
Under review as a conference paper at ICLR 2021

MINIMUM DESCRIPTION LENGTH RECURRENT
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent neural networks (RNNs) face two well-known challenges: (a) the dif-
ficulty of such networks to generalize appropriately as opposed to memorizing,
especially from very short input sequences (generalization); and (b) the difficulty
for us to understand the knowledge that the network has attained (transparency).
We explore the implications to these challenges of employing a general search
through neural architectures using a genetic algorithm with Minimum Description
Length (MDL) as an objective function. We find that MDL leads the networks to
reach adequate levels of generalization from very small corpora, improving over
backpropagation-based alternatives. We demonstrate this approach by evolving
networks which perform tasks of increasing complexity with absolute correctness.
The resulting networks are small, easily interpretable, and unlike classical RNNs,
are provably appropriate for sequences of arbitrary length even when trained on
very limited corpora. One case study is addition, for which our system grows a
network with just four cells, reaching 100% accuracy (and at least .999 certainty)
for arbitrary large numbers.

1 INTRODUCTION

The modeling of sequential knowledge and learning requires making appropriate generalizations
from input sequences that are often quite short. This holds both for language capabilities and for
other sequential tasks such as counting. Moreover, it is often helpful for the modeler to inspect
the acquired knowledge and reason about its properties. Neural networks, despite their impressive
results and popularity in a wide range of domains, still face some challenges in these respects: they
tend to overfit the learning data and require regularization or other special measures, as well as very
large training corpora, to avoid this problem. In terms of knowledge, networks are often very big,
and it is generally very hard to inspect a given network and determine what it is that it actually knows
(see Papernot & McDaniel, 2018, among others, for a recent attempt to probe this knowledge).

Some of the challenges above arise from the reliance of common connectionist approaches on back-
propagation as a training method, and in this paper we explore the implications to sequential mod-
eling of well-known alternative perspectives on neural network design. Specifically, we consider
replacing backpropagation with a general search using a genetic algorithm through a large space
of possible networks using Minimum Description Length (MDL; Rissanen, 1978) as an objective
function. In essence, this amounts to minimizing error as usual, while at the same time trying to
minimize the size of the network. We find that MDL helps the networks reach adequate levels of
generalization from very small corpora, avoiding overfitting and performing significantly better than
backpropagation-based alternatives. The MDL search converges on networks that are often small,
transparent, and provably correct. We illustrate this across a range of sequential tasks.

2 PREVIOUS WORK

Our work follows several lines of work in the literature. Evolutionary programming has been used
to evolve neural networks in a range of studies. Early work that uses genetic algorithms for various
aspects of neural network optimization includes Miller et al. (1989), Montana & Davis (1989),
Whitley et al. (1990), and Zhang & Mühlenbein (1993; 1995). These works focus on feed-forward
architectures, but Angeline et al. (1994) present an evolutionary algorithm that discovers recurrent

1

Under review as a conference paper at ICLR 2021

neural networks and test it on a range of sequential tasks that are very relevant to the goals of the
current paper. Evolutionary programming for neural networks remains an active area of research
(see Schmidhuber, 2015 and Gaier & Ha, 2019, among others, for relevant references).

In terms of objective function, Zhang & Mühlenbein (1993; 1995) use a simplicity metric that is
essentially the same as the MDL metric that we use (and describe below). Schmidhuber (1997)
presents an algorithm for discovering networks that optimize a simplicity metric that is closely
related to MDL. Simplicity criteria have been used in a range of works on neural networks, including
recent contributions (e.g., Ahmadizar et al., 2015 and Gaier & Ha, 2019).

Our paper connects also with the literature on using recurrent neural networks for grammar induction
and on the interpretation of such networks in terms of symbolic knowledge (often formal-language
theoretic objects). These challenges were already taken up by early work on recurrent neural net-
works (see Giles et al., 1990 and Elman, 1990, among others), and they remain the focus of recent
work (see, e.g., Wang et al., 2018 and Weiss et al., 2018). See Jacobsson (2005) and Wang et al.
(2018) for discussion and further references.

In a continuation of these efforts, our contribution is twofold. First, we put together a minimal, out-
of-the-box combination of the core of these ideas: evaluate the performance that can be achieved by
a learner that seeks to optimize MDL measures. The search and optimization itself is done through
a standard genetic algorithm. From there, we benchmark the performance obtained through MDL
optimization against the performance obtained by a set of 3 classic RNN architectures of different
sizes. Second, we show the benefit of optimizing networks not only for performance but also for
their own architecture size, in that it makes the black box much more permeable; for current tasks,
we are able to provide full proofs of accuracy (above and beyond a test set).

3 LEARNER

3.1 MDL

Consider a hypothesis space G of possible grammars, and a corpus of input data D. In our case, G
is the set of all possible network architectures expressible using our representations, and D is a set
of input sequences. For a given G ∈ G we may consider the ways in which we can encode the data
D given that G. The MDL principle (Rissanen, 1978), a computable approximation of Kolmogorov
Complexity (Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1966), aims at the G that minimizes
|G| + |D : G|, where |G| is the size of G and |D : G| is the length of the shortest encoding
of D given G (with both components typically measured in bits). Minimizing |G| favors small,
general grammars that often fit the data poorly. Minimizing |D : G| favors large, overly specific
grammars that overfit the data. By minimizing the sum, MDL aims at an intermediate level of
generalization: reasonably small grammars that fit the data reasonably well. MDL – and the closely
related Bayesian approach to induction – have been used in a wide range of models of linguistic
phenomena, in which one is often required to generalize from very limited data (see Horning, 1969,
Berwick, 1982, Stolcke, 1994, Grünwald, 1996, and de Marcken, 1996, among others).

The term |D : G| corresponds to the surprisal of the data D according to the probability distribution
defined by G and is closely related to the cross-entropy between the distribution defined by G and
the true distribution that generated D. The term |G| depends on an encoding scheme for a network.
We provide the details of such an encoding scheme in Appendix A and now turn to describe the
space of networks that will be considered.

3.2 REPRESENTATIONS

A network is represented as a directed graph which contains nodes, weighted edges, and activation
functions for each node. Since we do not use backpropagation to train the network, the set of
possible networks is larger here than what is usually allowed; for example, output units can have
outgoing edges which feed hidden units, and input units can feed into other input units, thus saving
intermediate hidden units. Beyond the topological flexibility, the activation functions also allow
for more diversity in the possible networks, they can vary freely from one unit to the next, and
they can be chosen from any set of possible activation functions, including non-differentiable ones

2

Under review as a conference paper at ICLR 2021

since training does not rely on backpropagation. Currently, we only allow four possible activation
functions: identity (i.e., no activation function), square function, ReLU, and sigmoid.

Since we are ultimately interested in sequential tasks, we add a second type of edges – recurrent
edges – which cross time steps and feed a unit with the value of another unit at the previous step.
Such edges are required in order to create memory cells and counters for various sequential tasks.1

3.3 SEARCH

Given our use of MDL as an objective function, which is not differentiable, and our aim of optimiz-
ing the network structure itself rather than just the weights of a fixed architecture, gradient-based
training methods such as backpropagation would not naturally support this objective.

