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Abstract
Reinforcement learning (RL) has been widely001
used in training large language models (LLMs)002
for preventing unexpected outputs, e.g., reduc-003
ing harmfulness and errors. However, exist-004
ing RL methods mainly adopt instance-level005
reward, which cannot provide fine-grained su-006
pervision for complex reasoning tasks. As a007
result, the RL training cannot be fully aware008
of the specific part or step that actually leads009
to the incorrectness in model response. To ad-010
dress it, we propose a new RL method named011
RLMEC that incorporates a generative model012
as the reward model, which is trained by the er-013
roneous solution rewriting task under the min-014
imum editing constraint, which can produce015
token-level supervision for RL training. Based016
on the generative reward model, we design the017
token-level RL objective for training and an018
imitation-based regularization for stabilizing019
RL process. And these two objectives focus on020
the revision of the key tokens for the erroneous021
solution, reducing the effect of other unimpor-022
tant tokens. Experiment results on 8 tasks have023
demonstrated the effectiveness of our approach.024
Our code and data will be publicly released.025

1 Introduction026

Owing to unsupervised pre-training on large-scale027

text corpora, large language models (LLMs) have028

shown remarkable performance on various text gen-029

eration tasks (Zhao et al., 2023a; Google, 2023),030

such as question answering, summarization and031

translation (OpenAI, 2023). To further improve the032

task solving capacity, researchers (Touvron et al.,033

2023; Bai et al., 2023) have proposed supervised034

fine-tuning (SFT) and reinforcement learning (RL)035

methods, which can better adapt LLMs to specific036

domains or downstream tasks after pre-training.037

Typically, SFT methods (Ouyang et al., 2022; Long-038

pre et al., 2023) incorporate annotated input-output039

pairs (e.g., question and solution, instruction and re-040

sponse) to train the LLM for learning the sequence-041

to-sequence pattern; RL methods (Schulman et al.,042
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Figure 1: The comparison of our generative reward
model and the traditional discriminative one in PPO.
Red and green background colors denote negative and

positive rewards, respectively.

2017; Christiano et al., 2017) adopt a reward model 043

to measure the quality of the generated outputs 044

from the LLM, and then guide its training for max- 045

imizing and minimizing the expectation of generat- 046

ing high-quality and low-quality ones, respectively. 047

As RL methods are capable of directly reducing 048

the probability of LLMs for producing unexpected 049

outputs, they have been widely used in optimizing 050

LLMs towards better human alignment (e.g., reduc- 051

ing harmfulness) and stronger ability (e.g., reduc- 052

ing errors (Luo et al., 2023; Wang et al., 2023b)). 053

Generally, RL methods first train a discrimination 054

model for distinguishing desirable and undesirable 055

outputs. Then, the model is used to produce the 056

reward scores for the sampled outputs from the 057

LLM, and the LLM would be trained by encourag- 058

ing and punishing the generation of high-score and 059

low-score ones accordingly. 060

Despite the success, as existing RL methods 061

mostly utilize instance-level reward for each sam- 062

pled output, it is often difficult to provide accu- 063

rate fine-grained supervision on complex reasoning 064

tasks (e.g., mathematical reasoning). Concretely, 065
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given a complex task, the sampled outputs from066

