, 5} can already lead to good performance throughout all experiments in
this paper. We also provide additional experiments under a label-free setting (i.e. c is forced to be
equal to 0) in Appendix [G.6].

5 Related Work

Data Selection. Recent advancements in data selection have focused on optimizing data utilization,
mainly on text and vision data to facilitate efficient training for large language/image models [29, |28
43) 131163, 113,70, 135]]. For general model-free data selection, LAVA [26]] offers a learning-agnostic
data valuation method by seeking the data point that contributes the most to the distance between
training and validation datasets. However, the paper studies predominantly on raw image datasets such

Dataset GDA Method — | AdaGCN | GRADE
atase
Selection Method || 7 =10% T =20% 7 =50% Full | T=10% 7 =20% 7 =50% Full
Random 0.763+0.040 0.773+0.019 0.798+ 0.002 0.683+0.010 0.792+0002 0.780+0.015
IMDB-BINARY LAVA 0.623+0005 0.617+0005 0.617+000s 0.808+0015 | 0.620+0073 0.627+0009 0.680+0.047 0.822+0.012
GRADATE 0.810+0032 0.817+0024 0.822+ 0017 | 0.782+0009 0.832:+:0013 0.848 0009
Random 0.100+ 0000 0.168+ 0072 0.116+ 0.048 0.106+ 0055 0.112+00s50 0.149+ 0.049
IMDB-MULTI LAVA 0.191+0007 0.183+0000 0.184+0002 0.073+0000 | 0.183+0000 0.189+0008 0.186+0003 0.123:+ 0.061
GRADATE 0.333+0220 0.373+0285 0.391+0294 | 0.131+0074 0.386+0286 0.173+0.100
Random 0.208+0.027 0.374x 0011 0.307+ 0087 0.512+ 0041 0.626+00s5 0.708+0.023
MSRC_21 LAVA 0.398+0.004 0.456+0012 0.480+0061 0.319+0032 | 0.608+0018 0.743+0021 0.860+0014 0.804+ 0011
GRADATE 0415+ 0112 0.406+0043 0.532:+0.039 | 0.664+0021 0.778:+0015 0.865: 0027
Random 0.436+0021 0.485+0038 0.565+0.085 0.538+0.023 0.554+0025 0.611+0015
ogbg-molbace LAVA 0.574+0017 0.589+0074 0.607+0071 0.607+0068 | 0.557+0055 0.653+0.054 0.625+0015 0.683+0016
GRADATE 0.598+ 0066 0.614+0043 0.572+0047 | 05990044 0.636+0035 0.634= 0006
Random 0.494+ 0014 0.469+0031 0.527+0035 0.511+0032 0.433+£0001 0.495:+0.041
ogbg-molbbbp LAVA 0.583+0075 0.556+0015 0.561+0040 0.778+0002 | 0.549+0013 0.579+0041 0.543+ 0013 0.489+ 0.005
GRADATE 0.593+ 0038 0.596+0022 0.546+0.026 | 0.582+0077 0.503+0012 0.490+ 0006
Random 0.407+0022 0429+0032 0.417+0013 0.581+0.008 0.544+0001 0.58140.009
ogbg-molhiv LAVA 0.453+0016 0.428+0013 0.440+0003 0.428+0011 | 0.566+0011 0.571+0005 0.572+0019 0.564+ 0.005
GRADATE 0.463+£0041 0.473:10021 0.447+0.038 | 0.584:0012 0.589:+0003 0.586 0003
GDA Method — | ASN | UDAGCN
Dataset - . S
Selection Method || 7 = 10% T=20% 7 =50% Full | 7=10% T =20% 7 ="50% Full
Random 0.660+ 0043 0.707+ 0017 0.678+ 0.031 0.620+ 0041 0.763+0.008 0.823:+ 0.005
IMDB-BINARY LAVA 0.733+ 0081 0.620+0000 0.620+0000 0.782+ 0030 | 0.620+0000 0.643+0033 0.620+0000 0.807+0.013
GRADATE 0.748+ 0037 0.818+0016 0.855+ 0011 | 07700023 0.847+0012 0.852: 0005
Random 0.126+ 0013 0.101+ 0058 0.156+0.039 0.150+ 0024 0.101+0.045 0.076+0.003
IMDB-MULTI LAVA 0.183+0000 0.183+0000 0.190+0009 0.119+0047 | 0.183+0000 0.183+0000 0.182+0002 0.114+0.049
GRADATE 0.292+ 0352 0.588+0286 0.381-+ 0301 | 0.093+0066 0.554+0263 0.339-+0337
Random 0.421+0026 0.673x0.011 0.661+0.032 0.287=+0.018 0.178+0.039 0.287+0.075
MSRC_21 LAVA 0.635+0015 0.746+0019 0.868+0014 0.833+0033 | 0.453+0035 0.447+0052 0.623+0059 0.351+0019
GRADATE 0.687+004s 0.804=0021 0.904+ 0012 | 04440048 0.453:0011 0.664= 0029
Random 0.539+ 0074 0.637+0009 0.507+ 0.061 0.478+0.037 0.581+0.018 0.51340.028
ogbg-molbace LAVA 0.578+ 0036 0.603+0000 0.646+0050 0.580+0065 | 0.562+0039 0.578+0015 0.513+0077 0.541+0034
GRADATE 0.636+0022 0.596+0053 0.651+0.036 | 0.533+0041 0.565+0039 0.531=+ 0051
Random 0.504+ 0015 0.533+0025 0.497+0032 0.538+0.02 0.529+0.040 0.530+0.051
ogbg-molbbbp LAVA 0.567+0040 0.616+0072 0.573+0035 0.476+0027 | 0.579+0031 0.547+0021 0.558+0021 0.522+ 0015
GRADATE 0.573+0088 0.596+0.100 0.535+0.027 | 0.591+0040 0.575:0030 0.570 0009
Random 0.436+0038 0.483+0044 0.455+ 0059 0.453+ 0015 0.406+0015 0.464+0.024
ogbg-molhiv LAVA 0.511+0018 0.540=0010 0.482+0023 0.516+0021 | 0.458+0029 0.427+0007 0.445+0018 0.451+0.030

GRADATE 0.527+0041 0.491+0080 0.491+0.050 | 0.453+0011 0.445+0018 0.444+ 0020

Table 3: Performance comparison across combinations of GDA methods and data selection methods
for graph density shift. We use bold/underline to indicate the 1st/2nd best results. GRADATE achieves
the best performance in most settings.

as CIFAR-10 [31] and MNIST [32]], where they already have high-quality pixel-value representations
for computation. Unlike text or images, graphs lack a natural and uniform representation, making
the development of model-free data selection more intricate. Tailored for graph-level tasks, graph
dataset distillation is also a related topic. For example, Jin et al. [25] and Xu et al. [66] both propose
to formulate a bi-level optimization problem to train a graph-level classifier. Jain et al. [24]], on the
other hand, utilizes Tree Mover Distance [11] to conduct graph-level sub-sampling with theoretical
guarantees. However, these non-model-free methods might not be able to combat severe downstream
distribution changes.

Graph Domain Adaptation (GDA). For grpah classification, GDA focuses on transferring knowl-
edge from a source domain with labeled graph to a target domain. Model-centric GDA methods
relying on GNNs have been pivotal in this area. For instance, Wu et al. [62] introduce UDAGCN,
which integrates domain adaptation with GNNs to align feature distributions between domains.
AdaGCN [[12]] addresses cross-network node classification leveraging adversarial domain adaptation
to transfer label information between domains. Wu et al. [61] explore cross-network transfer learn-
ing through Weisfeiler-Lehman graph isomorphism test and introduce the GRADE algorithm that
minimizes distribution shift to perform adaptation. ASN [83] explicitly separates domain-private
and domain-shared information while capturing network consistency. More recently, Liu et al. [34]]
argue that excessive message passing exacerbates domain bias and propose A2GNN as a refined
propagation scheme that disentangles transferable and domain-specific information; Chen et al. [7]

highlight the critical role of graph smoothness, presenting TDSS that enforces cross-domain consis-
tency through spectral alignment. Meanwhile, Liu et al. [36] introduce a pairwise alignment strategy
that leverages node-level relational matching to enhance inter-domain correspondence. However,
these approaches mostly focus on designing architectures or training procedures and often rely heavily
on the assumption that provided data in the training set is already optimal for the task, which is often
invalid in real-world scenarios.

6 Conclusion

We introduce GRADATE, a model-free framework for graph classification that addresses distribution
shift by solving a Graph Dataset Distance (GDD) minimization problem. By selecting the most
beneficial data from the source domain, it offers a novel approach to improving GNN performance
without relying on specific model predictions or training procedures. We also establish theoretical
analysis on Fused Gromov—Wasserstein distance as a meaningful upper bound on GNN representation
differences, and further justifies GDD as an optimization target to improve generalization performance.
Across multiple real-world datasets and shift types, GRADATE consistently outperforms existing
selection methods and GDA methods with better data efficiency. For future directions, we consider
graph continual learning and multi-source domain adaptation.

Acknowledgement

This work is supported by NSF (2416070) and AFOSR (FA9550-24-1-0002). The content of the
information in this document does not necessarily reflect the position or the policy of the Government,
and no official endorsement should be inferred. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation here on.

10

References

[1] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approxima-
tion algorithms for optimal transport via sinkhorn iteration. Advances in neural information
processing systems, 30, 2017.

[2] David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport.
Advances in Neural Information Processing Systems, 33:21428-21439, 2020.

[3] Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu,
Jiantao Qiu, Wentao Zhang, Binhang Yuan, et al. Multi-agent collaborative data selection for
efficient llm pretraining. arXiv preprint arXiv:2410.08102, 2024.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48
(3):334-334, 1997.

[5] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In International Conference on Machine Learning, pages
837-851. PMLR, 2021.

[6] Pietro Bongini, Niccold Pancino, Franco Scarselli, and Monica Bianchini. Biognn: how graph
neural networks can solve biological problems. In Artificial Intelligence and Machine Learning
for Healthcare: Vol. 1: Image and Data Analytics, pages 211-231. Springer, 2022.