Instead, we use a Genetic Algorithm (GA; Holland, 1975) which frees us from the constraints com-
ing from backpropagation and fulfills the two requirements at once. For simplicity and to highlight
the utility of the MDL metric as a standalone objective, we use a vanilla implementation of GA. The
GA advances by incrementally evolving networks (e.g. add an edge, adjust a weight, remove a unit,
etc.), and ranks them by their MDL score. Full implementation details are given in Appendix B.2

3.4 INPUT AND OUTPUT

In all tasks, the learner is fed with inputs from a sequence, one input after the next, and at each
time step its outputs are interpreted as determining the probability to obtain a particular output.
Depending on the task, this output is deterministically or probabilistically derivable from the inputs
up to this point, and it may or may not correspond to the next input in the sequence.

If the vocabulary contains n letters, the inputs are one-hot encoded over n input cells (in yellow
in the figures), and the outputs are given in n cells (in blue). To interpret these n outputs as a
probability distribution we zero negative values and normalize the rest to sum to 1. In case of a
degenerate network that outputs all 0’s, the probabilities are set to the uniform value 1/n. When the
vocabulary is binary, we use a single 0/1-valued input cell and a single output cell whose value is
interpreted as the probability to obtain 1, clipping it to the [0, 1] range if necessary.

3.5 ILLUSTRATION WITH ELEMENTARY, DETERMINISTIC TASKS

First, let us provide a simple illustration, the identity task: the network is fed with a random se-
quence of binary digits, and the target output is identical to the input at each time step. The network
developed by the MDL learner is given in Fig. 1(a); this network is transparent and shows that this
very simple task is learned perfectly well. Anticipating on a number of baselines, more results are
given visually in Appendix E and numerically in Appendix F, where it can be seen that though some
(but not all) classic RNNs may perform this task well, they do not achieve a perfect performance,
only a statistically good one (that is, assigning a high probability to the appropriate value, but not
necessarily assigning it a probability of 1).

(a)

xt Linear Linear1.0 Pt(1)

(b)

xt Linear Linear1.0 Pt(1)

Figure 1: The networks found by the MDL learner for (a) the identity task and (b) the previous character
task (same result for all training sets of length 10, 20, 50, and 100). The input (arriving to the yellow cell
on the left) is directly fed into the output (blue cell on the right) with a weight of 1, either through a direct,
‘contemporary’ connection (a), or through a cross-time connection in (b).

Second, consider the previous character task: the network is fed with a random sequence of binary
digits, and the output is identical to the previous input at each time step. This requires the learner

1Another specificity of this representation is that cells may have no input at all (which is potentially benefi-
cial in terms of the grammar length part of the MDL score). In such cases, the cell behaves as if it received a
total input of 0. So for instance if the activation function is a sigmoid, the output is constantly 0.5.

2The model source code and experimental material will be published once the paper can be de-anonymized.

3

Under review as a conference paper at ICLR 2021

to develop some kind of memory. The network developed by the MDL learner is given in Fig. 1(b).
Again, one can comprehend how this network produces its output, and the classic RNNs tested do
not perform as well (and aren’t as transparent).

4 ARTIFICIAL LANGUAGE-MODELING EXPERIMENTS

4.1 SETUP

A convenient choice to test an MDL learner and its generalization capabilities comes from language
induction tasks, in which the corpus is generated from a formally well-identified generalization. We
ran tasks based on several classical formal-language learning challenges from the linguistic domains
of syntax and semantics. Let us mention two aspects in which these tasks differ from deterministic
tasks as the ones above. First, they concern the prediction of the next character in a sequence (not
about predicting an independent output based on the input). Second, the next character — that is,
the target output — was not a deterministic function of the input (or all inputs so far), but followed
in the training and test set from a more general probability distribution. Given the results above, this
could be seen as a challenge for the MDL learner which seems to make categorical decisions.

4.2 BASELINES

To compete with our MDL learner, we trained 12 standard RNNs, varying in their architecture
(GRU cells, LSTM cells, Elman cells) and the size of their hidden state vector (2, 4, 32, 128). As
usual, a final softmax, derivable layer was plugged at the end of these networks for them to output a
well-formed probability distribution. These RNNs were trained with a cross-entropy loss.3

Additionally, we added two abstract baselines: a uniform baseline corresponding to predicting all
outputs with equal probability in all cases, and an optimal baseline, corresponding to predicting the
actual probability distribution, that is the one determined by how the task was set up.

4.3 EXPERIMENTS

In each of the tasks below the training corpora consist of several sequences of the form s1#s2# . . .,
where the si’s are strings over an alphabet that does not include #. As before, the task is to read
each character in a sequence and to predict the next character. The structure of the si’s corresponds
to various formal language-theoretical regularities, as described below. In sections 4.3.1 to 4.3.3
these regularities come from the domain of the semantics of quantificational determiners (Barwise &
Cooper, 1981; see Tiede, 1999 and Paperno, 2011, among others, for a discussion of the learnability
of such patterns). The formal languages in these tasks are regular and can be dealt with by finite-
state automata. In sections 4.3.4 and 4.3.5 we consider patterns of unbounded counting based on a
classic syntactic challenge (Gers & Schmidhuber, 2001) and correspond to context-free and context-
sensitive languages, which require more expressive frameworks. All results are given visually in
Appendix E and numerically in Appendix F.

4.3.1 EXACTLY n

In this task, each si is made of zero or more 0’s, and of exactly n 1’s: at each time step, the next
input is 0 or 1 with equal probability if the current si has fewer than n 1’s and it is 0 or # if there
are exactly n 1’s already. The order of the 0’s and 1’s is thus random. For ‘exactly 3’, for example,
one possible si would be 001011000. The model trained on sequences of length 100, 200, 500, and
1,000, and tested on an unseen sequence of length 1,000.

The MDL learner achieves a test cross-entropy of 1580, 1293, 997.2, 997.2 for the four training sets,
the lowest possible cross-entropy being 997. Against the RNN alternatives, the MDL networks are
ranked 2/13, 2/13, 1/13, 1/13. Fig. 2 shows the network found for n = 1 and the largest training set
of length 1,000.

3All RNNs were trained using the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.01, β1 = 0.9,
and β2 = 0.999. The networks were trained by feeding the full batch of training data for 1,000 epochs.

4

Under review as a conference paper at ICLR 2021

x0t Linear

x1t Linear

 1.0

Sigmoid
-8.0

Linear

0.5

x#t Linear

-1.0

P t+1 ("0")Sigmoid

P t+1 ("1")

P t+1 ("#")

Figure 2: The network found by the MDL learner for the exactly 1 task. The network keeps track of the number
of 1’s seen so far in the middle input cell (see the recurrent connection that makes it persists in memory), and
resets it when a # is input (see the -1 connection from the top input cell).

4.3.2 AT LEAST n

In this task, each si is made of zero or more 0’s, and of n or more 1’s: at each time step, the next
input is 0 or 1 with equal probability if the current si has fewer than n 1’s, and it is 0, 1 or # if there
are exactly n 1’s already, also with equal probability. The order of the 0’s and 1’s is thus random.
For ‘at least 3’, for example, one possible si would be 01010110010.

The model trained on sequences of length 200, 500, and 1,000, and tested on a single unseen se-
quence of length 1,000. For n = 1, the MDL learner achieves a test cross-entropy of 1582, 1458,
1346 for the three training sets (lowest possible cross-entropy is 1345). Against the RNN alterna-
tives, the networks are ranked 2/13, 3/13, 1/13. Fig. 3(a) shows the network found for n = 1 and the
largest training set.

