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Abstract
Recent neural network-based wave functions have
achieved state-of-the-art accuracies in modeling
ab-initio ground-state potential energy surface.
However, these networks can only solve dif-
ferent spatial arrangements of the same set of
atoms. To overcome this limitation, we present
Graph-learned Orbital Embeddings (Globe), a
neural network-based reparametrization method
that can adapt neural wave functions to differ-
ent molecules. Globe learns representations of
local electronic structures that generalize across
molecules via spatial message passing by con-
necting molecular orbitals to covalent bonds. Fur-
ther, we propose a size-consistent wave function
Ansatz, the Molecular Orbital Network (Moon),
tailored to jointly solve Schrödinger equations
of different molecules. In our experiments, we
find Moon converging in 4.5 times fewer steps to
similar accuracy as previous methods or to lower
energies given the same time. Further, our anal-
ysis shows that Moon’s energy estimate scales
additively with increased system sizes, unlike pre-
vious work where we observe divergence. In both
computational chemistry and machine learning,
we are the first to demonstrate that a single wave
function can solve the Schrödinger equation of
molecules with different atoms jointly.

1. Introduction
In silico design of molecules requires accessing their quan-
tum mechanical properties. This requires solving the asso-
ciated Schrödinger equation. However, exact solutions are
often intractable and approximations can become compu-
tationally expensive for larger and more complex systems.
In recent years, neural network-based wave functions have
emerged as a promising alternative, providing accurate and
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well-scaling approximation solutions in O(N4) with the
number of electrons N (Hermann et al., 2022). Despite
their theoretical scaling, this time complexity comes with a
large prefactor leading to exploding computational require-
ments if one screens many different molecules. To address
this limitation, Gao & Günnemann (2022) proposed the Po-
tential Energy Surface Network (PESNet), a neural network
wave function that generalizes across different structures.
While reducing computational costs, PESNet is limited to
different spatial arrangements of the same set of atoms.

A key challenge in the generalization to arbitrary molecules
is the variable number of molecular orbitals. To re-
solve this, we introduce Graph-learned Orbital Embeddings
(Globe), a generalization of PESNet that can solve arbitrary
Schrödinger equations jointly. Like previous work, Globe
uses a two-level approach where one network represents the
electronic wave function and the other reparametrizes the
wave function depending on the molecule. We resolve the
issue of the dynamical numbers of molecular orbitals by
embedding orbitals in 3D space. This enables us to learn
local electronic structures via spatial message passing in
graph neural networks (GNNs). For the wave function, we
present the Molecular Orbital Network (Moon), the first size-
consistent neural wave function. We accomplish size con-
sistency in two key steps, firstly, by using spatial message
passing Moon focuses on local interactions, and, secondly,
by using the nuclei as anchor points for message passing.
While the first step is strictly required for size consistency,
the latter enables efficient reparametrization via Globe.

In our experiments, we find Moon accelerating convergence
in joint training by up to 4.5 times and performing similarly
to the attention-based PsiFormer on larger systems (von
Glehn et al., 2023). Further, we observe that transfers of
neural wave functions to larger structures do not require
additional self-consistent field (SCF) calculations. In sum-
mary, our main contributions are:1

• Globe, a reparametrization method for adapting neural
wave functions to arbitrary molecules based on local-
ized molecular orbital embeddings.

• Moon, a size-consistent neural wave function enabling
generalization to larger structures, faster convergence,
and accurate energies.

1Source code: https://www.cs.cit.tum.de/daml/globe/
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2. Background
Notation. We use the term molecule for a point cloud in R3

with charges assigned to each node. The term ‘geometry’
refers to different spatial arrangements associated with the
same set of charges. We use N to denote the number of
electrons and M for the number of nuclei. r ∈ RN×3
denotes a complete electron configuration whereas r ∈ R3

denotes a single electron’s position. For nuclei, we use
R ∈ RM×3 and R ∈ R3, respectively. Zm denotes the
charge of the mth nucleus. We use [ ] for the concatenation
of vectors, ◦ for the Hadamard product, ‖x‖ for the L2-
norm, bold capital letters A for matrices, bold lower case
letters a for vectors, and normal face letters a for scalars.
Bracketed superscripts(l) index sequences, e.g., layers in a
neural network.

2.1. Quantum chemistry

At the heart of quantum chemistry is the Schrödinger equa-
tion. Its time-independent form is

Hψ = Eψ (1)

where ψ : RN×3 → R is the electronic wave function, E
the energy and the Hamiltonian operator is

H =− 1

2

3N∑
n=1

∇2
n + V (r), (2)

V (r) =

N∑
n>m=1

1

‖rn − rm‖
−

N∑
n=1

M∑
m=1

Zm
‖rn −Rm‖

+

M∑
m>n=1

ZmZn
‖Rm −Rn‖

,

(3)

within the Born-Oppenheimer approximation, i.e., we ap-
proximate nuclei as particles with fixed positions. In linear
algebra, Equation (1) is an eigenvalue problem where one
wants to find the eigenfunction ψ0 associated with the lowest
eigenvalue E0. These are commonly called the ground-state
wave function and energy, respectively.

The electronic wave function ψ describes the behavior of
electrons. Note that electrons are not only specified by their
spatial location r ∈ R3 but also by their spin α ∈ {↑, ↓}.
Though, since the spins do not occur in the Hamiltonian,
they can be fixed a priori (Foulkes et al., 2001). For a func-
tion to be a valid wave function, it must satisfy two criteria.
First, ψ must obey the Fermi-Dirac statistics, i.e., it must be
antisymmetric ψ(r) = sign(π)ψ(π(r)) w.r.t. permutations
of same-spin electrons π. Second, the integral of its square
must be one

∫
ψ(r)2dr = 1.

The challenge in computational chemistry is accurately ap-
proximating the ground-state energy. For instance, the total

energy of a system can be decomposed into a mean-field
energy and correlation energy, where the mean-field en-
ergy accounts for ≈ 99.5% of the total energy. To reach
chemical accuracy (typically defined as 1 kcal mol−1), one
has to accurately estimate > 99% of the correlation energy,
> 99.999% of the total energy.

Most commonly, the wave function is represented by a
determinant of molecular orbital functions (Slater, 1929):

ψ(r) = det Φ, Φij = φj(ri) (4)

where the determinant ensures the antisymmetry w.r.t. per-
mutations. The Hartree-Fock (HF) method provides a sim-
ple mean-field approximate solution to the Schrödinger
equation where the molecular orbital functions φHF

i : R3 →
R are constructed with Linear Combinations of Atomic
Orbitals (LCAO) ϕj : R3 → R (Lennard-Jones, 1929),
φHF
i (x) =

∑M
m=1

∑Om
n=1 ωi,m,nϕm,n(x) with Om being

the number of atomic orbitals andϕm,n being the nth atomic
orbital function of the mth atom, respectively. In matrix
notation, Equation (4) can be written as

ψ(r) = det Φ = det(ΦΩT ) Φ,Ω ∈ RN×η (5)

with η =
∑M
m=1Om, Φ being a matrix of all atomic orbital

functions evaluated at every electron position, and Ω being
an optimized weight matrix.

2.2. Variational Monte Carlo

In Variational Monte Carlo (VMC), one approximates a
solution to Equation (1) by picking a trial wave function ψθ
parametrized by θ and iteratively minimizing the energy via
gradient descent on θ. Since the eigenfunctions of H are
a complete basis, this variational optimization is an upper
bound to the true ground-state energy. By reformulating
Equation (1), one gets

E =

∫
ψθ(r)Hψθ(r)dr∫

ψ2
θ(r)dr

(6)

= Er∼ψ2
θ

[
ψθ(r)−1Hψθ(r)

]
= Er∼ψ2

θ
[Eθ(r)] . (7)

In contrast to Equation (1), we here assumed an unnor-
malized wave function ψθ, thus, the normalization factor.
Further, we reformulate the integral in the second line using
importance sampling. Eθ is the so-called local energy:

Eθ(r) =ψθ(r)−1Hψθ(r) (8)

=− 1

2

3N∑
i=1

[
∂2 log |ψθ(r)|

∂r2i
+
∂ log |ψθ(r)|

∂ri

2
]

+ V (r).