[7] Wei Chen, Guo Ye, Yakun Wang, Zhao Zhang, Libang Zhang, Daixin Wang, Zhigiang Zhang,
and Fuzhen Zhuang. Smoothness really matters: A simple yet effective approach for unsuper-
vised graph domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 15875-15883, 2025.

[8] Zhiyong Cheng, Sai Han, Fan Liu, Lei Zhu, Zan Gao, and Yuxin Peng. Multi-behavior
recommendation with cascading graph convolution networks. In Proceedings of the ACM Web
Conference 2023, pages 1181-1189, 2023.

[9] Nikzad Chizari, Keywan Tajfar, and Maria N Moreno-Garcia. Bias assessment approaches for
addressing user-centered fairness in gnn-based recommender systems. Information, 14(2):131,
2023.

[10] Xu Chu, Yujie Jin, Xin Wang, Shanghang Zhang, Yasha Wang, Wenwu Zhu, and Hong Mei.
Wasserstein barycenter matching for graph size generalization of message passing neural
networks. In International Conference on Machine Learning, pages 6158-6184. PMLR, 2023.

[11] Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
stability of graph neural networks. Advances in Neural Information Processing Systems, 35:
2944-2957, 2022.

[12] Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning
via adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge
and Data Engineering, 35(5):4908-4922, 2022.

[13] Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

[14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[15] Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender
system. In Proceedings of the fifteenth ACM international conference on web search and data
mining, pages 1623-1625, 2022.

[16] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Combining neural

networks with personalized pagerank for classification on graphs. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym|

11

https://openreview.net/forum?id=H1gL-2A9Ym

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773,
2012.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[19] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, pages 639—648, 2020.

[20] Xiaobin Hong, Wenzhong Li, Chaoqun Wang, Mingkai Lin, and Sanglu Lu. Label attentive
distillation for gnn-based graph classification. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2024.

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

[23] Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):21092, 2020.

[24] Mika Sarkin Jain, Stefanie Jegelka, Ishani Karmarkar, Luana Ruiz, and Ellen Vitercik. Subsam-
pling graphs with gnn performance guarantees. arXiv preprint arXiv:2502.16703, 2025.

[25] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqging Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720-730, 2022.

[26] Hoang Anh Just, Feiyang Kang, Jiachen T Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and
Ruoxi Jia. Lava: Data valuation without pre-specified learning algorithms. arXiv preprint
arXiv:2305.00054, 2023.

[27] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS),
volume 37, pages 199-201, 1942.

[28] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model
training. In International Conference on Machine Learning, pages 5464-5474. PMLR, 2021.

[29] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8110-8118,
2021.

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[31] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. Technical Report.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[33] Ting Wei Li, Qiaozhu Mei, and Jiaqi Ma. A metadata-driven approach to understand graph
neural networks. Advances in Neural Information Processing Systems, 36:15320-15340, 2023.

[34] Meihan Liu, Zeyu Fang, Zhen Zhang, Ming Gu, Sheng Zhou, Xin Wang, and Jiajun Bu.
Rethinking propagation for unsupervised graph domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2024.

12

[35] Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang,
Jing Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training.
arXiv preprint arXiv:2407.01492, 2024.

[36] Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain
adaptation. In International Conference on Machine Learning, pages 32552-32575. PMLR,
2024.

[37] Tianyu Liu, Yuge Wang, Rex Ying, and Hongyu Zhao. Muse-gnn: Learning unified gene repre-
sentation from multimodal biological graph data. Advances in neural information processing
systems, 36:24661-24677, 2023.

[38] Xingyu Liu, Juan Chen, and Quan Wen. A survey on graph classification and link prediction
based on gnn. arXiv preprint arXiv:2307.00865, 2023.

[39] Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu,
Kommy Weldemariam, Jingrui He, and Hanghang Tong. Topological augmentation for class-
imbalanced node classification, 2023.

[40] Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu,
Kommy Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning
without class rebalancing. In Proceedings of the 41st International Conference on Machine
Learning, 2024.

[41] Junyu Luo, Zhiping Xiao, Yifan Wang, Xiao Luo, Jingyang Yuan, Wei Ju, Langechuan Liu, and
Ming Zhang. Rank and align: towards effective source-free graph domain adaptation. arXiv
preprint arXiv:2408.12185, 2024.

[42] Facundo Mémoli. Gromov—wasserstein distances and the metric approach to object matching.
Foundations of computational mathematics, 11:417-487, 2011.

[43] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950—-6960.
PMLR, 2020.

[44] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

[45] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation
kernels: efficient graph kernels from propagated information. Machine learning, 102:209-245,
2016.

[46] Dai Hai Nguyen and Koji Tsuda. On a linear fused gromov-wasserstein distance for graph
structured data. Pattern Recognition, 138:109351, 2023.

[47] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for
combinatorial optimization problems. In Advances in Neural Information Processing Systems,
volume 35, pages 25531-25546, 2022.

[48] Ruizhong Qiu, Gaotang Li, Tianxin Wei, Jingrui He, and Hanghang Tong. Saffron-1: Safety
inference scaling, 2025.

[49] Ruizhong Qiu, Ting-Wei Li, Gaotang Li, and Hanghang Tong. Graph homophily booster:
Rethinking the role of discrete features on heterophilic graphs. arXiv preprint arXiv:2509.12530,
2025.

[50] Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given:
On the Turing completeness of prompting. In /3th International Conference on Learning
Representations, 2025.

[51] Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
efficient is LLM-generated code? A rigorous & high-standard benchmark. In /3th International
Conference on Learning Representations, 2025.

13

[52] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40:99-121, 2000.

[53] Boshen Shi, Yongqing Wang, Fangda Guo, Jiangli Shao, Huawei Shen, and Xueqi Cheng.
Opengda: Graph domain adaptation benchmark for cross-network learning. In Proceedings of
the 32nd ACM International Conference on Information and Knowledge Management, pages
5396-5400, 2023.

[54] Karl-Theodor Sturm. The space of spaces: curvature bounds and gradient flows on the space of
metric measure spaces, volume 290. American Mathematical Society, 2023.

[55] Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks
into deep models. arXiv preprint arXiv:1908.05081, 2019.

[56] Yuhao Tang, Junyu Luo, Ling Yang, Xiao Luo, Wentao Zhang, and Bin Cui. Multi-view teacher
with curriculum data fusion for robust unsupervised domain adaptation. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE), pages 2598-2611. IEEE, 2024.

[57] Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused
gromov-wasserstein distance for structured objects. Algorithms, 13(9):212, 2020.

[58] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[59] Wei Wang, Dejan Slepcev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear
optimal transportation framework for quantifying and visualizing variations in sets of images.
International journal of computer vision, 101:254-269, 2013.

[60] Fang Wu, Nicolas Courty, Shuting Jin, and Stan Z Li. Improving molecular representation
learning with metric learning-enhanced optimal transport. Patterns, 4(4), 2023.

[61] Jun Wu, Jingrui He, and Elizabeth Ainsworth. Non-iid transfer learning on graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 10342—-10350,
2023.

[62] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of the web conference 2020, pages
1457-1467, 2020.

[63] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024.

[64] Yu Xie, Yanfeng Liang, Maoguo Gong, A Kai Qin, Yew-Soon Ong, and Tiantian He. Semisu-
pervised graph neural networks for graph classification. IEEE Transactions on Cybernetics, 53
(10):6222-6235, 2022.

[65] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[66] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and
Hanghang Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2850-2861,
2023.

[67] Zhe Xu, Kaveh Hassani, Si Zhang, Hanqing Zeng, Michihiro Yasunaga, Limei Wang, Dongqi
Fu, Ning Yao, Bo Long, and Hanghang Tong. Language models are graph learners, 2024.

[68] Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph
generation. In Advances in Neural Information Processing Systems, volume 37, 2024.

[69] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1365-1374,
2015.

14

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing
laws: Optimizing data mixtures by predicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In International Conference on
Machine Learning, pages 11975-11986. PMLR, 2021.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Li Shen, Huan Xiong, Bin Gu, and Xiao Luo.
Dream: Dual structured exploration with mixup for open-set graph domain adaption. In The
Twelfth International Conference on Learning Representations, 2024.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974-983, 2018.

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang,
Charlie Xu, Eunice Chan, and Hanghang Tong. Ensuring user-side fairness in dynamic rec-
ommender systems. In Proceedings of the ACM on Web Conference 2024, pages 3667-3678,
2024.

Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong.
Embracing plasticity: Balancing stability and plasticity in continual recommender systems. In
Proceedings of the 48th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2025.

Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Generalizable
recommender system during temporal popularity distribution shifts. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2025.

Qi Yu, Zhichen Zeng, Yuchen Yan, Lei Ying, R Srikant, and Hanghang Tong. Joint optimal
transport and embedding for network alignment. In Proceedings of the ACM on Web Conference
2025, pages 2064-2075, 2025.

Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. Parrot: Position-aware regularized
optimal transport for network alignment. In Proceedings of the ACM web conference 2023,
pages 372-382, 2023.

Zhichen Zeng, Ruike Zhu, Yinglong Xia, Hanqing Zeng, and Hanghang Tong. Generative graph
dictionary learning. In International Conference on Machine Learning, pages 40749—40769.
PMLR, 2023.

Zhichen Zeng, Boxin Du, Si Zhang, Yinglong Xia, Zhining Liu, and Hanghang Tong. Hierar-
chical multi-marginal optimal transport for network alignment. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 16660—16668, 2024.

Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
He, and Hanghang Tong. Graph mixup on approximate gromov—wasserstein geodesics. In
Forty-first International Conference on Machine Learning, 2024.

Zhichen Zeng, Ruizhong Qiu, Wenxuan Bao, Tianxin Wei, Xiao Lin, Yuchen Yan, Tarek F
Abdelzaher, Jiawei Han, and Hanghang Tong. Pave your own path: Graph gradual domain
adaptation on fused gromov-wasserstein geodesics. arXiv preprint arXiv:2505.12709, 2025.

Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. Adversarial separation
network for cross-network node classification. In Proceedings of the 30th ACM international
conference on information & knowledge management, pages 2618-2626, 2021.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. Ood link prediction generalization capabilities
of message-passing gnns in larger test graphs. Advances in Neural Information Processing
Systems, 35:20257-20272, 2022.