4.3.3 BETWEEN m AND n

Here each si has zero or more 0’s, and between m and n 1’s: at each time step, the next input is 0 or
1 with equal probability if the current si has less than m 1’s, it is 0, 1 or # if there are between m
and n − 1 1’s already, also with equal probability, and it is 0 or 1 if the number of 1’s has reached
n. The order of the 0’s and 1’s is thus random. For ‘between 3 and 6’, for example, one possible si
would be 01010110010.

This was tested with (m,n) = (3, 6). The model trained on sequences of length 100, 200, 500, and
1,000, and tested on an unseen sequence of length 1,000. The MDL learner achieves a cross-entropy
of 1580, 1394, 1175, 1176 for the four training sets (lowest possible cross-entropy is 1159). Against
the RNN alternatives, the MDL networks are ranked 1/13, 2/13, 1/13, 1/13. Fig. 3(b) shows the
network found for the largest training set.

(a)

x0t Relu

Linear

1.0

x1t Linear

x#t

Sigmoid
-8.0

P t+1 ("1")Sigmoid

P t+1 ("0")Sigmoid

P t+1 ("#")

-2.0

(b)
x0t Linear

x1t Linear

Relu

-0.3

x#t

 1.0

Sigmoid-16.0

P t+1 ("1")Sigmoid

P t+1 ("0")Sigmoid

P t+1 ("#")

Figure 3: The network found by the MDL learner for (a) the at least 1 task and (b) the between 3 and 6 task
for the largest training set.

5

Under review as a conference paper at ICLR 2021

4.3.4 anbn

Here, each si belongs to the context-free language anbn, where n ≥ 0. In order to recognize the
language, an unbounded counter needs to be developed.

When generating the sequences, the next character is a with probability .9; after a series of a’s the
sequence switches to b’s with probability .1, and all remaining symbols are deterministically fixed
by the fact that we aim for an anbn# sequence.

The model trained on sets consisting of 10 or 100 sequences and tested on an unseen set of 1,000
sequences. The MDL learner achieves a test cross-entropy of 9829 and 4755 for the two training
sets (lowest possible cross-entropy is 4680). Against the RNN alternatives, the networks are ranked
4/13 and 1/13. In Fig. 4(a) we show the network found for the larger training set.

4.3.5 anbncn

Each si belongs to the context-sensitive language anbncn, where n ≥ 0. In order to succeed, the
network needs to keep in memory the number of a’s seen so that it can deterministically predict
the moment to switch from b’s to c’s, and from c’s to the end of sequence symbol. The model
was trained on sets consisting of 10 or 100 sequences, randomized similarly to the previous task.
The final network was tested on an unseen set of 1,000 sequences. Fig. 4(b) shows the network
found for the larger training set. In Appendix C, we show more precisely that the network assigns
a probability of .91 or above to the correct output at any deterministic time step,4 for any value
of n. The MDL learner thus achieves a stable accuracy of 100% (on the test set and in fact for
any relevant sequence), and a test cross-entropy of 4987 (when the lowest possible cross-entropy is
4680). Against the RNN alternatives, the network is ranked 3/13.

(a)

xat Linear Linear-3.0

xbt Linear

1.0

Sigmoid-16.0

6.0

x#t Sigmoid Sigmoid-6.0

P t+1 ("a")

P t+1 ("b")

P t+1 ("#")

1.0

(b)

xat Linear
Square

0.25

Linear

-5.00

xbt Linear

-0.50

Sigmoid

-16.00

2.67

xct Linear -16.00

-0.17

Square

0.03

x#t Linear

P t+1 ("a")

P t+1 ("b")

P t+1 ("c")

1.00

P t+1 ("#")

Figure 4: The network found by the MDL learner for (a) the anbn, and (b) the anbncn task for the largest
training set. In (a), the bottom right cell takes care of the counting: it decreases at each new input a (by
increments of 3), and decreases at each new increment of b (by increment of 3: +6 directly from the middle
input cell and -3 indirectly through the bottom left input cell). In network (b), the self-loop cell handles counting
of all three symbols, first by decreasing by the number of a’s, then increasing for each b, then decreasing again
for c’s; the output cell values at each time step align with the counter’s value to create the correct probability
distribution.

4The end of the initial sequence of a’s cannot be deterministically predicted.

6

Under review as a conference paper at ICLR 2021

4.4 OVERVIEW OF THE RESULTS

Task Optimal
cross-entropy

MDL
cross-entropy

Best RNN,
no. hidden units

Best RNN
cross-entropy

MDL rank
vs. RNN

Exactly 1 997 997.2 Elman, 2 1009 1/13
At least 1 1345 1346 Elman, 2 1366 1/13
Between 3-6 1159 1176 GRU, 2 1178 1/13
anbn 4680 4755 LSTM, 4 4805 1/13
anbncn 4680 4987 LSTM, 128 4830 3/13
Addition 0 173 Elman, 4 9050 1/13

Table 1: Results overview: cross-entropy and ranking of the MDL learner compared to the RNN
alternatives (here for the largest training set in each task, see details in Appendices E and F).

Table 1 provides an overview of the results, full details are given visually in Appendix E and numer-
ically in Appendix F. As illustrated in the figures above, the networks that the MDL learner finds are
sufficiently small and transparent that their workings can be inspected directly. In each case, this
network expresses a pattern that is either identical to the one that was used to generate the corpus or
is very close to it.

Not surprisingly, this translates to good performance in terms of cross-entropy. Even though the
learner did not attempt to optimize cross-entropy directly, the cross-entropy of the MDL network
is close to the entropy of the true distribution across several corpus sizes. Sometimes the two are
almost the same, but even when this is not the case the MDL network performs no worse (and
typically much better) than the random baseline.

Things are different with the comparison RNNs from the literature. These networks are large and
opaque, and they perform unreliably: occasionally one of them performs well for a particular corpus
size, but others will typically perform much worse than chance, and which architecture does what
can change significantly for the next corpus size or the next task. Overall, the MDL learner performs
best on the test set in 21 of the 40 tasks and training conditions presented here,5 while the next best
learner wins only 7 of the remaining tasks.

To the extent that we can identify a trend in the performance of the RNNs it is that the best per-
formance generally comes from small networks, with few hidden units (for 26 tasks out of 40, the
winner among the RNNs has 2 hidden units, the minimal number possible here). Smaller networks
may perform worse than bigger ones on the training corpus, but they generalize better and perform
better at test.6 This is of course in line with the intuition behind our own learner and the MDL
approach more broadly.

5 CASE STUDY: GENERAL ADDITION

Recent advancements in large-scale language models such as GPT-3 (Brown et al., 2020) have
brought attention to the capability of such models to generalize as opposed to memorize. One partic-
ular test case is that of general addition, which humans tackle with relative ease using few examples,
but that is not picked up in full generality by any deep learning learner to our knowledge.7,8

5Even in cases where the MDL learner is not the winner its cross-entropy is close to that of the winner or to
the optimal baseline; in fact, sometimes the RNN winner has a cross-entropy below that of the optimal baseline,
which makes it a suspicious winner.