(9)

Finally, one optimize ψθ via gradient descent with

∇θE = Er∼ψ2
θ

[[
Eθ(r)− Er∼ψ2

θ
[Eθ(r)]

]
∇θ logψθ(r)

]
(10)
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where we estimate all expectations with Monte Carlo esti-
mates using Metropolis-Hastings (Ceperley et al., 1977).

Due to the few constraints imposed on wave functions,
recent works used neural networks to model them (Pfau
et al., 2020; Hermann et al., 2020). In the neural net-
work setting, learnable many-electron orbital functions
φi : R3 × RN×3 → R implemented by permutation equiv-
ariant neural networks replace the single-electron molecular
orbital functions φHF

i in Equation (4).

3. Related Work
Traditional methods for modeling electronic wave functions
have relied on Linear Combinations of Atomic Orbitals
(LCAO) (Lennard-Jones, 1929) arranged in a Slater determi-
nant (Slater, 1929). However, they cannot capture electron-
electron interactions beyond a mean-field approximation.
To address this issue, backflow transformations (Feynman
& Cohen, 1956) and Jastrow factors (Jastrow, 1955) have
been introduced. Later, Carleo & Troyer (2017) were the
first to demonstrate the use of neural networks to model
to quantum systems, though only for discrete spin systems.
This approach has since been improved upon by using deep
neural networks for real-space electronic systems (Han et al.,
2019; Pfau et al., 2020; Hermann et al., 2020). In subsequent
works, such neural networks have further refined (Gerard
et al., 2022; von Glehn et al., 2023) and adopted to different
settings like pseudopotentials (Li et al., 2022a), periodic
systems (Wilson et al., 2022; Li et al., 2022b; Cassella et al.,
2023) or diffusion Monte Carlo (DMC) (Wilson et al., 2021;
Ren et al., 2022).

Despite their high accuracy, neural network-based wave
function models are still inherently expensive for multi-
ple systems. Two recent concurrent approaches addressed
this challenge: DeepErwin, a weight-sharing method across
geometries (Scherbela et al., 2022), and PESNet (Gao &
Günnemann, 2022; 2023), a two-network approach that al-
lows for joint training of several geometries, eliminating the
need for retraining. But, while the former needs retraining
for each structure, the latter is limited to different spatial
arrangements of the same set of atoms.

4. Generalizing Neural Wave Functions
Compared to different geometries, generalization across
different molecules comes with additional difficulties as the
number of atoms, electrons, and orbitals change. To address
these challenges, we identify two key desiderata that such a
system should fulfill:

1. Invariance: A molecule’s energy is invariant to Eu-
clidean transformations and permutations. Thus, a
generalizing wave function should result in invariant

energy estimates. To achieve this, the wave function
must be equivariant to Euclidean transformations and
nuclei permutation (Gao & Günnemann, 2022).

2. Size consistency: As most quantum mechanical inter-
actions happen within a short distance, a molecule’s
energy is an extensive quantity and scales additively
with its size. For wave functions, this implies that
the wave function decomposes into a product of the
individual wave functions for distant molecules.

To incorporate Euclidean symmetries, we follow Gao &
Günnemann (2022) by defining a PCA-based equivariant
coordinate frame. Thus, in the following all references
to the electron r and nuclei R positions are measured in
the equivariant frame. To accomplish size consistency, the
wave function must decompose into a product of two wave
functions if two systems are sufficiently separated. In Ap-
pendix A, we show that decaying the value of molecular
orbital functions φi to 0 far from the involved atoms is suffi-
cient to implement this. We achieve this by relying on local
interactions between pairs of particles (electrons/atoms) that
exponentially decay with distance.

Like previous work, we adopt a two-network approach.
While Moon represents the electronic wave function ψθ,
Globe acts solely on the nuclei and adapts the former’s
parameters to the molecule.

4.1. Graph-learned Orbital Embeddings (Globe)

Globe’s task is to reparametrize the wave function depend-
ing on the molecular structure, i.e., it only acts on the
atoms and does not consider electrons. To perform such a
reparametrization, it must extract local electronic structure
information from the atomic point cloud. Further, we must
parametrize N molecular orbital functions φi, see Equa-
tion (4), which poses a challenge as their number depends
on the number of electrons rather than atoms. As illustrated
in Figure 1, we achieve both in a three-step procedure. First,
we learn about atomic neighborhoods via message pass-
ing. Next, we localize orbitals and, finally, learn orbital
embeddings via unidirectional message passing.

Message-passing network. Our message-passing network
relies on the use of continuous filter convolutions (Schütt
et al., 2018). We initialize the node embeddings by a charge
embedding h

atom(0)
i = F atom

Zi
and iteratively update them

through message-passing as

h
(l+1)
i = f (l)(h

(l)
i ,m

(l)
i ), (11)

m
(l)
i =

1

νRRi

M∑
j=1

g(l)(h
(l)
i ,h

(l)
j ) ◦ Γ (l)(Ri −Rj), (12)

νNx = 1 +
∑
y∈N

exp

(
−‖x− y‖

2

σ2
norm

)
(13)
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1) Nuclei message passing 2) Define orbitals 3) Nuclei to orbital

message passing

Orbital location Orbital embeddingOxygen Nuclei embedding MessageHydrogen Molecular bond

Figure 1. Globe steps. 1) Atom embeddings are obtained by message passing between atoms. 2) Orbital locations and embeddings are
determined by core orbitals and molecular bonds. 3) Orbital embeddings are updated via a unidirectional message passing. For clarity, we
omitted messages from each atom to each of the three core orbitals.

where f (l) and g(l) are implemented by MLPs, Γ are spa-
tial filters and ν is a spatial normalization with σnorm being
a learnable parameter. By multiplying elementwise with
spatial filters rather than concatenating with them, as done
in Gao & Günnemann (2022), we decay long-range inter-
actions between atoms and strengthen local interactions.
Further, instead of averaging over all atoms, we normalize
the message by a learnable normalization factor to account
for the size of its neighborhood.

Spatial filters. To model arbitrary wave functions, we must
break euclidean symmetries in our reparametrization (Gao
& Günnemann, 2022). Previous work used positional en-
codings relative to the center of mass to achieve this. But,
as the center of mass is an inherently global property, we
instead break the symmetries in our spatial filters enforc-
ing locality. Instead of being radial, our filters operate on
the full three-dimensional space by constructing them as a
Hadamard product of a Gaussian envelope and an MLP on
the three-dimensional input:

Γ (l)(x) =W (l)β(x), (14)

β(x) =W env

[
exp

(
−
(‖x‖

ςi

)2
)]D

i=1

◦
(
σ
(
xW (1) + b(1)

)
W (2) + b(2)

) (15)

with D being the number of envelope ranges ςi, and σ being
an activation function. While a combination of spherical
harmonics and radial basis functions achieves similar sym-
metry breaking (Gasteiger et al., 2021; Zitnick et al., 2022),
we found such freely learnable filters to perform better.

Orbital localization. A key challenge in adapting a wave
function to arbitrary molecules is the molecular orbital func-
tions φi as their number is not fully specified by the number
of atoms but by the number of electrons. While generating
one molecular orbital function per electron seems like an
intuitive solution, this would cause two rows and columns in
Equation (4) to permute if two electrons permute, resulting
in a permutation symmetric rather than an antisymmetric
function. Thus, the orbital functions must be independent

of the actual electrons. One could generate the orbitals by
a global graph embedding, e.g., via an RNN, but such a
construction does not preserve locality and behaves unpre-
dictably to changes in the nuclei.

We avoid such global constructions, by assigning each
molecular orbital a location Li ∈ R3 and learning the pa-
rameters of the associated orbital function φi via message
passing. To localize the orbitals, we distinguish between
core and valence orbitals as core orbitals tend to interact
little with other atoms (Foulkes et al., 2001). For each atom
type, we define its valency by the number of bonds it can
form, e.g., for hydrogen one, for carbon four, for oxygen
two, etc. The number of core orbitals for the ith atom is then
Zi−Vi

2 with Vi being the valency of the ith atom. These core
orbitals are located at the same location as the nuclei. To
determine the valence orbitals, we identify covalent bonds
and locate the orbital in the center of that bond. We do this
by iteratively picking the pairs of atoms closest to each other
where each atom has at least one unpaired electron left. An
example of our localized orbitals is depicted in Figure 1. In
Appendix B, we provide a full definition of the algorithm.

