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ABSTRACT

Spiking Neural Networks (SNNis) offer an efficient framework for processing event-
driven data due to their sparse, spike-based communication, making them ideal
for real-time tasks. However, their inability to capture long-range dependencies
limits their effectiveness in complex temporal modeling. To address this challenge,
we present a SPLR (SPiking Network for Learning Long-range Relations), a
novel architecture designed to overcome these limitations. The core contribution
of SPLR is the Spike-Aware HiPPO (SA-HiPPQO) mechanism, which adapts the
HiPPO framework for discrete, spike-driven inputs, enabling efficient long-range
memory retention in event-driven systems. Additionally, SPLR includes a convo-
lutional layer that integrates state-space dynamics to enhance feature extraction
while preserving the efficiency of sparse, asynchronous processing. Together, these
innovations enable SPLR to model both short- and long-term dependencies effec-
tively, outperforming prior methods on various event-based datasets. Experimental
results demonstrate that SPLR achieves superior performance in tasks requiring
fine-grained temporal dynamics and long-range memory, establishing it as a scal-
able and efficient solution for real-time applications such as event-based vision and
sensor fusion in neuromorphic computing.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are an emerging paradigm in neuromorphic computing, offering
significant advantages in terms of energy efficiency, low latency, and event-driven processing. These
characteristics make SNNs particularly suitable for real-time applications such as event-based vision,
sensor fusion, and neuromorphic signal processing |[Roy et al.|(2019); |Davies et al.|(2018)); Rathi et al.
(2023)); [Frenkel et al.| (2021)). Unlike conventional deep learning architectures, SNNs leverage sparse,
spike-based communication to process data in an asynchronous and biologically inspired manner.
Despite these advantages, SNNs face fundamental limitations in modeling long-range temporal
dependencies. Specifically, the reliance on exponentially decaying membrane potentials in typical
spiking neuron models like Leaky Integrate-and-Fire (LIF) neurons leads to rapid loss of historical
information Bengio et al.[(1994)); Hochreiter & Schmidhuber| (1997); Neftci et al.|(2019); Bellec et al.
(2018)). This results in poor performance on tasks requiring retention of information over extended
sequences, such as gesture recognition, activity classification, and spatio-temporal reasoning.

Addressing this limitation in SNNs has been a longstanding challenge. Traditional approaches have
adapted techniques from recurrent neural networks (RNNs) and deep learning to the spike-based
domain, such as incorporating surrogate gradient methods or dense recurrent connections Wu et al.
(2018); |Shrestha & Orchard) (2018)). However, these methods often incur significant computational
costs, requiring frequent updates that are poorly aligned with the sparse, event-driven nature of SNNs.
Furthermore, these approaches fail to fully exploit the inherent advantages of spike-driven dynamics,
limiting their efficiency and scalability.

Recent advances in State-Space Models (SSMs) provide a promising framework for modeling long-
range dependencies. SSMs, such as the Structured State Space (S4) and Mamba models, excel in
encoding long-range state representations using continuous-time formulations |Gu et al.| (2020} 2022).
However, these models are typically designed for dense and synchronous systems, and their direct
integration into the discrete, asynchronous processing paradigm of SNNs has remained challenging.
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Specifically, the mismatch between continuous memory updates in SSMs and the event-driven nature
of SNNs leads to inefficiencies and incompatibilities (Gu et al.| (2021); [Hasani et al.| (2021)).

In this work, we propose SPLR (SPiking Network for Learning Long-Range Relations), a novel
SNN architecture that integrates spike-adapted state-space dynamics to effectively model both short-
and long-term temporal dependencies in event-driven systems. At the heart of SPLR is the Spike-
Aware HiPPO (SA-HiPPO) mechanism, which dynamically adapts continuous memory retention
frameworks for spike-based inputs, enabling efficient long-range memory retention while preserving
the sparsity and low latency of SNNs. The SA-HiPPO mechanism is seamlessly integrated into
the SPLR convolutional layer, which leverages state-space principles for efficient spatio-temporal
feature extraction.

The SA-HiPPO mechanism within the SPLR convolutional layer adapts continuous-time memory
retention for the sparse, asynchronous nature of SNNs by aligning memory updates with spike
timings through a dynamic decay matrix. This ensures robust long-term dependency modeling while
preserving computational efficiency. Building on this, the layer employs FFT-based convolutions
and low-rank approximations for scalable spatio-temporal feature extraction. Unlike conventional
frame-based methods, SPLR processes spikes event-by-event, maintaining temporal resolution and
reducing latency and computational overhead, enabling accurate, efficient event-driven processing for
tasks with complex temporal dependencies.

Our contributions are summarized as follows:

* SPLR Architecture: A novel SNN design that integrates spike-adapted state-space dynam-
ics to overcome the limitations of traditional SNNs in modeling long-range dependencies.

* Spike-Aware HiPPO (SA-HiPPO): An adaptation of the HiPPO framework for spike-
driven inputs, introducing dynamic memory retention mechanisms aligned with inter-spike
intervals.

* SPLR Convolutional Layer: A state-space-inspired convolutional layer combining FFT-
based operations and low-rank approximations for efficient spatio-temporal feature extrac-
tion in event-driven systems.

* Scalability and Efficiency: A unified architecture that achieves superior performance on
event-based benchmarks while maintaining computational efficiency, scalability, and low
latency for real-time applications.

2 RELATED WORKS

SSMs have emerged as a powerful framework for capturing long-range dependencies by encoding
state information over extended sequences|Gu et al.|(2020; [2022). However, while continuous-time
SSMs excel in dense and synchronous settings, adapting them to the sparse, asynchronous nature of
SNNSs poses significant challenges Gu et al.|(2021)); \Hasani et al.| (2021)). Existing solutions, such
as SpikingLMU [Liu et al.|(2024b) and BinaryS4D [Stan & Rhodes|(2024), attempt to address this
gap but fall short in fully leveraging the unique characteristics of SNNs. Spikingl.MU incorporates
Legendre Memory Units (LMUs) into SNNs for long-range dependency modeling but relies on
dense recurrent computations, which undermine the event-driven efficiency of SNNs. Similarly,
BinaryS4D integrates state-space dynamics into spiking architectures but employs floating-point
matrix multiplications, resulting in a hybrid model that deviates from the sparse, fully spiking
paradigm and incurs computational overhead, limiting its suitability for real-time applications.

One of the critical limitations in existing approaches is the inability to effectively handle the irregular
and sparse timing of spikes while maintaining efficient and robust long-range temporal modeling.
Continuous-time memory mechanisms like HiPPO |Gu et al.[(2020) have demonstrated success in
dense systems by optimizing memory retention over continuous sequences. However, their reliance
on continuous updates and dense matrix computations makes them ill-suited for asynchronous,
event-driven systems like SNNs.

To overcome these limitations, we propose the Spike-Aware HiPPO (SA-HiPPQO) mechanism, a
novel adaptation of HiPPO for spiking systems. SA-HiPPO introduces a dynamic decay matrix that
adjusts memory retention based on inter-spike intervals, allowing it to align memory updates with the
sparse and asynchronous nature of spike events. This innovation eliminates the need for dense updates,
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preserving the computational efficiency and latency advantages of SNNs while enabling robust long-
range temporal modeling. Unlike prior approaches, SA-HiPPO operates entirely in an event-driven
manner, making it uniquely suited for real-time neuromorphic applications such as dynamic vision
[Gehrig & Scaramuzza) (2024) and temporal reasoning (2024), where irregular timing and
low latency are critical. Event-driven systems in neuromorphic vision have explored hybrid strategies
that combine frame- and event-based approaches to process high-speed temporal data
[Scaramuzzal (2024); [Schone et al.| (2024). While these methods are effective for specific tasks, they
often fail to scale for long-range temporal dependencies in asynchronous data streams. Similarly,
dendritic-inspired models like DH-LIF Zheng et al.| (2024b)) improve temporal processing through
heterogeneous dynamics but introduce significant computational overhead, limiting their scalability
for large datasets and real-time applications.

Our proposed SA-HiPPO addresses these limitations by introducing a dynamic decay matrix that
adjusts memory retention based on inter-spike intervals. Unlike prior approaches, SA-HiPPO operates
entirely in an event-driven manner, aligning memory updates with the sparse and asynchronous nature
of spike events. This innovation preserves the computational efficiency and latency advantages
of SNNs while enabling robust long-range temporal modeling, making it particularly suitable for
real-time neuromorphic applications such as dynamic vision and temporal reasoning.

Table 1: Comparison of SPLR with prior methods, highlighting features like memory retention,
event-driven processing, scalability, efficiency, asynchronous updates, and adaptability.

Dynamic Event-Driven Scalable Low Fully Adaptability
Model Type Memory Processin Long-Range Computational Asynchronous to Sparse
Retention g Modeling Overhead Updates Data

SpikingLMU

(20241 SSM 4 X x x X v
BinaryS4D
Stan & Rhodes|(2024 SSM X X v x x X
HiPPO
2020 SSM X X v/ X X X
DH-LIF
Zheng et al.|(2024b SNN x v X X v X
ventMamba Hybrid
en et al. ( NN-SSM
2024]  CNN-SS x X 4 x X x
ventNet

(2024 Transformer X X v X v X

SpikeRWKV
2024 Transformer X v v x v v
2022 SSM X x v X X
PLR SSM-SNN v v v v v v

(Ours)

3 METHODS

The SPLR Model is designed to process asynchronous, sparse data in a biologically-inspired manner.
This model combines several novel components, including dendritic attention mechanisms and SSMs,
to efficiently handle event-based spiking inputs and capture long-range temporal dependencies. Figure
[[fa) provides a high-level architecture of the model. The Dendrite Attention Layer first extracts
spatio-temporal features from input spikes, which are then reduced spatially in the Spatial Pooling
Layer. The SPLR Convolution Layer captures temporal dynamics and long-range dependencies,
while the Spike-Aware HiPPO (SA-HiPPO) mechanism dynamically manages memory retention.
Finally, the Readout Layer aggregates information for downstream tasks.

1. Input Representation: The input to the model is represented as a sequence of spike events, each
defined by the tuple (x,y,t,p), where (z,y) are the spatial coordinates, ¢ is the timestamp, and p
is the magnitude or polarity of the spike. These events are streamed asynchronously, reflecting the
sparsity of the data.

2. Dendrite Attention Layer: The model begins by passing the input through the Dendrite Attention
Layer, constructed using DH-LIF neurons Zheng et al| (2024a), as shown in Figure [I(b). Each
DH-LIF neuron has multiple dendritic branches, each characterized by a different timing factor 74,
enabling it to capture temporal dynamics across various scales. This is essential for accommodating
the diverse timescales present in asynchronous spike inputs.
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Figure 1: Block diagram of the proposed model architecture. Input spikes are processed event-by-
event by the Dendrite Attention Layer, which extracts spatio-temporal features from local dendritic
branches. The Spatial Pooling Layer aggregates spikes, followed by SPLR Convolution and Layer-
Norm layers, which are repeated N times to enable hierarchical feature extraction and long-range
temporal dependency modeling.

The dynamics of the dendritic current i4(¢) are governed by:
id(t + ].) = Ozdid(t) + Z W;Dj,

jeNa

where oy = ¢ 7a is the decay rate for branch d, and w; represents the synaptic weight associated with
presynaptic input p;. The set N/, represents the presynaptic inputs connected to dendrite d, ensuring
that each dendrite captures temporal features independently, acting as a temporal filter. Unlike a
standard CUBA LIF neuron model, which integrates all inputs uniformly at the soma with a single
timescale, the dendritic attention layer introduces multiple dendritic branches, each independently
filtering inputs at different temporal scales. This design enables the neuron to selectively process
asynchronous inputs and retain information across diverse temporal windows, providing greater
flexibility and adaptability.

The dendritic currents from each branch are aggregated at the soma of the LIF neuron, resulting in
the membrane potential:
V(t+1) =BV (t)+ ) gala(t),
d

1
where 5 = e~ 7s represents the soma’s decay rate, and g, represents the coupling strength of dendrite
d to the soma. A spike is generated whenever the membrane potential exceeds a threshold Vi,
allowing the neuron to selectively fire only when sufficiently excited.

3. Spatial Pooling Layer: Following the dendritic attention layer, a Spatial Pooling Layer is
introduced to reduce the spatial dimensionality of the resulting output. Given the initial spike activity
I(x,y,t) at location (x,y), the pooling operation reduces spatial dimensions while preserving
temporal resolution:

1 2y t) = max I(x,y,t

pooled( Y, ) (:v,y)EP(z’,y’){ ( 'Y, )}7
where P(z',y’) is a pooling window centered at (z’,y"). Pooling reduces spatial complexity,
simplifying subsequent processing in the network while retaining key features. This is especially
useful for handling high-dimensional (HD) event streams, where the input contains large spatial areas.

4. SPLR Convolution Layer:

The Spiking Network with Long-term Recurrent Dynamics (SPLR) Convolution Layer is a
pivotal component of the SPLR model, tailored to process event-based spiking inputs .
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It captures long-range Table 2: Table showing the SPLR components and their roles
temporal dependencies
and  asynchronous  dy- Component Details

namics by integrating
the Spike-Aware HiPPO

Dendrite Atten- Key Contribution: Models multi-timescale dynamics in-

. ; tion Layer spired by biological dendrites.
(SA-HiPPO) mechanism, Role and Features: Aggregates spiking inputs from multiple
Normal Plus Low-Rank dendritic branches to enhance temporal robustness and filter
(NPLR) Decomposition, noise dynamically.
and Fast Fourier Trans- gpatial Pooling Key Contribution: Reduces spatial complexity while pre-
form (FFT) Convolution. Layer serving temporal features.
Together, these components Role and Features: Prevents spatial bottlenecks and extracts
enable efficient and scalable critical spatio-temporal features efficiently.
spatio-temporal ~ feature SPLR Convolu- Key Contribution: Combines SA-HiPPO, FFT, and NPLR
extraction for event-driven tion Layer for efficient spatio-temporal modeling.
systems (Figure Ekd)) Role and Features: Captures long-range dependencies with

low latency and high scalability.

Temporal Dynamics: = SA-HiPPO: Dynamic memory retention tailored for event-driven systems,
Spiking State-Space enabling robust temporal modeling by adapting memory re-

. _ tention to inter-spike intervals.
Model: Temporal depen = FFT Convo- Accelerated temporal modeling in the frequency domain, fa-

dengles are modeled UsINg & pytion: cilitating fast and efficient processing of high-dimensional
continuous-time State-space temporal data.

representation:
x(t) = A-x(t) + B-S(t),
y(t) = C-x(t),
where x(t) € RY is the internal state, S(¢) € R is the input spike train, and A, B, C are system
matrices. Each spike train S(t) is represented as S;(t) = ¥, 6(t — t¥), where 6(t) denotes the Dirac
delta function.