6As a result, it means that picking the right RNN architecture is not an easy task (without a tripartite
training/dev/test set), and performance at training is not a good predictor of performance at test.

7In other people’s words: “As far as I know there is no neural network that is capable of doing basic
arithmetic like addition and multiplication on a large number of digits based on training data rather than hard-
coding.”, Kevin Lacker, ‘Giving GPT-3 a Turing Test’.
https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

8GPT-3, one of the most recent and ambitious models, succeeds at many tasks but not quite addition: “One
particularly interesting case is arithmetic calculation: the model gives a perfect score for 2-digit addition and

7

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

Under review as a conference paper at ICLR 2021

In the setting we explore, the network is fed with sequences of pairs of binary digits, representing
the digits of two binary numbers to be added up. The output at each step is the corresponding digit
of the sum of these two numbers. With a small training set of all pairs of integers up to 10 (total 100
samples), the MDL learner fails because in some cases it predicts a categorical probability (a plain
0 or 1) for the wrong output. With a larger training set of 400 samples (all pairs up to 20), the MDL
learner develops the network given in Fig. 5. The network achieves 100% accuracy on any test set,
with cross-entropy 173 compared to an optimal 0.

Digit 1 Linear

Square

1.0

Digit 2

Linear

1.0

Sigmoid

7.0

P(1)

1.0

-4.0
-16.0

Figure 5: The network found by the MDL learner for the addition task, trained on 400 pairs of numbers. The
first digit is added to the second digit, and the sum is squared in place. Next, a hidden cell (in yellow) with a
recurrent connection was evolved to take care of the carry-over. The network reaches 100% accuracy on a test
set consisting of all pairs of numbers up to 250, and is in fact provably correct for any arbitrary pair of numbers.

Here again, this network is quite transparent. In short, the output hn of the hidden cell (in
yellow) at any given time step n corresponds to the carry-over. (With in and jn the inputs,
hn = sigmoid(7(in + jn + hn−1)

2 − 16), and this goes to 1 — that is, there is a carry-over —
if the sum of the inputs and the carry-over from the previous time step is large enough). In Ap-
pendix D, we show more precisely that the network assigns a probability of .999 or above to the
correct output under all circumstances.

Again, the task is learned very well and in a readable fashion. None of the comparison RNNs that
we consider do as well, coherent with observations made above. To our knowledge no other RNN
has been proven to hold a carry-over in memory for an unbounded number of digits, i.e. to perform
general addition of any arbitrary pair of numbers.

6 CONCLUSION

We presented a learner, building on several different lines of work in the literature, that traverses a
complex space of RNNs varying in both weights and architectures, in search of the network that has
the minimal description length. We tested our learner on a range of sequential tasks and compared it
to various RNNs from the literature. We found that our learner arrived at networks that are reliably
close to the true distribution across tasks and corpus sizes. In fact, in several cases the networks
achieved perfect scores. Moreover, the networks lent themselves to direct inspection and showed
an explicit statement of the pattern that generated the corpus. The RNNs from the literature, on the
other hand, were not just opaque but also generally performed much less reliably on the test corpora.

In current work we attempt to extend the present paper in several directions. For example, we are
extending the range of generating patterns for our corpora, including dependencies from linguistic
domains not considered here, such as phonotactic patterns. We are also considering training cor-
pora that are more challenging than the ones used here in terms of size (using training corpora that
are even smaller than the ones used here), noise (corrupting the training corpus using various noise
patterns), and generating distribution (deviating from the simple generating distributions used here,
which supported a direct comparison of simulation results with the true distribution but are overly
simplistic). We are also working on extending the learner in terms of allowable units and connec-
tions. An obvious question is whether the GA search can be sufficiently efficient to support MDL,
at least on relatively small corpora; we take the current results as encouraging in in this regard.

subtraction (100% accuracy), but fails to do five digits (less than 10% accuray).” Chuan Li, ‘Demystifying
GPT-3’. https://lambdalabs.com/blog/demystifying-gpt-3/

8

https://lambdalabs.com/blog/demystifying-gpt-3/

Under review as a conference paper at ICLR 2021

More formally, we estimate that the computational power needed to train an MDL learner should
not exceed that of a regular RNN through backpropagation.9

Beyond these technical extensions, we are interested in connecting the present work more tightly
with experimental results on parallel human biases and generalization preferences. MDL predicts
very inclusive generalizations for small training corpora, with a narrowing as the corpus grows. Non-
regularized RNNs do not make this prediction, and standard regularization schemes, which lower
the values of weights but not the number of units, still predict time courses for generalization that
differ from those of MDL. Another way to put it is: different learners come with different biases,
biases which ought to be more visible with small training sets, and one question is how these biases
relate to those of human learners. This question can be asked experimentally by looking at how
human subjects generalize from very small corpora (see, e.g., Xu & Tenenbaum, 2007 for such a
comparison in a slightly different setting). Beyond the comparison of MDL with alternatives that do
not rely on a similar balance between simplicity and goodness of fit, we would like to explore a more
detailed kind of comparison within the family of MDL models. Since the MDL score depends on
the primitives that are provided and their given costs, it is possible to reason about different choices
of primitives and costs in view of human generalization (see Piantadosi et al., 2016).

REFERENCES

Panagiotis Adamidis. Review of parallel genetic algorithms bibliography. Aristotle Univ. Thessa-
loniki, Thessaloniki, Greece, Tech. Rep, 1994.

Fardin Ahmadizar, Khabat Soltanian, Fardin AkhlaghianTab, and Ioannis Tsoulos. Artificial neural
network development by means of a novel combination of grammatical evolution and genetic
algorithm. Engineering Applications of Artificial Intelligence, 39:1–13, 2015.

P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evolutionary algorithm that constructs recurrent
neural networks. IEEE Transactions on Neural Networks, 5(1):54–65, 1994.

Jon Barwise and Robin Cooper. Generalized quantifiers and natural language. Linguistics and
Philosophy, 4:159–219, 1981.

Robert C. Berwick. Locality Principles and the Acquisition of Syntactic Knowledge. PhD thesis,
MIT, Cambridge, MA, 1982.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165
[cs], July 2020. URL http://arxiv.org/abs/2005.14165. arXiv: 2005.14165.

Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et sys-
tems repartis, 10(2):141–171, 1998.

Gregory J. Chaitin. On the length of programs for computing finite binary sequences. Journal of the
ACM, 13:547–569, 1966.

Carl de Marcken. Unsupervised Language Acquisition. PhD thesis, MIT, Cambridge, MA, 1996.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

Adam Gaier and David Ha. Weight agnostic neural networks. CoRR, abs/1906.04358, 2019.

F.A. Gers and E. Schmidhuber. LSTM recurrent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333–1340, November 2001.
ISSN 1941-0093. doi: 10.1109/72.963769. Conference Name: IEEE Transactions on Neural
Networks.
9Our MDL learner is trained over 1000 generations, each with 2000 individuals, with a single feedforward

pass for each. Overall, this represents 2M feedforward passes, with no backpropagation step and presumably
significantly smaller networks (so, faster feedforward passes).

9

http://arxiv.org/abs/2005.14165

Under review as a conference paper at ICLR 2021

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen. Higher order
recurrent networks and grammatical inference. In D. S. Touretzky (ed.), Advances in Neural
Information Processing Systems 2, pp. 380–387. Morgan-Kaufmann, 1990.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Foundations of genetic algorithms, volume 1, pp. 69–93. Elsevier, 1991.