While obtaining the orbital locations Li, we also define their
types Ti. Where the order and the charge of the nucleus
define the core orbital types, the bond’s cardinality defines
the valence orbital types. This categorial distinction avoids
identical embeddings for two orbitals at the same location.

Orbital embedding. We initialize the orbital embeddings
via their types ho(0)

i = F o
Ti

and iteratively update them with
an architecturally identical GNN as used for the atoms but
with unidirectional message passing from the atoms to the
orbitals. Here, we avoid bidirectional message passing as
the orbital structure is wholly inferred from the nuclei and,
thus, carries no additional geometric information.

Parameter estimation. Changes in a molecule’s structure
manifest in wave function parameters that depend either
on atoms, orbitals, or a combination of both. Thus, Globe
updates these parameters via their respective embeddings
(ha,ho,ha-o). Before generating parameters via individ-
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ual MLPs, we pass them through shared MLPs and Layer-
Norms (Ba et al., 2016). To ensure that the wave function
converges to a product for distant systems (Desiderata 2),
we define atom-orbital embeddings as

ha-o
i,m =

[
ha(L)
m ,h

o(L)
i

]
W ◦ Γ a-o(Rm −Li). (16)

where the spatial filters vanish the contribution of the mth
atom to the ith orbital with increasing distances.

4.2. Molecular Orbital Network (Moon)

Moon represents the electronic wave function ψθ, but, un-
like previous work, Moon encourages local interactions via
spatial message passing and avoids strong global interac-
tions (Pfau et al., 2020; von Glehn et al., 2023). While
PauliNet already represents a GNN-based wave function, it
relies heavily on HF calculations and does not reach similar
accuracy (Hermann et al., 2020; Gerard et al., 2022).

To avoid many expensive message-passing steps between
electrons and nuclei, we simplify the message-passing struc-
ture. Figure 2 provides a conceptual overview of Moon.
First, we encode the local electronic neighborhood for each
electron. Next, nuclei aggregate electronic structure infor-
mation. The nuclei embeddings are then iteratively updated
and, lastly, diffused to the electrons. The basic functional
form of Moon follows a Slater-Jastrow wave function

ψθ(r) = exp(J(r))

K∑
k=1

wk det Φk, (17)

i.e., a product of a permutation invariant Jastrow factor and
a weighted sum of Slater determinants. As Jastrow fac-
tor, we additively combine the Jastrow factors from Gao
& Günnemann (2023) and von Glehn et al. (2023). In the
following, we use bars ā for atom parameters, tildes ã for or-
bital parameters, and both ˜̄a for atom-orbital interaction pa-
rameters. These are the parameters that are updated through
Globe. For clarity, we omit the Jastrow factor, residual con-
nections, and normalization coefficient definitions here and
refer the reader to Appendix C for detailed descriptions.

Embedding. As initial features, we use the pairwise dis-
tances between electrons and nuclei ge-n

ij = [ri −Rj , ‖ri −
Rj‖], and electron and electrons ge-e

ij = [ri−rj , ‖ri−Rj‖].
As illustrated in Figure 2, we initialize the electron embed-
dings by a single electron-electron message-passing step

h
e(0)
i =

N∑
j=1

σ
(
ge-e
ij W

δ
αj
αi

)
◦ Γ δ

αj
αi (‖ri − rj)‖W (18)

where functions and matrices superscripted by the Kro-
necker delta δαjαi indicate different weights. Here, we again
use the spatial filters to decay interactions from far-apart
particles. Like Gao & Günnemann (2022), we construct

electron-nuclei interaction embeddings by combining elec-
tron embeddings h

e(0)
i , nuclei embeddings z̄m, and their

distance ge-n
im via

h
e-n(0)
im = σ

(
h

e(0)
i + z̄m + ge-n

imW̄m

)
. (19)

As the second step in Figure 2, these embeddings are then
aggregated towards electrons and nuclei via spatial message
passing while keeping separate embeddings for each spin
state α ∈ {↑, ↓} per nuclei:

hnα(1)
m =

∑
i∈Aα

he-n
i,m ◦ Γ̄ n

m(ri −Rm), (20)

h
e(1)
i =

M∑
m=1

he-n
i,m ◦ Γ̄ e

m(ri −Rm) (21)

where Aα is the index set of electrons with spin α and
Γ̄ being the spatial filters from Equation (14) with atom-
parameters, see Appendix C. By using message passing
instead of concatenation as commonly done in single-
molecule works (von Glehn et al., 2023), we achieve invari-
ance to nuclei permutations, see Desiderata 1 in Section 4.

Update. We iteratively update the nuclei embeddings

hnα(l+1)
m = hnα(l)

m + σ([hnα(l)
m ,hnα̂(l)

m ]W (l) + b(l)) (22)

where α̂ denotes the opposing spin of α. For efficiency
reasons, we do not perform message passing between nuclei
here as we found it to have no significant impact.

Diffusion. After L-many update steps, a single message-
passing step diffuses the nuclei embeddings to the electrons

h
e(L)
i = σ(h

e(0)
i W + mi), (23)

mi =

M∑
m=1

([
hnαi(L)
m ,hnα̂i(L)

m

]
W + b

)
◦ Γ̄ diff

m (ri −Rm)

(24)

with αi denoting the spin of the ith electron. The spatial
filters in this step enable the network to learn different direc-
tional messages which are important in modeling directional
wave functions, e.g., the excited states of the hydrogen atom.

Orbital construction. After diffusion, we construct re-
stricted orbitals like Gao & Günnemann (2023) with adap-
tive orbital and envelope parameters:

φki (rj) =

(
(w̃

kδ
αj
αi

i )Th
e(L)
j + b̃

kδ
αj
αi

j

)
M∑
m=1

˜̄π
kδ
αj
αi

im exp(−˜̄σ
kδ
αj
αi

im ‖rj −Rm‖).
(25)

Here, the exponential envelope from Spencer et al. (2020)
guarantees that our wave function will have a finite integral.
In Appendix C, we describe how we restrict the envelope
parameters σ such that we fulfill size consistency desiderata.

5



Generalizing Neural Wave Functions

1) 2) 3) 4)

Figure 2. Illustration of Moon. 1) We initialize electron embeddings by aggregating their local neighborhood of electrons. 2) Nuclei
aggregate electron embeddings via message passing. 3) Nuclei embeddings are iteratively updated. 4) Nuclei embeddings are structurally
diffused towards the electrons via message passing. For clarity, we omitted most messages in 1), 2), and 4).

4.3. Optimization

We train the whole network end-to-end in a two-step proce-
dure. We first pretrain the orbitals φi on HF solutions and,
next, perform variational optimization (Pfau et al., 2020).

Pretraining. Pretraining is important to ensure a stable
variational optimization (Pfau et al., 2020; von Glehn et al.,
2023). Traditionally, one would match the neural network’s
orbitals φi with those of an HF solution φHF

i . But, with
our localized orbitals this may cause a mismatch between
nuclei involved in the ith neural orbital function and HF
orbital function as the HF solution is typically sorted by
energy state rather than locality. We resolve this issue by
noticing that the HF wave function does not change if one
multiplies the orbital matrix Φ = ΦΩT by a matrix A with
unit determinant, i.e., ψ(r) = det(ΦΩT ) = det(ΦΩTA).
With this in mind, we can find a matrix A such that the
new coefficient matrix Ω̂T = ΩTA enforces locality. We
describe this optimization procedure in Appendix D. After
finding Ω̂T , we perform traditional pretraining by matching
the neural network orbitals to the localized HF orbitals. To
avoid overfitting, we add a regularization loss on the outputs
of the reparametrization network detailed in Appendix E.