Marinka Zitnik, Michelle M Li, Aydin Wells, Kimberly Glass, Deisy Morselli Gysi, Arjun
Krishnan, T_M Murali, Predrag Radivojac, Sushmita Roy, Anais Baudot, et al. Current and
future directions in network biology, 2024.

15

NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contributions are summarized in five bullet points in Section [T]and
we point the readers to corresponding sections to see justification (including theorems,
methodologies and empirical results).
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss potential limitations of our presented work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide all proofs and assumptions of our theorem results in Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

16

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details needed in Section] Appendix [I] and
Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide the code package during submission and make the code
available upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experimental details needed in Section 4, Appendix |Ij and
Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include std in all of our main tables (see Sectiond).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the compute resources in Appendix [I}

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that this work is conducted with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide related discussion in Section

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We confirm that this work does not pose safety risks.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring

19

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the related details in Appendix [H]

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We did not introduce new assets in this paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

20

paperswithcode.com/datasets

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is not an important part of the core methods in this paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

The content of appendix is organized as follows:

1. Algorithms:
» Appendix [A| talks about the details of LinearFGW [46] that we omit in the main text. We
summarize the overall procedure of LinearFGW in Algorithm [T}
» Appendix |B| goes through the steps to compute Graph Dataset Distance (GDD). The entire
procedure is included in Algorithm 2]
* Appendix [C|summarizes the submodule GREAT used in our main algorithm (Algorithm [3).
* Appendix [D|summarizes our main algorithm GRADATE (Algorithm [)).
2. Proofs:
* Appendix [F] provides the proofs for all the theorems in the main text.
3. Additional Experiments:
* Appendix [G.T|compares GRADATE with other data selection methods under graph size shift
with additional GNN backbones.
 Appendix compares GRADATE with other data selection methods under graph density
shift.
* Appendix [G.3|compares GRADATE with other data selection methods under graph size shift
with additional GNN backbones.
* Appendix [G.4] compares the combination of GRADATE and vanilla GNNs with other GDA
methods under graph size shift.
* Appendix [G.5|compares the combination of GDA methods and GRADATE against other data
selection methods under graph size shift.
* Appendix[G.6| ablates on the validation-label-free setting.
* Appendix [G.7|includes results on additional graph backbones.
* Appendix G.8|includes results on additional GDA methods.
4. Discussions:
* Appendix [E]discusses FGW and Graph Dataset Distance (GDD) in relation to prior notions
such as Tree-Mover Distance (TMD) [[11] and Maximum Mean Discrepancy (MMD) [L17].
» Appendix [N|discusses potential limitations and future direction of our work.
5. Reproducibility:
* Appendix [H|provides the dataset statistics and licenses used in this work.
* Appendix|[l|introduces the overall settings of GNN to use for the graph data selection evaluation,
including the model we select and the training protocols.
* Appendix [J|includes GDA method-specific parameter settings, where we follow the default
settings of the OpenGDA package [33]].
6. Others:
* Appendix [K]includes problem definition of Graph Domain Adaptation (GDA).
* Appendix [Lj provides additional related work.
* Appendix M| contains the empirical runtime of GRADATE.
* Appendix [P|includes the ECDF plots of graph properties across datasets.

A Details of LinearFGW (Algorithm |1

Formally, consider a set of N graphs D = {G,;},, where each G = (A, X) € D represents an
attributed graph with adjacency matrix A € R™*™ and node feature matrix X € R™*?, Note that
n is the number of nodes of G and d is the dimension of node features. LinearFGW first requires a
reference graph G = (A, X) where A € R"*", X € R"*4, 7 is the number of nodes and d is the
dimension of node features. Typically, G is obtained by solving an FGW barycenter problem, which
aims to find a “center” graph that has the minimum sum of pairwise graph distances over the entire
graph set D.

Following the notation used in Section we define the inter-graph distance matrix Mg, g,)
between any pair of graphs (named as G; = {A1,X;,p1} and Go = {A3, X2, p2}) to be the
pairwise Euclidean distance of node features. Namely, M (g, g,y = [||X1[i] — X2[j]||];;. In addition,
the intra-graph similarity matrix is chosen to be defined as their corresponding adjacency matrices

22

1, 1,
L and pg, = 72

(i.e., Cg, = A; and Cg, = A»). Together with uniform distributionﬂ Pg, =

ni n
over the nodes of G; and Go (with sizes ny and ns), correspondingly, the FGW barycenter probler;ﬂ
can be formulated as follows:

N

G = arg min Y FGW(M(g, g), Cg,, Cg, Pg, Pg;), (6)
=1

where « € [0, 1] is the pre-defined trade-off parameter.

After calculating the reference graph G, we then obtain NV optimal transport plans {mi}iem) as the
solutions by computing FGW (G, G) for each G € D (via solving Equation). Then, the barycentric
projection [46] of each graph’s node edge with respect to G can be written as

Tnode(ﬂ'i) =n-mX; € Rﬁ'Xd7 @)
Tedee(m;) = 2% - m,C;m)] € R™*™.)

Finally, we can define the LinearFGW distance based on these barycentric projections. Namely, for
any pair of graphs (G;, G;), we define a distance metric dpincarrgw (-, -) Over the graph set D:

dLinearFGW(gia g]) =
(1 —)| Taode (7:) — Tnode (77;)[|%
+ af| Teage (i) — Teage ()| 7)

for ¢, 5 € [N]. Note that || - || represents the Frobenius norm.

Algorithm 1 LinearFGW [46]

1: Input: N graphs D = {G;} |, trade-off parameter c.

2: Initialize pairwise distance matrix D € RV*Y

3: Solve the FGW barycenter problem in Equation @) and obtain the reference graph G;
4: for graph G, in D do

5: Compute FGW(G;, G) via solving Equation and obtain 7;;

6.

7

8

: Compute Thoge(7r;) and Tegge (77;) via Equation (7)(8):
: end for
: for G; in D do

9: forG;inDdo

10: Compute D3, j] = diinearrow (Gi, G;) via Equation (@);
11: end for
12: end for

13: return LinearFGW pairwise distance matrix D.

B Summarization of GDD (Algorithm 2)

8Since we have no prior over the node importance in either graphs, the probability simplex will typically be
set as uniform.

"The optimization algorithm for solving this problem is omitted. Please refer to the original paper for more
details.

23

Algorithm 2 (Training-Validation) GDD Computation

1:

w

10:
11:
12:

13

14:

Input: labeled training graphs Din = {girain ytrainin “lapeled validation graphs DY =
{g,.va‘, y{“l}g’il, trade-off parameter o, label signal strength ¢ > 0, a shared label set).
Compute pairwise LinearFGW distance matrix D € R"*™ via Algorithm with the graph set
D = DU DY and parameter
Initialize new pairwise distance matrix D = D;
Initialize uniform empirical measures:
P = 5 ety gy, 4 = 5 2 ey Sg)’
for training label ¢; in) do
for validation label ¢/, in) do

Collect training index set with label ¢;:

L, = {ily;™" = li};

Collect validation data set with label £,,:

L, = {jly/ =t}

Compute graph-label distance in Equation (2)):

d(ls, £,) = OT(ptgrfm, Q}fil7 dLinearFGW)

Update distance sub-matrix D[i € Ip,,j € I, =Dli € I,,5 € Iy,] + ¢ - d(44, L,);

end for

end for _
: Compute OTDD(D"n, D¥al)= OT(p'™in, ', D) via the equation in Section[2.1]
return GDD(D'™in D¥al) = QTDD(Drin pval),

C

Summarization of GREAT (Algorithm l

Starting from a uniform training weight w, GREAT alternates between two subroutines: (i) computes
GDD between the two sets using pairwise distances D € R™*™ as the cost matrix (Line 4) and

ob

tains the gradient gy, = VGDD(p™"(w), q**!, D) for updating w (Line 5) and (ii) gradually

sparsifies w by retaining only the top-k entries followed by normalization to ensure w is on the
probability simplex (Line 6-9). After T iterations, we extract the non-zero entries from the resulting

w and name this training index set as S.
Algorithm 3 GREAT
1: Input: pairwise LinearFGW distance matrix D¢ R™ ™ selection ratio 7, update step 7,
learning rate 7).
2: Initialize uniform training weights: w = 17;‘ ;
3:fort=1toT —1do ~
4: Compute GDD(p™"(w), q*¥!, D) via Algorithm
5: Compute gy, = Vy GDD(p™"(w), q*¥!, D) via Theorem
6: Compute current sparsity level:
T— T .
k=n-max(r, TZ1 4+ T
7: Update data weight: w = max(w — 7 - gw, 0);
8: Sparsify data weight: w = w © Top-k(w);
9: Apply ¢;-normalization: w = w/||w||1;
10: end for
11: return training data index set S = nonzero(w).
D Summarization of GRADATE (AlgorithmE[)
E Discussions on FGW & GDD and Previous Measures

Comparison between FGW [57|] and TMD [l1]]. Specifically, FGW has the following advantages
over Tree Mover Distance (TMD) [[L1]. Firstly, Linear optimal transport theory [59} 46] can be

24

Algorithm 4 GRADATE

1: Input: labeled training graphs Din = {Giain qtainkn abeled validation graphs D4 =
{Ql‘-’al7 Yy al |, trade-off parameter ¢, label signal strength ¢ > 0, selection ratio 7, update step
T, learning rate 7).

2: Compute pairwise LinearFGW distance matrix D € R™*™ via Algorithmwith the graph set
prain DVl and parameter o;

3: Compute the (label-informed) pairwise distance matrix D with label signal ¢ (line 3-12) in
Algorithm [2}

4: Compute S = GREAT(D, 7,T,n);

5: return selected training data index set S.

utilized to bring down the costs for pairwise FGW distance computation while TMD does not have
similar technique. Secondly, a single-pair FGW computation (with time complexity O(|V|?)) is
cheaper than a single-pair TMD computation (with time complexity O(£|V|?)), where V is graph
size and L is the depth of TMD. While cheaper, FGW can achieve similar theoretical results as TMD.

