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ABSTRACT

Heart attack remain one of the greatest contributors to mortality in the United
States and globally. Patients admitted to the intensive care unit (ICU) with di-
agnosed heart attack (myocardial infarction or MI) are more likely to suffer a
secondary episode of MI and are at higher risk of death. In this study, we use
two retrospective cohorts extracted from the eICU and MIMIC-IV databases, to
develop a novel pseudo-dynamic machine learning framework for mortality and
recurrent heart attack prediction in the ICU with interpretability and clinical risk
analysis. The method provides accurate prediction of both outcomes for ICU pa-
tients up to 24 hours before the event and provide time-resolved interpretability
results. The performance of the framework relying on extreme gradient boosting
was evaluated on a held-out test set from eICU, and externally validated on the
MIMIC-IV cohort using the most important features identified by time-resolved
Shapley values achieving AUCs of 91.0 (balanced accuracy of 82.3) and 85.6
(balanced accuracy of 74.5) for 6-hour prediction of mortality and recurrent heart
attack respectively. We show that our framework successfully leverages time-
series physiological measurements by translating them into stacked static predic-
tion problems to be robustly predictive through time in the ICU stay and can offer
clinical insight from time-resolved intepretability.

1 INTRODUCTION

Acute myocardial infarction (AMI) or heart attack is one of the greatest contributors to cardiovas-
cular deaths in the world whose incidence remains critically high with approximately every 40 sec-
onds someone in the United States suffering an episode Tsao et al. (2022). Cardiovascular diseases
(CVDs) also represent a major cost burden globally with MI in the ICU being one of the most com-
mon CVD-related conditions in the critical care system Dégano et al. (2015). In 2015, there were
more than 18 million CVD-related deaths with MI accounting for over 15% of overall mortality and
research showing that healthcare costs skyrocket with longer and more inefficient treatment in the
ICU Jayaraj et al. (2019); Roth et al. (2017); Soekhlal et al. (2013). A considerable amount of previ-
ous work was concerned with the classification and diagnosis of MI in the ICU with measurements
using ECG signals or subtypes of MRI, but due to the acute nature of the condition and its urgent
need for immediate therapy, these proposals have done little to proactively forecast the disease prior
to occurrence, a task of high clinical relevance Chen et al. (2022b). Even the use of time-granular
troponin assays, a biological marker for myocardial injury and thus infarction only helps with diag-
nosing the occurrence of an MI event faster but not with its prediction a priori Than et al. (2019).
Therefore, prediction and timely treatment of MI as well as its risk factors in a high-risk population
such as previous survivors is urgently needed and will not just help treat these vulnerable patients
but will also help streamline the costs and burdens of the critical care system.

Patients who exhibit MI are usually referred to the ICU, however, they are 10% more likely to
suffer another episode in the days following and are at higher risk of death, especially the elderly
Nair et al. (2021). Mortality prediction models can help design treatment plans and reduce costs
and mortality rates but existing mortality prediction tools like the APACHE system deployed in
US critical care centres have been criticised as too general and inaccurate for specific populations
and diseases Barrett et al. (2019); Venkataraman et al. (2018). Recent advances in tabular deep
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learning like TabNet and NODE have been a topic of lively conversation in the machine learning
community but whether they can surpass classical machine learning models in different tasks is an
ongoing debate Joseph (2021); Gorishniy et al. (2021). One of the drawbacks of such models is
their opaqueness, lack of familiarity with tuning parameters, costs of training, and a dependency
on a large amount of data being available. While deep learning models are the current standard in
time-series EHR processing, we hope to show that by transforming the problem into connected and
stacked static prediction problems, more reliable and low-cost models like extreme gradient boosted
ensembles can be used instead and achieve superior performance.

Here we present work done on two of the largest publicly available time-series electronic health
records (EHR) datasets in the world which allow us to robustly train and test our models across a
variety of ICUs across the United States. It is, therefore, both of interest and need to propose a
machine learning framework that can reliably predict negative outcomes for heart attack patients
in the ICU, test it independently, validate it externally, and provide useful interpretability of its
predictions for clinicians.

2 METHODS

2.1 STUDY DESIGN AND POPULATION

Full details on the data preprocessing can be found in the Appendix alongside a flowchart for patient
cohort selection. The eICU database as well as many of the ICUs in the United States use the
APACHE IV system for mortality risk prediction. The Acute Physiology, Age, and Chronic Health
Evaluation (APACHE) IV system is a tool used to risk-adjust ICU patients which provides estimates
of the probability that a patient dies given data from the first 24 hours Zimmerman et al. (2006). We
will provide XMI-ICU prediction performance for 24 hours which is the most directly comparable
to APACHE-IV. APACHE-IV is only present in the eICU dataset. Details on MI outcome definition
and patient cohort characteristics can be found in the Appendix under Data Description.