Variational optimization. Like Gao & Günnemann (2022),
we train both the wave function and the reparametrization
network end-to-end and precondition the VMC gradients
with natural gradient descent. But, since we deal with
molecules of varying sizes unlike previous work, the gra-
dients obtained from the different molecules may vary by
orders of magnitude (like their energy). To avoid larger
molecules from dominating the gradients, we rescale the gra-
dients based on the standard deviation of the local energies
associated with the molecule. We discuss this rescaling in
Appendix F and the full VMC optimization in Appendix G.

4.4. Limitations

While Globe can learn a generalized wave function across
different geometries of molecules, there are limitations.
Firstly, despite having a rotation equivariant wave function,
Globe is not smooth under arbitrary geometric perturbations.
For instance, changes that cause the equivariant frame from
Gao & Günnemann (2022) to flip result in discrete changes

in the wave function, similar discontinuities may happen
to our orbital localization as discussed in Appendix B. The
coordinate frame also breaks the size-consistency of Moon
as the frames of the two molecules do not necessarily align
anymore. These are general issues introduced by natural
symmetries that one must break to model arbitrary wave
functions. Secondly, while we found our gradient rescaling
based on the energy’s standard deviation easing optimiza-
tion, we found it to be insufficient if the discrepancy between
molecules is large. For instance, if one trains a hydrogen-
based system jointly with heavier atoms like nitrogen we
found the optimization resulting in worse results than one
obtains from training solely on the hydrogen-based system.
Lastly, in its current state, the number of electrons is equal
to the sum of atomic charges, and the number of spin-up
and down electrons may differ by at most 1, prohibiting
modeling ionic systems.

5. Experiments
Here, we analyze Globe and Moon across a variety of dif-
ferent experimental settings. Firstly, we investigate the be-
havior of Globe when training on similar geometries where
one would expect significant information overlap between
molecular orbitals. Next, we take a look at its extrapolation
behavior on such similar structures. Thirdly, we train Globe
on molecules that share no common structure. Fourthly, we
investigate the transferability of a trained Globe to similar
and larger molecules. Lastly, we compare Moon with recent
neural wave functions on the larger benzene molecule.

As the true ground-state energies for any molecular sys-
tem are rarely known, we either compare them to highly
accurate reference calculations or report variational ener-
gies or their standard deviation. As discussed in Section 2,
VMC energies are upper bounds to the true energy and, thus,
lower is better. Further, as the wave function approaches the
ground state, the standard deviation of the local energy ap-
proaches zero providing a proxy for the convergence to the
ground state. Appendix H details the setup and Appendix I
lists the geometries we used in the following. Timings and
model sizes can be found in Appendix J and Appendix K.
Appendix L provides a model size ablation.
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In joint training, Moon converges 4.5 times faster and to lower
energies.
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and ethene result in 0.96 mEh and 2.71 mEh higher energies.

Table 1. Comparison between Moon and FermiNet in solving
separated hydrogen chains. H10 indicates the energy of a single
hydrogen chain, H10 + H10 for two hydrogen chains 100 a0 apart,
and ∆ indicates the difference in energy between twice the energy
of single chain compared to solving both systems jointly. All
values are in Hartree.

H10 H10 + H10 2 × H10 ∆

FermiNet -5.6631 -10.7564 -11.3262 -0.5698
Moon -5.6632 -11.3264 -11.3264 0.0000

Learning on similar systems. Training on similar systems
jointly may be useful in several settings, e.g., in binding
energy computations (Trogolo et al., 2019) or in labeling
a diverse dataset (Hoja et al., 2021). Two key aspects are
of interest here. Firstly, we investigate the loss in accuracy
when training on different molecules and, secondly, we
compare Moon to the existing FermiNet (Pfau et al., 2020)
to identify potential benefits in convergence and accuracy.
For FermiNet, we include all improvements from Gao &
Günnemann (2023) and the Jastrow factor from von Glehn
et al. (2023). As systems, we choose the hydrogen rectangle
H4, the 6-element hydrogen chain H6, and the 10-element
hydrogen chain H10. Note that each of these systems is
a collection of different geometries. We train each wave
function model with our reparametrization network on four
different settings, one for each molecule and one where we
train on all of them jointly. Due to the variational principle,
lower energies are better.

Figure 3 shows the average energy during training for both
FermiNet and Moon in their two training settings (joint op-
timization, single molecule only). One can see that Moon
converges strictly faster than a similar-sized FermiNet. For
small systems, we observe that joint training even accel-
erates convergence in terms of steps. For FermiNet, we
observe a significant gap between single and joint training
for the larger hydrogen chain while Moon converges to the
same energy in both regimes. Importantly, we observe that
Moon behaves significantly more stable in joint optimization
compared to FermiNet. We compare the standard deviation
of the energy during training in Appendix M.

Size consistency. As discussed in Desiderata 2 in Section 4,
for distant molecules the joint wave function is equal to
the product of the individual wave functions. In contrast to
previous neural wave functions like FermiNet, Globe and
Moon adhere to this limit case. We demonstrate this by
training Globe with FermiNet and Moon on the hydrogen
chain H10 and transfer the wave function to two separated
hydrogen chains 100 a0 apart. As an optimal result, one
expects the energy of the distant hydrogen chains to be
equal to twice the energy of a single chain.

In Table 1 we list the difference between these settings.
While FermiNet leads to a significant error of 570 mEh,
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Moon’s result is in perfect agreement with the desiderata.
In closer regimes, we analyze the extensivity of FermiNet
and Moon in Appendix N.

Learning on dissimilar systems. While optimizing similar
molecules has a small impact on the performance of Globe,
we now analyze how unrelated molecules affect final ener-
gies. We test this by solving for the ground-state energies of
various small systems jointly. We pick Li, LiH, Be, B, Li2,
F, Ne, and N2 from Pfau et al. (2020) as the dataset.

In Figure 4, one sees the energy for each system during
training. While, for small systems, Globe with Moon ac-
complishes lower energies than FermiNet despite training
jointly, we observe that this does not carry over to larger
systems where the gap between both increases. For all
molecules, except for N2 where FermiNet also fails to reach
chemical accuracy, Globe’s energies are within the chemical
accuracy of the true energy. To close the gap to FermiNet,
we found that increasing the size of the wave function Moon
has a significant impact on the final energy. We investigate
this in Appendix L and argue that this is due to the increased
capacity requirement in capturing many wave functions
within a single model.

Learning dissimilar energy surfaces. While the previous
paragraph analyzed the absolute energies in training on dif-
ferent molecules, here we look at the consistency of energy
surfaces when training on different energy surfaces jointly.
To test this, we train three Globe on the nitrogen dimer
(N2), once solely on nitrogen, once with the hydrogen chain
(H10) as a smaller molecule, and once with ethane (C2H4)
as a larger molecule. We chose the nitrogen dimer due to
its challenging nature (Pfau et al., 2020). Further, we com-
pare Globe to recent neural network-based solutions (Gerard
et al., 2022; Gao & Günnemann, 2022).

The potential energy surface in Figure 5 shows that Globe
comes close to the performance of current state-of-the-art
neural wave functions while being able to model different
molecules jointly. We suspect the gap to Gerard et al. (2022)
is due to the lower number of determinants, as we use 16
instead of 32 since Pfau et al. (2020) found these to be an im-

portant hyperparameter for the nitrogen dimer. Though, one
can see that adding unrelated molecules to the optimization
worsens the final results depending on the system sizes. For
instance, adding the relatively low-energy hydrogen chain
worsens the results by 0.96 mEh, and the larger ethene struc-
tures lead to 2.71 mEh worse energies on average. Note that
the models trained with dissimilar structures also have seen
fewer nitrogen samples during training as we evenly divide
the total batch size of 4096 across all molecules.

Transferibility. Here, we analyze the transferability of
Globe across different molecules. Like Scherbela et al.
(2022), we train Globe on several molecules and transfer
the wave function either to different geometries, or larger
molecules. Specifically, we use the 10-element hydrogen
chain (H10), ethene (C2H4), and cyclobutadiene (C4H4). As
smaller molecules, we use the 6-element hydrogen chain
(H6), methane (CH4), and ethene, respectively. We com-
pare our results to DeepErwin (Scherbela et al., 2022).
Though, there are key distinctions in our setups. While
Globe optimizes all molecules at once, DeepErwin opti-
mizes each molecule independently with weight-sharing ap-
plied between the wave functions. Further, DeepErwin per-
forms new CASSCF calculations for each molecule while
we apply Globe without any SCF calculations to the new
molecule. An epoch for DeepErwin is one optimization step
per molecule with a batch size of 2048 per molecule. Since
we optimize all geometries jointly, an epoch is a single step
for us with a batch size of 4096 shared for all molecules in
the batch. Thus, we trained Globe with approximately 10
times fewer samples and 20 times fewer steps.