V Scott Gordon and Darrell Whitley. Serial and parallel genetic algorithms as function optimizers.
In ICGA, pp. 177–183, 1993.

Peter Grünwald. A minimum description length approach to grammar inference. In Stefan Wermter,
Ellen Riloff, and Gabriele Scheler (eds.), Connectionist, Statistical and Symbolic Approaches to
Learning for Natural Language Processing, Springer Lecture Notes in Artificial Intelligence, pp.
203–216. Springer, 1996.

John H Holland. Adaptation in natural and artificial systems. an introductory analysis with applica-
tion to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press,
pp. 439–444, 1975.

James Horning. A Study of Grammatical Inference. PhD thesis, Stanford, 1969.

Henrik Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review. Neural
Computation, 17(6):1223–1263, 2014/07/01 2005.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference of Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Andrei Nikolaevic Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission (Problemy Peredachi Informatsii), 1:1–7, 1965.

Ming Li and Paul Vitányi. Chapter 1.4, Binary Strings. In An Introduction to Kolmogorov Com-
plexity and Its Applications, Texts in Computer Science. Springer New York, New York, NY,
2008. ISBN 978-0-387-33998-6 978-0-387-49820-1. doi: 10.1007/978-0-387-49820-1. URL
http://link.springer.com/10.1007/978-0-387-49820-1.

Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing Neural Networks using Genetic
Algorithms., volume 89. 1989.

David J Montana and Lawrence Davis. Training feedforward neural networks using genetic algo-
rithms. In IJCAI, volume 89, pp. 762–767, 1989.

Denis Paperno. Learnable classes of natural language quantifiers: Two perspectives. Ms., UCLA,
December 2011.

Nicolas Papernot and Patrick McDaniel. Deep k-Nearest Neighbors: Towards Confident, Inter-
pretable and Robust Deep Learning. arXiv:1803.04765 [cs, stat], March 2018. URL http:
//arxiv.org/abs/1803.04765. arXiv: 1803.04765.

Steven T. Piantadosi, Joshua B. Tenenbaum, and Noah D. Goodman. The logical primitives of
thought: Empirical foundations for compositional cognitive models. Psychological review, 123
(4):392–424, 07 2016.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

Jürgen Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high general-
ization capability. Neural Networks, 10(5):857–873, 1997.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61(0):
85–117, 2015.

Ray J. Solomonoff. A formal theory of inductive inference, parts I and II. Information and Control,
7(1 & 2):1–22, 224–254, 1964.

10

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://link.springer.com/10.1007/978-0-387-49820-1
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765

Under review as a conference paper at ICLR 2021

Andreas Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis, University of
California at Berkeley, Berkeley, California, 1994.

Hans-Joerg Tiede. Identifiability in the limit of context-free generalized quantifiers. Journal of
Language and Computation, 1(1):93–102, 1999.

Qinglong Wang, Kaixuan Zhang, Alexander G. Ororbia II, Xinyu Xing, Xue Liu, and C. Lee Giles.
An empirical evaluation of rule extraction from recurrent neural networks. Neural Computation,
30(9):2568–2591, 2020/06/12 2018.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
using queries and counterexamples. In Proceedings of the 35th International Conference on
Machine Learning, 2018.

D Whitley, T Starkweather, and C Bogart. Genetic algorithms and neural networks: optimizing
connections and connectivity. Parallel Computing, 14(3):347–361, 1990.

Fei Xu and Joshua B. Tenenbaum. Word learning as Bayesian inference. Psychological review, 114
(2):245–272, 2007.

Byoung-Tak Zhang and Heinz Mühlenbein. Evolving optimal neural networks using genetic algo-
rithms with Occam’s Razor. Complex Systems, 7(3):199–220, 1993.

Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsimony in genetic program-
ming. Evolutionary Computation, 3(1):17–38, 2020/07/11 1995.

A NETWORK ENCODING

A network consists of U units, U activation functions specified for each unit, and C connections
(including bias connections). In order to represent a network as a binary string, the following serial-
ization scheme is used.

A.1 NODES

The number of nodes in the network affects its overall encoding length both explicitly and implicitly
when it is used to encode other components: node numbers are used when specifying connection
sources and targets, and so larger numbers require more space; and more nodes require more activa-
tion functions to be specified.

Since the number of nodes varies from network to network, their string representation cannot be
of fixed length. To ensure unique readability of a network from its string representation we use a
prefix-free code.

Here and throughout this section we encode integers into bit-strings using the prefix-free encoding
from Li & Vitányi (2008):

E(n) = 11111...1111︸ ︷︷ ︸
Unary encoding of log2n

0︸︷︷︸
Separator

1010...010︸ ︷︷ ︸
log2n︸ ︷︷ ︸

n

Thus for an integer n its encoding length would be 2dlog2ne+ 1, and the total encoding length for
all units in a network would be U(2dlog2ne+ 1).

A.2 ACTIVATIONS

For a set of A possible activation functions and U units, the encoding cost for specifying all ac-
tivations is Udlog2Ae. Since A is constant throughout the simulation no prefix-free encoding is
needed.

11

Under review as a conference paper at ICLR 2021

A.3 WEIGHTS

To simplify the representation of weights in neural networks and to make it easier to mutate weights
incrementally in the genetic algorithm, we represent each weight as a fraction made of a sign
(plus/minus) and integer numerator and denominator:

±N
D

This can be serialized into bits using the following conversion and the integer encoding scheme
presented above. For example, the weight wij = + 2

5 would be represented as:

1︸︷︷︸
+

E(2) = 10...10︸ ︷︷ ︸
2

E(5) = 1110...11︸ ︷︷ ︸
5︸ ︷︷ ︸

wij

And its encoding length |wij | would be the sum of:

• 1 bit for the sign.

• 2dlog2Ne+ 1 bits for the numerator

• 2dlog2De+ 1 bits for the denominator.

A.4 CONNECTIONS

A connection cij consists of a source unit i, a target unit j and a weight wij . It can thus be encoded
as:

E(i)E(j) 0/1E(Nij)E(Dij)︸ ︷︷ ︸
wij︸ ︷︷ ︸

cij

A.5 EXAMPLE

We’ll encode the following network which consists of three units, two connections, and two weights:
1
2 = 0.5 and 2

1 = 2.0.

Linear

Sigmoid

0.5

Linear

2.0

The final representation for this network is:

Note that E(U) is prefixed to the string to make it possible to parse the activation part correctly.

12

Under review as a conference paper at ICLR 2021

11011︸ ︷︷ ︸
E(3)

00︸︷︷︸
lin

00︸︷︷︸
lin

10︸︷︷︸
sig

00..11︸ ︷︷ ︸
c0,2

01..01︸ ︷︷ ︸
w0,2

101..011︸ ︷︷ ︸
c1,2

0..11︸︷︷︸
w1,2︸ ︷︷ ︸

Encoded Network

B GENETIC ALGORITHM

The genetic algorithm implementation for our model comprises three main components: a popula-
tion representation scheme, a selection scheme and a recombination scheme. We describe here the
implementation choices made for each component.