Comparison between GDD and MMD [17]. GDD offers a more flexible and expressive notion of
graph dataset similarity than Max Mean Discrepency (MMD) [17]], which solely compares aggregated
graph embeddings. To be more specific, GDD has the following three advantages over MMD. Firstly,
unlike MMD, which often depends on model-specific representations (such as pre-trained encoder) or
require training, GDD does not involve training and is model-free. This makes it broadly applicable
across various graph-level datasets without the need for task-specific models. Secondly, GDD can
optionally incorporate auxiliary label information (when available), enabling more fine-grained and
task-relevant comparisons between data distributions in classification settings. Finally, GDD is based
on Wasserstein distance. Although not explicitly stated in our paper, this results in interpretable
correspondences between data points across datasets that can directly be used for data selection or
data re-weighting algorithms for domain adaptation applications.

F Proofs of Theorems

F.1 Proof of Theorem

In this section, we prove Theorem 3.1} We first focus on a simplified case with k£ = 1, which implies
that the underlying GNN has only one layer. Then, based on this result, we use induction to generalize
the conclusion to any positive k, which represents multi-layer GNNs.

F.1.1 Assumptions

With a slight abuse of notation, let a graph G denote its node set as well. We assume that f only uses
one-hop information followed by a linear transformation. Specifically, for any graph G = (A, X)
and any node u € G, the output f(G), depends only on the local neighborhood of u, defined
as Ng(u) := {Afu,v], X[v]},eg. This localized aggregation is first computed by a convolution
function g, and the result is then passed through a linear transformation with weights W and bias b,
giving:

F(@)u=W-gNg(u) +b=W g ({Alu,v],X[v]},cg) +b. (10)

We assume the convolution function g is Cy-Lipschitz w.r.t. the following FGW distance dyy,q: for
any nodes u; € Gy and ug € Go,

dwa(Ng, (u1), Ng, (uz)) (11)

1/r
= (inf E [(1-a)Xi[v1] = Xa[va]|" + | Axfug, v1] — A2[U2,”2]|T}>)
mell(py,p2) (v1,v2)~7
(12)

where we use 1 := Unif(Gy) and ps := Unif(Gs2) in this work.

25

F.1.2 Prooffor k=1
Proof. Let g := Unif(Gy), o := Unif(Gs).

For any coupling 7 € TI(u, f12), by Jensen’s inequality w.r.t. the concave function = ~— 2!/7,

“|f(g1)u1 - f(g2)u2||] (13)

(u1,uz)~m

W - g({(Asfur, 1) Xa[1]) boseg,) +B] = [W - g({(Asfuz, v2], Xa[va]) husess) + b
(14)

E |CwIWI - dwa({(Aafur, o1, Xa [01]) }oregs, {(Asliz, va], Xafva])buseas) | (15)

T (ur,u2)~T

=CwWl- B [(it B [0 0)[Xaln] - Xofus]l+ (16)

uL,u2)~T (p1,p2) (v1,02)~7!

g
(u1,u2)~m

alAqfug, v1] — Agfug, vo] H) UT}

1/r
<€ B (B _ [0 -a)Xufe] - Xalooll + ol Asfus, o] = Asfuz,ea]|")])
a7
i Y/
<C-: wE [(v k. (1= a)[[Xafor] = Xa[vo] " + | A [ur, v1] — Az[uzva]V)}] ;
(18)

where C7 = Cyw ||[W||. We explain the inequalities as follows. The first inequality is from our
smoothness assumption stated in the previous subsection. The second is by removing the infimum.
The third is another use of Jensen’s inequality.

Since the above inequality holds for any valid coupling 7, we can take infimum on both side. Thus, it
follows that dy (f(G1), f(G2)) is at most

inf E [1f(G1)uw — f(G2)u.ll] (19)
mell(p1,p2) (u1,u2)~7m

< inf - E E 1— X - X T4 20

- WGHI(I}LLM2) ! (u1,us)~m [(m,vz)N'n[(Oé)H 1[”1] 2[1]2]” (20)

alA, [Ul, 111] - AQ[U27 U2]|r)}] v

=C- inf 1-— X — X r 21
v nf R [(WWK)| X1 [o1] — Xa[va] |7+ 21
1/r
o|Asfur, v1] = Azfuz, va]l)] (22)
—q - inf E E [(1—a)|Xq[ve] — Xofvo]|” 23
! (wel'll(rﬁlh,uz) (u1,uz)~m |:('U17'U2)N7r[(a)” 1[01} 2[,02]“ - 29
1/r

alA;[ur,vi] — Ag[uz,vg]r)ﬂ) (24)
=y -FGW,(G1,G2), (25)

which completes the proof the case of k& = 1. Note that the inequality is from our smoothness
assumption stated in the previous section and the last equality is due to the definition of FGW distance
with trade-off parameter 8 = «. O

F.1.3 Proof for general & > 1

Proof. For general k > 1, we can iteratively apply similar logic as in the case of £ = 1 to bound the
output distance with multi-layer GNNs. Specifically, we can write a k-layer GNN f as a composite

function that concatenates multiple convolution layer (i.e. fi,---, fkﬂ with ReLU activation
functions (i.e. o1, ,04-1): f = fr 0 0k—1 0 fxr—10--- 001 0 f1,where 0; = ReLU(-). For any
m < k, define hy, := frn 0 0m—10hm-1 = fmohl, _, where hl, | = opm_1 0 hyp1.

8We assume all these convolution functions { f,, }1<m<s satisfy the assumption we made in Sectionm
with constant C'yy .

26

Note that we have f = hg. Then, for any coupling @ € II(u1,u2), we have:

o) 1(G) s = (G2)] 6)
T ﬁw[”hk (61— (G2] @
= (ur E) [H fk o hk 1 gl) (fk: o h;cil)(gz)qw H] (28)
< W B, 1O dwia (B (G)us s i1 (G2)ua))] 29)
- Cl(ul,E)Nw[(w%&&fhm) (UI,UIE)NW/(l — @) [[|Ph—1(G1)vy — i1 (G2)wo I"]+ (30)

of|Arfur,vi] — AQ[UQ’UQHT])UT}

= Cl(u17u2)~7r |:(U1)E)N7T((1 —a) [||h;g_1(g1)v1 - ;c—l(QQ)Uz”T}"‘ €1V
1/r
O[[|A1[7.L1,’U1] — AQ[UQ,UQ”T]) i| (32)
<0 ((1 —a) B [Iha(G0)e —hia (@)]+ (33)
1/r
Oé(u F)Nﬂ [|A1[u1,v1] — AQ[U,Q,UQHT]) (34)
(v1:v2)~7r
<G <(1 - O‘><v EEM[Hhk_l(gl)m — hi—1(G2)w, "]+ (35)

1/r

a(]E) UAl[ul,vﬂ — A.Q[UQ,UQ”T:I) . (36)
(’Ul :'UQ)NTF

Note that the first inequality is from the smoothness assumption, the second is by removing infimum,

the third is by Jensen’s inequality and the fourth is because ReLU(+) is a contraction function.

Here, we can iteratively apply the regularity assumption specified in Section [F.I.1]to expand the term
above: ||hm—1(G1)v, — hm—1(G2)w,||", ¥m € {k,--- , 1} to have the following deduction.

E 1f(G1)u — F(G2)usll] (37)

(w1,uz)~m

(v1,v2)~m

<Gy (Cf_l(l —a)f B ([Xy[or] = Xafvo]]+ (38)

k—1 1/r
a) [Ci(1- a)}m(E)N [|A[u1,v1] — Az[u2,02]|r]>

m=0 (v1,v2)~m

(v1,v2)~7 (u1,u2)~m
(v1,v2)~m

1/r
=C- <(1 -8 E [IXi[v)] = Xefoo]|"]+58 E [|Ai[u1,v1] Az[u2yv2]|r]> ,

(39)

at+(1—a)*(C1)F~1(1-C1) _ a(1-Cf(1—a)¥)
where C' = C 1— Cl(ll a) - andﬁ— a+(1—a)’“(é’1)k_l(l—01)'

27

Since the above equation holds for any coupling 7, we can take infimum from both sides to get:

dw (f(G1, f(G2)) (40)
- ﬂEHl(Illiﬁxﬂz) (ul,QIE)NW[”f(gl)u1 B f(g2)u2|H (41)
<0 (“ —8),, B [IKafor] = Xafoa]"]+ 42)

1/r
“ iE)NwUAl[ul’ v1] — Aafus, UQ]T]> (43)

(v1,v2)~m

= C-FGWg(G1,02), (44)
which completes the proof. O

Remark F.1. To justify the smoothness assumption on g, we note that it is an abstraction of GNN
aggregation functions. For example, aggregation operations such as mean, max and sum all satisfy
our assumption.

Remark F.2. Note that our technical assumption and the results of Theorem [3.1] are independent.
Firstly, the assumption on the convolution function g is about the smoothness property between node
representations within a single graph; while the results of Theorem [3.1]is bounding the FGW distance
between sets of node representations between two graphs.

F.2 Proof of Theorem

For any coupling 7 € II(p"™"(w), q""), by Jensen’s inequality and the Lipschitzness assumption,

o B [EU@.)) = B [£(/(G).y)] 45)
= [g B LTG50 = B LG, 5] (46)
B ((gm’ym)}%gm’yval»w[c(f(g“af“), vl - ((gm,y"amﬁgval,ywl))w[E(f @y @
= [gy oy LG5 — £(F(G), 5] 48)

IN

E L train ; trainy L val , val 49
g B [IECG), %) = £(7(@),5)] (49)
< E [C 3 d;g((gtrainvyt.rain)’ (gval, yval))] (50)

- ((guain 7yu‘rﬂn)7(gva] 7:ljva\l)),\ﬂ.r
[z (™", ™), (6", y™))]- (51)

((glmin 7ylmin) R (gml 7yva\l)),\,ﬂ.