The convergence plots in Figure 6 show that Globe gener-
ally converges quickly to within chemical accuracy in the
hydrogen chain and ethene for the standard setting, i.e., pre-
training from HF. For cyclobutadiene, we suspect the gap
to Gao & Günnemann (2023) is due to our smaller wave
function, i.e., we use an embedding dim of 256 and 16 deter-
minants instead of 512 and 32, respectively. Consistent with
the results from Scherbela et al. (2022), we find starting
from smaller molecules generally worsens convergence for
larger systems. Still, pretraining on smaller molecules leads
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et al. (2023); Gerard et al. (2022); Ren et al. (2022). Energies are
averaged over 4000 iterations. Moon shows similar convergence
behavior to the attention-based PsiFormer.

to similar results given sufficient training steps and outper-
forms the models without pretraining. For a view of the full
convergence diagram, see Appendix O. Notably, we observe
convergence without performing a single HF calculation on
the larger structures, which was essential for previous meth-
ods (Pfau et al., 2020; Scherbela et al., 2022). Compared to
DeepErwin, Globe results in 0.6 mEh and 6.3 mEh lower
energies for the hydrogen chain and ethene, respectively.

Larger systems. As neural-network solutions are interest-
ing thanks to their theoretical scaling, we investigate how
Moon scales to larger systems compared to FermiNet (Pfau
et al., 2020), recent improvements to FermiNet (Gerard et al.,
2022), diffusion Monte Carlo (DMC) calculations (Ren
et al., 2022), and the recently proposed attention-based Psi-
Former (von Glehn et al., 2023). As system, we use the
benzene molecule (C6H6), as recent work found a large gap
between VMC and the true ground-state energy (Ren et al.,
2022; von Glehn et al., 2023).

Figure 7 plots the energy of the system throughout train-
ing by iterations and GPU hours. Note that FermiNet,
PsiFormer, and Gerard et al. (2022) were optimized with
KFAC (Martens & Grosse, 2015) while Moon uses CG-
based natural gradient descent. While CG-based natural
gradient descent leads to faster early convergence, KFAC
results in similar update steps later in training while being
two to three times faster per iteration. In energy, we find
Moon to behave similarly to PsiFormer in that it approaches
lower than DMC energy levels. Compared to the best Fer-
miNet results, we find Moon to reach similar energies in 3
times fewer GPU hours and converge in an identical time to
13.5 mEh lower energies.

6. Conclusion
Solving many Schrödingers jointly with a single system
holds the promise of learning generalizing wave functions.
Like recent deep learning-based density functional theory
(DFT) functionals (Snyder et al., 2012; Kirkpatrick et al.,
2021), learning a general neural network solution for quan-
tum mechanical calculations may accelerate material discov-
ery while increasing accuracy. In this work, we introduced
Globe, the first systematic approach to performing such a
generalization. By embedding orbitals as points in space
and using message passing, we can learn dynamic numbers
of molecular orbital functions for different molecules. Fur-
ther, we presented a novel locality-driven wave function,
Moon, that shows significant improvements in convergence
and extensivity than previous methods when trained on di-
verse molecules. With Globe and Moon, we are the first to
demonstrate the solving of Schrödinger equations of differ-
ent molecules within a single wave function.
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A. Size consistency in quantum chemistry
If one is given two distant molecules, one can show that
the Hamiltonian H from Equation 1 decomposes into two
Hamiltonians H1,H2 for each of the respective systems.

W.l.o.g., let the electrons be sorted such that r = [r1, r2] ∈
RN , r1 ∈ RN1 , r2 ∈ RN2 . First, one rewrites the full
Hamiltonian

H =− 1

2

3N∑
n=1

∇2
n

+

N∑
n>m=1

1

‖rn − rm‖
−

N∑
n=1

M∑
m=1

Zm
‖rn −Rm‖

+

M∑
m>n=1

ZmZn
‖Rm −Rn‖

,

(26)

in terms of the Hamiltonians of the individual systems
H1,H2

H =H1 + H2 +
∑
n∈B1

∑
m∈B2

1

‖rn − rm‖

−
∑
n∈B1

∑
m∈A2

Zm
‖rn −Rm‖

−
∑
n∈B2

∑
m∈A1

Zm
‖rn −Rm‖

+
∑
n∈A1

∑
m∈A2

ZmZn
‖rn −Rm‖

.

(27)

where A1,A2 and B1,B2 are the index sets for the nuclei
and electrons for both systems, respectively. For distant
systems, 1

‖rn−rm‖ ≈
1

‖rn−Rm‖ ≈
1

‖Rn−Rm‖ :

H =H1 + H2 + c(∑
n∈B1

∑
m∈B2

1−
∑
n∈B1

∑
m∈A2

Zm︸ ︷︷ ︸
=0

−
∑
n∈B2

∑
m∈A1

Zm +
∑
n∈A1

∑
m∈A2

ZmZn︸ ︷︷ ︸
=0

).

(28)

where c = 1
‖Rn−Rm‖ , n ∈ A1,m ∈ A2. One may notice

that for non-ionic systems |Bi| =
∑
m∈Ai Zm. Thus, the

first two and the last two sums cancel out and one is left
with the sum of the individual Hamiltonians.

Given the decomposition of the Hamiltonian, one can show
that the lowest eigenvalue of H is E1 + E2 where E1 and
E2 are the lowest eigenvalues associated with the eigenfunc-

tions ψ1 and ψ2 of H1 and H2, respectively:

H(ψ1ψ2) = (H1 + H2)(ψ1ψ2) (29)
= H1ψ1ψ2 + H2ψ2ψ1 (30)
= E1ψ1ψ2 + E2ψ2ψ1 (31)
= (E1 + E2)ψ1ψ2. (32)

Thus, the ground state wave function of the combined Hamil-
tonian H is the product of the individual ground state wave
functions ψ1 and ψ2.

To obtain the decomposition ψ = ψ1ψ2, it remains to show
that the molecular orbital functions φmust only act on close-
by electrons, i.e.,

φn(rm|r) =


φn(rm|rB1

) if n,m ∈ B1,

φn(rm|rB2
) if n,m ∈ B2,

0 else.
. (33)

where we introduced the shorthand notation rBi =
{rn}n∈Bi . For simplicity, we assume a single Slater de-
terminant as wave function ψ:

ψ(r) = det

φ1(r1|r) . . . φN (r1|r)
...

. . .
...

φ1(rN |r) . . . φN (rN |r)

 . (34)

If we plug in the definition from Equation 33, the matrix
factorizes into a block diagonal which then in turn factorizes
into the product of wave functions as desired:

ψ(r) = det

φ1(r1|rB1
) . . . 0

...
. . .

...
0 . . . φN (rN |rB2

)

 (35)

= det Φ1(rB1
) det Φ2(rB2

) (36)
=ψ1(rB1

)ψ2(rB2
). (37)

B. Orbital localization algorithm
In an ideal setting, we would pick the orbital locations such
that a) the local environment defines them, b) they are deter-
ministic and c) they change smoothly with arbitrary changes
to the atoms. Except for a few edge cases, which we dis-
cuss in the next paragraph, we satisfy all three criteria with
Algorithm 1. As explained in Section 4.1, we distinguish
between core and valence orbitals. Where core orbitals are
located at their corresponding nucleus, valence orbitals are
located at the center of covalent bonds. To favor the forma-
tion of diverse spatially different bonds, higher bond types
(e.g., double and triple bonds) are slightly punished such
that one favors similar distanced single bonds. Since the
distance of an atom to itself is always 0, we replace the
self-distances by a cutoff radius cself after which one prefers
self-bonds.