the LLM tend to be highly similar in surface ex-067

pression, only with key differences in few specific068

words or steps (Yuan et al., 2023) that determine069

the correctness. We argue that instance-level RL070

approaches (Ouyang et al., 2022; Christiano et al.,071

2017; Zheng et al., 2023b) have two major limi-072

tations. First, as the unimportant parts would of-073

ten occupy a large amount of supervision signals,074

instance-level rewards can not accurately empha-075

size the more important evidence related to correct-076

ness, leading to inefficient or redundant supervision.077

Second, the paired correct and incorrect outputs078

may share the overlapping content but receive op-079

posite optimization goals, which may lead to the080

optimization conflict issue on such overlapped con-081

tent, making it still infeasible to provide accurate082

fine-grained supervisions.083

To address these issues, in this paper, we propose084

a novel method, Reinforcement Learning with Min-085

imum Editing Constraint (RLMEC), to improve086

the training of LLMs by fine-grained supervision087

signals. Our approach is inspired by the home-088

work correction process of professional teachers,089

in which she/he first identifies the incorrect parts090

and then provides necessary revisions or comments091

accordingly. Following such an idea, we train a092

generative reward model by an erroneous solution093

rewriting task under the constraint of minimum094

editing distance. The reward model plays a similar095

role to teachers by producing fine-grained super-096

vision, i.e., token-level quality assessment scores.097

Instead of using a new demonstration as positive,098

our reward model tries to correct the output with099

minimum edits. Specially, we utilize the specially100

trained reward model to produce the token proba-101

bilities for computing the token-level rewards, and102

optimize the LLM using the proximal policy opti-103

mization method (PPO) (Schulman et al., 2017). In104

this way, by contrasting the original and corrected105

outputs, the LLM would be instructed more infor-106

matively, thus becoming aware of the correct way107

to generate the response. Figure 1 illustrates the108

comparison of the Vanilla PPO and our proposed109

RLMEC approach.110

The major novelty of this paper lies in the incor-111

poration of a generative reward models with mini-112

mum editing constraint for RL training of LLMs.113

Table 1 presents the major differences between our114

method and previous work. To evaluate the effec-115

tiveness of our methods, we conduct the experiment116

on two types of complex reasoning tasks, i.e., ques- 117

tion answering (Aggarwal et al., 2021; Mihaylov 118

et al., 2018a) and mathematical reasoning (Cobbe 119

et al., 2021; Hendrycks et al., 2021c). In these 120

evaluation tasks, our RLMEC mostly outperforms 121

other competitive SFT and RL methods, based on 122

7B and 13B LLMs. Moreover, our analysis experi- 123

ments also show that our method is able to stabilize 124

the RL training process and reduce the erroneous 125

steps in the sampled outputs of LLMs. 126

2 Related Work 127

Reinforcement Learning for LLMs. With the 128

development of the LLMs, reinforcement learn- 129

ing (RL) (Christiano et al., 2017; Ziegler et al., 130

2019) is widely utilized to further improve the 131

ability of LLMs. Proximal Policy Optimization 132

(PPO) (Schulman et al., 2017) is the traditional 133

algorithm to employ RL. To provide fine-grained 134

supervision signals, previous work (Mnih et al., 135

2016; Zheng et al., 2023b) utilizes the critic model 136

to calculate the reward of the current stage. Be- 137

cause of the instability of the training procedure of 138

reinforcement learning, recent work (Rafailov et al., 139

2023; Liu et al., 2023a; Lu et al., 2022; Zhao et al., 140

2023b) has utilized supervised-finetuning (SFT) to 141

simulate the RL procedure. These methods fuse 142

the quality of the responses into the supervision 143

signals. Moreover, existing work (Uesato et al., 144

2022; Luo et al., 2023; Wang et al., 2023b,a; Yang 145

et al., 2023) has found that process-supervision sig- 146

nals can better guide the training process of LLMs. 147

Besides, other methods (Swamy et al., 2024; Chen 148

et al., 2024) improve the ability of LLMs during 149

self-play procedure. In this work, we proposed a 150

new RL framework with generative reward model 151

to directly provide the fine-grained supervisions, 152

which enable to focus on few key tokens. 153

LLMs for Reasoning. Previous work utilizes two 154

types of methods (i.e., prompting and training) to 155

enhance the reasoning ability of LLMs. For the 156

prompting methods, Chain-of-Thought (CoT) (Wei 157

et al., 2022; Kojima et al., 2022) guides LLMs 158

to generate the intermediate reasoning steps be- 159

fore generating the final answer. Based on CoT, 160

previous work decomposes the problem into sev- 161

eral simple sub-problems (Dua et al., 2022), uti- 162

lizes the external tools to help LLMs (Gao et al., 163

2022; Yao et al., 2022; Schick et al., 2023), de- 164

signs the specific agents to perform reasoning (Yin 165
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et al., 2023; Du et al., 2023), or post-process the166