The algorithm is initialized by creating a population of N random neural networks. Each network is
initialized by randomizing the following parameters: number of hidden units, activation function for
each unit, the set of forward and recurrent connections between the units, and the weights of each
connection. In order to avoid an initial population that contains mostly degenerate (specifically,
disconnected) networks, output units are forced to have at least one incoming connection from an
earlier unit.

The number of hidden units and the weight numerators and denominators are randomized from a
geometric prior (p = 0.5) to reflect their fitness based on the MDL metric.

The algorithm is run for g generations, where each generation involves a selection step followed
by a recombination step. During selection, networks compete for survival on to the next generation
based on their fitness. A network’s fitness is the inverse of its MDL score. We use Tournament
Selection (Goldberg & Deb, 1991), a selection method which approximates exhaustive ranking of
the population by selecting random subsets of the population of size t and then selecting the best
individual from each subset; this process is repeated N times to select a new population with repeti-
tions. The approximate nature of tournament selection prevents premature convergence by allowing
less-than-optimal individuals to survive, and at the same time alleviates the computational load of
the selection step by lowering its run time from O(NlogN) to O(N).

Out of the selected population, N offspring networks are created through either mutation or
crossover with other networks. A network is mutated using one of the following operations:

1. Add/remove a unit.
2. Add/remove a forward or recurrent connection between two units.
3. Mutate a connection by incrementing/decrementing its weight’s numerator or denominator,

or by flipping its sign.
4. Replace a unit’s activation function with another.

These mutations make it possible to grow networks and prune them when necessary, and to poten-
tially reach any architecture that can be expressed using our building blocks.

Two networks can also be crossed-over to create an offspring network, potentially allowing networks
who perform well on different aspects of the task to share their ‘genes’ and create a network that
performs as well as its two parents combined. We cross-over two parent networks by constructing
a network which feeds the two networks in parallel and averages their outputs. While this creates a
larger network which is penalized by the |G| term, this has the potential to create an offspring which
performs better than its parents on the |D : G| term and can be pruned later. Networks are randomly
selected for mutation and crossover by probabilities pmutation and pcrossover.

On top of the basic genetic algorithm we use the Island Model (Gordon & Whitley, 1993; Adamidis,
1994; Cantú-Paz, 1998) which divides a larger population into ‘islands’ of equal size N , each run-
ning its own genetic algorithm as described above. Once every minterval generations, a migration
step occurs during which themratio top networks of each island are sent to another island in a round-
robin fashion. At the receiving island, the lowest-ranking networks are replaced with the incoming
migrants. The island model makes it possible to parallelize the algorithm by running each island
on a different processor, while also mitigating against premature convergence, which often occurs
when using large populations.

13

Under review as a conference paper at ICLR 2021

The simulation ends when all islands complete g generations and the best network from all islands
is taken as the solution.

All simulations reported in this paper use the following hyper-parameters:10

• N = 2, 000

• islands = 72

• pmutation = 0.9

• pcrossover = 0.1

• g = 1, 000

• t = 4

• mratio = 0.1

• minterval = 20

C PROOF THAT THE NETWORK FOUND FOR anbncn IS ACCURATE

The table below shows the activation values of output units and the respective probabilities of each
output class (columns) after the network is fed with one of the possible sequence inputs (rows).

Given a valid anbncn sequence, it can be seen that the accuracy is 100% (except for the last of the
A’s, where the prediction is probabilistic) and that confidence is over 91% in all cases (for n = 1;
for n >= 2 confidence rises, at 95% for n = 2).

Inputs / Outputs A B C #
1/2 0 0 0 (activations)

1 0 0 0 (probabilities)
kth A 1/2 1/16 -5k 0 (activations)

8/9 1/9 0 0 (probabilities)
kth B sig(-16) 1/64 5(k-n)+.17k 0 (activations)

(k < n) .000007 0.999993 0 0 (probabilities)
nth B sig(-16) 1/64 .17n 0 (activations)

< 10−6 < 0.085 > .91 0 (probabilities)
kth C sig(-16) 0 .17(n-k) 0.009 (activations)

(k < n) < 10−6 0 > .0.994 < 0.0053 (probabilities)
nth C sig(-16) 0 0 0.009 (activations)

0.000125 0 0 0.999875 (probabilities)

D PROOF THAT THE NETWORK FOUND FOR ADDITION IS ACCURATE

Consider the network in Fig. 5. Call in and jn the inputs at a time step n, hn the output of the
hidden cell (in gray) and on the output of the output cell.

At every time step n, (i) hn is the carry-over (0 or 1), with a margin for error for this carry-over of
εco = .0013 (that is, hn is in [0, εco] if the carry-over is 0, and in [1− εco, 1] if the carry-over is 1;

(ii) on is correct with a margin of error ε = .001, that is on is below .001 if the nth digit of the sum
is 0, and above .999 if it is 1.

Proof. Note first that the network is such that:

• hn = sigmoid(7xn
2 − 16),

• on = xn
2 − 4sigmoid(7xn

2 − 16),

10All simulations ran on AWS c5.18xlarge machines with 72 vCPUs each (3.0 GHz Intel Xeon).

14

Under review as a conference paper at ICLR 2021

• with xn = in + jn + hn−1.

From there, the theorem is proven by induction. The initialization step can be easily checked (NB:
h−1 is set to 0 by convention). Suppose the result holds for n. Then: xn+1 ∈ [0, εco] ∪ [1− εco, 1 +
εco] ∪ [2− εco, 2 + εco] ∪ [3− εco, 3].

The fact that the result holds at the next time step n + 1 can be proven graphically (it can also be
proven analytically, e.g., using the continuity and local monotonicity of the relevant functions):

• The left hand side of the following graph shows that hn+1 stays within error margin εco =
.00013, and takes the appropriate value: in binary notation, the carry-over should be 0 if
xn+1 (the sum of the current inputs and the carry-over) is 0 or 1, and should be 1 if xn+1

is 2 or 3.

• The right hand side shows that on+1 is correct and stays within the error margin ε = .001:
on+1 should be 0 if xn+1 is 0 or 2 (a null unit digit here because 2 is 10 in binary notation),
and 1 if xn+1 is 1 or 3 (in binary notation: 1 and 11).

E CROSS-ENTROPY

15

Under review as a conference paper at ICLR 2021

Figure 6: Cross-entropy of different learners across all the tasks presented here. For easier visualization, the
cross-entropy is normalized (divided) by the cross-entropy of a learner predicting uniform probability for all
outputs. At the other extreme, the green line represents an optimal baseline as the cross-entropy of a learner
which would have captured the underlying task perfectly well. The gray lines represent the various RNN
competitors, and the blue line is the MDL learner. The x-axis distributes the various tasks (identity, previous
character, addition, exactly n, at least n, between m and n, anbn, anbncn), for increasing sizes of the training
set. Corresponding numbers are given in Appendix F.

16

Under review as a conference paper at ICLR 2021

F FULL RESULTS

17

Under review as a conference paper at ICLR 2021

N
et

w
or

k
E

lm
an

ce
lls

G
R

U
ce

lls
L

ST
M

ce
lls

M
D

L
O

pt
im

al
U

ni
fo

rm
U

ni
ts

2
4

32
12

8
2

4
32

12
8

2
4

32
12

8
le

ar
ne

r
ba

se
lin

e
ba

se
lin

e
C

or
pu

s
Se

q.
le

ng
th

id
en

tit
y

10
18

.9
2

42
.8

6
54

21
.9

0
95

57
.2

4
11

89
.2

6
16

36
.5

4
20

40
.6

9
82

8.
09

14
9.