12
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Algorithm 1 Orbital localization
Input: nuclei positions Ri ∈ R3, charges Zi ∈ N+

Orbital locations Locs = [ ]
Orbital types Types = [ ]
# Define core orbitals
for i = 1; i ≤M do

Valence orbitals Vi := Valency(Zi)
Core orbitals Ci := dZi−Vi2 e
for j = 1; j ≤ Cm do
Locs.append(Ri)
Types.append((Zi, j))

end for
end for

Distances Dm,n :=

{
‖Rm −Rn‖ , if n 6= m

cself , else
# Define valence orbitals
Bond type Tm,n := 0

for i = 1; i ≤ d∑M
m Vm/2e do

Scores Sm,n := 1[Vm>0∧Vn>0]
Dm,n+Tm,n/2

Indices m,n := arg maxm,n S (w.l.o.g. m ≤ n)
Vm := Vm − 1;Vn := Vn − 1
Tm,n := Tn,m := Tm,n + 1
Locs.append(Rm+Rn

2 )
Types.append(Tm,n)

end for
return Locs, Types

Edge cases. While the orbital localization fulfills our free
desiderata: locality, determinism, and smoothness most of
the time, there are edge cases we would like to highlight here
in which we cannot guarantee smoothness. First, discrete
changes occur when the nearest neighbors between atoms
change. Second, if multiple pairs have identical distances,
the algorithm would not be deterministic. In such cases,
we rely on a series of ‘tie-breakers’, i.e., further criteria.
In particular, we prefer edges furthest from the center of
mass. If a tie remains, we start comparing the polar angle
and, lastly, the azimuthal angle to break ties. While this
formulation allows us to localize orbitals deterministically it
also breaks the smoothness, e.g., if the order in any of the tie-
breakers changes. Further, it relies on a smoothly changing
equivariant coordinate frame which cannot exist (Gao &
Günnemann, 2022).

Considering these discrete jumps in our orbital localization,
one may ask why we decided on this particular algorithm.
To answer this, one first has to consider why these discrete
changes happen within Algorithm 1. The arg max func-
tion introduces these discrete changes. While replacing
the arg max by a smooth approximation, e.g., via a softmax
would resolve all discrete jumps, it would greatly deteriorate
the locality. For instance, in larger systems, the softmax will

always surely converge to the center of mass rather than any
local bond structure. The examples given above are in ex-
treme situations in symmetric molecules, e.g., the transition
state of cyclobutadiene. In our experience, even established
classical approximative methods such as the Hartree-Fock
method struggle in such situations. One may see localizing
orbitals as an instantiation of the greater problem of how one
should break symmetries in neural wave functions such that
one can model the ground state accurately while keeping
sufficient inductive bias to generalize to new structures.

As a final point of discussion, one should ask whether these
discontinuities are harmful in practice. As for equilibrium
structures, the cases we listed will generally not happen as
every atom will be closely surrounded by as many atoms
as its valency with longer distances to other atoms. Con-
sidering these aspects, we believe our orbital localization
algorithm to be sufficient for the current state of neural wave
functions while we encourage future work to approach the
problem of discontinuities.

C. Molecular Orbital Network details
As Section 4.2 focuses on novel aspects of the wave function,
we want to provide some implementation and minor details
here.

Rescaling. To limit the input magnitude for distanced par-
ticles, we adopt the logarithmic rescaling from von Glehn
et al. (2023), i.e.,

gij =
log (1 + g

(4)
ij )

g
(4)
ij

gij . (38)

Normalization. Like the reparametrization network, we use
learnable normalization factors within the wave functions
for the four message-passing steps Equation (18), (21), (20)
and (24). Specifically, we normalize the electron embed-
dings after the electron-electron message passing in Equa-
tion (18) by the expected number of close electrons via

ĥ
e(0)
i =

1

µ(ri)
he(0), (39)

µ(r) = 1 +

M∑
m=1

Zm
2

exp

(
−‖r −Rm‖2

σ2
norm

)
(40)

where ĥ
e(0)
i are the electron embeddings passed to further

layers. Note that this formulation is similar to Equation (13)
but here we multiply by half of the charge of the nucleus to
account for the expected number of electrons per spin close
to the nucleus. For the electron-nuclei message-passing
steps in Equation (21), (20) and (24), we use 1

νR
ri

, 1
νR
Ri

, and
1
νR
ri

, respectively.
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Reparametrized filters. In the message-passing steps in
Equation (21), (20) and (24), we use reparametrized version
of the spatial filters from Equation (14). Concretely, these
reparametrized versions take the form

Γ̄ (l)
m (x) =W (l)β̄m(x), (41)

β̄m(x) =W env

[
exp

(
−
(‖x‖
ς̄mi

)2
)]D

i=1

◦
(
σ
(
xW̄ (1)

m + b̄(1)m

)
W (2) + b(2)

)
.

(42)

Here, we replaced the envelope ranges ςi and the first linear
layer in the MLP by atom-parameterized versions. The
remaining parameters are shared across all m.

Residual connections. We add residual connections be-
tween each update layer and renormalize the embeddings,
i.e.,

ĥn(L+1)
m =

1√
2

(
hn(L)
m + hn(L+1)

m

)
(43)

where ĥ
n(L+1)
m are the nuclei embeddings used in subse-

quent layers. For the electron embeddings, we add a skip
connection after the diffusion step

ĥ
e(L)
i =

1√
2

(
h

e(L)
i + h

e(0)
i

)
. (44)

Jastrow factor. As Jastrow factor we additively combine
the Jastrow factors from Gao & Günnemann (2023) and von
Glehn et al. (2023)

J(r) =

N∑
i=1

MLP(h
e(L)
i )

+ βpar

∑
i,j;αi=αj

−1

4

α2
par

αpar + ‖ri − rj‖

+ βanti

∑
i,j;αi 6=αj

−1

2

α2
anti

αanti + ‖ri − rj‖
.

(45)

where αpar, αanti, βpar, βanti are learnable parameters.

Parameter domain. While most of the reparametrized
parameters are weight matrices without clear restrictions,
some are used in numerically critical situations, e.g., as a
divisor. In such cases, we apply a softplus function f(x) =
log(1 + exp(x)) to avoid division by zero. Concretely, we
use this domain restriction for the envelope ranges ˜̄ςm and
envelope parameters ˜̄σ. To obtain local orbitals, ˜̄π decay to
zero if the distance between an atom and an orbital increases.
We accomplish this by defining ˜̄π = tanh(˜̄π1)f(˜̄π1) where
˜̄π1 and ˜̄π2 are two different outputs of the reparametrization
network and f is the softplus function. As any direct atom-
orbital parameter decays to 0 if the distance between the

1 23 45

1

2

3

4

5

Atom Orbital HF Transformed

Figure 8. Illustration of our orbital canonicalization. The bot-
tom row illustrates the hydrogen chain with our localized orbitals.
Rows 1 to 5 illustrate the contribution of each atom to each of the
five orbitals for the Hartree-Fock solution obtained via PySCF (Sun
et al., 2018) and our transformed solution. We plot the sum of
absolute values of Ω belonging to atom i as the height of the ith
bar. Our transformed solution (blue) localizes the contribution
close to the nuclei closest to its location.

atom and the orbital increases, this parametrization gives the
desired effect. While one could also drop any transformation
on ˜̄π to accomplish the decaying effect, Gao & Günnemann
(2022) found a softplus on π to help in convergence which
we confirmed in early experiments. Thus, we define ˜̄π as a
product where the tanh accounts for the decay and sign, and
the softplus for the granularity. In Appendix A, we show
that this parametrization results in the desired product of
wave functions for distant systems.

D. Canonicalizing Hartree-Fock solutions
As discussed in Section 4.3, the solution obtained from a
Hartree-Fock calculation may not align with our assump-
tions about the locality of orbitals. Since learning global
orbital functions based on our localized orbital embeddings
presents a difficult challenge, we seek to canonicalize our
Hartree-Fock solutions such that they align with our local-
ized orbitals. As explained in Section 2, in Hartree-Fock
one optimizes coefficients of linear combinations of atomic
orbital functions to construct molecular orbital functions.
Figure 8 shows these coefficients ΩT . Each Hartree-Fock
molecular orbital, 1 to 5, exhibits a non-local structure. In
the following, we will describe how we transform obtained
Hartree-Fock solutions such that they obey a local structure
and canonicalize their coefficients to avoid disagreements
between similar molecules.