generated response (Madaan et al., 2023; Wang167

et al., 2022). Besides, existing work also guides168

LLMs to perform reasoning in the specific struc-169

ture, e.g., tree (Yao et al., 2023; Ding et al., 2023) or170

graph (Besta et al., 2023). For the training methods,171

previous work (Lewkowycz et al., 2022) has lever-172

aged domain-specific data to fine-tune the LLMs.173

Because of the limitation of the training data, the174

data generated by teacher model (e.g., GPT-4) is175

utilized to augment the training data (Yue et al.,176

2023; Yu et al., 2023; Gou et al., 2023). In this177

work, we aim to train the LLMs via fine-grained178

RL to improve their reasoning ability.179

3 Preliminary180

In this work, we focus on improving the perfor-181

mance of LLMs on complex reasoning tasks with182

reinforcement learning (RL) algorithm. Typically,183

complex reasoning tasks require LLMs to perform184

step-by-step reasoning (e.g., chain-of-thought (Wei185

et al., 2022; Kojima et al., 2022)) for each question,186

where LLMs progressively generate the solution187

for reaching the answer. In this process, LLMs are188

prone to make mistakes at the intermediate steps,189

which likely lead to totally wrong answer (Bang190

et al., 2023; Zhang et al., 2023). Our goal is to191

optimize a pre-trained LLM using RL algorithm, to192

reduce its errors and improve the task performance.193

Formally, we are given a collection of question-194

solution pairs, denoted asD = {⟨𝑞𝑖 , 𝑠𝑖⟩}𝑛𝑖=1, where195

each question and solution are both composed by a196

sequence of tokens, denoted as {𝑡0, · · · , 𝑡𝑚}. Then,197

we follow the proximal policy optimization (PPO)198

framework (Schulman et al., 2017) for RL, and199

make improvements about reward model and train-200

ing loss. In PPO, the LLM to be optimized is the201

policy model, and its original parameters would be202

copied to compose the reference model. During203

training, the reference model outputs the sampled204

solutions for the given question, denoted as 𝑠, and205

then the policy model would learn from the feed-206

back from a reward model, which produces the207

reward 𝑅𝑠 for the sampled output 𝑠. Based on it,208

the parameters of the policy model will be opti-209

mized to maximize the reward expectation of all210

the sampled outputs, and the target function is:211

J (𝜃) =
𝑛∑︁
𝑖=1

𝑟 (𝑞𝑖 , 𝑠𝑖) × 𝑅𝑠𝑖 , 𝑟 (𝑞𝑖 , 𝑠𝑖) =
𝑃𝜃 (𝑠𝑖 |𝑞𝑖)
𝑃𝜃 ′ (𝑠𝑖 |𝑞𝑖)