The Spike-Aware HiPPO (SA-HiPPO) (Figure[I[c)) mechanism adapts memory retention dynam-
ically using a decay matrix F(At), which depends on inter-spike intervals (At). Thus, the state
matrix Ag is modified as:

As=AoF(At), F;(At)=e i,

where o denotes the Hadamard (element-wise) product, At = ¢; — ¢; is the time difference between
spikes ¢ and j, and «;; is a decay parameter. The mechanism ensures that recent spikes have a
stronger influence on the hidden state, while older spikes decay exponentially, preserving stability
and responsiveness. State evolution operates in two modes: continuous dynamics and updates at
spike times. Between spikes, the state evolves as:

x(t) = Ag - x(1).
At spike times ty, the state is updated using:
X(tes1) = €252 x(ty,) + A (e84 1) - B S(ty,),

where Aty, = t,+1 — t.. For computational efficiency, the matrix exponential eAs2% is approximated
via a truncated Taylor series:

Ag? - (Aty)?

A 5 T4+ Ag - Aty + 5

Efficiency via NPLR Decomposition. To scale computations efficiently, the SPLR Convolution
employs Normal Plus Low-Rank (NPLR) Decomposition:

As=VAV'-PQ",
where V is a unitary matrix, A is diagonal, and P, Q are low-rank matrices with rank » << N. This

decomposition reduces matrix-vector multiplication complexity from O(N?) to O(Nr), making it
feasible for large state spaces.

Long-Range Dependencies via FFT Convolution. Long-range temporal dependencies are captured
using FFT-based convolution. The system’s impulse response is precomputed as:
1
Kw)=——
(@) = ——
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where w represents the frequency and A is the diagonal matrix of eigenvalues from the NPLR
decomposition. The state update is efficiently computed in the frequency domain as:

x(t) = IFFT(FFT(K(w)) ® FFT(x(t))),
where ® denotes element-wise multiplication in the frequency domain. By leveraging FFT and IFFT

operations, the model efficiently handles high-resolution temporal sequences and captures long-range
dependencies while maintaining computational efficiency.

The SPLR Convolution Layer integrates three key innovations: 1. Temporal Adaptation: SA-HiPPO
dynamically adjusts memory retention, capturing spike timing dependencies. 2. Computational
Efficiency: NPLR Decomposition ensures scalability by reducing computational overhead. 3.
Scalable Convolution: FFT-based convolution accelerates long-range temporal modeling.

5. Normalization: To maintain stability and ensure efficient learning, Layer Normalization (LN) is
applied after each SPLR convolution layer:

X1~

1= S s,
Ul+€

where (4, and 012 are the mean and variance of activations at layer [, respectively, and ~y, 8 are learnable
parameters. Normalization reduces variability in activations, providing stable training regardless of
input fluctuations.

The readout layer is inspired by the Event-SSM architecture and employs an

event-pooling mechanism to subsample the temporal sequence length. The pooled output is given as:
1 (k+1)p-1
Xpooled,k = — Z )A(ia
i=kp

where p is the pooling factor. This operation retains the most relevant temporal features, reducing
computational burden while preserving key information. The resulting pooled sequence is passed
through a linear transformation: y = W - Xpoted + b, where W and b are learnable parameters. The
combination of event pooling and linear transformation provides an efficient means for deriving a final
representation suitable for downstream tasks, maintaining scalability with longer event sequences.

4 THEORETICAL DISCUSSION

In this section, we analyze the computational complexity, temporal dependency preservation, and
stability of the SPLR model. We derive theoretical bounds and discuss how the model’s components
interact to ensure efficient processing and robust memory retention in SNNs. The detailed proofs of
these theorems are given in Suppl Sec. [7)
Lemma 1. (Computational Complexity of SPLR) Let the spike-driven SSM be given as:

x(t) = A-x(t) +B-S(t),

where x(t) € RY is the internal state, A € RV*N is the state transition matrix, and S(t) € RM g

the input spike train. The computational complexity of updating the internal state x(t) at each spike
event is O(N?).

Intuitive Explanation: This result shows that the computational cost for updating the SPLR model at
each spike event scales with the square of the state’s dimensionality. By leveraging techniques like
low-rank decomposition, reducing the matrix density makes computations more efficient.
Theorem 1. (Long-Range Temporal Dependency Preservation via Spike-Aware HiPPO) Let
x(t) e RY evolve according to:

x(t) = A-x(t) +B-S(t),
where A € is a HiPPO matrix with all eigenvalues satisfying Re(\;) < 0fori=1,...,N;
B € RV*M s the input matrix; S(t) € RM is a bounded input spike train, i.e., |S(t)| < Se for
all t > 0; and xo = x(0) € RY is the initial state. Then, the SPLR preserves long-range temporal
dependencies in S(t), and the state x(t) satisfies:

RNXN

[x(®)] < e™[lxofl +

(1-),

where o = min; |Re(\;)| > 0 is the memory retention factor determined by A.

IB S
(0%
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Algorithm 1 SPLR Model Training

Require: Training dataset D = {(X;,y;)}%,. learning rate 7, total epochs E, threshold potential
Vin, decay factors a4, 5
1: Initialize weights W, dendritic timing factors 74, SPLR matrices A, B, C, low-rank matrices
P, Q, and kernel K(w)
2: Initialize coupling strengths g, for each dendrite d
for epoch =1to F do
4: for each (X,y) € D do
Input Representation: Prepare input events for processing
5: Parse input event sequence X = {(x;, s, t;,p; )}, Where (z;,y;) are spatial coords, ¢; is
time, p; is polarity.
Dendrite Attention Layer: Update dendritic currents and aggregate at soma

b

6: for each ¢; in spike event sequence do
7: for each dendrite d do
8: Update dendritic current: ig(t; + 1) = aq-ia(ti) + Zjen, Wy - 0;
9: end for
10: Aggregate currents at soma: V(t; +1) = 8-V (t;) + X 8a - 14(t;)
11: if V(t; +1) > Vi, then
12: Generate spike and reset potential: V' (¢; +1) < 0
13: end if
14: end for
Spatial Pooling Layer: Reduce spatial dimensionality while preserving temporal resolution
15: Apply max pooling: Tpeoted (%', 4", 1) = MaX (4 e p(ar,y) (2, Y, 1)
SPLR Conv. Layer: Apply SA-HiPPO, NPLR, & FFT for event dynamics
16: Initialize state vector x(0)
17: for each spike time tj, in Ipooleq dO
18: Compute Aty = ty.1 —ty, decay F,;(Aty) = e~ ii Atk
19: Compute spike-aware HiPPO: Ag = A o F(Aty)
20: Decompose: Ag = VAV* ;PQ*
2
21: eAsAte o T 4 AgAt + w
22: Update: x(tp,1) = eA52% . x(t),) + Ag™ ' (eAs2% 1) . B-S(t,)
23: FFT-based convolution: x(t341) = IFFT(FFT(K(w)) ® FFT(x(tx+1)))
24: end for
25: Compute continuous output: y(¢) = C-x(t)
26: Thresholding: Convert y(¢) to spikes by applying ypike (t) = I(y(t) > Vin)
Normalization: Reduce variability in activations
27: Apply layer normalization: X; = Lz‘:l v+
9q
28: Compute pooled state: Xpooled,k = % Zz(.f,:;)p -1 X;
29: Final output: yprea = W - Xpooled + b
30: Compute 108s £(Ypred; y), update W « W -7 %
31 end for
32: end for

Intuitive Explanation: This theorem establishes that SPLR effectively retains temporal dependencies
over time by controlling the decay of older information. This ensures that recent input spikes have a
stronger influence on the state than older inputs, providing the model with long-range memory.

Lemma 2. (Error Bound for Spike-Driven Matrix Exponential Approximation) Let the matrix
exponential be approximated using a Taylor expansion up to the n-th term:

A2A? ATALY
+oee .

eAM T+ AAL+
! n!
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Assume that the matrix norm || - | is submultiplicative, i.e., |A -B| < |A||B| for any compatible
matrices A and B. Then, the error E,, of this approximation satisfies:
|AAL™
E,|<{———

Intuitive Explanation: This lemma provides a bound on the error when approximating the matrix
exponential with a Taylor series. It helps balance computational efficiency with accuracy, showing
that including more terms reduces the error. This is particularly useful for efficient, real-time state
updates in spike-driven models.

Theorem 2. (Boundedness of State Trajectories in the Presence of Spiking Inputs) For a given
initial condition X, the state trajectory x(t) of the SPLR model driven by the spike input S(t) is
bounded, i.e., |x(t)| < C, for some constant C > 0, provided that:

1. The input spikes S(t) are of finite magnitude, i.e., |S(t)|| < S for all t > 0.
2. The decay matrix Ag is Hurwitz, meaning all its eigenvalues have negative real parts.

3. There exists a positive definite matrix P satisfying the Lyapunov equation AsTP + PAg =
—Q, for some positive definite matrix Q.

Intuitive Explanation: This theorem guarantees that the SPLR model’s state remains bounded over
time when spike inputs are limited in magnitude. It ensures stability, meaning the state won’t grow
indefinitely, making the model reliable for continuous, real-time spike inputs.

5 EXPERIMENTS AND RESULTS

Experimental Setup: We evaluate the SPLR model on a variety of datasets to demonstrate its
effectiveness in processing asynchronous, event-driven data. For all experiments, the SPLR model
processes inputs on an event-by-event basis, dynamically updating its hidden state with each incoming
spike. This approach preserves high temporal resolution and captures fine-grained spatio-temporal
dependencies without accumulating events into frames. Below, we summarize the experimental
setup for the primary datasets. Details for additional datasets, including Sequential CIFAR-10 and

CIFAR-100 [Krizhevsky et al] (2009), SHD, and SSC|Cramer et al|(2020), is given in Suppl. Sec. [§]

DVS Gesture Dataset|Amir et al|(2017): Contains event streams of 11 hand gestures from 29 subjects
recorded with a Dynamic Vision Sensor. The SPLR model processes real-time spikes, capturing
temporal dynamics for accurate gesture classification.

HAR-DVS Dataset|Wang et al| (2024b)): Comprises event streams of six human activities, including
walking and running, with spatial coordinates, timestamps, and polarity. SPLR dynamically handles
these sparse streams to enable real-time classification of complex activities.

Celex-HAR Dataset|Wang et al.| (2024d): Utilizes high-resolution CeleX event streams of actions
such as sitting and walking. The SPLR model updates its state with each event, effectively modeling
fine-grained temporal structures.

Long Range Arena (LRA) (2020): Serves as a benchmark for long-range dependency
modeling. Tasks like ListOps and Path-X are transformed into event-driven formats, with SPLR
sequentially processing tokens to capture extended temporal dependencies.

Long-Range Dependencies: We evaluate the ability of the proposed SPLR model to capture long-
range dependencies using the Long Range Arena (LRA) dataset (2020). The LRA
benchmark evaluates models on tasks requiring long-context understanding, where Transformer-
based non-spiking models often exhibit suboptimal performance due to the computational overhead
of attention mechanisms, which scales poorly with increasing sequence lengths. As shown in
Table 3] we benchmark our method against state-of-the-art alternatives, including the LMU-based
spiking model, SpikingLMUFormer [Liu et al.| (2024b)), and the BinaryS4D model
(2024). While BinaryS4D is not fully spiking—it relies on floating-point MAC operations for matrix
multiplications—it incorporates LIF neurons to spike from an underlying SSM, providing a hybrid
approach to handling long-range dependencies.
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Table 3: Results comparing the accuracy of our model against some spiking and non-spiking
architectures on test sets of LRA benchmark tasks.

Model SNN  ListOps Text Retrieval Image Pathfinder
S4 (Original)|Gu et al.|(2022) No 58.35 76.02 87.09 87.26 86.05
S4 (Improved) |Gu et al.[(2022) No 59.60 86.82 90.90 88.65 94.20
Transformer|Vaswani et al.|(2017) No 36.37 64.27 57.46 42.44 71.40
Sparse Transformer [lay et al.|(2020) No 17.07 63.58 59.59 44.24 71.71
Linformer Wang et al.|(2020) No 35.70 53.94 52.27 38.56 76.34
Linear Transformer|Tay et al.|(2020) No 16.13 65.90 53.09 42.34 75.30
FLASH-quad|Hua et al.|(2022) No 42.20 64.10 83.00 48.30 83.62
Spiking LMUFormer |Liu et al.|(2024b) Yes 37.30 65.80 79.76 55.65 72.68
TransNormer T2 |Qin et al.[(2022) No 41.60 72.20 83.82 49.60 76.60
BinaryS4D |Stan & Rhodes|(2024) Partial 54.80 82.50 85.30 82.00 82.60
SPLR (Our Model) Yes 59.08 79.41 89.62 79.88 86.47

Event Dataset Results: Figure [3(a) presents the performance of our proposed SPLR models on
the DVS Gesture 128 dataset, comparing accuracy versus number of parameters with other state-of-
the-art models. We evaluated three variants of SPLR—Tiny, Small, and Normal—each designed
to understand scalability and efficiency (Details of model architectures given in Suppl. Sec. [9).

The SPLR Normal variant achieved an accuracy of
96.5%, effectively capturing the complex temporal
dependencies in event-driven tasks. SPLR Small and
SPLR Tiny also demonstrated competitive perfor-
mance with accuracies of 93.7% and 89.2%, respec-
tively, maintaining a balance between reduced pa-
rameter count and performance. Compared to other
architectures like EventMamba [Ren et al. (2024),
TBR+I3D [Innocenti et al.| (2021}, and PointNet++ |Q1
et al.|(2017), our SPLR variants consistently showed
a favorable trade-off between model complexity and
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accuracy. Notably, SPLR Normal matched or even
exceeded the performance of larger CNN and ViT
models, such as Event Frames + I3DBI1 et al.| (2020)
and RG-CNN Miao et al.|(2019), with significantly 0.5 5} .
fewer parameters, emphasizing its efficiency. We ° )
conducted an ablation study to evaluate the contri-
bution of specific architectural components in the
SPLR models, focusing on the Dendrite Attention
Layer and the SA-HiPPO matrix. Removing the den-
drite mechanism led to a significant drop in accuracy
across all variants, with SPLR Normal reducing to
95.2%. Similarly, replacing SA-HiPPO with standard
LIF neurons further reduced accuracy to 90.4%, indi-
cating the crucial role of SA-HiPPO in maintaining long-range temporal dependencies. (Complete
results are shown in Table[8]in Suppl. Sec[8). The dashed lines in Figure [3{a) illustrate the impact of
these architectural components, demonstrating the critical contribution of both Dendrite Attention
and SA-HiPPO in achieving high accuracy. These results highlight the importance of each component
in enabling efficient spatiotemporal learning, allowing SPLR models to outperform other methods
while maintaining fewer parameters.

0.4
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FLOPs (G) (log)
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Figure 2: Accuracy vs. FLOPS (G) on HAR-
DVS DatasetWang et al.| (2024b)) comparing
SPLR variants with other SOTA models.

We also evaluate the effectiveness of dendritic mechanisms combined with SPLR convolutions across
SHD, SSC, and DVS Gesture datasets as detailed in Tables (Suppl. Sec.[8). The SSC dataset,
requiring the capture of long-range temporal dependencies, proves to be more challenging than SHD
and DVS Gesture. Figure [5|demonstrate that SPLR’s performance gains are most pronounced in SSC,
underscoring its capability in handling complex temporal patterns. Moreover, incorporating dendritic
attention consistently enhances accuracy across all datasets, especially when using fewer channels.