We externally validated our model on MIMIC-IV Johnson et al. (2020), a de-identified and real
world intensive care database using data from the Beth Israel Deaconess Medical Center for the
years 2008 - 2019. We use similar cohort selection criteria as illustrated in Appendix Figure 2 and
label definition as in eICU resulting in 1,143 unique patient ICU stays with confirmed MI out of
76,938. 131, or 12.0%, have died during their stay. Due to lack of diagnosis and time annotation
in clinical data collection, it was not possible to extract a label for recurrence of MI in this dataset.
The data processing of time-series and static variables was completed in Python. Patient cohort
characteristics can be seen in Appendix Table 5.

2.2 MACHINE LEARNING METHODS

For details on the splits and hyperparamters, as well as metrics please consult the Appendix. We used
Bayesian optimisation with inverse class weighting for the extreme gradient boosted decision trees
to address class imbalance robustly and decrease optimisation costs. The XMI-ICU framework uses
an extreme gradient-boosting approach with rolling time windows to extract the relevant features
at defined times. This is a low-cost, time-efficient, imbalance-robust, and interpretable framework
of dynamically predicting outcomes without relying on complex transfomer models for time-series
analysis. A flowchart visualising the proposed framework for mortality and MI recurrence pre-
diction in MI patients can be seen in Appendix Figure 3. It relies on dynamic feature extraction
that links hospital-wide data with sliding time windows changing depending on the required pre-
diction time and the time-series values being summarised using mean and standard deviations. The
measurements are then concatenated with anamnesis, emergency department, and static variables to
construct the feature matrix. Interpretability with Shapley values is then used to extract the most
relevant features for external validation.
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Table 1: eICU validation (Val: Mean ± SD) and test prediction results for secondary MI and mortal-
ity prediction 6 hours in advance. Details on the metric computations can be found in the Appendix
Materials.

AUC Accuracy* AP AUC Accuracy AP

MI Mortality

XMI-ICU 85.6 74.5 75.9 92.0 82.3 68.8

TabNet 82.5 74.0 72.2 84.1 77.0 60.7

TabNet (pretrained) 82.9 72.8 71.8 82.2 76.0 64.1

NODE 74.6 74.0 62.1 85.4 67.6 62.3

Logistic
Regression 74.6 67.9 54.0 89.6 73.5 61.5

Random Forest 82.2 64.0 68.6 90.6 78.2 64.4

SVM 76.4 72.4 56.8 89.3 77.0 58.1

SVM (linear) 74.9 74.0 51.7 87.7 78.8 63.8

LDA 65.8 50.6 37.0 78.7 51.0 29.3

3 RESULTS

3.1 EICU

Applying the framework proposed in Appendix Figure 3, we compare our proposed XMI-ICU
gradient-boosted model to listed alternatives. The first set of results concerning comparisons to
other models including deep learning alternatives are in Table 1. All XMI-ICU results have been
checked for statistical significance (n=1000; p<.001).

After the XMI-ICU model was evaluated at 6 hour prediction prior to death, we extend to a more
dynamic prediction evaluation by adapting the framework to arbitrarily predict the events of death
and secondary heart attack at any time prior. The results for XMI-ICU evaluated at 6, 12, 18, and 24
hour prediction for secondary MI and mortality in held-out test set of eICU can be seen in Appendix
Table 9 and they continue to show reliable predictive performance across the different time windows.
We also show XMI-ICU with low misclassification error across time for the same patient sample to
check for temporal coherency. A patient is deemed misclassified if they are predicted incorrectly at
time x in advance when they have been previously predicted correctly at times >x. Details on these
results are included in the Appendix under ”Time-robustness Checks.”

To understand how XMI-ICU is making these predictions and obtain further analysis for clinical
significance testing, we applied Shapley value analysis on the held-out test set and observe relative
feature importance. We further stratify Shapley values as a function of time in the ICU for mortality
and secondary MI prediction. The time-graphs can be seen in Figure 1. These values were extracted
for each of the time windows, in effect converting a static interpretability method to a dynamic
explainability framework that shows how at different times closer to the event (death or heart attack)
different values of features and their importance changes and how that is used by the model to learn
underlying patters for disease outcome prediction.

3.2 EXTERNAL VALIDATION: MIMIC-IV

We evaluated XMI-ICU on the separate and independent MIMIC-IV dataset for mortality prediction
in MI patients. XMI-ICU maintains high predictive performance across metrics when tested on this
external dataset as can be seen in Appendix Table 9 without any training or tuning on it using only
the top 8 features identified by Shapley value analysis from eICU test set. The results immediately
above correspond to held-out test set performance for eICU using those same 8 features. A plot
showing predictive performance across different metrics for XMI-ICU evaluated on the MIMIC-
IV cohort can be seen in the bottom Appendix Figure 6c. We also evaluate XMI-ICU for 6-hour
prediction across subpopulations due to our multi-centre diverse dataset across sex and ethnicity
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(a) Importance of clinical variables for secondary MI
prediction across patient ICU stay

(b) Importance of clinical variables for mortality pre-
diction across patient ICU stay

Figure 1: Ranking of most important features as identified by their relative SHAP values for XMI-
ICU prediction of secondary MI and mortality varied across time during ICU stay prior to event. For
the time windows in the 6, 12, 18, 24 hour intervals, the top 13 features in each of the windows are
presented as extracted from eICU thereby showcasing how the most important features for correct
prediction of mortality changes through time or closer to the prediction event.

demographics as a fair robustness check. The results can be seen in Appendix Table 13 showing
stable performance for XMI-ICU across different subcohorts for both eICU and MIMIC-IV held-
out test sets.