, (1)212

where 𝑟 (𝑞𝑖 , 𝑠𝑖) is the coefficient of importance sam-213

pling, 𝜃 and 𝜃′ are the parameters of policy model214

and reference model, respectively. 215

4 Approach 216

In this section, we present our proposed RLMEC, a 217

new RL approach for improving LLMs on complex 218

reasoning tasks. In RLMEC, we train a generative 219

reward model to produce token-level reward scores 220

for the sampled outputs from the policy model (i.e., 221

the LLM), then optimize the policy model via RL 222

based on the fine-grained rewards. Figure 2 illus- 223

trates the overall framework of our RLMEC. 224

4.1 Generative Reward Model Training 225

To provide fine-grained supervision for RL, we 226

train a generative model based on the sequence-to- 227

sequence loss as the reward model. For a given 228

task, the reward model aims to offer estimations 229

for all the output tokens about their correctness. 230

To achieve this, we design an erroneous solution 231

rewriting task with the constraint of minimum edit- 232

ing distance to train the reward model, enabling 233

it to focus on the key tokens that lead to the final 234

wrong answer for punishing. 235

Erroneous Solution Rewriting. This task aims 236

to correct the error tokens in the LLM generated 237

solutions with minimum edits. Formally, given 238

the question 𝑞, ground-truth solution 𝑠, and the 239

generated solution 𝑠, we rewrite 𝑠 into a correct 240

solution 𝑠. Specifically, we decompose it into two 241

sub-tasks, i.e., error locating and solution rewriting. 242

For error locating, the model requires to locate the 243

first erroneous reasoning step in 𝑠, which would 244

mislead the following steps into erroneous ones. 245

Concretely, we split 𝑠 into a sequence of reasoning 246

steps according to the full stop or question mark: 247

𝑠 = {𝑟0, 𝑟1, . . . , 𝑟𝑛}. Then, the reward model needs 248

to find the first undesired reasoning step 𝑟𝑡 based 249

on the given question and ground-truth solution: 250

𝑅𝑀 (𝑝𝐿 , 𝑞, 𝑠, 𝑠) → 𝑟𝑡 , (2) 251

where 𝑝𝐿 is the prompt to guide the model. Then, 252

for solution rewriting, we leverage another prompt 253

𝑝𝑅 to guide the reward model that rewrites the 254

erroneous steps after 𝑟𝑡 in 𝑠 into the correct 𝑠: 255

𝑅𝑀 (𝑝𝑅 , 𝑞, 𝑠, 𝑠, 𝑟𝑡 ) → 𝑠. (3) 256

By training on the two tasks, the generative reward 257

model would be able to rewrite erroneous solutions 258

with the minimum editing constraint. 259

Distillation with Minimum Editing Constraint. 260

To train the reward model for fulfilling the above 261
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Undesired Steps �: The first error is step [2].

  

Solution Rewriting

Generative Reward Model Training

RL with Fine-grained Supervision

Problem �: Natalia sold clips to 48 of her friends in 
April, and then she sold half as many clips in May ... ...

Generative Reward Model Generative Reward Model

Token-Level Rewards
Producing Rewards

Error Locating

Distillation

Imitation-based Regularization
Rewriting Solution

Generate

Generative Reward Model Generative Reward Model

/

Gen Solution �: Natalia sold 48/2 = 24 clips in May. 
Natalia sold 24/2 = 12 clips in April ... ...

Gen Solution �
... 24/2=12 clips ... 

Gen Solution �: Natalia sold 48/2 = 24 clips in May. 
Natalia sold 24/2 = 12 clips in April ... ...

Ground Truth �
... 48 clips in ... 
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Refine the ...

Gen Solution �
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... 48 clips in ... 

Prompt ��
Refine the ...

Gen Solution �
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Ground Truth �
... 48 clips in ... 

Prompt ��
Refine the ...

Gen Solution �
... 24/2=12 clips ... 

Ground Truth �
... 48 clips in ... 

Gen Solution �
... 24/2=12 clips ... 

  

Rewards ��,��

... -0.1, -0.1, 0, 0 ...

Figure 2: The overview of our RLMEC. Based on the sampled LLM solutions that contain errors, we train the
generative reward model using the erroneous solution rewriting task and the distilled data with minimum editing
constraint from the teacher model. Then, we perform RL training on the policy model (i.e., our LLM) with
fine-grained supervision using the token-level RL objective and the imitation-based regularization.