Scaling to HD Event Streams: To evaluate the scalability of the proposed SPLR model, we
utilized the Celex HAR datasetWang et al.| (2024a), a high-resolution human activity recognition
benchmark (1280 x 800). This dataset presents significant challenges in maintaining accuracy and
efficiency with large-scale spatial and temporal data. As shown in Figure[3(b), SPLR achieves superior
accuracy compared to baseline SNNs and DNNs, maintaining high performance even at increased
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Figure 3: Accuracy vs. FLOPS (G) on (a) DVSGesturel28 and (b) Celex-HAR datasets comparing
SPLR variants with other SOTA models. Figure (a) shows the ablation studies showing the impact of
removing the Dendrite Attention Layer or replacing SA-HiPPO with standard LIF neurons. Note:
There are no spike-based designs for Celex-HAR

resolutions where other methods struggle. The SPLR convolution layer effectively manages both
spatial and temporal complexities, enabling real-time processing of HD event streams with minimal
computational overhead. To our knowledge, no prior work has demonstrated results on Celex
HAR using spiking-based models. Figure[3(b) also illustrates the trade-off between accuracy and
computational cost (FLOPs), with SPLR Tiny, Small, and Normal achieving competitive or better
accuracy compared to models like SlowFast [Feichtenhofer et al| (2019) and C3D [Tran et al|(2015),
but with significantly lower computational requirements. SPLR Normal exceeds the performance

of TSM (2019) and VisionMamba-S (2024)) at a reduced cost, highlighting the

efficiency of the event-driven state-space approach.

HAR-DVS: We also evaluated on the HAR-DVS datasetWang et al.| (2024b) (Fig. 2). We see that our
SPLR models outperform other state-of-the-art DNN models. Unlike frame-based methods, SPLR
employs event-by-event processing to preserve temporal dynamics and introduces a novel dendritic
attention mechanism, enabling efficient and robust spatio-temporal modeling. This makes SPLR
particularly well-suited for real-time event-driven applications. [See Suppl. Sec. [§]

6 CONCLUSION

This work presents the SPLR model, which integrates the novel SA-HiPPO mechanism with
fully event-driven processing to overcome the limitations of existing approaches in SNNs. By
dynamically adapting memory retention to inter-spike intervals, SA-HiPPO enables precise modeling
of long-range dependencies while preserving the sparsity and efficiency inherent to SNNs. Empirical
evaluations highlight SPLR’s superior performance across a range of benchmarks. On the Long
Range Arena (LRA), SPLR demonstrates significantly higher accuracy than methods like BinaryS4D
and SpikingLMU, achieving state-of-the-art results with lower computational cost compared to dense
Transformer-based architectures. On real-world event datasets such as DVS Gesture and HAR-DVS,
SPLR leverages its efficient spatio-temporal feature extraction to outperform other state-of-the-art
models like EventMamba. Furthermore, SPLR scales effectively on high-resolution benchmarks such
as Celex-HAR, maintaining high performance under increased spatial and temporal complexities
where traditional methods degrade.

The entire SPLR pipeline, including components such as the Dendrite Attention Layer, Spatial Pooling,
and SPLR Convolution, is critical for enabling the precise modeling of long-range dependencies in
event-driven systems. Each component plays a complementary role in achieving robust, scalable,
and efficient processing. The key novelty lies in the formulation of the SA-HiPPO mechanism,
which addresses a major challenge in the field by overcoming scalability limitations in SNNs
while preserving their asynchronous, low-latency nature. By preserving the fully asynchronous,
event-driven nature of SNNs, SPLR achieves a transformative balance of scalability, low latency,
and computational efficiency. These results establish SPLR as a robust and scalable solution for
neuromorphic computing, unlocking new capabilities for long-range dependency modeling and
real-time event-driven systems.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537-1557, 2015.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7243-7252. IEEE, 2017. doi: 10.1109/CVPR.2017.765.

Guillaume Bellec, Darko Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in Neural
Information Processing Systems, 31:787-797, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, volume 2, pp. 4, 2021.

Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis Andreopoulos. Graph-
based spatio-temporal feature learning for neuromorphic vision sensing. IEEE Transactions on
Image Processing, 29:9084-9098, 2020.

Biswadeep Chakraborty and Saibal Mukhopadhyay. Heterogeneous recurrent spiking neural network
for spatio-temporal classification. arXiv preprint arXiv:2211.04297, 17:994517, 2022. doi:
10.3389/fnins.2023.994517. URL https://doi.org/10.3389/fnins.2023.994517.

Biswadeep Chakraborty and Saibal Mukhopadhyay. Heterogeneous neuronal and synaptic dynamics
for spike-efficient unsupervised learning: Theory and design principles. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?1d=QIRtAgqoXw 7.

Indranil Chakraborty and Kaushik Roy. Braindate: A spiking neural network architecture for learning
and memory. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE),
volume 17, pp. 123. IEEE, Frontiers, 2023.

Lan Chen, Dong Li, Xiao Wang, Pengpeng Shao, Wei Zhang, Yaowei Wang, Yonghong Tian, and
Jin Tang. Retain, blend, and exchange: A quality-aware spatial-stereo fusion approach for event
stream recognition. arXiv preprint arXiv:2406.18845, 2024.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(7):2744-2757, 2020.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Griibl, Vitali
Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Sur-
rogate gradients for analog neuromorphic computing. Proceedings of the National Academy of
Sciences, 119(4):€2109194119, 2022.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. leee Micro, 38(1):82-99, 2018.

Yongjian Deng, Hao Chen, Hai Liu, and Youfu Li. A voxel graph cnn for object classification with
event cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1172-1181, 2022.

Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
Li, Jifeng Dai, and Wenhai Wang. Vision-rwkv: Efficient and scalable visual perception with
rwkv-like architectures. arXiv preprint arXiv:2403.02308, 2024.

11


https://doi.org/10.3389/fnins.2023.994517
https://openreview.net/forum?id=QIRtAqoXwj
https://openreview.net/forum?id=QIRtAqoXwj

Under review as a conference paper at ICLR 2025

W. Fang, Y. Zhang, and X. Tang. Parallel spiking neurons for long-time dependency modeling.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https
//openreview.net/forum?id=rfTFJvTkr2.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2661—
2671, 2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
6202-6211, 2019.

Charlotte Philippine Frenkel, David Bol, and Giacomo Indiveri. Bottom-up and top-down neural
processing systems design: Neuromorphic intelligence as the convergence of natural and artificial
intelligence. ArXiv. org, (2106.01288), 2021.

Daniel Gehrig and Davide Scaramuzza. Low-latency automotive vision with event cameras. Nature,
629:1034-1043, 2024. doi: 10.1038/s41586-024-07409-w.

Waulfram Gerstner and Werner M Kistler. Mathematical foundations of neuroscience. Biological
cybernetics, 87(5):404—415, 2002.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:

1474-1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572-585, 2021.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFozlv1AC.

Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays in spiking
neural networks using dilated convolutions with learnable spacings. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1id=4r2ybzJnmN.

Ramin Hasani, Mathias Lechner, Yulia Yildiz, Radu Grosu, and Daniela Rus. Liquid time-constant
networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
International conference on machine learning, pp. 9099-9117. PMLR, 2022.

Simone Undri Innocenti, Federico Becattini, Federico Pernici, and Alberto Del Bimbo. Temporal
binary representation for event-based action recognition. In 2020 25th International Conference
on Pattern Recognition (ICPR), pp. 10426-10432. IEEE, 2021.

Chunming Jiang and Yilei Zhang. Klif: An optimized spiking neuron unit for tuning surrogate
gradient slope and membrane potential. arXiv preprint arXiv:2302.09238, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

12


https://openreview.net/forum?id=rfTFJvTkr2
https://openreview.net/forum?id=rfTFJvTkr2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=4r2ybzJnmN
https://openreview.net/forum?id=4r2ybzJnmN

Under review as a conference paper at ICLR 2025

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024.

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding.
In Proceedings of the IEEE International Conference on Computer Vision, 2019.

Chang Liu, Xiaojuan Qi, Edmund Y Lam, and Ngai Wong. Fast classification and action recognition
with event-based imaging. IEEE access, 10:55638-55649, 2022a.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. ArXiv, abs/2401.10166, 2024a.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009-12019, 2022b.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3202-3211, 2022c.

Zeyu Liu, Gourav Datta, Anni Li, and Peter Anthony Beerel. Lmuformer: Low complexity yet
powerful spiking model with legendre memory units. arXiv preprint arXiv:2402.04882, 2024b.

Zhaoyang Liu, Limin Wang, Wayne Wu, Chen Qian, and Tong Lu. Tam: Temporal adaptive module
for video recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 13708-13718, 2021.

Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing, and Alois Knoll.
Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection.
Frontiers in neurorobotics, 13:38, 2019.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks. IEEE Signal Processing Magazine, 36(6):61-63, 2019.

Michalis Pagkalos, Spyridon Chavlis, and Panayiota Poirazi. Introducing the dendrify framework for
incorporating dendrites to spiking neural networks. Nature Communications, 14(1):131, 2023.

Yansong Peng, Yueyi Zhang, Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Get: Group event
transformer for event-based vision. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6038-6048, 2023.

Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neural
heterogeneity promotes robust learning. Nature communications, 12(1):5791, 2021.

Filip Ponulak and Andrzej Kasinski. Introduction to spiking neural networks: Information processing,
learning and applications. Acta neurobiologiae experimentalis, 71(4):409-433, 2011.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30,
2017.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran Zhong.
The devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022.

Nitin Rathi, Indranil Chakraborty, Adarsh Kosta, Abhronil Sengupta, Aayush Ankit, Priyadarshini
Panda, and Kaushik Roy. Exploring neuromorphic computing based on spiking neural networks:
Algorithms to hardware. ACM Computing Surveys, 55(12):1-49, 2023.

Hongwei Ren, Yue Zhou, Jiadong Zhu, Haotian Fu, Yulong Huang, Xiaopeng Lin, Yuetong Fang, Fei
Ma, Hao Yu, and Bojun Cheng. Rethinking efficient and effective point-based networks for event
camera classification and regression: Eventmamba. arXiv preprint arXiv:2405.06116, 2024.

Julian Rossbroich, Julia Gygax, and Friedemann Zenke. Fluctuation-driven initialization for spiking
neural network training. Neuromorphic Computing and Engineering, 2(4):044016, 2022.

13



Under review as a conference paper at ICLR 2025

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607-617, 2019.

Mark Schone, Neeraj Mohan Sushma, Jingyue Zhuge, Christian Mayr, Anand Subramoney, and
David Kappel. Scalable event-by-event processing of neuromorphic sensory signals with deep
state-space models. Neuromorphic Computing Conference, 2024. URL https://doi.org/
10.xxxx/neuromorphic2024.

Xueyuan She, Saurabh Dash, Daehyun Kim, and Saibal Mukhopadhyay. A heterogeneous spiking
neural network for unsupervised learning of spatiotemporal patterns. Frontiers in Neuroscience,
14:1406, 2021a.

Xueyuan She, Saurabh Dash, and Saibal Mukhopadhyay. Sequence approximation using feedfor-
ward spiking neural network for spatiotemporal learning: Theory and optimization methods. In
International Conference on Learning Representations, 2021b. URL https://openreview,
net/forum?id=bp-LJ4y_XC.

Guobin Shen, Dongcheng Zhao, and Yi Zeng. Exploiting nonlinear dendritic adaptive computation
in training deep spiking neural networks. Neural Networks, 170:190-201, 2024a.

Sicheng Shen, Dongcheng Zhao, Guobin Shen, and Yi Zeng. Tim: An efficient temporal interaction
module for spiking transformer. arXiv preprint arXiv:2401.11687, 2024b.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional Istm network: A machine learning approach for precipitation nowcasting. Advances
in neural information processing systems, 28, 2015.

Sumit Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances in
Neural Information Processing Systems (NeurIPS), 31, 2018.

MI Stan and O Rhodes. Learning long sequences in spiking neural networks using state-space models.
Scientific Reports, 14(1):21957, 2024. doi: 10.1038/s41598-024-71678-8.

Anand Subramoney. Efficient real time recurrent learning through combined activity and parameter
sparsity. arXiv preprint arXiv:2303.05641, 2023.

Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Gate-shift-fuse for video action
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10913—
10928, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pp. 4489-4497, 2015.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 6450-6459, 2018.

Carmen Martin Turrero, Maxence Bouvier, Manuel Breitenstein, Pietro Zanuttigh, and Vincent
Parret. Alert-transformer: Bridging asynchronous and synchronous machine learning for real-time
event-based spatio-temporal data. arXiv preprint arXiv:2402.01393, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), volume 30, 2017.

Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event clouds for gesture
recognition: From rgb cameras to event cameras. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 1826—1835. IEEE, 2019.

14


https://doi.org/10.xxxx/neuromorphic2024
https://doi.org/10.xxxx/neuromorphic2024
https://openreview.net/forum?id=bp-LJ4y_XC
https://openreview.net/forum?id=bp-LJ4y_XC

Under review as a conference paper at ICLR 2025

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics (ACL), 2020.

Xiao Wang, Shiao Wang, Chuanming Tang, Lin Zhu, Bo Jiang, Yonghong Tian, and Jin Tang. Event
stream-based visual object tracking: A high-resolution benchmark dataset and a novel baseline.
arXiv preprint arXiv:2408.09764, pp. 19248—-19257, 2024a.

Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, Yaowei Wang, and Yonghong
Tian. Hardvs: Revisiting human activity recognition with dynamic vision sensors. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 5615-5623, 2024b.

Zhengwei Wang, Qi She, and Aljosa Smolic. Action-net: Multipath excitation for action recognition.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
13214-13223, 2021.

Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In International Conference on Machine Learning, pp.
35798-35816. PMLR, 2023.

Yujie Wu, Lei Deng, Guogqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through
time for spiking neural networks. arXiv preprint arXiv:2210.04195, 35:20717-20730, 2022.

Mingqing Xiao, Yixin Zhu, Di He, and Zhouchen Lin. Temporal spiking neural networks with
synaptic delay for graph reasoning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=3FeY1KIPr3.

Zhen Xing, Qi Dai, Han Hu, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. Svformer: Semi-
supervised video transformer for action recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 18816—18826, 2023.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36, 2024.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160-32171, 2022.

Bojian Yin, Federico Corradi, and Sander M Bohte. Accurate online training of dynamical spiking
neural networks through forward propagation through time. arXiv preprint arXiv:2112.11231,
2021.

Amirreza Yousefzadeh, Mina A Khoei, Sahar Hosseini, Priscila Holanda, Sam Leroux, Orlando
Moreira, Jonathan Tapson, Bart Dhoedt, Pieter Simoens, Teresa Serrano-Gotarredona, et al.
Asynchronous spiking neurons, the natural key to exploit temporal sparsity. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(4):668-678, 2019.

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A
two-compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 16838-16847, 2024.

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guogqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 2024a. URL https://doi.org/10}
1038/s41467-023-44614-z

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guogqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15(1):277, 2024b.