4 DISCUSSION

Our proposed XMI-ICU model shows superior predictive performance across both tasks compared
to TabNet and NODE. These results directly contribute to the ongoing debate on the comparisons
of tabular deep learning with classical methods which have shown mixed results over the last year
in published research Fayaz et al. (2022); Shwartz-Ziv & Armon (2022). XMI-ICU also beats the
existing prediction tool in use across ICUs in the United States, APACHE IV, by 18.3% in test
AUROC and 11.1% in test accuracy at 24-hour prediction. Additionally, XMI-ICU maintains stable
performance across all metrics during the 24 hours of ICU stay prior to secondary heart attack and
death for MI patients. The model also successfully performs mortality prediction across different
prediction time-windows in an external patient cohort obtained from MIMIC-IV using only the 8
most important features identified by Shapley values analysis on eICU.

XMI-ICU combined with interpretability provides clinical risk factor importance which can aid
physicians in both relying on the model but also investigating what aspects of the physiological
measurements are more informative at what time during the ICU stay. Comparing the framework
to existing deep learning time-series models that tend to be costly and complex, our system with
its simple embedded gradient boosted model sensitive to class imbalance and with dynamic feature
extraction maintains prediction fidelity at varying time points while being faster, more interpretable,
and less environmentally and financially costly to train and deploy.

In conclusion, we developed a highly predictive machine learning framework that trains on time-
series ICU ward data without requiring complex deep learning models. Instead, it relies on dynamic
feature extraction and outperforms other models including state-of-the-art tabular deep learning. The
framework offers time-resolved interpretability that allows tracking changes in vital sign and blood
measurement importance across the ICU stay for heart attack patients whose conclusions seek to
provide medical insight.
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A APPENDIX

B LIBRARIES AND PACKAGES

Statistical and clinical analyses were performed using R (version 3.6.2, R Foundation for Statistical
Computing, Vienna, Austria) with packages including binom, Epi, ggplot2, lme4, sjstats, tableone,
and tidyverse. Machine learning components were coded using Python (version 3.8.0) with pack-
ages including imblearn, matplotlib, skopt, xgboost, seaborn, shap, pandas, numpy, and sklearn.

We open-source our code at the following link: .

B.1 DATA DESCRIPTION

The data used in this study is the eICU Collaborative Research Database is a public database avail-
able upon request and fulfillment of ethical training Pollard et al. (2018). The eICU database was
processed using postgreSQL and the pandas package. eICU is a multi-center ICU database with
over 200,859 patient unit encounters for 139,367 unique patients admitted between 2014 and 2015
to one of 335 ICUs at 208 hospitals located throughout the United States Pollard et al. (2018). The
database is de-identified and includes vital sign measurements, demographic data, and diagnosis
information. For a full list of features used in our study please consult the relevant tables in the
Appendix Materials.

We based this study on the data preprocessing workflow used in Rocheteau et al. (2021), but adapted
it to our problem accordingly. Our inclusion criteria were patients of age>18 and <89 years with
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Table 2: Diagnoses Taken for MI Outcome Definition

Diagnosis String

cardiovascular—chest pain / ASHD—acute coronary syndrome

ASHD—acute coronary syndrome—acute myocardial infarction (no ST elevation)

ASHD—acute coronary syndrome—acute myocardial infarction (with ST elevation)

ASHD—acute coronary syndrome—s/p PTCA / myocardial infarction

ASHD—coronary artery disease / myocardial infarction

ASHD—coronary artery disease—known / myocardial infarction

Acute MI location

Acute MI location—inferior

Acute MI location—non-Q

Non-operative—Diagnosis—Cardiovascular—Infarction, acute myocardial (MI)

Cardiovascular (R)—Myocardial Infarction

Cardiovascular (R)—Myocardial Infarction—MI - date unknown

Cardiovascular (R)—Myocardial Infarction—MI - remote

Cardiovascular (R)—Myocardial Infarction—MI - within 6 months

an ICU length of stay of at least 5 hours to remove transient patients. We also include those with at
least one recorded observation and excluded those without any laboratory measurements. Patients
on respiratory support had a separate set of measurements which we included with a mechanical
ventilation tag feature for this patient subgroup. We included variables present in at least 12.5%
of patient stays, or 25% for lab variables due to their relative sparsity. We then removed those
patients without any diagnosis information after 5 hours of stay because they might be inactive ICU
patients logged for longer than was the case. A similar approach was taken by Sheikhalishahi et al.
(2020). Our final subcohort consisted of 26,218 patients. We extracted diagnoses entered less than 5
hours after entering the ICU and diagnoses prior to admission as starting diagnosis or first diagnosis.
Secondary diagnoses are those logged in 5 hours after being admitted to the ICU. A flowchart of the
patients cohort selection can be seen in Appendix Figure 2.