Since this holds for any coupling 7 € II(p™"(w), q*!), then we have

L(f(G),y)— E [L£(f(G), 52
o B JEF@ W] = B IL((G).0) (52)
S C . inf E d¢ glrain7 train , gval’ val 33
wEH(p““‘i“(w),q"al) ((glminﬁylrain),(gval7yvm]))Nﬂ.[gZ((y) (y))] ()
=C-OT(p"™"(w),q", dgz) (54)
= C - GDD(Dy", D™). (55)
It follows that

LGyl E - [L(f(G),y)] +C - GDD(DG", D), (56)

(G,y)~q© (G,y)~pin(w)

which completes the proof. Note that the first inequality follows from Jensen’s inequality (w.r.t. the
absolute function). The second and third inequalities are both due to the smoothness assumption
stated in Theorem 3.3]

28

F.3 Proof of Theorem [F.3
Theorem F.3 (Gradient of GDD w.r.t. Training Weights; 26). Givena distance matrix D, a validation
empirical measure " and a training empirical measure p"™*"(w) based on the weight w. Let 3(7*)
be the dual variables with respect to p"*"(w) for the GDD problem defined in Equation (5)). The
gradient of GDD(p"“"(w), ", D) with respect to w can be computed as:

VWGDD(plrain(W)7 qval7 D) _ ﬁ* (71'*),

where (3*(1*) is the optimal solution w.r.t. p"“"(w) to the dual of the GDD problem.

Proof. Omitted. Please see the Sensitivity Theorem stated by Bertsekas [4]. O

G Additional Experiments

G.1 Comparing data selection methods for graph size shift on GCN & GIN

We conduct the same evaluation as Table[T|on graph size shift with GCN and GIN as backbone model
in Table 4l

Dataset GNN Architecture — | GCN | GIN
atase!
Selection Method | | 7 =10% T =20% T =50% Full | 7=10% T =20% 7 =50% Full
Random 0.573+ 0041 0.612+ 0008 0.645+ 0.051 0.620+ 0007 0.582+ 0009 0.605+ 0.019
KiDD-LR 0.592+0.015 0.540+ 0014 0.652+ 0.008 0.553+0013 0.555+0012 0.577+0012
IMDB-BINARY LAVA 08240005 0823009 083720006 03000 | 08301 hons 0.830£0011 0.848zoom 000ZE000
GRADATE | 0.826+0009 0.825:0018 0.830+0007 | 0.823+0002 0.820+0008 0.832:0.008
Random 0.374+ 0031 0.354+0008 0.366:+ 0.008 0.351+0008 0.372+0039 0.369+0.019
KiDD-LR 0.329+ 0010 0.416+0064 0.432+0.010 0.346+ 0048 0.371x0010 0.412+0.018
IMDB-MULTI LAVA 0.314+ 0006 0.426+0.003 0.600:+ 0.005 0.386:x0.006 0.341+0049 0.388+0.018 0.563+ 0.007 0.368=0010
GRADATE | 0.353+0000 0.524:0016 0.602: 0004 | 0.349+004 0.497+0015 0.604:0.006
Random 0.450+0.008 0.497+0011 0.781+0.019 0.149+ 0007 0.418+ 0008 0.690+ 0.015
KiDD-LR 0.725+ 0017 0.819+ 0015 0.857+ 0.008 0.649+ 0012 0.743+ 0008 0.781+ 0.050
MSRC 21 LAVA 0.617+0.015 0.825+ 0014 0.918+0.018 0.816+002 0.617+ 0008 0.810+ 0004 0.889+ 0011 0.749:x0023
GRADATE | 0.670+0017 0.836+0017 0.953+ 0011 | 0.629+ 0011 0.813+0008 0.9010.008
Random 0.443+ 0014 0.504+0022 0.476+ 0011 0.479+ 0070 0.471+0092 0.578+ 0.030
ogbg-molbace KiDD-LR 0.446+ 0040 0.489+0049 0.483+ 0011 0.43440033 0.547+ 0080 0.523+0060 0.571+ 0013 05480028
g8 LAVA 0.563+0045 0.574+0067 0.535+0044 0.645+ 0035 0.641+0027 0.648+0025 :
GRADATE | 0.570+0080 0.599+0037 0.575+0056 | 0.646+0033 0.618+0061 0.630+0.020
Random 0.499+ 0041 0.635+0042 0.648+0.031 0.698+ 0010 0.633+ 0043 0.691+ 0.040
b 1bbb KiDD-LR 0.639+ 0025 0.599+0013 0.611+ 0023 0.6180037 0.546+ 0105 0.656+0.038 0.609+ 0.081 0.779£0017
ogog-mo P LAVA 0.667+0.015 0.675+ 0013 0.691+0.017 : . 0.859+ 0019 0.889+0.016 0.893+0.011 PO
GRADATE | 0.677+0007 0.671:+0015 0.673+ 0041 | 0.866:+0016 0.890+0011 0.895+ 0012
Random 0.576+ 0008 0.579+ 0004 0.594= 0.001 0.613+ 0004 0.617+0045 0.624+ 0015
ogbg-molhi KiDD-LR 0.556+0.001 0.551+0027 0.595+ 0.003 0.592-0.000 0.586+ 0055 0.586+0014 0.629+ 0.019 0.6640027
gog-moLhiv LAVA 0.669+0.001 0.683+0004 0.659+0002 : 0.769+ 0014 0.737+ 0012 0.796+ 0.025 : -
GRADATE | 0.640+0002 0.638+0006 0.629:+0.000 | 0.731+0017 0.767+0004 0.805+ 0024

Table 4: Performance comparison across data selection methods for graph size shift on GCN and GIN.
We use bold/underline to indicate the 1st/2nd best results. GRADATE achieves top-2 performance
across all datasets and is the best-performer in most settings.

G.2 Comparing data selection methods for graph density shift on GAT & GraphSAGE

We conduct the same evaluation as Table [T| on graph density shift with GAT and GraphSAGE as
backbone model in Table

G.3 Comparing data selection methods for graph size shift on GAT & GraphSAGE

We conduct the same evaluation as Table[I|on graph size shift with GAT and GraphSAGE as backbone
model in Table

G.4 Comparing GDA and vanilla methods for graph size shift

We conduct the same evaluation as Table [2|on graph size shift in Table

29

GNN Architecture — \ GAT \ GraphSAGE

Dataset -
Selection Method | | 7 =10% 7=20% 7=>50% Full | T=10% T=20% 7 ="50% Full
Random 0.602+0.005 0.695+0.035 0.797+ 0.005 0.730+ 0014 0.637+0039 0.762+ 0.027
KiDD-LR 0.683+ 0041 0.803+ 0005 0.817+0.024 0.662+ 0054 0.785+ 0025 0.775+0.054
IMDB-BINARY LAVA 0818000 0857+000 0885:00s CSO 0 | 08371 goos 0,840t 00m 0.883koonn OSIIE0
GRADATE \ 0.850+0.023 0.865+ 0008 0.892+ 0.012 \ 0.835+ 0015 0.852+0035 0.907-+ 0.005
Random 0.087+0.014 0.071+0.006 0.076=+0.003 0.090+ 0005 0.203+0061 0.126+ 0.064
KiDD-LR 0.176+0.024 0.121+ 0044 0.158+ 0.036 0.154+ 0028 0.124=0068 0.054+ 0011
IMDB-MULTI LAVA 0.597+0273 0.599+ 0204 0.341+0.049 0.080-+0.000 0.341+ 0049 0.307+0.164 0.328+0317 0.097x0024
GRADATE [07900000 0.589+0287 0.776+ 0039 | 0.306+0216 0.299+0282 0.363+ 0238
Random 0.462+ 0029 0.763+ 0007 0.857+0.018 0.617+0017 0.725+ 0033 0.842+ 0.029
KiDD-LR 0.661+0030 0.778+0.015 0.860+ 0.025 0.681+0073 0.787+0025 0.857+ 0.004
MSRC_21 LAVA 0.699+ 007 081650057 091250007 O-SO0F0NT | 07661 0009 0.8575 0015 0.918z0on OSTHE0M
GRADATE [0.716+0017 0.822::0004 0.921 0007 | 0.781+0026 0.877002 0.944+ 0011
Random 0.480+0.040 0.606+0.085 0.637+0.075 0.459+0.149 0.478+ 0097 0.503+ 0.034
b 1b KiDD-LR 0.558+ 0012 0.443+£0020 0.628+0.023 0.58310042 0.606+0.023 0.596+ 0079 0.607+ 0.047 0.622+0.119
ogbg-mobace LAVA 0.564+0.007 0.519+0007 0.696+ 0.031) 021 0.6201 0075 0.649:0004 0.65100s9 O OE"
GRADATE | 0.501+0017 0.541+0048 0.720+ 0004 | 0.621+0067 0.587+0078 0.568: 0.126
Random 0.511+0034 0.529+0027 0.513+0.018 0.463+ 0012 0.385+0032 0.468+ 0.008
ogbg-molbbb KiDD-LR 0.444=0050 0.405+0.021 0.434+0.025 0.569+0030 0.392+ 0002 0.415+0028 0.466+ 0.034 0.447 0008
E08 P LAVA 0.584+ 0054 0.552+ 0018 0.603+ 0.021 .] 0.526+£ 0087 0.612+0005 0.495+0029 :
GRADATE | 0.617+003 0.578+003 0.632+ 0036 | 0.580+0067 0.558+0064 0.528+0027
Random 0.601+ 0017 0.591+0011 0.581+ 0016 0.577+ 0016 0.591+0007 0.594+ 0.005
ogbg-molhiv KiDD-LR 0.620+ 0001 0.616+0003 0.615+ 0.007 0.57140030 0.607+ 0008 0.534+0057 0.603+ 0018 0.58840.003
€08 LAVA 0.621+0001 0.631+0003 0.624+0014] 0.575+£0012 0.607+0008 0.608+ 0.007 ~)
GRADATE | 0.638+0001 0.620+£0002 0.619:+ 0004 | 0.599+0021 0.598+0009 0.610: 0.006

Table 5: Performance comparison across data selection methods for graph density shift on GAT
and GraphSAGE. We use bold/underline to indicate the 1st/2nd best results. GRADATE is the best-
performer in most settings.