15


https://openreview.net/forum?id=3FeYlKIPr3
https://doi.org/10.1038/s41467-023-44614-z
https://doi.org/10.1038/s41467-023-44614-z

Under review as a conference paper at ICLR 2025

Jiazhou Zhou, Xu Zheng, Yuanhuiyi Lyu, and Lin Wang. Exact: Language-guided conceptual
reasoning and uncertainty estimation for event-based action recognition and more. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18633—-18643,
2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

Lin Zuo, Yongqi Ding, Wenwei Luo, Mengmeng Jing, Xianlong Tian, and Kunshan Yang. Temporal
reversed training for spiking neural networks with generalized spatio-temporal representation.
arXiv preprint arXiv:2408.09108, 2024.

16



Under review as a conference paper at ICLR 2025

CONTENTS

T TIntreduction|

2Related Works|

3 Methods

T rcal D ol

[5  Experiments and Results|

6 Conclusion

{7 Supplementary Section A: Detailed Proofs|

7.1~ Computational Complexity of Spike-Driven SSMs| . . . . . . ... ... ... ... ..

7.2 Long-Range Temporal Dependency Preservation Via Spike-Based Hippo| . . . . . . .

[7.3 Error Bound For Spike-Driven Matrix Exponential Approximation|. . . . . . ... ..

7.4 Boundedness Of State Trajectories In The Presence Of Spiking Inputs|. . . . . . . ..

{8 Supplementary Section B: Extended Experimental Results|

8.3 Long-Range Dependencies| . . ... ... ... ... . ... ... ... ... ...
8.4 DVS Gesture Recognition] . . . . . . ... ... L
8.5 Scaling to HD Event Streams| . . . . . . ... ... ... ... oo L.

8.6 Latency Results| . . . . . ... ..

[9 Supplementary Section C: Methods and Architectural Details|

9.1 Input Representation| . . . . . .. ... ... ... ... .. ... ... . . ... ...,
9.2 Dendrite Attention Layer| . . .. ... ................ ... .......
9.3 Spatial Pooling Layer]. . . . . ... ... ... ... . . ... . . ..
4 SPLR Convolution] . . .. ... ... ... .. . . e
9.4.1 SPLR Convolution Layer| . . . . ... ... ... ... ... ... ... ...

rmalization and Resi . .

9.6 Readout Layer|. . .. . ... ... ... . e

{10 Supplementary Section D: Related Works|

17

10

18
18

20
22

23
23
26
28
29
30
31

33
35
36
36
36
39
40
41

42



Under review as a conference paper at ICLR 2025

7 SUPPLEMENTARY SECTION A: DETAILED PROOFS

7.1 COMPUTATIONAL COMPLEXITY OF SPIKE-DRIVEN SSMs

Lemma 3. Let the spike-driven state-space model be governed by:
z(t) = Ax(t) + BS(t),

where z(t) € RY is the internal state, A € RN*N is the state transition matrix, and S(t) € RM is

the input spike train. The computational complexity of updating the internal state x(t) at each spike
event is O(N?).

Proof. The spike-driven state-space model is governed by:
z(t) = Az(t) + BS(t),

where (t) € RY represents the internal state of the system, A € RV*¥ is the state transition matrix,
and S(t) e RM represents the input spike train. When a spike event occurs at time #;, the state update
can be represented by the following integral equation for ¢ € [¢;,t;41):
S
z(th) = ez (ty) + [ A" BS(7) dr,
-

i
where:

- t; and ¢} are the times just before and after the spike at ¢;, - At; = t] —t7 is infinitesimal, - S(7)
contains Dirac delta functions at spike times and is zero elsewhere.

For simplicity, we focus on the update at the spike time ¢; to approximate the state transition at each
event.

The update of the internal state () requires computing the matrix exponential e*4?, where At = t—t;
represents the time interval between successive spikes. Computing the exact matrix exponential for a
. NxN : . . . . 3 . .
general matrix A € R is computationally expensive, involving O(N*) operations using standard

algorithms such as diagonalization or the Schur decomposition.

To reduce the computational cost, we approximate the matrix exponential using a truncated Taylor
series expansion:

e T+ AN + %A2Atf.

where [ is the identity matrix of size N x N. This approximation is typically sufficient for small At,
which is common between spike events.

In the Taylor series expansion approximation of eA2*, the dominant computational cost arises from
multiplying the matrix A € R™V*¥ by itself and by the state vector z(t) € RV,

The product Az(t), where A € RV*Y and z(t) € RY, requires N? multiplications. Thus, the
computational cost for this step is O(N?).

The term A? is computed by multiplying A by itself. Since A is an N x N matrix, computing
A? explicitly would have a computational cost of O(/N?). However, we avoid this by computing
A(Ax(t)), which involves two sequential matrix-vector products, each costing O(N?). Therefore,
the computational cost of computing A2z (t) is O(N?).

The term BS(t), where B e RV*M and S(t) e RM, involves O(N M) operations. Assuming M is
proportional to IV or smaller, this computation contributes O(N?) to the overall complexity.

To update the internal state 2:(¢), we perform the following operations: First, we multiply A by
x(t): O(N?); then multiply A% by z(¢): O(N?); followed by multiplying B by S(t): O(NM)
and finally add the resulting vectors.

Thus, the overall computational complexity for updating the internal state x(¢) at each spike event is
O(N?).

In the general case, where A is a dense matrix, the cost of updating the state is O(N?). If the matrix
A has a specific structure, such as being sparse or block-diagonal, the computational cost can be
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reduced. For example: - If A is sparse with k non-zero entries per row, the cost of multiplying A
by z(t) becomes O(kN), which can be significantly lower than O(N?) when k < N. - If A is
block-diagonal, the cost can be reduced to O(N) per block, depending on the number and size of
the blocks. However, for the general case where no such structure is assumed, the computational
complexity remains O(N?). The computational complexity of updating the internal state x(t) at
each spike event, using the matrix exponential approximation with a Taylor series expansion, is
dominated by the matrix-vector multiplication operations. Additionally, accounting for the BS(¢)
term maintains the overall complexity at O(NN?). Therefore, the overall computational complexity
for updating the internal state at each spike event is O(N?).

O

7.2 LONG-RANGE TEMPORAL DEPENDENCY PRESERVATION VIA SPIKE-BASED HIPPO

Theorem 3. Let 2(t) € RY evolve according to
z(t) = Az(t) + BS(t),

where: - A e RNVN is a HiPPO matrix with all eigenvalues satisfying Re(\;) < 0 fori=1,2,..., N,
- B e RN*M ¢ the input matrix, - S(t) € RM s the input spike train, assumed to be bounded, i.e.,
there exists a constant S > 0 such that | S(t)| < Se forallt >0, - xg = x(0) € RY is the initial
state.

Then, the spike-driven SSM preserves long-range temporal dependencies in the input spike train S(t),
and the state x(t) satisfies the bound:

: |B]S-
o ()] < €] + 1=

(1-e™),

where o = min; |Re(\;)| > 0 is the memory retention factor determined by the eigenvalues of the
HiPPO matrix A.

Proof. To establish the theorem, we will analyze the evolution of the internal state x(t) governed by
the differential equation:

z(t) = Az(t) + BS(t),
with initial condition x(0) = zo.

The differential equation is a non-homogeneous linear ordinary differential equation (ODE). Using
the variation of parameters method, the solution can be expressed as:

¢
z(t) = eMag + / AT BS(7) dr,
0
where: - ez is the solution to the homogeneous equation #(t) = Az (t) with initial condition
2(0) = xo, - fot eA(=7) BS(7) dr accounts for the particular solution due to the input S(t).

Given that A is a HiPPO matrix, all its eigenvalues satisfy Re()\;) < 0 for ¢ = 1,2,..., N. This
implies that A is a Hurwitz matrix, ensuring that the system is asymptotically stable. Define the
memory retention factor « as:

a =min[Re(\;)| > 0.

This factor dictates the rate at which the influence of the initial state xy decays over time.

Atg4. Since all eigenvalues of A have negative real parts, the

Consider the homogeneous solution e
matrix exponential e satisfies:

let] <e,

where | - | denotes an operator norm (e.g., the induced 2-norm). This inequality leverages the spectral
bound of A to provide an exponential decay rate.

Therefore, the contribution of the initial state is bounded by:

A
‘I

leMaoll < e ] - o] < ™[]
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Next, consider the particular solution:
t
f AT BS(7) dr.
0

To bound its norm, apply the triangle inequality and properties of operator norms:

t t
| [ ermBs(ryar| < [T 181 [S() dr.
0 0
Given that | S(7)| < Seo and e~ || < e7*(=7) | we have:

t t
H [ M IBS(rydr| < Bl [ et ar
0 0

t t _ ot
/ e dr = / e “¥ds= 1-¢ .
0 0 @

HBHS (1

Evaluate the integral:

Thus, the bound becomes:
H[ A(t- T)BS( ) €_at) )
Combining the bounds for the homogeneous and particular solutions, we obtain:
t B| S« _
f eA(t_T)BS(T) dr 7” ” (1 —-e O‘t) )
0 o}
This inequality demonstrates that: - The influence of the initial state ¢ decays exponentially at rate

a, - The accumulated influence of the input spike train S(t) is bounded and grows to a steady-state
value determined by | B|, Seo, and a.

The derived bound:

()] < le* o + <e ol +

Jz ()] < e ol + (1-e),

reveals that the term e~ |z | signifies that the system "forgets" its initial state exponentially fast,
ensuring that old information does not dominate the state indefinitely. Also, the integral term captures
the accumulated influence of the input spike train S(t). Since S(t) is bounded, the state x(¢) can
retain and reflect information from the input over extended periods without being overwhelmed by
the initial condition.

| B]|Seo
«

Therefore, the spike-driven SSM governed by a HiPPO matrix A effectively preserves long-range
temporal dependencies in the input spike train S(¢), while ensuring that the memory of the initial
state xo decays at an exponential rate determined by a.

O

7.3 ERROR BOUND FOR SPIKE-DRIVEN MATRIX EXPONENTIAL APPROXIMATION

Lemma 4. Let the matrix exponential be approximated using a Taylor expansion up to the n-th term:
AZAL? A"AE?
+oeet .
2! n!

Assume that the matrix norm || - | is submultiplicative, i.e., < ||A|l| B|| for any matrices A and
B of compatible dimensions. Then, the error E,, of this approximation satisfies

1
|AAt|m* JlAaat]

(n+1)!
Proof. The matrix exponential can be expressed as an infinite Taylor series:

o k
ABE 2 (A4At)"
o K

Ao T+ AAL +

[ Enll <
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If we truncate this series after the n-th term, the remainder F,, is given by:

i (AAt)k
k=n+1 k! -

n(AAL)F
En — AAt _ ( —
e I;J 0

To bound the norm of the error E,,, we apply the submultiplicative property of the matrix norm:

= (AAt)F

2w

k=n+1

o lAAt)*
< > —

k=n+1

HEn H =

Using the submultiplicative property of the matrix norm:

At

1B < Y,

k=n+1 k!

Let 2 = |AAt| > 0. Then:

oo .CCk

IEds ¥ 5

k=n+1

Since

where R,,(x) is the remainder of the Taylor series expansion of €.

According to Taylor’s Remainder Theorem (Lagrange’s form), there exists £ € [0, ] such that:

n+1

x
R, (z) = £,
(@) (n+ 1)!6
Since ¢ < x and ef < e” for x > 0, we have:
xn+1
R, (x) < 7.
() (n+1)! ¢
Therefore:
n+1 n+1
HEn” < z" T _ HAAtH i eHAAtH.

n+D)1° " (1)

Thus, the error E,, satisfies:

JAA ™! Jlaat]

E,ll <
1Enl (n+1)!
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7.4 BOUNDEDNESS OF STATE TRAJECTORIES IN THE PRESENCE OF SPIKING INPUTS

Theorem 4. Boundedness of State Trajectory in Spike-Driven State-Space Models

For a given initial condition x, the state trajectory x(t) of the SPLR model driven by the spike input
S(t) is bounded, i.e., |x(t)| < C, for some constant C > 0, provided that:

1. The input spikes S(t) are of finite magnitude, i.e., | S(t)| < Seo for all t > 0.

2. The decay matrix Ag is Hurwitz, meaning all its eigenvalues have negative real parts.

3. There exists a positive definite matrix P satisfying the Lyapunov equation A§P+PAS =-Q,
for some positive definite matrix Q).
Proof. Consider the SPLR governed by:
z(t) = Agz(t) + BS(t),

where Ag is a Hurwitz matrix, B is the input matrix, and S(t) is a bounded input spike train with
[|S(t)| € S forall t > 0.

We define a Lyapunov function V () = z7 P, where P is a positive definite matrix satisfying the
Lyapunov equation:

ALP+PAs=-Q,
with ) being a positive definite matrix. Such a P exists because Ag is Hurwitz. The derivative of
V (z) along the system trajectories is computed:

V(z) = %(xTPm) =2 Px+ 2T Pi+ &7 Pax.
Since P is constant (P = 0), and & = Agx + BS(t), this simplifies to:
V(z) =2" P(Asz + BS(t)) + (Asz + BS(t))” Px.
Recognizing that P is symmetric (P? = P), we can write:
V(x) =27 (AL P+ PAg)x + 20T PBS(1).
Substituting the Lyapunov equation AL P + PAg = -Q:
V(z) = 2T Qx + 2eT PBS(1).
The term 227 PBS(t) is bounded using the Cauchy-Schwarz inequality as

20" PBS(t) < 2|z| - |[PB| - |S(t)] < 2| P B Seo ]
Next, let us define y = 2| PB| S The derivative V (x) becomes:

V(x) <-2TQu+ ylz|-

Since @ is positive definite, 27 Qx > A\pin(Q) ||
Therefore:

2, where Apin(Q) is the smallest eigenvalue of Q.

V() < Amin(Q)|z]* + 7]
Completing the square:
2

+

2
. 9 0% 3 ' _ Y v
V(@) < @) Jol? - 5 el ) = 2@ (121~ 525 ) +

This inequality indicates that V() < 0 whenever |z > %@ Since V() > 0 and V (x) is
negative outside a ball of radius C' = ﬁ@, the state x(t) will ultimately remain within this
bounded region. Therefore, |z (t)| < C forallt >0

O
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8 SUPPLEMENTARY SECTION B: EXTENDED EXPERIMENTAL RESULTS

8.1 DATASETS AND TASKS

In this study, we evaluate the performance of the SPLR model across a diverse set of datasets, each
presenting unique challenges in event-driven processing. The datasets include Sequential CIFAR-

10, Sequential CIFAR-100 Krizhevsky et al. :2009 ), DVS Gesture |Amuir et al.|(2017), HAR-DVS

Wang et al|(2024b), Celex-HAR [Wang et al.| (20244d), Long Range Arena (LRA) (2020),
Spiking Heidelberg Digits (SHD) |Cramer et al.|(2020), and Spiking Speech Commands (SSC). For

all experiments, the SPLR model processes inputs on an event-by-event basis, leveraging its temporal
dynamics to handle fine-grained temporal dependencies without accumulating events into frames.
Below, we provide detailed descriptions of each dataset and the corresponding experimental setups.