We defined our outcome of interest using the most common diagnosis strings associated with the
myocardial infarction diagnosis as can be seen in Table 2 below.

A detailed list of features used in the study and extracted from eICU and MIMIC-IV can be seen in
Tables 3 and 4.

B.2 MACHINE LEARNING SETUP

Following extraction of patients, we split the dataset into training and testing (20%) with the test
set being used as hold-out for reporting only the final results. The training set was used for hyper-
parameter tuning with Bayesian optimisation. The next step in the framework is to pad the miss-
ing measurements for the time-windows using imputation with Multivariate Imputation by Chained
Equation (MICE) and for feature standardisation or normalisation where necessary to avoid any
data leakage either inside the validation folds or, at the end, the held-out test set with the parameters
extracted only on the training set or the training folds respectively Zhang (2016). Instead of using
resampling techniques like SMOTE which can incur bias, we use inverse class-weighting in the
training phase of the models which successfully allows it to generalise to an imbalanced prediction
scenario Blagus & Lusa (2013). The metrics used included Area-Under-Receiver-Operating-Curve
(AUROC or AUC), Sensitivity, and Average Precision (AP) as they most completely capture the
predictive performance of these binary classifiers even in cases of class imbalance. Details on how
the metrics are calculated can be seen in the Appendix Materials.
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Table 3: Features extracted from the eICU database. The features include demographic data col-
lected for all patients, ICU unit-specific information like type and number of beds, hospital infor-
mation like regional location and teaching status, vital signs including respiratory rate and blood
pressure, and biochemical measurements including troponin and levels of potassium and protein in
blood.

Feature Type Feature Type

Sex binary -basos continuous
Age integer -eos continuous
APACHE IV Score continuous SBP continuous
Time Since Admission continuous DBP continuous
Hour of Admission integer -lymphs continuous
Height continuous -monos continuous
Weight continuous -polys continuous
Ethnicity categorical ALT continuous
Unit Type categorical AST continuous
Unit Admit Source categorical BUN continuous
Unit Visit Number categorical Base Excess continuous
Unit Stay Type categorical FiO2 continuous
Num Beds Category categorical HCO3 continuous
Region categorical Hct continuous
Teaching Status binary Hgb continuous
Physician Speciality categorical MCH continuous
Unit Type categorical MCHC continuous
Mechanical Ventilation binary MCV continuous
Time-series (summary features)
O2 Sat (%) continuous MPV continuous
PT-INR continuous PT continuous
RBC continuous PTT continuous
RDW continuous WBC continuous
Alkaline ph. continuous Albumin continuous
Bedside Glucose continuous Anion Gap continuous
Calcium continuous Bicarbonate continuous
Creatinine continuous Glucose continuous
Lactate continuous Magnesium continuous
pH continuous paCO2 continuous
paO2 continuous Phosphate continuous
Platelets continuous Potassium continuous
Sodium continuous Bilirubin continuous
Protein continuous Troponin - I continuous
Urinary s. Gravity continuous mean BP continuous

Bayesian optimisation relies on using a Gaussian Process (GP) defined by the property that any finite
set of N points {xn ∈ X}Nn=1 to induce a multivariate Gaussian distribution:

f : X → R

With observations {xn, yn}Nn=1, where yn ∼ N (f (xn) , ν) and ν is the variance of noise. The
acquisition function is described as a : X → R+ and determines what point in X should be
evaluated next via optimization xnext = argmaxx a(x). The acquisition functions depend on
the previous observations, as well as the GP hyperparameters. The goal is then to maximize the
expected improvement (EI) over the current best and use the highest utility hyperparameter values
in computing the loss.
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Table 4: Features extracted from the MIMIC-IV database. The features include demographic data
collected for all patients, ICU unit-specific information like type of unit, hospital information like
regional location, time since admission, vital signs including respiratory rate and blood pressure,
and biochemical measurements including blood glucose and hemoglobin.