If one considers the HF electronic wave function ψ(r) =
det Φ = detΦΩT , one can see that the wave function does
not change if one multiplies the coefficient matrix ΩT with
a matrix with unit determinant A ∈ RN×N on the right, i.e.,
ψ(r) = detΦΩTA. As the sign of the wave function is arbi-
trary, A may also have a determinant of−1. Since we know
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Algorithm 2 Mask construction
Input: Atom pairs (ni,mi), Orbital types Ti ∈ N+,
Atomic orbitals Om
# P is a dictionary of dictionaries of lists where the first
level is an atom, the second level are orbital types, and
the list keeps track of the orbitals.
Priority P := {}
for i = 1; i ≤ Norb do
P[ni][Ti].append(i)
if ni 6= mi then
P[mi][Ti].append(i)

end if
end for
Offsets oi :=

∑i−1
m=1Om

Result M := 0
∑M
m=1×N

# Iterate through all atoms.
for n,Tn ∈ P do

# Offset that indicates the lowest free orbital.
Offset o := on
# Iterate through all orbitals types of atom n.
for T,m ∈ Tn do

# Iterate through the cardinality orbital type T .
for i = 1; i ≤ dim(m) do

Mo+i,mi := 1
end for
# Since dim(m) many orbitals have been assigned,
we must increase the offset.
o := o+ dim(m)

end for
end for
return M

the atoms involved in the localization of the ith molecular
orbital, we can formulate an optimization problem as

min
A
‖ΩTA ◦ (1−M)‖22 +

N∑
i=1

(1− ‖(ΩTA ◦M)i‖2)2

(46)

s.t.|detA| = 1 (47)

where M ∈ {0, 1}N×η, η =
∑M
m=1Om is a binary mask

indicating our desired relation between atomic and molec-
ular orbitals. Note, that the first term in Equation (46) en-
courages zero interaction with non-involved atoms, and the
second term aids in keeping the wave function normalized.

In our matching mask M , we want to preserve the order
of energy levels. Atomic orbitals are typically sorted by
energy level, i.e., the ith orbital has lower energies than the
jth atomic orbital iff i < j. To get a canonical ordering,
we translate these energy levels to our localized orbitals.
Specifically, we want our localized core orbitals to match
the atomic orbitals in the same order, i.e., our ith core orbital

of an atom should match the ith atomic orbital. For valence
orbitals, we enforce the same for bonds of higher order
(double bonds, triple bonds, ...) where we match the first
valence orbital of that bond to the lowest free orbitals of
both atoms and the second bond to the second lowest free
orbitals of both, etc. If an atom has bonds to k different
atoms, we cannot easily define an order between bonds and,
thus, distribute the k free orbitals of both atoms equally to
the k different bonds.

We illustrate this in an example of H2O. Hydrogen has 1
atomic orbital and oxygen 5 (the number of atomic orbitals
is determined by the period of the element), i.e., η = 6.
The number of molecular orbitals is d

∑M
m=1 Zm

2 e = 5. Now,
assuming an equilibrium structure, our molecular orbitals
are distributed as follows: three core orbitals associated with
oxygen and one valence orbital for each of the O-H bonds.
Given our mask construction, we get the following mask

MH2O =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 1

 (48)

where the first three rows are core-orbitals and the last
two rows are valence-orbitals. The vertical lines group the
atomic orbitals by the associated atom, the first five columns
belong to the oxygen atom while the last two belong to each
of the hydrogen atoms. A formal definition of our mask
construction is given in Algorithm 2.

Finally, we solve Equation (46) with an alternating op-
timization algorithm. In the first step, we optimize A
with the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algo-
rithm (Nocedal & Wright, 2006) where we parametrize Â
with real numbers but normalize it with A = 1

N
√
| detA|

Â

before computing the loss. Because this restriction cannot
change the sign of the determinant A and permutation rep-
resent local minima, we use the Hungarian algorithm (Kuhn,
1955) to optimize over all permutations given a fixed A.
We compute the cost matrix for the Hungarian algorithm
by evaluating the Equation (46) for all possible pairwise
permutations. After finding the optimal permutation matrix
P (t), we merge it into A(t+1) = A(t)P (t). We either stop
after a fixed number of iterations or after the loss does not
change. Typically, this method converges within 2 iterations.
Since we have to do this only once as preprocessing before
pretraining, one can neglect the computational cost, which
is in the order of a second per molecule.

As the sign of the wave function is arbitrary, we should
decide on a canonical sign for each molecular orbital to
avoid mismatches between different Hartree-Fock solutions
of similar structures. We implement this by multiplying M
with a diagonal matrix D where the diagonal elements are
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defined as

Dii =

{
−1 if

∑η
j=1(ΩTA ◦M)ij < 0,

1 else.
(49)

E. Pretraining regularization
Since we found the output of the reparametrization net-
work to be unstable during pretraining, we add a small
regularization to its output. Specifically, we define for each
parameter matrix it outputs a target normal distribution,
i.e., a mean and variance. For instance, for weight ma-
trices W̄ ∈ Rdin×dout , such the ones in Equation (42) or
Equation (19), we follow the standard initialization and de-
fine the mean to be zero and the standard deviation to be
1√
din

(LeCun et al., 2012). In our regularization loss, we
then enforce that the outputted distribution follows our tar-
get normal distribution by matching the first pmax moments
of the output distribution with the moments of the target
distribution. Concretely, for the ith outputted parameters
we add the following loss

Lpre(θi) =

pmax∑
p=1

 1

|θ̂i|

 |θ̂i|∑
j=1

θ̂pij

−mp

2

, (50)

θ̂i =
(θi − µi)

si
, (51)

mp =

{
0 if p is odd,
(p− 1)!! if p is even

(52)

where θi is ith outputted parameter, µi is its target mean, si
its target standard deviation, !! the double factorial and mp

is the pth central moment of a standard normal distribution.

F. Rescaling gradients
In the following, we discuss a gradient rescaling technique
on a per-molecule basis to obtain a stable optimization
if one optimizes molecules of different sizes jointly. As
the norm of gradients in Equation (10) is proportional to
the expected deviation from the mean, the standard de-
viation of the energy functions as a proxy for the gra-
dient’s norm. We rescale the gradients based on this
proxy rather than the actual gradient norm as acquiring
the latter is inherently expensive as it requires one to
compute the full Jacobian of the network rather than a
Jacobian vector product. Given the standard deviations

si =

√
Ex∼ψ2

θi

[
Eθi(x)− Ex∼ψ2

θi
[Eθi(x)]

]2
where θi in-

dicates the parameters outputted by the reparametrization
network for the ith molecule. We rescale the gradients of the
ith molecule with min

(
1, 1

si

)
. This way small gradients

are not scaled up but large gradients are scaled down.

G. VMC optimization
A VMC step consists of three substeps: 1) sampling the
square of the wave function ψ2

θ , 2) Computing the local
energy Eθ(r) and gradients ∇θE and 3) preconditioning
the gradient with natural gradient descent F−1∇θE. To
sample the electronic wave function ψθ, we use Metropolis-
Hastings, i.e., in multiple iterations we perturb the electron
positions from the last step with gaussian noise and perform
rejection sampling based on the square of the wave function
ψθ. Next, we compute the local energies for each electron
configuration as in Equation (9) and use these samples to
approximate the gradients with Equation (10). Finally, we
precondition the gradient with the inverse of the Fisher infor-
mation matrix (FIM). As the FIM scales quadratically with
the number of parameters, realizing it and computing its
inverse is infeasible. Instead, we use the conjugate-gradient
(CG) method to approximate its inverse (Neuscamman et al.,
2012). For efficiency reasons, we compute the output of
the reparametrization network once for the first two steps as
it’s constant throughout sampling and energy calculations.
Before applying the update, we clip the norm of the gradient
to 1 (Pascanu et al., 2013) such that different system sizes
do not require different choices of learning rates (Gao &
Günnemann, 2022).