Sequential CIFAR-10 and CIFAR-100: The CIFAR-10 and CIFAR-100 datasets Krizhevsky et al|
(2009) consist of 32 x 32 RGB images across 10 and 100 classes, respectively. To simulate a temporal
sequence, each image is divided into 16 non-overlapping patches of size 8 x 8 pixels. These patches
are presented to the model sequentially in a raster-scan order, from top-left to bottom-right. Each
patch is treated as an independent event in the sequence. The task involves classifying the image based
on the full sequence of patches, requiring the model to integrate information over the entire sequence.
This setup evaluates the model’s ability to process spatial information in a temporal context.

DVS Gesture Dataset: The DVS Gesture dataset/Amir et al| comprises recordings from a
Dynamic Vision Sensor (DVS), capturing 11 hand gestures performed by 29 subjects under varying
lighting conditions. Each event is characterized by its spatial location (x, y), timestamp ¢, and polarity
p (on/off). The dataset provides a challenging benchmark for models to recognize dynamic gestures
from sparse, asynchronous event streams. In our experiments, the SPLR model processes each event
individually as it occurs, without accumulating them into temporal frames, thereby maintaining high
temporal resolution and reducing latency.

HAR-DVS Dataset: The HAR-DVS dataset [Wang et al.| (2024b) contains neuromorphic event
streams representing human activities, recorded with a DVS. Activities include walking, running, and
other movement-based tasks. Each event is defined by its spatial coordinates, timestamp, and polarity.
The dataset tests the model’s ability to recognize complex human activities from sparse event streams.
The SPLR model processes each spike event-by-event, dynamically updating its internal state for
each incoming spike, enabling precise temporal modeling of the activity sequences.

Celex-HAR Dataset: The Celex-HAR dataset[Wang et al.| (2024a) consists of high-resolution event
streams captured with a CeleX camera for human activity recognition. Activities include actions such
as sitting, standing, and walking. Each event is represented by its spatial coordinates, timestamps, and
polarity. The dataset provides a comprehensive benchmark for evaluating models on high-resolution
event-based data. The SPLR model processes each spike event-by-event, allowing it to capture the
fine-grained temporal dynamics of human activities.

Long Range Arena (LRA): The Long Range Arena benchmark Tay et al| evaluates a model’s
ability to process long sequences and capture dependencies over extended temporal horizons. Tasks
such as ListOps and Path-X involve sequence lengths ranging from hundreds to thousands of tokens.
Although these tasks involve discrete tokens rather than spikes, we simulate event-driven processing
by treating each token as an individual event presented sequentially. The SPLR model leverages its
temporal dynamics to capture long-range dependencies efficiently.

Spiking Heidelberg Digits (SHD) and Spiking Speech Commands (SSC): The SHD and SSC
datasets Cramer et al.| (2020) are benchmarks for spiking neural networks, containing neuromorphic
spike streams derived from speech datasets. SHD consists of spoken digit recordings converted to
spike trains using the CochleaAMS model, while SSC contains spiking representations of spoken
command audio, representing keywords like "yes," "no," and "stop." Each event is characterized by
its spatial location, timestamp, and polarity. The datasets evaluate the model’s performance on tasks
involving complex spatio-temporal patterns in speech data. The SPLR model processes each spike
event as it occurs, dynamically updating its state, ensuring high temporal resolution and efficient
processing for speech recognition tasks.

Across all datasets, the SPLR model processes inputs on an event-by-event basis. This approach
allows it to maintain high temporal resolution and capture fine-grained spatio-temporal patterns,
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Figure 4: Figure showing the performance comparison of different state of the art models wrt the
SPLR models on the SSC dataset Cramer et al.| (2020)

distinguishing it from frame-based methods. The event-by-event design also reduces computational
overhead and ensures low latency, making the model well-suited for real-time applications.

Table 4: Comparison of SPLR models with state-of-the-art on the HARDVS dataset. Accuracy is
measured in percentage, and computational cost is in GFLOPs.

Model GFLOPs Accuracy (%)

C3D (Tran et al. (2015 0.1 50.52

R2Plus1D Tran et al.| (2018) 20.3 49.06
TSM |Lin et al.| (2019 0.3 52.63

ACTION-Net|Wang et al.[(2021) 17.3 46.85
TAM [Liu et al. 16.6 50.41
V-SwinTrans|Liu et al.| (2022¢ 8.7 51.91
SlowFast |Feichtenhofer et al.[(2019) 0.3 46.54
ESTF Wang et al.| (2024b 17.6 51.22
ExACT Zhou et al.| (2024 1.3 90.10
SPLR-Tiny [Ours] 0.034 65.42
SPLR-Small [Ours] 0.13 79.36
SPLR-Normal [Ours] 0.41 88.29
Table 5: Detailed Architecture of SPLR Models (Tiny, Small, and Normal)
Layer Type SPLR Tiny SPLR Small SPLR Normal
Input Representation Asynchronous Spike Events (z,y,t,p)
. . 16 dendritic branches 32 dendritic branches 64 dendritic branches
Dendrite Attention Layer
Td:[Tl-,-~-,T16] Td:[Th-“;TBZ] T(l:[7'17--~77'64]
Convolutional Block 1 Conv2D (32 filters, 3x3) Conv2D (64 filters, 3x3) Conv2D (128 filters, 3x3)
Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2)
Convolutional Block 2 Conv2D (32 filters, 3x3) Conv2D (64 filters, 3x3) Conv2D (128 filters, 3x3)
volu Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2)
Spatial Pooling Layer Pool (2x2) Pool (2x2) Pool (2x2)
SPLR Convolution State Update using Spike-Aware HiPPO and NPLR decomposition for efficient event-driven convolution
Layer Norm Layer Norm Layer Norm

Normalization Layer Normalizes the state variables to stabilize training

Fully Connected (256 neurons) =~ Fully Connected (512 neurons) Fully Connected (1024 neurons)

Readout Layer Softmax for classification Softmax for classification Softmax for classification
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Figure 5: Comparison of our SPLR to the state-of-the-art on DVS128-Gestur¢Amir et al.[(2017),
Spiking Heidelberg digits (SHD) and Spiking Speech Commands (SSC) Cramer et al.[(2020) datasets

SOTA Performance : 72.3% nEVMamba
0.72 SPLR Norm/: EVMamba w/o Voxel Scan ‘
(72,1%) VMamba-S(V2) @ VMamba-B(V2)
. VMamba-$
GSF /'/ TAM
o TsM@®
070 4 VisionMamba-S OEFV++
# V-Swin Trans (]
— /" SPLR Small 8 VideoMamba-M
°\° 0.68 J (69.3%) ACTION-Net o Tlmgformer
< o
> / SlowFast E(S)TF R2Plus1D
o o
© ! VideoMamba-S @ ®
1S
=] ! ® VRWKV-B
0.66
8 / VRWKV-S
< !
!
’ °
0.64 i
! ResNet50 © CNN Models
¢ O ViT Models cap)
i © RWKV Models
0.62| 2% © SSM Models
SPLR Models SVFormer
4 (Ours) o
10t 102

Parameters (M)

Figure 6: Figure showing the Parameters vs Accuracy of different state of the art DNN and SNN
models on the Celex-HAR [Wang et al.| (2024a)) dataset wrt the SPLR models

25



Under review as a conference paper at ICLR 2025

Table 6: Experimental results on CeleX-HAR dataset.

Algorithm

GSF[SudhaKaran et al| (2023
V-SwinTrans |Liu et al.| (2022¢

TimeSformer |Bertasius et al.| (2021
SlowFast ’ﬁic‘%ﬁf—m.ﬁ
SVFormer | Xing et al. 20@
EFV++/Chen et al.| (20

ESTF |Wang et al.|(2024b
VRWKYV-S Duan et al.| (2024
VRWKV—B»WI m%
Vision Mamba-S [Zhu et al.| (2024
VMamba-52024a
VMamba-S(V2)[Liu et al.[(2024

VMamba-B [Liu et al|(
VMamba-B(V2)|Liu et al.[(20244)
VideoMamba-S .
VideoMamba-M

EVMamba

EVMamba w/o Voxel Scan
SPLR-Tiny (Ours)

SPLR-Small (Ours)
SPLR-Normal (Ours)

Publish
CVPR-2016
NIPS-2015
ICCV-2015
CVPR-2018
ICCV-2019
CVPR-2021
ICCV-2021
TPAMI-2023
CVPR-2022
ICML-2021
ICCV-2019
CVPR-2023
arXiv-2024
AAAI-2024
arXiv-2024
arXiv-2024
ICML-2024
arXiv-2024
arXiv-2024
arXiv-2024
arXiv-2024
ECCV-2024
ECCV-2024
arXiv-2024
arXiv-2024

Arch.
CNN
CNN, LSTM
CNN
CNN
CNN
CNN
CNN
CNN
ViT
ViT
ViT
ViT
ViT, GNN
ViT, CNN
RWKV
RWKYV
SSM
SSM
SSM
SSM
SSM
SSM
SSM
SSM
SSM
SSM
SSM
SSM

FLOPs
8.6G
0.1G

20.3G
0.3G
17.3G
16.6G
16.5G
8.7G
53.6G
0.3G
196.0G
36.3G
17.6G
4.6G
18.2G
5.1G
11.2G
8.7G
18.0G
15.4G
4.3G
12.7G
37.2G
18.0G
0.034G
0.13G
041G

Params
11.7M

147.2M
63.5M
24.3M
27.9M
25.6M
10.5M
27.8M
121.2M
33.6M
121.3M
39.2M
46.7M
23.8M
93. M
26.0M
44.TM
50.4M
76.5M
88.9M
26.0M
74.0M
76.5M
76.5M
7.91M
13.35M
25.5TM

acc/top-1
0.642
0.539
0.630
0.679
0.704
0.685
0.705
0.703
0.689
0.630
0.680
0.610
0.695
0.673
0.661
0.668
0.701
0.713
0.715
0.720
0.718
0.669
0.691
0.723
0.720
0.632
0.692
0.722

Table 7: Comparison of classification accuracy and parameters of different models across SHD and
SSC datasets.

Model

SFENN

Cramer et al.|(2020

SRNN
SRNN
SRNN
SCNN
SRNN
HRSN
LSTM

DH-SRN
DH-SFNN

ASGL

Cramer et al.|(2020

Cramer et al.|(2022

erez-Nieves et al.[(2021

ossbroich et al. 12022,

1n et al.

N |Chakraborty & Mukhopadhyay
al. [(2020;

N MP@
Zheng et al.|(2024b)

‘Wang et al.|(2023

(2023 }

DCLS |[Hammouamri et al. 12024}
TIM Shen et al.[(2024b}
TCL 024

SPLR-Normal (128) [Ours]
SPLR-Small (64) [Ours]
SPLR-Tiny (32) [Ours]

8.2 ABLATION STUDIES:

SHD
#Parameters Accuracy (%)

0.09M 48.1
1.79M 83.2
0.17 M 81.6
0.11M 82.7
021 M 84.8
0.14M 90.4
- 80.01
043 M 89.2
0.05M 91.34
0.05M 92.1
- 78.90
02M 95.07
2.59M 86.3
0.142M 88.91
0513 M 94.68
0.129 M 90.57
0.033M 86.24

SSC
#Parameters Accuracy (%)

0.09 M 32.5
0.11M 60.1
0.77M 74.2
- 59.28
043 M 73.1
0.27M 81.03
0.35M 82.46
- 78.90
25M 80.69
0.111 M 61.09
0.513 M 87.52
0.129 M 82.08
0.033 M 72.19

To evaluate the contribution of individual components in the SPLR model, we performed extensive
ablation studies on the sequential CIFAR-10 dataset. Specifically, we analyzed the impact of removing
or replacing key components such as the dendritic attention layer, Spike-Aware HiPPO (SA-HiPPO),
NPLR decomposition, and FFT convolution. The results of these experiments, along with the
corresponding model parameters and computational costs (in GFLOPs), are summarized in Table 9}

Impact of Dendritic Attention Layer Removing the dendritic attention mechanism leads to a reduc-
tion in both accuracy and model parameters. The accuracy drops across all channel configurations,
with the largest channels (128) seeing a decrease from 90.25% to 85.83%. The smaller channel
configurations (64 and 32) experience similar drops, highlighting the dendritic attention’s role in
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Table 8: Comparison of classification accuracy, parameters, and FLOPs of different models across
the DVS128-Gesture dataset.

Model #Parameters (M) GFLOPs Accuracy (%)
Yousefzadeh et al. [Yousefzadeh et al.|(2019) 1.2 - 95.2
( - - 96.9
4.8 - 97.8
1.1 - 98.0
- - 98.8
Chakraborty etal. |Cha.krab0rty & Mukhopadhyay|(|2022} - - 96.5
Martin-Turrero et al. [Turrero et al.[(2024 14 - 96.2
Martin-Turrero et al. [Turrero et al.|(2024 14 - 94.1
CNN + S5 (time-frames) |Schone et al.|q2m} 6.8 - 97.8
Event-SSM [Schone et al.|(2024) 5 - 97.7
CNN + S5 (event-frames) |Schone et al.|(2024) 6.8 - 97.3
TBR-+I3D [Innocenti et al.|(2021) 12.25 38.82 99.6
Event Frames + I3D|Bi et al.|(2020 12.37 30.11 96.5
nDen et al.|( 0.82 0.46 95.7
{ﬂ%ﬂ 19.46 0.79 96.1
Wang et m 1.48 0.872 95.3
2021 1.7 - 97.6
4.5 - 97.9
7.1 - 93.2
0.334 0.587 98.8
0.29 0.219 99.2
3.922 - 83.0
Splke Driven ransformermm 36.01 33.32 99.3
SPLR-Normal (128) [Ours] 0.513 0.43 96.5
SPLR-Small (64) [Ours] 0.129 0.14 93.7
SPLR-Tiny (32) [Ours] 0.033 0.07 89.2
SPLR-Normal (128 Channels) No Dendrite [Ours - Ablation] 0.501 0.43 95.2
SPLR-Small (64 Channels) No Dendrite [Ours - Ablation] 0.121 0.14 89.3
SPLR-Tiny (32 Channels) No Dendrite [Ours - Ablation] 0.031 0.07 81.5
SPLR-Normal (128 Channels) No HiPPO [Ours - Ablation] 0.501 043 90.4
SPLR-Small (64 Channels) No HiPPO [Ours - Ablation] 0.121 0.14 82.6
SPLR-Tiny (32 Channels) No HiPPO [Ours - Ablation] 0.031 0.07 73.5

improving the spatio-temporal feature representation. Interestingly, removing this mechanism slightly
reduces the model’s GFLOPs since the computations associated with the dendritic layer are avoided.

Impact of Spike-Aware HiPPO Replacing SA-HiPPO with a simple LIF-based mechanism leads
to a moderate drop in accuracy (e.g., from 90.25% to 87.62% for 128 channels). However, this
modification does not alter the computational cost (GFLOPs), as SA-HiPPO primarily affects the
temporal memory adaptation rather than the core matrix or convolution operations. These results
emphasize SA-HiPPO’s critical role in retaining and managing temporal dynamics effectively.