Feature Type Feature Type

Sex binary Braden Score continuous
Age integer Strength L Arm continuous
Height continuous Strength R Arm continuous
Weight continuous Strength L Leg continuous
Hour of Admission integer Strength R Leg continuous
Time Since Admission continuous GCS - Eye continuous
Eye Response continuous GCS - Motor continuous
Motor Response continuous GCS - Verbal continuous
Verbal Response continuous Daily Weight continuous
Ethnicity categorical ALT continuous
Unit Type categorical AST continuous
Admission Location categorical HCO3 continuous
Insurance categorical Hct continuous
Time-series (summary features)
ALT continuous Alkaline Phosphatase continuous
Anion Gap continuous AST continuous
Base Excess continuous Bicarbonate continuous
Bilirubin continuous Calcium continuous
Total CO2 continuous Chloride continuous
Creatinine continuous Glucose continuous
Hematocrit continuous Hemoglobin continuous
INR(PT) continuous Lactate continuous
MCH continuous MCHC continuous
MCV continuous Magnesium continuous
PT continuous PTT continuous
Phosphate continuous Platelet Count continuous
Potassium continuous RDW continuous
Red Blood Cells continuous Sodium continuous
Urea Nitrogen continuous White Blood Cells continuous
pCO2 continuous pH continuous
pO2 continuous JH-HLM continuous
Dyspnea Assessment continuous Daily Weight continuous
Glucose continuous Heart Rate continuous
DBP continuous SBP continuous
O2 Flow continuous O2 Sat (%) continuous
Pain Level continuous Pain Level Response continuous
Phosphorous continuous Respiratory Rate continuous
Richmond-RAS Scale continuous Temperature (◦F) continuous

When maximising the EI, we sample from the set of unexplored points without trying out all possible
hyperparameter combinations. The algorithm can be shortly described as:

1. Given observed values f(x), update the posterior using the GP model

2. Find xnew that maximises the EI: xnew = argmaxEI(x)

3. Compute the loss for the point xnew

B.3 METRICS

The metrics used to evaluate the models include:
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(a) Cohort selection for eICU database (b) Cohort selection for MIMIC-IV database

Figure 2: MI patient cohort selection. The exclusion criteria were listed here as they were imple-
mented in PostgreSQL and Pandas. The final exclusion criteria is to extract the relevant subcohort
at the end which is MI admitted patients to the ICU.

Table 5: Summary of demographics and variables used for external validation across training and
testing datasets. MIMIC-IV has been used separately as an external validation source with the
summary statistics for the entire dataset being a compound average of its train and test set statistics
listed here individually. IQR used for secondary MI onset in hours after admission.

eICU (N = 26,218) MIMIC-IV (N = 1,143)

Attributes Train (N = 20,974) Test (N = 5,244) Train (N = 915) Test (N = 228)

Age (mean ± SD) 66.8 (± 12.7) 67.2 (± 12.4) 68.1 (± 13.2) 68.0 (± 13.1)
Sex (male) 13,369 (63.7%) 3,385 (64.5%) 585 (51.9%) 156 (55.4%)
LoS (days) 4.1 (± 2.7) 4.0 (± 2.3) 3.7 (± 2.9) 3.2 (± 3.1)
Lactate 2.9 (± 2.8) 2.5 (± 2.3) 2.0 (± 1.5) 1.9 (± 1.5)
SBP 120.2 (± 17.9) 120.0 (± 16.3) 126.3 (± 18.8) 124.5 (± 13.1)
Glucose 150.4 (± 61.7) 147.3 (± 56.7) 136.5 (± 49.3) 133.7 (± 45.1)
WBC 15.5 (± 10.5) 15.1 (± 9.3) 10.6 (± 7.4) 10.5 (± 7.4)
RDW 15.1 (± 2.2) 15.0 (± 2.0) 14.4 (± 2.1) 14.2 (± 2.0)
Urea Nitrogen 27.4 (± 19.5) 22.8 (± 13.4) 22.8 (± 17.0) 21.3 (± 14.6)
Bicarbonate 24.7 (± 4.2) 24.8 (± 4.4) 23.3 (± 3.1) 23.0 (± 3.0)
Mortality (dead) 2,511 (12.0%) 628 (12.0%) 105 (11.5%) 26 (11.3%)
MI onset (hours) 16.9 (10.0, 27.1) 15.9 (9.0, 26.0) - -

1. Area under receiver-operating-characteristic curve (AUROC): an ROC curve is a plot of
true positives (TP) as a function of false positives (FP) where each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision threshold.
The area under the ROC curve is a summary measure of sensitivity and specificity Zou
et al. (2007).

2. Sensitivity, the probability of a positive prediction for patients with disease (i.e. the condi-
tional probability of correctly identifying diseased patients)

TP

TP + FN

3. Specificity, the probability of a negative prediction for patients without the condition

10
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TN

TN + FP

4. Accuracy, ratio between correctly classified examples and the total number of cases in the
dataset. In our case, can be misleading because of class imbalance where simply assigning
all examples to the majority class is a way of achieving high accuracy, so instead we rely
on using balanced accuracy as the average of sensitivity and specificity instead

Sensitivity + Specificity

2

5. Average Precision (AP) summarizes a precision-recall curve as the weighted mean of pre-
cisions achieved at each threshold, with the increase in recall from the previous threshold
used as the weight:

AP =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the nth threshold [1]. This implementation
is not interpolated and is different from computing the area under the precision-recall curve
with the trapezoidal rule, which uses linear interpolation and can be too optimistic. AP is
then similar to using the midpoint rule for estimating the area (hence ”average” precision)

B.4 XMI-ICU FRAMEWORK

The framework for pseudo-dynamic machine learning prediction can be seen in Figure 3.