06
23

1.
71

39
64

.3
0

85
08

.8
0

0.
00

0.
00

10
00

.0
0

20
4.

89
1.

50
22

21
.1

2
21

51
.7

6
3.

16
1.

87
77

.6
0

25
.6

9
9.

46
4.

00
23

66
.0

9
16

92
.3

4
0.

00
0.

00
10

00
.0

0
50

4.
30

1.
40

0.
50

0.
20

1.
13

1.
77

0.
40

0.
17

8.
48

3.
28

0.
18

19
9.

78
0.

00
0.

00
10

00
.0

0
10

0
4.

29
1.

40
0.

72
0.

03
17

.9
4

1.
81

0.
10

0.
04

8.
76

3.
26

0.
11

0.
54

0.
00

0.
00

10
00

.0
0

pr
ev

io
us

ch
ar

ac
te

r
10

20
.8

0
22

3.
79

79
33

.9
9

11
71

7.
89

13
.6

0
19

0.
95

75
22

.4
3

81
50

.1
9

48
49

.6
9

36
0.

39
96

96
.4

6
93

92
.7

9
0.

00
0.

00
10

00
.0

0
20

32
4.

20
1.

71
0.

17
34

18
.0

2
22

21
.6

9
0.

37
0.

81
5.

98
47

3.
52

11
66

.1
4

15
7.

72
51

48
.1

7
0.

00
0.

00
10

00
.0

0
50

12
.6

8
1.

83
0.

05
54

.3
8

7.
78

0.
60

0.
03

0.
02

10
9.

03
1.

40
0.

10
0.

14
0.

00
0.

00
10

00
.0

0
10

0
8.

51
1.

89
0.

05
0.

03
79

6.
60

1.
85

0.
03

0.
00

28
.9

4
1.

28
0.

06
0.

01
0.

00
0.

00
10

00
.0

0
ex

ac
tly

1
10

0
19

36
.6

0
36

48
.2

3
71

20
.3

0
70

33
.7

5
23

93
.9

8
50

70
.7

0
65

40
.8

6
74

06
.6

4
14

77
.4

6
50

63
.6

9
75

64
.8

7
89

18
.5

2
15

80
.2

1
99

7.
00

15
80

.2
1

20
0

10
04

.2
5

15
29

.6
5

85
08

.1
0

65
37

.5
5

13
38

.4
6

17
01

.0
6

62
24

.9
9

69
30

.5
4

13
85

.6
9

28
84

.9
5

52
36

.5
1

60
22

.0
9

12
92

.7
6

99
7.

00
15

80
.2

1
50

0
10

04
.1

0
51

92
.5

2
13

03
.1

9
14

39
.2

2
10

28
.3

9
11

58
.6

0
40

20
.9

1
57

67
.5

4
10

76
.3

3
13

09
.9

2
42

25
.8

5
30

34
.1

3
99

7.
24

99
7.

00
15

80
.2

1
10

00
10

08
.7

1
10

34
.1

7
27

45
.2

1
14

46
.7

9
10

27
.2

5
10

12
.2

9
43

97
.1

0
46

53
.3

9
10

33
.2

3
10

76
.2

2
23

12
.8

4
18

05
.7

7
99

7.
25

99
7.

00
15

80
.2

1
ex

ac
tly

3
10

0
16

26
.2

3
43

39
.5

5
58

33
.0

4
46

89
.5

0
68

06
.2

4
52

47
.5

9
74

76
.0

4
65

01
.1

0
47

90
.3

7
54

15
.7

9
60

02
.0

6
63

09
.5

5
∞

99
5.

00
15

77
.0

4
20

0
15

10
.1

9
21

08
.4

4
86

23
.2

3
75

09
.5

9
40

70
.2

1
21

24
.0

6
63

91
.0

1
84

21
.0

4
12

34
.3

6
20

23
.6

0
48

02
.4

5
78

55
.5

1
14

18
.9

3
99

5.
00

15
77

.0
4

50
0

11
25

.4
3

10
59

.3
8

25
96

.0
1

71
56

.3
6

99
9.

80
11

52
.3

7
40

15
.5

4
62

93
.6

2
11

08
.5

0
11

65
.1

7
43

54
.3

6
66

48
.5

7
12

21
.3

9
99

5.
00

15
77

.0
4

10
00

10
95

.0
0

99
9.

37
34

07
.0

4
10

70
.4

0
10

07
.4

6
10

16
.0

6
27

85
.5

3
66

26
.9

6
10

62
.6

0
10

48
.4

6
26

75
.7

8
22

40
.4

0
10

46
.2

0
99

5.
00

15
77

.0
4

ex
ac

tly
5

10
0

29
27

.7
0

33
88

.2
2

90
85

.4
6

75
58

.9
8

36
36

.1
7

62
39

.0
0

84
62

.7
8

81
84

.3
9

45
26

.1
7

62
23

.9
7

78
62

.8
1

15
39

4.
40

15
67

.5
3

98
9.

00
15

67
.5

3
20

0
12

33
.9

7
15

98
.1

3
94

47
.0

6
70

53
.7

8
17

83
.4

8
16

75
.7

5
68

57
.7

4
86

84
.4

1
18

24
.8

5
25

43
.3

5
89

53
.0

4
82

05
.1

4
13

26
.8

9
98

9.
00

15
67

.5
3

50
0

11
33

.3
3

10
89

.9
1

59
24

.1
8

12
76

.6
1

15
43

.7
3

14
17

.1
2

30
32

.4
4

60
49

.2
6

10
51

.4
0

12
33

.2
4

24
23

.6
5

70
73

.0
5

11
70

.4
2

98
9.