Impact of NPLR Decomposition The NPLR decomposition significantly reduces the computational
complexity of state-space updates. Removing NPLR decomposition results in a notable increase in
GFLOPs across all configurations (e.g., from 0.43 GFLOPs to 1.8 GFLOPs for 128 channels) due
to the quadratic complexity of dense matrix operations. Despite this computational overhead, the
accuracy remains relatively stable, highlighting that NPLR’s primary advantage is computational
efficiency rather than feature extraction performance.

Impact of FFT Convolution FFT convolution is integral to efficiently handling long-range temporal
dependencies. Replacing FFT convolution with standard time-domain convolution increases the
GFLOPs substantially (e.g., from 0.43 GFLOPs to 1.2 GFLOPs for 128 channels). Furthermore,
the accuracy sees a more pronounced decline (e.g., from 90.25% to 86.47%), particularly in tasks
requiring high temporal resolution. These results underscore FFT convolution’s dual role in reducing
computational cost and maintaining temporal modeling performance.

Summary of Findings The ablation studies validate the critical importance of each component in the
SPLR model:

» The dendritic attention layer enhances the spatio-temporal feature representation, signifi-
cantly improving accuracy.

* SA-HiPPO dynamically adjusts temporal memory retention, contributing to performance
robustness without additional computational overhead.
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Table 9: Updated Ablation Study for SPLR Variants on seqCIFAR-10 with FLOPs

Model Variant Channels Accuracy (%) Params (M) FLOPs (GFLOPs)

SPLR (Full) 128 90.25 0.513 0.43

SPLR (No SA-HiPPO) 128 87.62 0.501 0.43
SPLR (No NPLR Decomposition) 128 88.05 0.513 1.8
SPLR (No FFT Convolution) 128 86.47 0.513 1.2
SPLR (No Dendrite) 128 85.83 0.501 0.43

SPLR (Full) 64 88.62 0.129 0.14

SPLR (No SA-HiPPO) 64 86.14 0.121 0.14
SPLR (No NPLR Decomposition) 64 86.72 0.129 0.56
SPLR (No FFT Convolution) 64 85.23 0.129 0.32
SPLR (No Dendrite) 64 84.65 0.121 0.14

SPLR (Full) 32 83.15 0.033 0.034

SPLR (No SA-HiPPO) 32 81.75 0.031 0.034
SPLR (No NPLR Decomposition) 32 82.12 0.033 0.12
SPLR (No FFT Convolution) 32 80.62 0.033 0.08

SPLR (No Dendrite) 32 80.05 0.031 0.034

e NPLR decomposition ensures scalability by reducing the computational cost of state-space
updates, making the model efficient for large-scale tasks.

* FFT convolution is indispensable for capturing long-range dependencies efficiently while
keeping computational complexity low.

The full SPLR model represents a carefully optimized design that balances accuracy, efficiency,
and scalability, making it suitable for real-time and resource-constrained spiking neural network
applications.

8.3 LONG-RANGE DEPENDENCIES

Sequential CIFAR Datasets The first set of experiments evaluates the ability of the proposed
SPLR model to effectively capture long-range dependencies in sequential data. This is crucial
for applications involving event-driven data spanning extended periods, such as continuous gesture
recognition and video analysis. To simulate long-term temporal relationships, we conduct experiments
using the Sequential CIFAR-10 and Sequential CIFAR-100 datasets, where each image is transformed
into a sequence of frames.

In these experiments, we compare the performance of SPLR against several baselines, including
traditional SNN models. The key focus is on assessing the effectiveness of our Spike-Aware HiPPO
(SA-HiPPO) dynamics in retaining temporal memory over long sequences. The results are presented
in Table[T0] which includes classification accuracy for different sequence lengths, as well as model
complexity in terms of the number of parameters.

As seen in Table [I0] SPLR significantly outperforms the baselines in capturing long-range depen-
dencies. The SPLR model with 128 channels achieves an accuracy of 90.25% on the Sequential
CIFAR-10 dataset and 65.33% on Sequential CIFAR-100, which surpasses the performance of all
baseline models by a substantial margin. These results indicate that SPLR not only maintains memory
over extended input sequences but also converges faster, achieving higher accuracy with fewer epochs
compared to traditional spiking and hybrid models.

The ablation study further reveals that the SA-HiPPO matrix incorporated in SPLR plays a pivotal
role in enhancing temporal filtering capabilities, leading to improved convergence rates and more
robust performance in long-range dependency tasks. This improvement is evident in the accuracy
gains observed in SPLR compared to other models, including those using mechanisms like GLIF and
PLIF.

Moreover, even when model complexity is reduced, as seen in the SPLR variants with 64 and 32
channels, our model maintains superior accuracy compared to all baseline architectures. For instance,
the SPLR with 64 channels achieves 88.% accuracy on Sequential CIFAR-10, outperforming other
models with similar parameter counts, demonstrating the efficiency and scalability of the proposed
SA-HiPPO dynamics for capturing long-term dependencies in sequential data.
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Table 10: Comparison of Architectures on Sequential CIFAR-10 and CIFAR-100
seqCIFAR10 seqCIFAR100

Architecture Channels Layer Type Accuracy (%) Accuracy (%)
PSN [Fang et al.|(2023) 88.45 62.21
masked PSN |[Fang et al.|(2023) 85.81 60.69
GLIF Yao et al.|(2022) 83.66 58.92
128 KLIF Jiang & Zhang|(2023) 83.26 57.37
6Conv+FC PLIF [Fang et al.|(2021) 83.49 57.55
LIF 81.50 55.45
SPLR 90.25 65.33
64 SPLR 88.62 63.57
32 SPLR 83.15 56.32

These findings validate the superior temporal modeling capabilities of SPLR, making it well-suited
for tasks that require efficient and scalable handling of long-range dependencies in sequential,
event-driven data.

Long Range Arena Datasets: We evaluate the ability of the proposed SPLR model to capture
long-range dependencies using the Long Range Arena (LRA) dataset Tay et al.|(2020). The LRA
benchmark evaluates models on tasks requiring long-context understanding, where Transformer-
based non-spiking models often exhibit suboptimal performance due to the computational overhead
of attention mechanisms, which scales poorly with increasing sequence lengths. As shown in
Table 3] we benchmark our method against state-of-the-art alternatives, including the LMU-based
spiking model, SpikingLMUFormer |Liu et al.| (2024b), and the BinaryS4D model [Stan & Rhodes
(2024). While BinaryS4D is not fully spiking—it relies on floating-point MAC operations for matrix
multiplications—it incorporates LIF neurons to spike from an underlying state-space model (SSM),
providing a hybrid approach to handling long-range dependencies.

8.4 DVS GESTURE RECOGNITION

To further investigate the combined effectiveness of dendritic mechanisms and SPLR convolutions in
event-based processing, we evaluate our model on the DVS Gesture dataset. This dataset consists of
event streams recorded from a Dynamic Vision Sensor (DVS) at a resolution of 128 x 128, providing
a challenging benchmark for evaluating temporal dynamics in gesture recognition tasks involving
varying speeds and motions.

Our goal is to assess how the integration of dendritic mechanisms with SPLR convolution layers
enhances the model’s ability to capture multi-scale temporal dependencies. Specifically, we examine
how dendrites can serve as a temporal attention mechanism that helps SPLR effectively focus on the
most relevant events, while SPLR convolutions manage the overall temporal and spatial evolution of
features.

The experiment involves training variants of our model—one incorporating both dendritic mechanisms
and SPLR convolutions, and the other using only SPLR—to determine the contribution of dendritic
attention. Table [8| summarizes the test accuracy of our models compared to other state-of-the-art
approaches. The results are measured in terms of classification accuracy, along with the number of
parameters, to highlight model efficiency.

As shown in Table[8] the SPLR model with 128 channels, incorporating dendritic attention, achieves
96.5% accuracy while maintaining a significantly lower parameter count compared to many other
state-of-the-art models. This shows that our approach effectively utilizes sparse event-driven inputs
to achieve high accuracy with reduced computational complexity. The use of dendritic mechanisms
allows the model to dynamically adjust its focus on different temporal scales, thus improving gesture
recognition even in scenarios with rapid motion changes.

The variant without dendritic attention, while still competitive, lags behind in adapting to the multi-
scale nature of the event data, especially for gestures with complex temporal characteristics. This
indicates that the dendritic mechanism plays a crucial role in adaptively filtering relevant temporal
features, which is essential for handling the asynchronous, irregular inputs typical of event cameras.

In addition, visualizations of the learned dendritic activity reveal how the model attends to different
time segments, effectively filtering the incoming spike streams to prioritize the most relevant events.
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This adaptive filtering complements the SPLR convolutional operations, leading to more robust and
efficient temporal feature extraction.

Opverall, the results validate the utility of combining dendritic mechanisms with SPLR convolutions for
event-driven tasks, making the model well-suited for gesture recognition from DVS inputs. The joint
use of these components allows for efficient temporal modeling, maintaining a favorable trade-off
between accuracy and parameter efficiency.

8.5 ScCALING TO HD EVENT STREAMS

The scalability of the proposed SPLR model is evaluated on the Celex HAR dataset, a human activity
recognition dataset recorded at a high resolution of 1280 x 800. This dataset serves as a challenging
benchmark for assessing the model’s ability to maintain high accuracy and computational efficiency
when processing large-scale spatial and temporal data.

In this experiment, SPLR is used for action recognition on HD event streams, and its performance
is compared to that of baseline Spiking Neural Networks (SNNs) and State-Space Models (SSMs).
As shown in Figure[3] the results demonstrate that SPLR maintains high accuracy even at increased
resolutions, whereas the baseline models experience significant performance degradation due to
heightened computational demands. The integration of the SPLR convolution layer proves effective in
managing the complex spatial and temporal components of HD event data, providing robust real-time
processing capabilities with minimal computational overhead.

Figure [3illustrates the trade-off between accuracy and computational cost, measured in terms of
FLOPs, for our SPLR models compared to state-of-the-art methods on the Celex-HAR dataset. The
SPLR variants—SPLR Tiny, SPLR Small, and SPLR Normal—demonstrate superior efficiency by
achieving competitive or better accuracy while utilizing significantly fewer computational resources.

Key observations from Figure are as follows:
Table 11: Latency Comparison on Celex-HAR (in microsec-
* Efficiency at Different onds)
Scales: SPLR Tiny achieves Algorithm Latency (us)
approximately 63.8% accu- T
racy with a fraction of the Sgiﬁ-g::gll 8;2;
computational cost com- i :
pared to larger models such glgslf\lfe tli_(())rm:ll 411'%6775
as SlowFast and C3D. As the 3D 0473
model scales to SPLR Small R2Plus1D 9 4264
and SPLR Normal, accuracy TSM 1 4266
improves to 69.3% and : :
72.1%, respectively, while %SIF\I‘/IION Net gég?g
maintaining a favorable GSF 75.558
computational cost profile. V-SwinTrans 39.837
* Performance with Reduced TimeSformer 255.425
Complexity: SPLR Normal SlowFast 1.118
matches or exceeds the ac- EFV++ 166.23
curacy of models like TSM ESTF 80.61
and VisionMamba-S but at a SVFormer 897.455
substantially lower computa- VRWKV-S 21.091
tional cost. This efficiency VRWKV-B 86.346
is attributed to the integra- Vision Mamba-S 23.88
tion of event-driven process- VMamba-S 53.302
ing and effective state-space VMamba-S(V2) 39.848
dynamics. VMamba-B 82.421
VMamba-B(V2 70.514
The improved efficiency of SPLR can Vid:é;/[:mb(a-s) 19.707
be credited to the event-based process- VideoMamba-M 58. 164
ing capabilities of the SPLR architec- EVMamba 176_34
ture and the SPLR convolution layer, EVMamba w/o Voxel Scan 82423

which optimally manage state-space
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Figure 7: Figure showing Accuracy vs Inference Latency for different models on the Celex-HAR
dataset.

evolution without relying on dense

operations. These features allow the

model to capture complex temporal dependencies while minimizing computational requirements,
making SPLR particularly effective for high-resolution event-based datasets like Celex-HAR.

HAR-DVS Results: The HAR-DVS dataset results underscore the advantages of our SPLR models,
achieving accuracies of 70.38%, 81.73%, and 88.29% for SPLR-Tiny, SPLR-Small, and SPLR-
Normal, respectively, while maintaining substantially lower computational costs compared to other
state-of-the-art models. Unlike traditional deep neural networks such as C3D and R2Plus1D, which
struggle to model the complex temporal relationships inherent in event streams, SPLR leverages a
novel event-by-event processing approach, preserving fine-grained temporal dynamics essential for
accurate action recognition.

Moreover, SPLR employs a unique dendritic attention mechanism that enhances its ability to capture
long-range spatio-temporal dependencies efficiently. The prolonged and complex actions in HAR-
DVS demand robust temporal attention mechanisms, as highlighted in prior studies. SPLR’s dendritic-
inspired design meets these requirements while offering a computationally efficient solution, making
it particularly suitable for real-time, low-latency applications in dynamic event-driven environments.

It is important to note that HAR-DVS provides frame-based data, as raw event data was unavailable
for download. Since SPLR is designed for event-by-event processing, we treated all events arriving at
the same timestamp as a single batch for processing, adhering to the event-driven principles of the
model.

8.6 LATENCY RESULTS

Table [TT] presents the latency results (in microseconds) for SPLR and various state-of-the-art methods
on the Celex-HAR dataset. SPLR outperforms all competing models in terms of latency, with
SPLR-Tiny achieving the lowest latency of 0.162 ps. SPLR-Small and SPLR-Normal maintain low
latencies of 0.582 us and 1.867 us, respectively, while providing competitive accuracy. In contrast,
high-performing models such as TimeSformer (255.425 pus), EFV++ (166.23 pus), and R2Plus1D
(94.264 pis) exhibit significantly higher latencies. Even latency-optimized models like VideoMamba-S
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(19.707 us) and SlowFast (1.118 us) are surpassed by SPLR configurations, demonstrating SPLR’s
exceptional efficiency in the latency-accuracy trade-off. These results highlight SPLR’s suitability for
real-time, resource-constrained applications.
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9 SUPPLEMENTARY SECTION C: METHODS AND ARCHITECTURAL DETAILS

BACKGROUND AND PRELIMINARIES

State-Space Models: A state-space model (SSM) is a mathematical framework for modeling systems
that evolve over time. The dynamics of such systems are described by a set of first-order differential
equations, often expressed in continuous time as:

(t) = Az(t) + Bu(t), y(t)=Cx(t)+ Du(t)

where:

* z(t) e RY is the hidden state vector, representing the internal state of the system at time ¢,
* u(t) e RM is the input signal, such as sensory data or external stimuli,
» y(t) € R is the output signal or observable state,

e AeRVN BeRNM ¢ RPN and D e RP*M are learned system matrices.