Dataset GNN Architecture — | GAT | GraphSAGE
atase!
Selection Method | | 7 =10% T =20% T =50% Full | 7=10% T =20% 7 =50% Full
Random 0.678+0.082 0.558+0.022 0.660+ 0.085 0.555+ 0011 0.563+0012 0.562+0.012
KiDD-LR 0.683+0.071 0.587+ 0081 0.665+ 0.098 0.663+ 0035 0.558+ 0013 0.595+ 0.007
IMDB-BINARY LAVA 0.808+001s 08300005 083550000 020900 | 08074 g6 0.808+007 0.830L00s OOOTEOOS
GRADATE | 0.835:0018 0.833:£0005 0.837+0010 | 0.808+0016 0.828-0024 0.838+0016
Random 0.384+ 0014 0.408+0.004 0.384+0.034 0.336+ 0010 0.357+0005 0.381+0.026
KiDD-LR 0.366+0020 0.434+ 0006 0.404+0.010 1 0.339+0030 0.418+0030 0.422:+ 0011
IMDB-MULTI LAVA 0.333+ 0058 0.417+0015 0.577+0.014 037400 0.374+ 0021 0.389+0039 0.392+0.036 0.391=002
GRADATE | 0.342+0050 0.537:£0003 0.616: 0002 | 0.392+0032 0.360+0025 0.517+0071
Random 0.284=+0.025 0.614+0056 0.731+0.018 0.497+0023 0.412+0050 0.725+ 0022
KiDD-LR 0.626+0.004 0.746+ 0026 0.830+ 0011 0.722+ 0030 0.798+ 0020 0.789+ 0.026 "
MSRC_21 LAVA 0.620+ 0015 0.798+ 0012 0.909+ 0.018 0.787:+0004 0.693+ 0020 0.827+0015 0.918+ 0.008 0.8100027
GRADATE | 0.643+00%9 0.860+0021 0.947+0014 | 07600023 0.842+0007 0.9440.004
Random 0.515+0006 0.464+ 0056 0.488+0.005 0.523+ 0048 0.463+0020 0.583+0.027
ogbg-molbace KiDD-LR 0.480+ 0011 0.452+0016 0.467+0.022 0.463+0004 0.507+ 0078 0.457+0029 0.467+ 0043 0.48740.108
g8 LAVA 0.524+0037 0.545+ 0058 0.613+00s0 0.650+ 0011 0.481+0007 0.550+0060 :
GRADATE | 0.529+0029 0.570+0062 0.509- 0.006 | 0.556+0040 0.561+:0090 0.564: 0095
Random 0.666+ 0003 0.677+0007 0.684+ 0018 0.634+ 0018 0.648+0.028 0.641+0.025
b 1bbb KiDD-LR 0.594+ 0017 0.596+0020 0.650+ 0.002 0.679-0.004 0.518+ 0046 0.594+ 0004 0.602+ 0.061 0.680£0010
ogog-mo P LAVA 0.714+ 0011 0.731+0.019 0.710:+ 0.036 : : 0.639+ 0022 0.602+0030 0.6454+ 0.026 08020
GRADATE [0.735:0021 0.699:+0027 0.713+ 0005 | 0.623+0041 0.650+0019 0.652: 0041
Random 0.584=+0.001 0.585+ 0002 0.589+0.003 0.610+ 0024 0.491+0031 0.603+ 0.001
ogbg-molhi KiDD-LR 0.586+0.001 0.584+ 0001 0.584=+0.004 0.5880.005 0.549+ 0071 0.588+0008 0.564+ 0011 05960000
gog-moLhiv LAVA 0.704= 0005 0.773+ 0007 0.759+0002 : 0.721+ 0004 0.701+ 0008 0.686= 0011 ; :
GRADATE | 0.663+0005 0.655+0009 0.660: 0008 | 0.637+0002 0.646+0019 0.640:+0.007

Table 6: Performance comparison across data selection methods for graph size shift on GAT and
GraphSAGE. We use bold/underline to indicate the 1st/2nd best results. GRADATE achieves top-2
performance across most settings. The under-performance on ogbg-molhiv might due to the reason
discussed in Section

G.5 Enhancing GDA methods for graph size shift

We conduct the same evaluation as Table [3|on graph size shift in Table[§]

G.6 Validation-label-free setting
While we originally consider c as tunable parameter, we acknowledge that the existence of validation

labels will be implicitly required when ¢ # 0, which might not be practical under some real-world
scenarios. Here, we pick two GNN backbones (i.e. GCN [30] and GIN [65]]) evaluate the effectiveness

30

Dataset

Type Model Data IMDB-BINARY IMDB-MULTI MSRC_21 ogbg-molbace ogbg-molbbbp ogbg-molhiv
AdaGCN Full 0.593+ 0.012 0.362+0.017 0.202+ 0.075 0.513+0.018 0.625+0.137 0.412+ 0011
GDA GRADE Full 0.648+ 0.105 0.390=+ 0.019 0.696-+ 0.008 0.403+ 0.018 0.669- 0.005 0.599+ 0.005
ASN Full 0.633+ 0.054 0.372+ 0.009 0.734+ 0.015 0.523+ 0.091 0.616=+ 0.042 0.519+ 0.077
UDAGCN Full 0.688+0.049 0.392+ 0.046 0.260+ 0.049 0.448+ 0.020 0.513+0.024 0.439+0.034
Random 20% 0.612+ 0.008 0.354+ 0.008 0.497+ 0011 0.504+ 0.022 0.635+0.042 0.579+ 0.004
GCN LAVA 20% 0.823+0.019 0.426+ 0.003 0.825+0.014 0.574+ 0.067 0.675+0.013 0.683+0.038
GRADATE 20% 0.825+0.018 0.524+ 0.016 0.836+0.017 0.599+ 0.037 0.671+0.015 0.638+ 0.006
Random 20% 0.582+0.009 0.372+0.039 0.418+ 0.008 0.471+0.092 0.633+0.043 0.617+0.045
GIN LAVA 20% 0.830=+ 0.011 0.388+ 0.018 0.810=+ 0.004 0.641=+ 0.027 0.889=+ 0.016 0.737+ 0.012
GRADATE 20% 0.820+ 0.008 0.497+ 0.015 0.813+ 0.008 0.618+ 0.061 0.890+ 0.011 0.767+ 0.004
Vanilla Random 20% 0.558=+ 0.022 0.408=+ 0.004 0.614=+ 0.056 0.464+ 0.056 0.677+ 0.007 0.585+ 0.002
GAT LAVA 20% 0.830+ 0.004 0.417+ 0015 0.798+ 0.012 0.545+0.058 0.731+0.019 0.773+ 0.007
GRADATE 20% 0.833+ 0.005 0.537+ 0.003 0.860+ 0.021 0.570+ 0.062 0.699+ 0.027 0.655+ 0.009
Random 20% 0.563+ 0.012 0.357+ 0.005 0.412+ 0.050 0.463+ 0.020 0.648=+ 0.028 0.491+ 0.031
LAVA 20% 0.808+ 0.027 0.389+0.039 0.827+0.015 0.481+ 0.007 0.602+ 0.030 0.701+ 0.008
GraphSAGE
GRADATE 20% 0.828+ 0.024 0.360+ 0.025 0.842+ 0.007 0.561+ 0.090 0.650+ 0.019 0.646+ 0.019

Table 7: Performance comparison across GDA and vanilla methods for graph size shift. We use
bold/underline to indicate the 1st/2nd best results. GRADATE can consistently achieve top-2 perfor-
mance across all datasets and is the best performer in most settings.

of GRADATE with ¢ = 0 (i.e. validation-label-free). The result is shown in Table[9] For simplicity,
we only report relative performance improvement (%) of GRADATE over the strongest baseline under
all settings. We can observe that the advantage of GRADATE remains comparable to what is reported
in the main text.

G.7 Additional backbones

In addition to typical GNN backbones, we also conduct experiments on a wider range of graph
algorithms, including SGFormer [[60] and APPNP [[16]]. In Table we report relative performance
improvement (%) of GRADATE over the strongest baseline under all settings. We can observe that
GRADATE still outperforms other baselines mostly.

G.8 Additional GDA methods

We add additional experiments based on two variants of A2GNN [34] with different losses and
TDSS [[7]. In Table[TT] we report relative performance improvement (%) of GRADATE over the
strongest baseline under all settings. For simplicity, we report results with selection ratio equals to
20%. Tt can be observed that GRADATE consistently provides the most significant enhancements for
the three newly evaluated GDA methods compared to other selection baselines.

H Datasets

In Table[T2] we provide details of datasets used in this work. For # NODES and # EDGES, we report
the mean sizes across all graphs in the dataset.

I Backbone GNN Settings for Graph Selection Evaluation

GNN Models. We consider four widely used graph neural network architecture, GCN [30], GIN [65]],
GAT [58] and GraphSAGE [[18]. The detailed model architectures are described as follows: (i) For
GCN, we use three GCN layers with number of hidden dimensions equal to 32. ReLU is used between
layers and a global mean pooling layer is set as the readout layer to generate graph-level embedding.
A dropout layer with probability p = 0.5 is applied after the GCN layers. Finally, a linear layer
with softmax is placed at the end for graph class prediction. (ii) For GIN, we use three-layer GIN
with 32 hidden dimensions. We use ReLU between layers and global mean pooling for readout. A
dropout layer with probability 0.5 is placed after GIN layers and finally a linear layer with softmax
for prediction. (iii) For GAT, we use two-layer GAT layers with four heads with global mean pooling