H. Experimental setup
We implemented all experiments and methods in JAX (Brad-
bury et al., 2018). As we cannot rely on fixed tensor shapes
like in previous work where only the spatial arrangements
varied within a batch, we implemented everything with
masking operations. We generally parallelize all operations
where possible over all molecules within a batch. Excep-
tions are determinant calculations and the computation of
the local energy. While one can parallelize the determinant
operation if one pads smaller matrices, we found this par-
allelization to be slower than performing the determinant
calculations sequentially. For computing the local energy,
one needs to compute the Laplacian, i.e., the trace of the
Hessian, of the log wave function. This is a computationally
demanding task where higher memory efficiency can be
achieved by serializing across molecules and electrons.

For pretraining, we use the LAMB optimizer (You et al.,
2020) while for VMC we use gradient descent with a maxi-
mal gradient norm of 1. During VMC, we apply the gradient
clipping from von Glehn et al. (2023), i.e., we clip all devia-
tions from the median larger than 5 times the mean absolute
deviation before computing the mean of the local energies.

All experiments ran on 1 to 4 Nvidia A100 GPUs depending
on the system size. If not otherwise specified, we use the
hyperparameters from Table 2.
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Table 2. Default hyperparameters.

Hyperparameter Value

Pretraining Steps 1e4
Basis STO-6G
Method RHF

Optimization Steps 6e4
Learning rate 0.1

1+ t
100

Batch size 4096
Damping 1e-4 σ[EL]
Local energy clipping 5
Max grad norm 1
CG max steps 100

MCMC Target pmove 0.5
# Steps 40

Moon Hidden dim 256
E-E int dim 32
Layers 4
Activation SiLU
Determinants 16
Jastrow layers 3
Filter hidden dims [16, 8]

Reparametrization Embedding dim 128
MLP layers 4
Message dim 64
Layers 3
Activation SiLU
Filter hidden dims [64, 16]

Table 3. Forward pass timings of FermiNet, Moon, and Globe.

(# nuclei / #electrons) FermiNet Moon Globe

1 / 10 1.8 µs 1.6 µs 1.1 ms
1 / 40 10.1 µs 8.2 µs 1.2 ms
1 / 80 32.0 µs 25.5 µs 1.4 ms

10 / 10 2.2 µs 4.5 µs 2.3 ms
10 / 40 12.1 µs 14.7 µs 2.5 ms
10 / 80 36.7 µs 39.0 µs 2.6 ms
20 / 40 15.2 µs 21.7 µs 3.1 ms
20 / 80 44.3 µs 55.6 µs 3.1 ms

I. Molecular structures
Here, we list for each of our experiments the molecular
structures and reference calculations.

For testing training on similar structures, we use the hydro-
gen rectangle from Pfau et al. (2020). For the six-element
hydrogen chain, we use the pretraining geometries from
Scherbela et al. (2022), and for the ten-element hydrogen
chain, we use the geometries from Motta et al. (2017).

The extended hydrogen chains for the extensivity experi-
ment are generated by having a n-element chain of hydrogen
atoms with interatomic distances of 1.8 a0.

For testing dissimilar structures, we use the same distances
for nitrogen as in Pfau et al. (2020). As reference energy, we
use twice the atomic energy of nitrogen from Chakravorty
et al. (1993) plus the experimental dissociation energy from
Le Roy et al. (2006). For the additional hydrogen chain, we
reuse the geometries from Motta et al. (2017). For ethene,
we use the evaluation structures from Scherbela et al. (2022).

In our transferability experiment, we take the six-element
and ten-element hydrogen chain as well as the methane, and
ethene structures and energies from Scherbela et al. (2022).
The cyclobutadiene structures are from Lyakh et al. (2012)
with the final VMC energies of Gao & Günnemann (2023)
as reference.

For benzene, we reuse the same geometry from Ren et al.
(2022) as previous works.

J. Timings
Table 3 lists the timings for the forward pass of FermiNet,
Moon, and Globe. For systems with few nuclei, we find
Moon to perform faster than FermiNet while reaching higher
accuracies. Though, this advantage reverses with an increas-
ing number of nuclei due to the focus on electron-nuclei
interactions.

While Globe’s forward pass is significantly slower than
FermiNet’s or Moon’s it must only be executed once per
step, i.e., sampling and energy computations do not require

17



Generalizing Neural Wave Functions

Table 4. Parameter counts for FermiNet, PsiFormer, Moon, and
Globe.

FermiNet PsiFormer Moon Globe
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Figure 9. Abalation of Moon where the hidden dimension has been
increased to 512 and the number of determinants to 32. In agree-
ment with previous work, we find that increasing the size of the
wave function improves variational results accordingly (Spencer
et al., 2020; von Glehn et al., 2023).

the reparametrization network but just the wave function.

K. Parameters
In Table 4, we list the number of parameters for Fer-
miNet (Pfau et al., 2020), PsiFormer (von Glehn et al.,
2023), Moon, and Globe. With its 300k more parameters,
we found Moon to outperform FermiNet significantly in var-
ious benchmarks. Compared to PsiFormer, we find Moon
to perform similarly with 600k fewer parameters.

Globe’s large number of parameters is mostly due to the
lage output space, e.g., 10M are concentrated in a dense
layer to predict the 8192-dimensional output space for the
32 w̃kδi ∈ R256 orbital embeddings, see Equation 25.

L. Moon size ablation
While jointly training on diverse molecules seems to de-
crease the accuracy of neural wave functions, here we want
to investigate the effect of the size of the network on training.
We perform the common augmentation of increasing the
hidden dimension to 512 and the number of determinants
to 32 (Spencer et al., 2020; von Glehn et al., 2023) and
compare the average energy on the diverse small molecule
dataset from Section 5.

The energy during training in Figure 9 agrees with previous
results on neural network wave functions that increasing the
network size increases accuracy (Spencer et al., 2020; von
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Figure 10. Convergence plots of Globe with Moon and FermiNet.
Numbers in brackets show the number of geometries per molecule.
In joint training, Moon converges 8 times faster and closes the gap
to individual training by a factor of at least 2.

Glehn et al., 2023). As learning diverse molecular wave
functions within a single neural network may require more
parameters than learning a single wave function, we already
see such improvements in small molecules.

M. Standard deviation on hydrogen systems
While the energy of a system is a good indicator of conver-
gence, any ground-state wave function will have no standard
deviation in its local energy. Thus, we can take a look at
the standard deviation of the local energy as a proxy for the
convergence of a wave function. In Figure 10, we plot the
standard deviation during the training on similar hydrogen
systems. We observe that Moon converges 8 times faster
in joint training while also closing the gap to the individual
trainings by a factor of at least 2.

N. Extensivity
We analyze the behavior of Globe with Moon and FermiNet
on increasing lengthy hydrogen chains. We first train Globe
on the same hydrogen structures as in the previous exper-
iment, i.e., H4, H6, and H10. After training, we evaluate
Globe on smaller and larger n-element hydrogen chains.

Figure 12 depicts the scaling behavior of Moon and Fer-
miNet depending on the system size. As both are upper
bounds to the true energy, lower energies are better. Consid-
ering that no finetuning is done, neither FermiNet nor Moon
diverges far from the trained energies per atom. Interest-
ingly, Moon performs better to smaller substructures like the
hydrogen dimer H2 but results in higher energies for mod-
erately larger chains. Thanks to its locality, Moon’s energy
per atom is lower than FermiNet’s with further increasing
system sizes.
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Figure 12. Evaluation of Globe with Moon and FermiNet, trained
on small hydrogen clusters, on n-elment hydrogen chains. Thanks
to Globe’s localized orbitals, the energy per atom converges to a
constant value for longer chains.

O. Extended view on transferibility
As Figure 6 in Section 5 does not include the training
curves for ethene and cyclobutadiene without pretraining,
we present an extended version in Figure 11. One can see
that dropping pretraining impedes convergences. Mean-
while, thanks to its graph-learned approach to molecular
orbitals, Globe, with pretraining on smaller molecules, is
the first method to reach convergence on larger structures
without performing a SCF calculation first.

19