State-space models are often used in signal processing and control systems to model systems with
temporal dependencies. In many practical scenarios, however, the continuous-time formulation is
discretized:

Tr+1 = Aax + Baug, Yk = Caxg + Dauy,
where Ay, By, Cy, and Dy are the corresponding discrete-time matrices, and k indexes the discrete
time steps.

Spiking Neural Networks (SNNs): SNNs are a class of neural networks that more closely mimic
biological neurons. In SNNSs, information is transmitted as spikes, or binary events, at discrete times,
as opposed to continuous activations in traditional neural networks. A typical neuron in an SNN,
such as the Leaky Integrate-and-Fire (LIF) neuron, is governed by the following dynamics:

d‘f;t(t) = —Vi(t) + Li(t)

where V;(t) is the membrane potential of neuron i, 7, is the membrane time constant, and I;(¢) is
the input current, typically derived from presynaptic neurons or external stimuli.

m

A spike is emitted when the membrane potential exceeds a threshold 6;. After a spike, the membrane
potential is reset, and a refractory period prevents immediate re-firing.

Despite their potential for efficient temporal data processing, SNNs are difficult to train due to the
non-differentiability of spikes and the complex membrane potential dynamics.

Highly Optimized Polynomial Projection (HiPPO): The HiPPO framework provides a method
for approximating the continuous history of an input signal by projecting it onto a set of polynomial
basis functions. The HiPPO matrix A is designed to optimally compress the history of the input into
a state vector z(t), allowing the model to retain relevant temporal dependencies over long time scales.
For example, the HiPPO-Legendre (HiPPO-LegS) matrix A is defined as:

-/(2n+1)(2k+1) ifn>k
Anp=4n+1 ifn==k
0 ifn<k
This matrix governs the dynamics of how the internal state evolves to represent the history of the
input in a compressed manner.

MATHEMATICAL MODELING AND SPIKE GENERATION MECHANISM

Spikes in the SPLR model are generated through the dynamics of LIF neurons. The spike generation
process is described in detail below:

* Dendritic Current Integration: Each DH-LIF neuron integrates incoming spikes through
its dendritic branches:

ia(t+1) = agia(t) + > w;p;, )
JjeNq
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_1 . . . . .
where o = ¢ "« represents the decay rate, w; is the synaptic weight, and p; is the input
spike value.

* Soma Potential Update and Spike Generation: The soma potential is updated based on
the integrated dendritic currents:

V(t+1) =BV (t)+ gaia(t), 2)
d

where 3 = ¢ 7 is the decay rate of the soma, and g4 is the coupling strength of each
dendrite. A spike is generated if V'(¢) exceeds the threshold V.

 Spike Propagation: The generated spikes propagate through the network according to:
(tge1) = eAAth(tk) +A_1(6AAtk - I)BS(tx), 3)

preserving both spatial and temporal information.

METHODS

The proposed model is designed to handle sparse, asynchronous event-based inputs effectively while
being scalable to high-definition (HD) event streams. It leverages Dendrite Heterogeneity Leaky
Integrate-and-Fire (DH-LIF) neurons in the first layer to capture multi-scale temporal dynamics,
crucial for preserving temporal details inherent in event streams while reducing spatial and computa-
tional redundancy. The model then utilizes a series of spiking state-space convolution layers, enabling
efficient integration of both local and global temporal relationships. The final readout layer employs
event pooling and a linear transformation to produce a compact and meaningful representation for
downstream tasks such as classification or regression. This architecture ensures robustness and
scalability, making it suitable for high-resolution inputs.

VARIABLES AND NOTATIONS

To ensure clarity, we provide definitions for all variables and notation used in the equations:

Input Representation:

e x,y: Spatial coordinates of the spike event.
* t: Timestamp of the spike.
* p: Magnitude or polarity of the spike.

Dendrite Attention Layer:

* 74: Dendritic timing factor, representing the temporal scale of each dendrite.

* i4(t): Dendritic current for branch d at time ¢.

_1
* «g: Decay rate for dendritic branch d, defined as vy =€ 7a.

e Ny: Set of presynaptic inputs connected to dendrite d.

* w;: Synaptic weight associated with presynaptic input p;.

e V(t): Membrane potential of the soma at time ¢, aggregated from all dendritic currents.
 (3: Decay rate of the soma, defined as 3 = e’?ls, where 7, is the soma’s time constant.

* gq: Coupling strength of dendrite d to the soma.

* Vin: Threshold potential for spike generation.

Spatial Pooling Layer:

o I(z,y,t): Initial spike activity at location (z,y) and time ¢.
* Tpoolea(x', 3y, ) Spatially pooled spike activity at location (z,7") and time ¢.
* P(a',y"): Pooling window centered at (z’,y").
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SPLR Convolution Layer:

* z(t): Internal state vector at time ¢.
* S(t): Input spike train, where S;(t) = 3, 6(¢ — t¥) and §(¢) is the Dirac delta function.

* Ag: Spike-Aware HiPPO (SA-HiPPO) matrix, dynamically adapted based on inter-spike
intervals.

e B, C: Input and output coupling matrices.

» At: Inter-spike interval, defined as the time difference between consecutive spikes.
* F(At): Decay matrix for SA-HiPPO, where Fj;(At) = e~ 5t

e V. A, P,Q: Components of NPLR decomposition:

— V' Unitary matrix.
— A: Diagonal matrix of decay rates.
— P, Q: Low-rank matrices, where r << N.

* K(w): FFT convolution kernel, defined as K (w) = —=.
* FFT(-),IFFT(-): Fast Fourier Transform and its inverse.

Normalization Layer:

* z;: Input to the normalization layer at layer [.
* u;,07: Mean and variance of the activations at layer [.

* ~, 3: Learnable scale and shift parameters for layer normalization.

Readout Layer:
1 (k+1)p-1
* Tpooled,k: Pooled state vector, computed as Tpooled,k = — Z x;, where p is the pooling
i=kp
factor.

e W, b: Learnable weight matrix and bias for the linear transformation.

* y: Final output of the model, computed as y = W pooled + b-

OVERVIEW OF THE SPLR MODEL

The proposed Spiking Network for Learning Long-Range Relations (SPLR) addresses the limitations
of conventional spiking neural networks (SNNs) in capturing long-range temporal dependencies while
maintaining event-driven efficiency. The SPLR model is composed of the following key components:

Algorithm 2 SPLR Model Processing

Requlre Input spike event sequence X = {(z;,v:,t:,pi)}

. Initialize model parameters

Process input through Dendrite Attention Layer (Algorithm 3)

Apply Spatial Pooling Layer to reduce spatial dimensions (Algorithm 4)

Pass output to SPLR Convolution Layer to capture temporal dynamics (Algorithm 3)
Update state using Spike-Aware HiPPO mechanism (Algorithm[5)

Aggregate information in the Readout Layer for final output (Algorithm [6)

Output: Model prediction y

AR A ol ey

9.1 INPUT REPRESENTATION

The input to the model is represented as a sequence of spike events, each defined by the tuple
(x,y,t,p), where (x,y) are the spatial coordinates, ¢ is the timestamp, and p represents the magnitude
or polarity of the spike. These events are streamed asynchronously, reflecting the sparse nature of
the data. The model is also designed to handle higher resolutions, allowing scalability to HD event
streams. This input representation emphasizes the need for efficient aggregation of both spatial and
temporal information while minimizing computational load.
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9.2 DENDRITE ATTENTION LAYER

The model begins by passing the input through the Dendrite Attention Layer, constructed using
DH-LIF neurons as shown in Fig. [Tl Each DH-LIF neuron features multiple dendritic branches, each
with a unique timing factor 7,4, enabling the capture of temporal dynamics across a range of timescales,
which is essential for accommodating the diverse timescales present in asynchronous spike inputs.
The dynamics of the dendritic current i4(¢) are governed by i4(t + 1) = cgiq(t) + Y. w;p;, where
jeNg
Qg = ¢ 74 is the decay rate for branch d, and w; represents the synaptic weight associated with
presynaptic input p;. The set N represents the presynaptic inputs connected to dendrite d, ensuring
that each dendrite captures temporal features independently, functioning as independent temporal
filters. Unlike a standard CUBA LIF neuron model, which integrates all inputs uniformly at the
soma with a single timescale, the dendritic attention layer introduces multiple dendritic branches,
each independently filtering inputs at different temporal scales. This design enables the neuron to
selectively process asynchronous inputs and retain information across diverse temporal windows,
providing greater flexibility and adaptability.

The dendritic currents from each branch are aggregated at the soma, resulting in the membrane

potential V (¢t + 1) = BV (t) + > gaiq(t), where 3 = e 7 represents the soma’s decay rate, and
d

gq represents the coupling strength of dendrite d to the soma. A spike is generated whenever the

membrane potential exceeds a threshold Vi, allowing the neuron to selectively fire only when
sufficiently excited.

Algorithm 3 Dendrite Attention Layer

Require: Input spike events X = {(x;,y;, t;, p; )}, dendritic timing factors {74}, synaptic weights
{w;}, coupling strengths {g4}, threshold V4,
1: Initialize dendritic currents i4(0) and membrane potential V' (0)
2: for each time step ¢ do
3: for each dendrite d do .
Compute decay rate: ag < e "d

4:
5: Update dendritic current: i4(t + 1) < agia(t) + Xjen, wyp;
6: end for )
7: Compute soma decay rate: 3 < e 7
8: Update membrane potential: V(¢ + 1) < SV (t) + X4 gata(?)
9: if V(t+1) >V then
10: Generate spike at time ¢ + 1
11: Reset membrane potential: V(¢ +1) «< 0
12: end if
13: end for

14: Output: Spatio-temporal features (x,y,t)

9.3 SPATIAL POOLING LAYER
Following the dendritic attention layer, a Spatial Pooling Layer is introduced to reduce the spatial

dimensionality of the resulting output. Given the initial spike activity I(x,y,t) at location (x,y), the
pooling operation reduces spatial dimensions while preserving temporal resolution:

I 2y, t)=  ma I(z,y,t
moka (7,45 6) = %, T80

where P(z’,y") is a pooling window centered at (z’,y’). Pooling reduces spatial complexity,

simplifying subsequent processing in the network while retaining key features. This is especially
useful for HD event streams with extensive spatial information.

9.4 SPLR CONVOLUTION

The Spiking Process with Long-term Recurrent dynamics (SPLR) Convolution Layer is a critical
component of the SPLR model, specifically designed for processing event-based spiking inputs. It
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Algorithm 4 Spatial Pooling Layer

Require: Input spike activity I(x,y,t) from Dendrite Attention Layer, pooling window P(z’,y’)
: for each spatial location (z',y") do
for each time step t do

Pool activity: Ipeorea(z',y',t) < max  I(x,y,t)
(z,y)eP(z'y)

: end for

1
2
3
4: end for
5
6: Output: Pooled spike activity Ipootea (', 3', 1)

captures long-range dependencies and asynchronous dynamics by integrating mechanisms such as the
Spike-Aware HiPPO (SA-HiPPO) framework, Normal Plus Low-Rank (NPLR) Decomposition,
and Fast Fourier Transform (FFT) Convolution. These innovations collectively enable efficient
and robust temporal feature extraction.

Overview and Intuition

Traditional convolutional layers are adept at extracting spatial features but often fail to capture complex
temporal dependencies, especially in asynchronous, sparse spiking data. The SPLR Convolution
Layer overcomes this limitation by incorporating state-space models that inherently manage temporal
dynamics. Leveraging the SA-HiPPO mechanism, the layer dynamically adapts memory retention
based on spike timings, emphasizing recent events while allowing older information to decay. The
use of NPLR Decomposition and FFT-based convolution further enhances computational efficiency,
enabling scalability to high-dimensional, long-range temporal data.

Spiking State-Space Model: The temporal dynamics of the SPLR Convolution Layer are governed
by the Spiking State-Space Model:

(t) = Asz(t) + BS(t), y(t)=_Cux(t), )

where:

+ z(t) e R represents the internal state vector,

S(t) e RM is the input spike train, with each component S;(t) = ¥, §(t — t¥), where 6(¢)
is the Dirac delta function,

o Ag e RV is the Spike-Aware HiPPO matrix,

¢ BeRM*M and C' e RP*N are the input and output coupling matrices.

This framework ensures that temporal dependencies inherent in spiking data are captured effectively.

Spike-Aware HiPPO Mechanism: The Spike-Aware HiPPO (SA-HiPPO) (Fig. E[) mechanism is a
core component of the SPLR model, designed to efficiently capture long-term temporal dependencies
in the presence of sparse, event-based spiking inputs. The HiPPO (Highly Optimized Polynomial
Projection) framework, originally developed to approximate continuous input signals, projects them
onto polynomial bases, enabling efficient temporal compression of input history. However, when
dealing with spike-driven dynamics, where inputs are discrete and irregular, the conventional HiPPO
formulation must be adapted to properly address these challenges. The SA-HiPPO adapts the HiPPO
framework to efficiently handle discrete, spike-driven inputs by introducing a decay matrix F'(At).
This matrix adjusts memory retention based on the time elapsed between spikes (At), ensuring more
recent spikes have a greater influence while older information gradually decays. The Hadamard
product with the original HiPPO matrix enables adaptive modulation of memory, making it more
stable and suitable for asynchronous events. In a spike-driven scenario, the input signal is represented
as a vector of spike trains S(t) € RM, with each element S;(t) defined by S;(t) = >_ 6(t - th,
k

where §(t) is the Dirac delta function, and ¥ denotes the time of the k-th spike for input 7. Given
the irregular and sparse nature of these spike-driven inputs, we introduce a Spike-Aware HiPPO
(SA-HiPPO) matrix Ag that extends the dynamics of the standard HiPPO to efficiently process spikes.
The SA-HiPPO matrix Ag modifies the original HIPPO dynamics to adapt to the nature of spiking
events by incorporating a decay function that accounts for the time elapsed between successive spikes.
Specifically, the state evolution in the presence of spikes is modeled by @(t) = Asx(t) + BS(t).
The matrix Ag is defined as Ag = A o F((At), where A e RV*V is the original HiPPO matrix, and
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Figure 8: The SA-HiPPO decay is needed to adapt the memory retention dynamically to the irregular
timing of spike events, allowing the system to prioritize recent spikes while efficiently managing the
decay of older information, which enhances stability and responsiveness for event-driven inputs.

F(At) e RV*N i5 a decay matrix that weights the original HiPPO dynamics based on the inter-spike
interval At. The operator o denotes the element-wise (Hadamard) product. The decay matrix F'(At)
is formulated as Fy;(At) = e™*9 2! where At = t; — t; represents the time difference between spike
1 and spike j, and «;; is a decay parameter that controls how the influence of past spikes diminishes
over time. The exponential decay function ensures that the impact of previous spikes decreases
exponentially, allowing more recent spikes to have a stronger influence on the current state. This
weighting mechanism makes the HiPPO dynamics more adaptable to spiking inputs, capturing both
the recency and relevance of spikes for efficient temporal representation.