31

Dataset GDA Method — | AdaGCN | GRADE
atase
Selection Method || 7 =10% T=20% T =50% Full | 7=10% T=20% T =50% Full
Random 0.582+ 0091 0.520+0.103 0.455+0.120 0.572+ 0011 0.522+ 0045 0.613+0.095
IMDB-BINARY LAVA 0.818+0.012 0.815+0005 0.810+0013 0.593+0012 | 0.813+0007 0.814+0007 0.816+0005 0.648+0.105
GRADATE | 0.834:0014 0.830£0010 0.822+ 0022 0.814+0013 0.826+0007 0.827+ 0013
Random 0.261+0064 0.247+0052 0.252+ 0.059 0.312+ 0034 0.280+0000 0.282+ 0.030
IMDB-MULTI LAVA 0.374+ 0055 0.385+0080 0.368+0098 0.362+0017 | 0.386+0047 0.407+0076 0.411+0050 0.390+ 0019
GRADATE | 0.386+0053 0.442+0085 0.509+0.114 0.401+0076 0.411+0076 0.503+0.112
Random 0.084+ 0028 0.079+0022 0.114+0.030 0.137+ 0012 0.379+ 0053 0.667+ 0.055
MSRC_21 LAVA 0.377+0029 0.472+0030 0.540+0.103 0.202+0075 | 0.532+0020 0.728+0038 0.854+0035 0.696:+ 0.008
GRADATE | 0.411+0075 0.465+0042 0.593+ 0071 0.553+0043 0.744: 0044 0.867+0.013
Random 0.498+0.001 0.477+0038 0.498+ 0.063 0.478+0.005 0.468+ 0074 0.475+ 0.046
ogbg-molbace LAVA 0.510+ 0027 0.523+0066 0.529+0056 0.513+0018 | 0.509+0055 0.559+002 0.552+0033 0.403+ 0018
GRADATE | 0.524:0057 0.560+0053 0.550: 0,030 0.556+ 0069 0.508+0025 0.512:+ 0.022
Random 0.539+0.02 0.600+0044 0.538+ 0083 0.632+0.006 0.648+ 0002 0.650+ 0.002
ogbg-molbbbp LAVA 0.583+0.075 0.653+0007 0.657+0004 0.625+0137 | 0.631+0011 0.640+0001 0.637+0003 0.669+ 0.005
GRADATE | 0.662:0020 0.654+0004 0.664: 0010 0.636+0010 0.641+0005 0.639+0.013
Random 0.356+0.023 0.358+0013 0.364+ 0011 0.588+0.014 0.615+0012 0.592+ 0010
ogbg-molhiv LAVA 0.382+0.035 0.403+0033 0.384+0041 0.412+0011 | 0.673x0004 0.681+0002 0.668+0009 0.599+ 0.005
GRADATE | 0.393+0040 0.387+0068 0.395+ 0040 0.658+0004 0.647+0005 0.642+ 0.005
GDA Method — | ASN | UDAGCN
Dataset
Selection Method || 7 = 10% T =20% 7 =50% Full | 7=10% T =20% 7 =50% Full
Random 0.613+0.110 0.568+0078 0.515+ 0024 0.507+0.077 0.467+0029 0.605+ 0.067
IMDB-BINARY LAVA 0.817+0.012 0.810+0012 0.847+0017 0.633+0054 | 0.817x0.012 0.811+0005 0.837+0017 0.688+ 0049
GRADATE \ 0.825+0007 0.819+0024 0.834+ 0012 0.840+0.008 0.831+0009 0.816+ 0016
Random 0.126+ 0013 0.101+ 0058 0.156+ 0039 0.340+0.080 0.306+ 0019 0.307+ 0033
IMDB-MULTI LAVA 0.379+0.050 0.445+0057 0.593+0004 0.372+£0009 | 0.348+0051 0.387+0093 0.519+0120 0.392+ 0046
GRADATE \ 0.425+ 0015 0.455+0097 0.577+ 0.006 0.390+ 0055 0.444=0089 0.451+0.145
Random 0.481+0071 0.277+0039 0.556+ 0012 0.151+ 0072 0.204+0065 0.209+ 0.062
MSRC_21 LAVA 0.661+0.027 0.779+0039 0.867+0017 0.734+0015 | 0.435+0024 0.498+0090 0.563+009 0.260+ 0.049
GRADATE | 0.686+002 0.796+0020 0.868+ 0,034 0.465+ 0051 0.470+0097 0.616+ 0.055
Random 0.465+ 0048 0.440+ 0049 0.466+ 0.060 0.485+ 0017 0.503+ 0044 0.544+0.011
ogbg-molbace LAVA 0.496+ 0077 0.560+ 0032 0.596+0052 0.523+£0091 | 0.499+0036 0.553+0041 0.517+0012 0.448+ 0020
GRADATE | 0.565+0073 0.596+0053 0.546+ 0,023 0.521+0002 0.519+0022 0.555+0.024
Random 0.537+ 0001 0.530+0076 0.545+ 0.062 0.549+ 0031 0.568+ 0043 0.5364+ 0.008
ogbg-molbbbp LAVA 0.606+0.024 0.635+ 0008 0.646+0000 0.616+0042 | 0.655+ 0005 0.649+0003 0.673+0011 0.513+0024
GRADATE | 0.621+0016 0.640+0019 0.650 0017 0.660+ 0008 0.674=0011 0.677+0.027
Random 0.385+0.023 0.459+0086 0.397+ 0070 0.446=0.041 0.412+ 0021 0.409+ 0014
ogbg-molhiv LAVA 0.449+ 0058 0.465+008s 0.399+0074 0.519+0077 | 0.426+0021 04310042 0.433+0017 0.439+ 0034
GRADATE | 0.435+0044 0423009 0.474+ 0094 0.433+0020 0.434+0008 0.395+ 0015

Table 8: Performance comparison across combinations of GDA methods and data selection methods
for graph size shift. We use bold/underline to indicate the 1st/2nd best results. GRADATE achieves
the best performance in most settings.

GCN GCN GCN GIN GIN GIN
(r=10%) (1=20%) (r=50%) (r=10%) (r=20%) (r=50%)

IMDB-BINARY +11.13 +9.92 +2.76 +4.63 +5.16 +13.37
IMDB-MULTI +221.31 +201.09 +189.61 +45.78 +95.01 +87.04

Dataset

MSRC_21 +1.99 +1.36 +3.01 +2.36 +0.09 +2.88
ogbg-molbace +1.32 -4.39 +13.17 -16.32 +2.84 +7.48
ogbg-molbbbp +0.00 -14.46 +0.00 -0.08 +2.18 +2.22
ogbg-molhiv +3.05 +0.75 +0.48 -1.24 +0.35 +2.52

Table 9: Relative improvement (%) of GRADATE over the strongest baseline under different settings.

for readout. A dropout layer with probability 0.5 is placed after GIN layers and finally a linear
layer with softmax for prediction. (iv) For GraphSAGE, we use two GraphSAGE layers with mean
aggregation operation. The hidden dimension is set to 32. A dropout layer with probability p = 0.5
is applied after the GCN layers. Finally, a linear layer with softmax is placed at the end for graph
class prediction.

Experiment Details. We perform all our methods in Python and GNN models are built-in modules
of PyTorch Geometric [14]. The learning rate is set to 102 with weight decay 5 - 1074, We

32

SGFormer SGFormer SGFormer APPNP APPNP APPNP

Dataset (r=10%) (7=20%) (7=50%) (r=10%) (7=20%) (7=50%)
IMDB-BINARY +9.82 +0.59 -0.34 +7.28 +3.01 0.35
IMDB-MULTI +6.46 +57.40 +1.65 -13.46 2.59 +13.71
MSRC_21 +14.26 +3.58 +2.13 +9.54 +3.18 +1.27
ogbg-molbace -9.66 +0.05 +1.90 +4.03 -2.31 +2.84
ogbg-molbbbp +2.93 +5.47 3.71 +22.80 +6.33 4.58
ogbg-molhiv +1.51 -1.79 +1.65 -12.00 +6.07 +1.88

Table 10: Relative improvement (%) of GRADATE over the strongest baseline under different settings.

A2GNN-ADV A2GNN-MMD TDSS

Dataset (1=20%) (r=20%) (1=20%)
IMDB-BINARY +31.12 +11.40 +3.12
IMDB-MULTI +26.54 +58.88 -42.10
MSRC_21 +20.63 -4.40 +25.09
ogbg-molbace +1.46 -2.57 +2.88
ogbg-molbbbp +17.34 +5.85 -5.71
ogbg-molhiv +0.65 +0.81 +0.55

Table 11: Relative improvement (%) of GRADATE over three additionally added GDA methods under
different datasets.

train 200 epochs for datasets IMDB-BINARY, IMDB-MULTI, MSRC_21 and 100 epochs for
datasets ogbg-molbace, ogbg-molbbbp, ogbg-molhiv with early stopping, evaluating the test
set on the model checkpoint that achieves the highest validation performance during training. For
each combination of data and model, we report the mean and standard deviation of classification
performance over 3-5 random trials. For TUDatasets, we use accuracy as the performance metric; for
OGB datasets, we use AUCROC as the performance metric. The computation is performed on Linux
with an NVIDIA Tesla V100-SXM2-32GB GPU. For graphs without node features, we also follow
Zeng et al. [81] that generates degree-specific one-hot features for each node in the graphs.

J GDA Method-Specific Settings

We follow the default parameter settings in the code repository of OpenGDA [53]. We train 200
epochs for datasets IMDB-BINARY, IMDB-MULTI, MSRC_21 and 100 epochs for datasets
ogbg-molbace, ogbg-molbbbp, ogbg-molhiv with early stopping, evaluating the test set on the
model checkpoint that achieves the highest validation performance during training.

» AdaGCN [12]]: We set the learning rate to 102 with regularization coefficient equal to 10~
Dropout rate is 0.3 and A\p = 1, Ay, = 5.

+ ASN [83]: We set the learning rate to 10~ with regularization coefficient equal to 10~%. The
dropout rate is 0.5. The difference loss coefficient, domain loss coefficient and the reconstruction
loss coefficient is set to 107%,0.1,0.5.

* GRADE [61]: We set the learning rate to 10~ with regularization coefficient equal to 10~%.
Dropout rate is set to 0.1.

» UDAGCN [62]]: We set the learning rate to 10~ with regularization coefficient equal to 10~%.
The domain loss weight equals to 1.

K Additional Preliminary: Graph Domain Adaptation (GDA)

Consider a source domain Dy = (G¢,y;);*, and a target domain D; = (G!,y!);"" |, where each

G = (A, X) represents an attributed graph with the adjacency matrix A € R™*™ and the node feature
matrix X € R™*? where n is the number of nodes and d is the dimension of node features. With a

33

DATASET # GRAPHS # NODES # EDGES #FEATURES # CLASS DATA SOURCE LICENSE

IMDB-BINARY 1000 19.77 96.53 None 2 PyG [14] MIT License
IMDB-MULTI 1500 12.74 53.88 None 3 PyG [14] MIT License
MSRC_21 563 77.52 198.32 None 20 PyG [14] MIT License
ogbg-molbace 1513 34.08 36.85 9 2 OGB [21] MIT License
ogbg-molbbbp 2039 24.06 25.95 9 2 OGB [21} MIT License
ogbg-molhiv 41127 25.51 27.46 9 2 OGB [21] MIT License

Table 12: Dataset Statistics and Licenses.

shared label set), the graphs in the source domain are labeled with ¥ €). The two domains are
drawn from shifted joint distributions of graph and label space, i.e., Ps(G,y) # P:(G,y). The goal
of GDA is to learn a classifier f : G —) with the source domain data that minimizes the expected
risk on the target domain: E(g)~ p,[L(f(G),y)], where L is a task-specific loss function.