B.5 INTERPRETABILITY METHODS

We use the shap library and built on the game-theoretic concept of treating features in the final
model as players in a voting game. The method is applied on the entire test set and is based on ideas
from game theory ?Ibrahim et al. (2020). In short, the following equation is used to calculate the
Shapley value φ for feature i:

φi(v) =
∑

S⊂N\{i}

∣∣S∣∣!(n−
∣∣S∣∣− 1)!

n!
(v(S

⋃
{xi})− v(S)) (1)

Where features have their value calculated by taking the difference between the results of the
characteristic function v on N (the set of all features) and S (the subset of N without feature i).
The Shapley value of a particular feature i is then calculated by taking the average of the marginal
contributions of all possible combinations.

As Figure 4 highlights the application of this method for mortality prediction. This set of results
relates only to the 6-hour prediction task. We then added a Gaussian distributed feature to the feature
set to evaluate the susceptibility of the top variables as identified by Shapley values changing, and
we can see in Figure 4 that the interpretability provided remains robust to noise.

B.6 MACHINE LEARNING METHODS

C MACHINE LEARNING MODEL SPECIFICATIONS FOR OPTIMISATION

C.1 ADDITIONAL RESULTS

We also evaluated our framework for internal validation with MIMIC-IV separately ie. training and
tuning on MIMIC-IV train set and testing on a held-out MIMIC-IV test set. The results are a lot
more robust than for external validation as we might expect and can be found in Figure 5.
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Figure 3: Proposed XMI-ICU framework for dynamic mortality and MI recurrence prediction in
heart attack ICU Patients. The top part of the figure shows the dynamic feature extraction that links
hospital-wide data including pre-admission information, ICU stay measurements, and emergency
department variables. The sliding time windows change depending on the required prediction time
and the time-series values are summarised using mean and standard deviations. For example, for
24-hour prediction, we use all time-series measurements since time of admission until 24 hours prior
to the event as our feature time window to be summarised. The measurements are then concatenated
with anamnesis, emergency department, and static variables to construct the feature matrix. The
bottom half of the figure showcases the framework and how the dynamic feature extraction integrates
with other components.

Results using APACHE-IV as a feature in trainin the models can be seen in Tables 10 and 11.

Examples of time-stratified prediction robustness for XMI-ICU can be seen in 6.

C.2 TIME-ROBUSTNESS CHECKS

For example, a patient might be predicted to die at the 24 and 18 hour prediction windows
correctly but at 12 hours in advance they are predicted (incorrectly) to survive. These instabilities
in prediction across time need to be measured if the model is to sustain reliable performance
throughout the ICU stay. We define three patient subcohorts as illustrated in the top of Table 12
where each indicates the group of patients correctly predicted at all previous time windows except
one. The bottom of Table 12 presents these results for both death and heart attack prediction
indicating the low levels of misclassification most likely indicate sensitivity to noise rather than
predictive weakness.
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(a) Importance of clinical variables for secondary MI
prediction across patient ICU stay

(b) Importance of clinical variables for mortality pre-
diction across patient ICU stay

Figure 4: SHAP values of features for XMI-ICU prediction of mortality and with random noise
added. No significant change appears in the top features satisfying the perturbation constraints. The
relative vertical ranking of the features corresponds to higher importance of those features in making
a correct prediction. The darker colours in the horizontal plane for each feature correspond to higher
values of that feature contributing to either stronger positive prediction (if darker colour on the right
side of the vertical line) or stronger negative prediction of outcome otherwise.

Decision curves, clinical risk calculations, and nomograms were computed and plotted in R.

C.3 CLINICAL RISK ANALYSIS

To provide additional analysis of the model, we used clinical impact and decision curves in estimat-
ing the performance of the model at various risk thresholds. While decision curves are mostly used
in cases of intervention effect on prognosis, they can also be used to diagnose the performance of
predictive models albeit their adoption in machine learning has not been widespread, possibly due
to applied machine learning work in healthcare being based more on advances in computer science
rather than clinical significance. Decision curves account for both the benefits of higher risk estima-
tion and the costs of overestimating risk to a patient who cannot benefit from the prediction. They
are suggested to be an improvement over measures of performance such as AUROC. The intuition
behind them is if a risk model tends to identify cases as high risk without falsely identifying too
many negatives as high risk, then the net benefit of the risk model to the population will be positive
Kerr et al. (2016). A mathematical representation can be seen in the equation bellow:

NBR = TPRRP − R

1−R
FPRR(1− P ) (2)

Where NB is the net benefit, TPR and FPR are the positive rates, and P is the prevalence and R is the
risk threshold respectively. They allow us to evaluate the models across a range of risk thresholds
and observing tendencies of the model to overestimate risk. A clinical impact curve is simpler in that
it displays the estimated number of people declared high-risk for each risk threshold, and visually
displays the proportion of cases (true positives) Chen et al. (2022a).