The state vector z(t) thus evolves in two distinct modes: continuous evolution between spikes and
instantaneous updates at spike times. Between spikes, the state evolves according to the homogeneous
equation &(t) = Asx(¢). When a spike occurs at time ¢, the state is updated as:

w(teer) = €53 a(ty) + AGt (e?52 — T) BS(ty)

where Aty =ty — t) represents the time difference between successive spikes. To make the state
update computationally feasible, the matrix exponential s is approximated using a truncated
Taylor series expansion:

AZAL
eAsA o T+ AgAty, + 752 k

This first-order or second-order approximation provides a good balance between computational
efficiency and accuracy, especially in scenarios with small inter-spike intervals.

The SA-HiPPO mechanism effectively extends the temporal memory capabilities of the original
HiPPO framework by introducing a spike-sensitive adaptation. It ensures that the state vector z(t)
retains relevant temporal information while accommodating the asynchronous nature of spike inputs.
The decay function embedded within F'(At) provides a means to dynamically adjust the influence of
past inputs, thereby making the model more responsive to recent events.

Normal Plus Low-Rank (NPLR) Decomposition: The NPLR Decomposition reduces computa-
tional complexity by expressing Ag as:

Ag =VAV* - PQ*, 5)
where:
» V e CN*N is a unitary matrix,

o A e CNN is a diagonal matrix of decay rates,
e P,Q € CN*" are low-rank matrices, with 7 << V.

This decomposition reduces the complexity of matrix-vector multiplications from O(N?) to O(Nr),
facilitating scalability to large state spaces.

Fast Fourier Transform (FFT) Convolution: Long-range temporal dependencies are handled
efficiently using FFT-based convolution. The convolution operation is performed as follows:
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1. Transform the state vector z(¢) and convolution kernel K (w) into the frequency domain
using FFT.

2. Perform element-wise multiplication in the frequency domain.
3. Apply the inverse FFT (IFFT) to obtain the updated state vector in the time domain.

This approach significantly accelerates the processing of long temporal sequences by leveraging
frequency-domain efficiencies. The SPLR Convolution Layer integrates these components to achieve
robust spatio-temporal feature extraction:

* Temporal Dynamics Modeling: SA-HiPPO captures spike timing dependencies while
balancing memory retention and decay.

* Computational Efficiency: NPLR Decomposition and FFT convolution ensure scalability
and rapid processing.

* Efficient State Management: The state-space formulation ensures accurate updates for
spiking inputs.

9.4.1 SPLR CONVOLUTION LAYER

Using all these concepts of SA-Hippo, NPLR Decomposition and FFT Convolution, we introduce
SPLR Convolution (SPLRConv) layers, which generalize the spike-aware state-space operations
into a convolutional framework. These layers are designed to extend the capabilities of SPLR by
transforming the temporal memory operations into a convolutional form, thus allowing for more
efficient feature extraction in both temporal and spatial domains. The SPLR Cony layer incorporates
spike-based input while retaining the convolutional structure, enabling the model to operate efficiently
over high-dimensional data while capturing complex temporal dependencies. The continuous-time
state-space dynamics are given by:

d
ﬁaj(t) = Az (t) + Bu(t)

where x(t) € RY represents the state vector, u(t) € R is the input, A € R™V* is the state transition
matrix, and B € R™V*M is the input coupling matrix. The state evolves based on both the internal
dynamics and the influence of incoming spikes. The Spike-Aware dynamics incorporate both decay
and event-driven updates

() = Agpike (t) (1) + Bypike (t)u(t), (6)
where Agike(t) = Adecay + Atiming (t). The matrix Agecay = —}I models natural decay, while
A[iming(t) represents spike-driven effects and depends on the igter-spike intervals. The model
discretizes these dynamics for efficient implementation, using a fixed time step At¢:

Tp+l =T + At(Aspike,kxk + Bspike,kuk) @)

At each spike time ¢;, the state undergoes an instantaneous update (¢, ) = z(¢; ) + Byike(t;). To
improve computational efficiency, the spiking state matrix Agpx. is decomposed using the Normal
Plus Low-Rank (NPLR) decomposition: Agixe = VAV* — PQ*

(CNXN (CNXN

where V' ¢ is a unitary matrix, A € represents the decay, and P, Q € CV*" are low-rank
matrices. This reduces the cost of matrix-vector products from O(N?) to O(Nr), where r is the
rank of the low-rank perturbation. The resulting state update rule becomes:

T+l =T + At ((VAV* - PQ*)‘T]C + Bspikeuk)
The convolution operation in these layers is realized by transforming recurrent state-space updates
into a convolutional form, with the system’s impulse response precomputed. Using the Fast Fourier
1
Transform (FFT), the convolution kernel K (w) can be efficiently calculated as K (w) = i This
w

transformation allows the model to handle long-range temporal dependencies efficiently, even in
high-resolution event-based streams.

Computational Efficiency: The layer achieves notable computational advantages:
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 Reduced Complexity: NPLR Decomposition transforms operations from O(N?) to
O(NT).

* Accelerated Convolutions: FFT convolution rapidly processes long temporal sequences.

 Parallelization: FFT operations are well-suited for parallel hardware architectures, enhanc-
ing performance.

Spike Generation in SPLR Convolution Layers: Spikes in the SPLR model are generated through
the interaction of dendritic and soma compartments in the DH-LIF neurons. These neurons are
integral to the Dendrite Attention Layer, which precedes each SPLR convolution layer, ensuring
asynchronous and event-driven signal processing.

The dendritic branches act as independent temporal filters, accumulating and processing inputs over
time:
’id(t + 1) = Ozdid(t) + z w;p;g,

JjeNu

I S . .. . .
where ag = e 7a is the decay rate determined by the dendritic branch’s time constant 74, w; is the
synaptic weight, and p; is the presynaptic spike.

The soma aggregates these currents, with its membrane potential evolving as:

V(t+1) =BV (t)+ ) gaia(t),
d

1
where 3 = e 7s represents the soma’s decay factor, and g, is the coupling strength of each dendrite d.

A spike is produced when the soma’s membrane potential V' (¢) exceeds the threshold V. After
firing, the potential resets, and these spikes serve as inputs to the next SPLR convolution layer.
This mechanism ensures the model maintains its asynchronous event-driven processing nature while
enabling precise temporal modeling across layers.

The SPLR Convolution Layer combines the strengths of SA-HiPPO, NPLR Decomposition, and
FFT Convolution to process asynchronous spiking inputs effectively. This integration enables the
model to extract meaningful spatio-temporal features while maintaining computational efficiency and
scalability, making it ideal for high-resolution, real-world applications.

9.5 NORMALIZATION AND RESIDUAL

To maintain stability and ensure efficient learning, Layer Normalization (LN) is applied after each
Ty —
of +e
of activations at layer [, respectively, and +, 5 are learnable parameters. Normalization reduces
variability in activations, providing stable training regardless of fluctuations in inputs.

spiking SSM convolution layer: z; = -+ + 3, where y; and o7 are the mean and variance

Additionally, residual connections help propagate information across layers by defining x;,; =
f(xz;) + x;, where f(x;) represents the transformation applied by the spiking convolution at layer (.
Residual connections prevent vanishing gradients, allow lower-level feature retention, and enhance
learning efficiency.

Table 12: Input-Output Descriptions for Each Block in the SPLR Model

Block Input Output
Input Representation Spike events (. y,t,p): (,y) (spatial),  (time), p (magnitude/polarity) p spike events for layers
Spike event stream with spatial and temporal coordinates (z.,y,t,p) Aggregated membrane potential v(#), capturing spatio-temporal features at multiple timescales.
Dendrite Attention Layer  Dendritic Current Update:
Previous dendritic current i4(t), synaptic weights w, and decay factor o Updated dendritic current i (t + 1) = agia(t) + £ jn, Wips
Soma Aggregation: Aggregated membrane potential v (£ + 1) = Bv(t) + ¥y gaia(t)
Tnputs from dendritic currents i,(t + 1), soma decay factor 3, and coupling strengths g,
Spike Generation: Spike output if v(£ + 1) > Vi, and reset potential (v(£ + 1) « 0)
Spatial Pooling Layer Aggregated spikes I(x,y,t) from the Dendrite Attention Layer Pooled spatio-temporal representation Ipooiea (', ', ¢), with reduced spatial dimensions
Pooled spike features Tpooiea (', 3", t) Processed state y (t), thresholded to generate spikes.
SPLR Convolution Layer  SA-HiPPO: Spike features and inter-spike intervals (Af) Adjusted state-space matrix As, incorporating memory retention through a decay matrix
NPLR Decomposition: Decomposed matrix As = VAV* - PQ*, reducing computational complexity
Adjusted state-space matrix Ag
Matrix Exponential Approximation: Approximated exponential s for efficient state updates
Decomposed state-space matrix Ag, time step Aty
FFT Convolution: State vector x(t)) and precomputed impulse response K(w) Updated state vector x(tx.1) after efficient frequency-domain convolution
Layer Normalization Intermediate activations x; from the SPLR Convolution Layer Normalized activations %;, ensuring stable training by reducing variability in activations
Readout Layer Normalized features %; Final output y, generated via event pooling and a linear transformation
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Algorithm 5 SPLR Convolution Layer

Require: Spike train input S(¢), HiPPO base matrix A, input coupling matrix B, output coupling
matrix C, decay function F(At), time step A¢, low-rank matrices P, Q, total time T, rank 7,
state space dimension N, FFT convolution kernel K(w), threshold potential Vi,

Ensure: Output spike map Yipixe (1)

Initialization

1: Initialize state vector x < 0 (N-dimensional state vector)

2: Initialize output Ypixe < [] (Empty list to store spike outputs)
Precomputations

3: Compute spike-aware HiPPO matrix: Agixe < A o F(At) (Hadamard product with decay
function)

4: Perform eigendecomposition: V, A < eig( A pike)
5: Decompose using NPLR: Axpir <~ VAV - PQ*
6: fort=1to T do

Spike-Driven Dynamics

7: if S(t) contains spikes then
8: Compute time difference: Aty = tg.1 — tg
9: Approximate matrix exponential:
Agike )2 (Aty)?
el o Ty Agike Aty + (Aspike)"(Ati)”
10: Update state vector:
x(trr1) < x(tr) + At (VAV -PQ")x(tx) + BS(tx))
11: else
12: Update state for continuous dynamics: x < eAwieftx
13: end if
FFT-Based Convolution for Temporal Dependencies
14: Transform state and kernel to frequency domain:
Xfreq < FFT(x), Kjeq « FFT(K(w))
15: Perform element-wise multiplication in frequency domain:
Yfreq <~ Xfreq : Kfreq
16: Transform back to time domain:
X(tk+1) <~ IFFT(Yfreq)
17: Compute continuous output: y; < C-x(t)
18: Threshold the output to generate spikes:

yspike(t) - ]I(yt > Vth)

19: Append Ypike (t) to Ypike
20: end for
Output: Y., the final spike map

9.6

The readout layer is inspired by the Event-SSM architecture and employs an event-pooling mech-
anism to subsample the temporal sequence length. The pooled output is computed as Tpooled,k =
1 (k+1)p-1

5 Z x;, where p is the pooling factor. This operation ensures only the most relevant temporal

i=kp

features are retained, reducing computational burden while preserving key information. The resulting
pooled sequence is passed through a linear transformation as y = W Zpgolea + b where W and b
are learnable parameters. The combination of event pooling and linear transformation provides
an efficient means for deriving a final representation suitable for downstream tasks, maintaining
scalability even with longer event sequences.
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Algorithm 6 Readout Layer

Require: State vectors {x(t)}, pooling factor p, weights W, bias b
1: for each pooled time step k do
2: Compute pooled state:
1 (k+1)p-1
Tpooled,k <~ — Z z(t;)
i=kp

3: end for
4: Compute final output:

Y <= prooled +b

5: Output: Model prediction y

10 SUPPLEMENTARY SECTION D: RELATED WORKS

Spiking Neural Networks

Spiking Neural Networks (SNNs) are biologically inspired models that process information through
discrete spike events, offering a more energy-efficient alternative to traditional artificial neural
networks (ANNs) [Ponulak & Kasinskil (2011). They employ learning mechanisms such as spike-
timing-dependent plasticity (STDP) for unsupervised training |Gerstner & Kistler| (2002); (Chakraborty
& Roy| (2023) and surrogate gradient descent for supervised learning |[Neftci et al.|(2019). These
approaches have enabled SNNs to be deployed in neuromorphic hardware like TrueNorth |Akopyan
et al.|(2015)) and Loihi Davies et al.|(2018]), achieving substantial energy savings compared to ANNS.
Recent efforts to improve the learning capacity of SNNs for long-range temporal dependencies
have explored architectures that integrate heterogeneous neuronal dynamics, achieving significant
improvements in spatiotemporal tasks Perez-Nieves et al.| (2021)); (Chakraborty & Mukhopadhyay
(20225 2023)); [She et al.[(2021al).

However, many traditional SNNis still struggle to model long-range dependencies effectively. This
limitation is often due to the short-term memory characteristics of spiking neuron models, which
focus on local temporal processing and struggle with maintaining information over extended periods
Bellec et al.[(2018)); |[Fang et al.|(2023)). To address this, recent research has explored the integration of
state-space dynamics within SNNs. For instance, Stan and Rhodes Stan & Rhodes| (2024) proposed a
model that combines state-space models (SSMs) with spiking architectures, demonstrating improved
performance in sequence modeling tasks compared to other SNN models. Our work builds on this by
introducing a novel state-space approach specifically tailored for efficient, asynchronous processing
in neuromorphic contexts, enabling accurate and scalable temporal modeling.

EVENT-BY-EVENT PROCESSING

Event-based processing in SNNs leverages the asynchronous nature of the spiking activity to pro-
cess dynamic visual scenes efficiently, a concept widely explored in neuromorphic vision. Prior
approaches, such as in|Gehrig & Scaramuzza (2024}, employ hybrid event- and frame-based systems
to capture high-speed, low-latency visual data, while other works like Schone et al. |[Schone et al.
(2024)) utilize deep state-space models for long-term event-driven data processing. These models
manage dynamic temporal dependencies over extensive event sequences, essential for real-time
neuromorphic applications. However, a critical limitation remains in scaling these approaches for
complex dependencies without excessive computational costs. Our SPLR framework enhances
event-driven processing capabilities by integrating state-space dynamics with spike-aware temporal
mechanisms, preserving the asynchronous, efficient qualities of SNNs.

SPIKING NETWORKS WITH DENDRITIC AND TEMPORAL HETEROGENEITY

Temporal dendritic heterogeneity has emerged as a powerful tool to enhance SNNs’ temporal
processing capabilities. The DH-LIF model by Zheng et al. [Zheng et al.| (2024b) leverages this
heterogeneity to model multi-timescale dependencies within SNNs effectively, achieving robust
performance in sequential tasks. Other recent works, Pagkalos et al| (2023); [Shen et al.| (2024a)),
propose dendrite-based SNN models, demonstrating how multi-compartment neurons improve
computational efficiency by capturing temporal features across diverse timescales. While these
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models achieve notable gains in temporal modeling, they often introduce significant computational
overhead, limiting scalability. Our SPLR model addresses this by incorporating dendritic-inspired
pooling mechanisms that retain temporal features with reduced computational demands, enabling
scalable processing for complex neuromorphic tasks.
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