00
15

67
.5

3
10

00
11

06
.6

3
10

62
.3

9
23

48
.2

4
13

09
.8

7
10

12
.5

4
10

77
.1

5
51

09
.8

0
54

04
.9

5
11

08
.7

9
10

27
.1

6
28

91
.9

7
20

16
.9

3
11

47
.8

3
98

9.
00

15
67

.5
3

at
le

as
t1

20
0

15
69

.1
1

25
71

.8
1

11
89

0.
30

86
42

.9
9

17
05

.3
8

35
90

.8
2

86
30

.2
5

95
28

.6
9

21
78

.1
2

27
73

.0
0

80
13

.3
7

84
05

.0
9

15
81

.7
9

13
45

.4
7

15
81

.7
9

50
0

13
63

.7
9

13
73

.4
1

28
94

.9
6

17
01

.0
5

14
76

.2
6

18
99

.2
4

63
57

.6
4

86
43

.2
5

14
69

.0
0

25
08

.9
6

39
39

.2
0

84
20

.1
0

14
58

.3
7

13
45

.4
7

15
81

.7
9

10
00

13
65

.6
9

14
08

.9
6

16
26

.0
5

26
41

.6
3

13
85

.4
5

14
72

.7
4

60
44

.2
4

73
93

.2
1

13
67

.1
2

14
91

.1
0

59
29

.7
2

35
71

.6
2

13
45

.6
6

13
45

.4
7

15
81

.7
9

at
le

as
t3

20
0

15
68

.0
9

15
25

.0
5

58
18

.1
4

86
94

.2
5

22
85

.1
8

20
99

.2
8

74
30

.5
5

85
02

.0
3

16
76

.9
0

38
07

.1
7

58
76

.4
4

72
18

.7
2

13
95

.3
9

11
68

.4
1

15
69

.1
1

50
0

12
26

.4
6

13
50

.5
1

77
94

.0
8

33
19

.7
8

12
74

.5
8

13
40

.3
7

69
95

.6
8

82
27

.1
0

12
53

.0
7

14
48

.6
7

73
99

.7
1

79
12

.9
1

12
68

.7
3

11
68

.4
1

15
69

.1
1

10
00

12
05

.6
8

11
94

.5
2

13
60

.0
3

13
92

.7
8

11
86

.3
7

12
53

.5
2

60
00

.4
6

28
84

.1
6

12
54

.5
9

13
30

.4
9

12
31

.5
4

28
33

.4
7

12
30

.3
9

11
68

.4
1

15
69

.1
1

at
le

as
t5

20
0

14
02

.2
4

17
99

.6
9

84
24

.5
2

81
75

.3
9

15
68

.8
8

19
78

.7
4

10
26

5.
14

83
73

.9
2

25
73

.3
2

25
38

.9
5

47
19

.9
2

75
75

.5
0

13
27

.4
2

11
28

.4
5

15
81

.7
9

50
0

12
70

.1
2

13
45

.8
1

18
05

.5
7

51
41

.5
1

12
22

.6
2

12
99

.9
3

52
50

.6
3

73
94

.2
5

13
75

.8
4

23
81

.2
7

53
07

.6
4

64
69

.8
5

11
80

.4
7

11
28

.4
5

15
81

.7
9

10
00

11
64

.0
0

11
85

.6
5

17
81

.3
6

13
50

.1
0

11
49

.1
0

12
37

.5
4

13
46

.0
5

74
66

.9
1

11
45

.1
8

12
18

.5
4

13
91

.5
2

54
66

.4
4

11
80

.4
7

11
28

.4
5

15
81

.7
9

be
tw

ee
n

3
an

d
6

10
0

18
36

.7
0

27
46

.9
8

89
96

.1
9

71
73

.7
0

55
73

.2
6

50
79

.4
9

78
24

.9
1

10
19

8.
21

92
89

.4
9

48
38

.7
1

72
10

.7
0

95
92

.3
6

15
80

.2
1

11
59

.0
3

15
80

.2
1

20
0

13
51

.4
6

21
72

.3
3

21
90

.7
9

86
64

.1
6

14
42

.9
3

36
14

.4
6

71
21

.5
2

74
65

.8
1

19
72

.5
8

24
97

.0
2

66
67

.5
0

91
32

.1
1

13
94

.2
9

11
59

.0
3

15
80

.2
1

50
0

12
11

.8
1

13
21

.8
7

15
20

.8
5

66
11

.7
8

11
97

.8
6

15
52

.3
3

73
69

.4
5

42
11

.6
2

12
51

.4
7

14
68

.8
1

55
86

.0
3

62
34

.2
2

11
75

.2
4

11
59

.0
3

15
80

.2
1

10
00

11
95

.4
6

11
98

.3
1

13
58

.5
6

13
15

.8
4

11
77

.8
9

12
76

.2
1

18
76

.4
5

14
34

.9
2

12
23

.7
2

12
35

.9
1

17
69

.1
0

13
70

.3
9

11
76

.4
3

11
59

.0
3

15
80

.2
1

an
bn

10
86

33
.9

3
87

27
.4

0
95

88
.5

6
22

53
0.

83
95

27
.1

6
31

67
5.

99
40

10
7.

89
43

69
9.

78
50

56
.7

3
11

90
7.

65
26

50
9.

87
11

25
6.

88
98

28
.6

3
46

80
.3

8
33

08
4.

51
10

0
94

30
.5

5
89

01
.5

7
68

72
.1

3
79

40
.9

0
90

11
.9

9
90

91
.8

9
48

32
.3

3
49

60
.3

9
48

64
.9

6
48

04
.8

4
50

47
.3

4
48

40
.7

7
47

55
.0

0
46

80
.3

8
33

08
4.

51
an

bn
cn

10
21

24
1.

50
12

29
7.

35
17

04
6.

65
20

82
9.

44
14

32
1.

13
11

39
2.

14
35

05
2.

32
52

94
3.

52
11

15
8.

59
78

66
.5

5
96

24
.6

4
14

88
3.

77
14

55
0.

67
46

80
.3

8
61

62
2.

00
10

0
14

30
3.

12
13

55
8.

35
81

58
.2

0
90

77
.6

1
14

11
9.

33
85

33
.0

1
87

86
.4

9
55

63
.3

6
10

69
2.

51
54

85
.3

6
48

73
.2

4
48

30
.2

7
49

87
.3

8
46

80
.3

8
61

62
2.

00
ad

di
tio

n
10

17
07

72
.1

3
12

99
5.

85
14

02
15

9.
46

13
90

41
5.

74
15

09
62

.4
8

17
65

19
.8

8
14

03
42

1.
55

53
53

44
4.

56
21

45
53

.8
6

23
00

52
.0

6
70

03
51

.5
3

50
94

94
4.

62
∞

0.
00

62
50

00
.0

0
15

63
79

07
.9

9
87

94
.1

1
67

38
32

.6
3

85
14

65
.8

1
35

49
8.

85
16

95
85

.5
1

43
56

25
.7

4
21

12
94

7.
71

13
24

02
.7

7
14

37
8.

81
10

70
75

4.
46

28
94

08
1.

24
21

1.
20

0.
00

62
50

00
.0

0
20

16
43

12
.5

7
90

50
.1

9
33

57
96

.3
3

69
11

96
.1

9
75

52
8.

07
16

48
82

.9
9

68
91

9.
80

22
86

76
3.

79
40

19
35

.1
1

14
02

8.
54

56
78

13
.5

7
25

54
33

5.
21

17
3.

07
0.

00
62

50
00

.0
0

Ta
bl

e
2:

C
ro

ss
-e

nt
ro

py
of

di
ff

er
en

tl
ea

rn
er

s
ac

ro
ss

al
lt

he
ta

sk
s

pr
es

en
te

d
he

re
.T

he
w

in
ne

rw
ith

th
e

lo
w

es
tc

ro
ss

-e
nt

ro
py

(w
ith

ou
tc

on
si

de
ri

ng
th

e
hi

gh
an

d
lo

w
ba

se
lin

es
in

th
e

la
st

tw
o

co
lu

m
ns

,o
fc

ou
rs

e)
is

in
bo

ld
fo

re
ac

h
ta

sk
(r

ow
).

18

	Introduction
	Previous work
	Learner
	MDL
	Representations
	Search
	Input and output
	Illustration with elementary, deterministic tasks

	Artificial language-modeling experiments
	Setup
	Baselines
	Experiments
	Exactly n
	At least n
	Between m and n
	anbn
	anbncn

	Overview of the results

	Case study: general addition
	Conclusion
	Network Encoding
	Nodes
	Activations
	Weights
	Connections
	Example

	Genetic Algorithm
	Proof that the network found for anbncn is accurate
	Proof that the network found for addition is accurate
	Cross-entropy
	Full Results