To communicate the clinical significance of the XMI-ICU model results to clinicians, we evaluated
our model with clinical impact curves (Figures 7a and 7b) and decision curve estimates (Figures 8a
and 8b) for robust risk evaluation. A 90 percent confidence interval was derived with 50 bootstrap
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Dataset Model Parameters
eICU
MIMIC-IV

Logistic
Regression

C
Regularisation
Solver

0.1
Lasso (l1)
liblinear

eICU
MIMIC-IV

Naive
Bayes

Smoothing alpha = 0.0

eICU
MIMIC-IV

Linear
Discriminant
Analysis

Shrinkage
Solver

0.17
Eigen

eICU
MIMIC-IV

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
sqrt
10
5
10
False

eICU
MIMIC-IV

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

150
0.1
3
0.5
0
hist

eICU
MIMIC-IV

AdaBoost En-
semble
Ensemble (XG-
Boost)

Estimators
Estimators

150
80

Table 6: Model Architecture Details for PE

iterations on the test set. As the clinical impact curves for MI and mortality show, XMI-ICU
consistently identifies patients at risk across different risk thresholds showing robustness to false
negatives. For those at highest risk (>75%), XMI-ICU has very low tendencies for false positives
or ”over-risking” in its predictions, learning to focus on those most at risk with higher specificity
and sensitivity. The decision curves indicate XMI-ICU’s approximated net benefit outperforming
logistic regression (underlying model used in APACHE) using only top features identified from
Shapley values analysis.

The nomogram in Figure 9 is an example of risk calculation where one first draws a line from each
parameter value to the point line for the point for that feature, then the points for all the features
are added up, after which a line from the total points line is drawn vertically to determine the
risk of mortality on the lower line of the nomogram as defined by a linear transformation of risk
probabilities.
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Dataset Model Parameters
eICU
MIMIC-IV

Logistic
Regression

C
Regularisation
Solver

1.0
Lasso (l1)
liblinear

eICU
MIMIC-IV

Naive
Bayes

Smoothing alpha = 1e-5

eICU
MIMIC-IV

Linear
Discriminant
Analysis

Shrinkage
Solver

0.1
Eigen

eICU
MIMIC-IV

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
sqrt
None
10
10
True

eICU
MIMIC-IV

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

200
0.3
2
0.06
0
hist

Table 7: Model Architecture Details for PE (With Undersampling)

Figure 5: XMI-ICU performance across time for mortality prediction as evaluated on MIMIC-IV held-out test
sets after training on an internal MIMIC-IV set
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Dataset Model Parameters
eICU
MIMIC-IV

Logistic
Regression

C
Regularisation
Solver

0.01
Lasso (l1)
liblinear

eICU
MIMIC-IV

Naive
Bayes

Smoothing alpha = 0.0

eICU
MIMIC-IV

Linear
Discriminant
Analysis

Shrinkage
Solver

0.0
lsqr

eICU
MIMIC-IV

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
auto
None
10
10
False

eICU
MIMIC-IV

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

350
0.1
4
0.45
1
hist

eICU
MIMIC-IV

AdaBoost En-
semble
Ensemble (XG-
Boost)

Estimators
Estimators

20
50

Table 8: Model Architecture Details for Mortality
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Table 9: eICU test with all features, eICU test only using top 8 features, and MIMIC-IV external
validation (Val: Mean ± SD) prediction results for secondary MI and mortality prediction stratified
with time for XMI-ICU. External validation uses all eICU data as train set and MIMIC-IV data as
test set with only the top 8 features included as identified by Shapley value analysis. Accuracy stands
for balanced accuracy, details on the metric computations can be found in the Appendix Materials.

Val AUC AUC Accuracy* Average Precision

eICU Secondary MI
6 hours 85.1 ± 0.3 85.6 79.0 75.9

12 hours 86.5 ± 0.8 85.4 78.7 73.0

18 hours 85.8 ± 1.0 85.5 78.6 70.3

24 hours 85.1 ± 1.2 84.3 75.7 70.3

eICU Mortality
6 hours 91.8 ± 0.4 92.0 82.3 68.8

12 hours 90.5 ± 0.7 89.9 81.9 65.8

18 hours 89.1 ± 1.0 89.8 81.2 65.5

24 hours 87.7 ± 1.0 88.2 80.4 63.0

APACHE IV - 69.9 69.3 31.5

Top-8 eICU Mortality
6 hours 86.7 ± 1.1 86.2 80.0 74.7

12 hours 85.2 ± 1.2 83.3 77.0 69.7

18 hours 83.4 ± 1.3 83.1 76.5 65.8

24 hours 81.9 ± 1.4 81.2 75.2 59.2

MIMIC-IV Mortality
6 hours - 80.0 77.7 73.8

12 hours - 77.7 75.9 69.9

18 hours - 76.6 75.1 67.8

24 hours - 75.1 74.9 66.5
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Table 10: Validation (Val: Mean ± SD) and test prediction results for mortality prediction 6 hours
in advance.