L Additional Related Work

In the era of big data and AI [40} 39} 48-511 147, 168 [74-76 |67, 133]], efficient data utilization has
become paramount for scalable machine learning. Beyond the data selection and domain adaptation
methods discussed in the main text, our work also connects to several related research directions that
provide complementary perspectives on graph learning and distribution matching. Specifically, there
is a rich body of work at the intersection of optimal transport theory and graph data [24, [77-80}, I82],
which are closely related to our main methodology.

M Empirical Runtime of GRADATE

In Table[I3]and Table[T4] we provide the empirical runtime on datasets (IMDB-BINARY, IMDB-
MULTI and MSRC_21) and datasets (ogbg-molbace, ogbg-molbbbp and ogbg-molhiv), respec-
tively. We observe that the on-line runtime is insignificant compared to typical GNN training time.
And the off-line computation is only run once, which can be pre-computed. Furthermore, we can
achieve much better accuracy compared to LAVA with nearly no additional runtime.

Procedure / Dataset IMDB-BINARY IMDB-MULTI MSRC_21
Off-line Computation FGW Pairwise distance 741 9.61 18.18
(GDD Computation) Label-informed pairwise distance 0.04 0.06 0.24
. . GREAT (Algorithm 0.28 0.52 0.11
On-line Computation LAVA . 0.09 0.14 0.03
GCN (w/ 10% data) 13.45 16.36 9.59
GNN Training Time GCN (w/ 20% data) 17.64 21.40 13.85
GCN (w/ 50% data) 29.92 45.82 19.57

Table 13: Empirical run-time behavior for TUDatasets (in seconds). We can observe that the
off-line procedures can be run comparable to a single GNN training time and the on-line procedure
has a negligible runtime compared to GNN training. In addition, we can achieve significantly better
performance compared to LAVA with slight additional on-line runtime.

N Limitations and Outlook

1. How to eliminate the dependence on validation data? Although it is common in machine
learning research to assume we have some validation set that represents the data distribution
on the target set (or “statistically closer” to the target set), it might not be always available
under certain extreme scenarios. Thus, our interesting future direction is to extend our
framework to no-validation-data or test-time adaptation settings.

2. Can our proposed method scale to extremely large settings? When we have millions of large
graphs in both training and validation set, the efficiency of GRADATE might be a concern.
However, most of the computationally intensive sub-procedure of our method can be done
off-line (see complexity analysis in Section [3.2]and empirical runtime in Appendix M) and

34

Procedure / Dataset ogbg-molbace ogbg-molbbbp ogbg-molhiv

Off-line Computation FGW Pairwise distance 15.44 19.67 283.99
(GDD Computation) Label-informed pairwise distance 0.12 0.17 53.82
. . GREAT (Algorithm 0.43 0.84 295.42
On-line Computation LAVA g 0.06 0.13 39.45
GCN (w/ 10% data) 12.76 13.91 190.34

GNN Training Time GCN (W/ 20% data) 13.08 22.59 312.08
GCN (w/ 50% data) 22.21 30.48 845.46

Table 14: Empirical run-time behavior for OGB datasets (in seconds). We can observe that the
off-line procedures can be run comparable to a single GNN training time and the on-line procedure
has a negligible runtime compared to GNN training. In addition, we can achieve significantly better
performance compared to LAVA with slight additional on-line runtime.

the online runtime is ignorable compared to typical GNN training on full dataset. One
possible mitigation is to do data clustering using FGW distance before running our main
algorithm GRADATE to avoid computational overhead.

3. How to select the optimal amount of data? We demonstrate that in Section[d.3] the relation-
ship between selection ratio and GNN adaptation performance is not always trivial across
different settings. To ease the comparison pipeline, we fix to some target selection ratios (i.e.
10%, 20%, 50%) for our main experiments, but we acknowledge that these ratios might not
yield the best adaptation performance or serve as the best indicator to comparison across
different methods. Thus, one potential extension of our method is to automate the process
of selecting the optimal selection ratios when dealing different levels of domain shifts.

4. How to extend GRADATE to node-level graph domain adaption setting? One possible
extension to solve node-level tasks is as follows: decomposing source/target graphs into set
of ego-graphs where each of these ego-graphs represent the local topology of each node, and
applying GRADATE directly to select the optimal nodes for adaptation. Future directions
that require more investigation include (i) how to decide the size of local vicinity for each
ego-graph, (ii) how to co-consider node/edge selection for optimal adaptation and (iii) how
to mitigate the information loss when extracting ego-graphs.

O Impact Statement

This paper discusses the advancement of the field of Graph Machine Learning. While there are
potential societal consequence of our work, none of which we feel must be hightlighted .

35

P ECDF Plots of Different Covariate Shift Settings

ECDF of Graph Density - IMDB-BINARY (Ascending) ECDF of Graph Size - IMDB-BINARY (Ascending)
0.8 0.8
0.6 0.6
0.2 0.2
—— Train —— Train
Validation Validation
00 —— Test 00 — Test
Graph Density Graph Size
(a) IMDB-BINARY (Density) (b) IMDB-BINARY (Size)
ECDF of Graph Density - IMDB-MULTI (Ascending) ECDF of Graph Size - IMDB-MULTI (Ascending)
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
—— Train —— Train
Validation Validation
0.0 —— Test 0.0 —— Test
0.2 0.4 0.6 0.8 1.0 20 40 60 80
Graph Density Graph Size
(c) IMDB-MULTI (Density) (d) IMDB-MULTI (Size)
ECDF of Graph Density - MSRC_21 (Ascending) ECDF of Graph Size - MSRC_21 (Ascending)
1.0 1.0
0.6 0.6
0.4 0.4
— Train — Train
Validation Validation
00 — Test 00 —— Test
0.04 0.05 0.06 0.07 0.08 0.09 60 80 100 120 140
Graph Density Graph Size
(e) MSRC_21 (Density) () MSRC_21 (Size)

Figure 1: ECDF plots of graph density and size for IMDB-BINARY, IMDB-MULTI, and
MSRC_21 datasets. The Blue, Orange, and Green curves represent the distributions of the training,
validation, and test splits, respectively. Graphs are sorted in the ascending order by the specified shift
(density or size).

36

ECDF of Graph Density - ogbg-molbace (Ascending) ECDF of Graph Size - ogbg-molbace (Ascending)

1.0 1.0
0.8 0.8
0 os
0.4 0.4
0.2 0.2
—— Train —— Train
Validation Validation
0.0 — Test 00 —— Test
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 20 40 60 80 100
Graph Density Graph Size
(a) ogbg-molbace (Density) (b) ogbg-molbace (Size)
ECDF of Graph Density - ogbg-molbbbp (Ascending) ECDF of Graph Size - ogbg-molbbbp (Ascending)
10 10
0.8 0.8
0.6 0.6
& &
0.4 0.4
02 02
~—— Train —— Train
Validation Validation
0.0 —— Test 0.0 —— Test
o o Y os o5 v o 2 P P P w00 50
Graph Density Graph Size
(c) ogbg-molbbbp (Density) (d) ogbg-molbbbp (Size)
ECDF of Graph Density - ogbg-molhiv (Ascending) ECDF of Graph Size - ogbg-molhiv (Ascending)
1.0 1.0
0.8 0.8
0.6 0.6
0s 04
0.2 0.2
—— Train —— Train
Validation Validation
00 — Test 00 —— Test
0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200
Graph Density Graph size
(e) ogbg-molhiv (Density) (f) ogbg-molhiv (Size)

Figure 2: ECDF plots of graph density and size for ogbg-molbbbp, ogbg-molbace, and
ogbg-molhiv datasets. The Blue, Orange, and Green curves represent the distributions of the
training, validation, and test splits, respectively. Graphs are sorted in ascending order by the specified
shift (density or size).

37

	Introduction
	Preliminaries
	Optimal Transport
	Graph Optimal Transport

	Methodology
	Graph Dataset Distance (GDD): A Novel Notion to Compare Graph Datasets
	FGW Distance For Graph Comparison
	Graph-Label Distance
	Graph Dataset Distance (GDD)

	GraDate: A Model-Free Graph Data Selector
	GDD Bounds Domain Generaization Gap
	GDD Minimization Problem
	GraDate

	Experiments
	General Setup
	GraDate as a Model-Free Graph Selector
	GraDate as a GDA Method
	GraDate as a Model-Free GDA Enhancer
	Further Discussion

	Related Work
	Conclusion
	Details of LinearFGW (Algorithm 1)
	Summarization of GDD (Algorithm 2)
	Summarization of GREAT (Algorithm 3)
	Summarization of GraDate (Algorithm 4)
	Discussions on FGW & GDD and Previous Measures
	Proofs of Theorems
	Proof of Theorem 3.1
	Assumptions
	Proof for k=1
	Proof for general k>1

	Proof of Theorem 3.3
	Proof of Theorem F.3

	Additional Experiments
	Comparing data selection methods for graph size shift on GCN & GIN
	Comparing data selection methods for graph density shift on GAT & GraphSAGE
	Comparing data selection methods for graph size shift on GAT & GraphSAGE
	Comparing GDA and vanilla methods for graph size shift
	Enhancing GDA methods for graph size shift
	Validation-label-free setting
	Additional backbones
	Additional GDA methods

	Datasets
	Backbone GNN Settings for Graph Selection Evaluation
	GDA Method-Specific Settings
	Additional Preliminary: Graph Domain Adaptation (GDA)
	Additional Related Work
	Empirical Runtime of GraDate
	Limitations and Outlook
	Impact Statement
	ECDF Plots of Different Covariate Shift Settings