Val AUC AUC Average Precision

XMI-ICU 92.9 ± 0.4 91.9 68.7

APACHE IV - 69.8 31.9

TabNet 86.8 ± 2.1 85.0 64.7

TabNet (pretrained) - 83.1 82.1
NODE 87.8 ± 0.7 86.3 66.3

Logistic
Regression 91.3 ± 0.4 90.1 61.5

Random Forest 92.1 ± 0.5 91.1 64.4

SVM 91.3 ± 0.8 90.2 62.1

SVM (linear) 88.5 ± 0.7 88.6 67.8

LDA 80.5 ± 2.0 78.6 33.3

Table 11: Validation (Val: Mean ± SD) and test prediction results for secondary MI prediction
stratified with time for XMI-ICU.

Val AUC AUC Average Precision

6 hours 86.2 ± 0.4 86.0 75.9

12 hours 86.0 ± 0.8 84.1 71.1

18 hours 85.9 ± 1.0 86.6 68.7

24 hours 86.0 ± 1.3 86.5 63.2

Table 12: TOP: Defined patient cohorts for evaluating XMI-ICU predictive robustness across time
windows. Each patient cohort corresponds to a grouping of patients who have been wrongly pre-
dicted at time x after being correctly predicted at all times before. BOTTOM: Misclassification rate
(in percentage) is defined as number of wrong classifications divided by total patient sample present
in cohorts for 6, 12, 18, and 24 hours prediction windows. A misclassification example is one where
a patient is wrongly predicted in a time prediction window after being correctly predicted at previous
windows.

Patient Cohort 24 hours 18 hours 12 hours 6 hours

P1 ✓ ✓ ✓ X

P2 ✓ ✓ X

P3 ✓ X

P3 P2 P1

eICU
Mortality 7.9 8.2 5.5

Secondary MI 8.4 8.4 5.8

MIMIC-IV
Mortality 6.4 6.3 4.7
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(a) XMI-ICU performance across time for secondary
MI prediction as evaluated on eICU held-out test sets

(b) XMI-ICU performance for mortality predictions
on eICU test set and APACHE (dotted)

(c) XMI-ICU performance across time for mortal-
ity predictions on eICU held-out test set and external
MIMIC-IV set (dotted) with only top 8 features used

Figure 6: Robustness and reliability of XMI-ICU prediction performance over time in the ICU for secondary
MI prediction (top left) and mortality prediction (top right) using all features available in eICU and as measured
by a variety of metrics. The bottom figure contains results from eICU held-out test set and MIMIC-IV external
cohort with only the top 8 features identified by Shapley value analysis.

Table 13: AUROC test results for XMI-ICU evaluated on subpopulations for 6 hour prediction.

Secondary MI Mortality Mortality (external MIMIC-IV)

Men 85.2 90.2 81.9

Women 88.9 92.7 77.5

Caucasian 85.6 91.7 81.8

Black/Hispanic 84.8 92.3 75.6
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(a) Clinical Impact Curve of XMI-ICU for secondary MI risk

(b) Clinical Impact Curve of XMI-ICU for mortality risk

Figure 7: Clinical decision-making evaluation performance of XMI-ICU for secondary MI and mortality
prediction using only the top 8 features on the entire eICU test set. Here we include the clinical impact curve
measuring the risk predicted by XMI-ICU across different risk groups relative to the actual risk. For each risk
threshold, we see the propensity of our prediction model to over- or underestimate risk of that event.
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(a) Decision curve of XMI-ICU compared to a logistic regression for secondary MI across
different risk thresholds

(b) Decision curve of XMI-ICU compared to a logistic regression for mortality across
different risk thresholds

Figure 8: Clinical decision-making evaluation performance of XMI-ICU for secondary MI and mortality
prediction using only the top 8 features on the entire eICU test set. Here we include decision curves comparing
the net benefit of XMI-ICU to logistic regression (analog to APACHE IV) models across risk groups as defined
by the risk thresholds. In the decision curves, the ”All” tag corresponds with the net benefit behaviour of having
all patients predicted positive and ”None” with having no patients predicted positive.
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Figure 9: Nomogram to estimate the risk of mortality in MI patients in multi-centre ICUs from the
eICU test set. The nomogram includes the top 8 features identified by the model as highly predictive
for this patient population as well as the external cohort. The nomogram is used to provide insight
into risk calculation based on these features using ranges measured for the patient. One simply
draws a straight line from each feature value to the points line, then points are added on the total
points line after which a straight line is drawn downward to the linear predictor for a risk estimate
respectively. The risk score calculated through this nomogram is for 24-hour prediction.
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