two subtasks, we collect the data from a powerful262

teacher LLM (i.e., Claude 2 (Anthropic, 2023)) to263

distill the task knowledge for our reward model,264

while other models (e.g., GPT-4) or human anno-265

tators can be also applied. Concretely, we first266

sample the generated solutions from our LLM, and267

select the wrong ones to compose the erroneous268

solution set {𝑠}. Then, we feed the given question269

𝑞, ground-truth solution 𝑠, and the generated er-270

roneous solution 𝑠 into the teacher LLM, and add271

several annotated exemplars into the prompt, to272

guide the generation of the first error step 𝑟𝑡 and273

the correct rewritten solution 𝑠. Here, in-context ex-274

emplars are human-crafted high-quality instances,275

and the ones for solution rewriting strictly satisfy276

the minimum editing constraint with only very few277

revised tokens. Therefore, we can obtain high-278

quality synthetic distilled data for the two subtasks.279

Finally, following Eq. (2) and Eq. (3), we prepare280

the inputs and outputs for the two subtasks, and281

merge them for training our reward model.282

4.2 RL with Fine-grained Supervision283

After training the generative reward model, we can284

leverage it to produce fine-grained supervision for285

the RL training of the policy model (i.e., our LLM).286

We obtain the token-level rewards based on the gen-287

erated probabilities from the reward model, and de- 288

sign the token-level RL objective with the imitation- 289

based regularization for training our LLM. 290

Token-level Reward Generation. After distilla- 291

tion, the generative reward model can rewrite the 292

original solution to provide the correct one. Ow- 293

ing to the minimum editing constraint, the error 294

tokens would receive lower probabilities because 295

they should be replaced by other tokens, and the 296

correct tokens would obtain higher probabilities. 297

Therefore, we can utilize the token probabilities 298

from the reward model to assign the token-level re- 299

wards. This is quite distinct from the conventional 300

reward model (Ouyang et al., 2022) which only 301

produces instance-level reward scores. Concretely, 302

given the prompt 𝑝𝑅, question 𝑞, ground-truth so- 303

lution 𝑠, and the sampled solution 𝑠 from our LLM, 304

the token rewritten probabilities from the genera- 305

tive reward model are used as the reward scores for 306

the tokens in 𝑠. To better indicate the token qual- 307

ity, we normalize the reward scores by subtracting 308

them from the median value of the probability (i.e., 309

0.5) and then clip the extreme values as: 310

𝑅𝑠,𝑡 𝑗 = CLIP(𝑃𝑅𝑀

(
𝑡 𝑗 |𝑝𝑅 , 𝑞, 𝑠, 𝑠, 𝑡< 𝑗 ) − 0.5, 𝛼, 𝛽

)
, (4) 311

where 𝑃𝑅𝑀 (𝑡 𝑗 |𝑝𝑅, 𝑞, 𝑠, 𝑠, 𝑡< 𝑗) is the predicted 312

probability of the correct token from the reward 313
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model for the 𝑗-th token in 𝑠, and 𝛼 and 𝛽 de-314

note the minimum and maximum thresholds for315

the reward value. For implementation, we employ316

𝛼 = −0.1 and 𝛽 = 0 for the negative samples while317

adopt 𝛼 = 0 and 𝛽 = 0.5 for the positive samples.318

In this way, for negative samples, the upper thresh-319

old 𝛽 = 0 would lead to zero reward scores for all320

the non-error tokens, making the policy model only321

focus on punishing the error tokens. Otherwise, for322

positive samples, the lower threshold 𝛼 = 0 would323

assign zero reward score to error tokens, enabling324

the policy to focus on learning the correct tokens.325

Token-level RL Objective. Given the token-level326

reward scores, we perform RL training on the pol-327

icy model to correct its behaviors to avoid making328

errors. As mentioned in Section 3, we incorpo-329

rate the PPO framework for RL, and revise its loss330

function to incorporate token-level reward scores.331

Concretely, we aim to maximize the expectation332

that generates the desired correct tokens in the so-333

lution. Thus, the gradients to optimize the policy334

model is given as:335

∇J𝑅𝐿 (𝜃) =
𝑛∑︁
𝑖=1

∑︁
𝑡 𝑗 ∈𝑠𝑖

𝑟 (𝑞𝑖 , 𝑡 𝑗 )×𝑅𝑠𝑖 ,𝑡 𝑗 ×∇ log 𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 ),

(5)336

where 𝜃 is the parameters of the policy model,337

𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗) is the predicted probability of the338

𝑗-th token by the policy model, and 𝑟 (𝑞𝑖 , 𝑡 𝑗) is the339

coefficient of the importance sampling in PPO as:340

𝑟 (𝑞𝑖 , 𝑡 𝑗 ) =
𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 )
𝑃𝜃 ′ (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 )

. (6)341

Moreover, inspired by existing work (Schulman342

et al., 2017; Chen et al., 2019) that clips the gradi-343

ents of RL, we design a simplified way that clips344

the coefficient of the gradient to reduce the vari-345

ance of the reward and prevent the large difference346

between the policy and reference model:347

min
(
𝑟 (𝑞𝑖 , 𝑡 𝑗 ) × 𝑅𝑠𝑖 ,𝑡 𝑗 , CLIP(𝑟 (𝑞𝑖 , 𝑡 𝑗 ), 1 − 𝜀, 1 + 𝜀) × 𝑅𝑠𝑖 , 𝑗

)
,

(7)348

where 𝜀 is a hyperparameter that controls the upper349

and lower bounds for positive and negative reward350

scores, respectively.351

Imitation-based Regularization. As the RL train-352

ing process is prone to be unstable, we further de-353

sign a regularization loss based on imitation learn-354

ing. The policy model is trained to imitate the355

generation of the rewritten solution 𝑠𝑖, only based356

on the question 𝑞𝑖. To compute the regularization357

term, we sample the generated wrong outputs 𝑠358

Methods NS RL TLS RM

SFT (Ouyang et al., 2022) ✗ ✗ ✗ -
RFT (Yuan et al., 2023) ✗ ✗ ✗ DIS

CoH (Liu et al., 2023a) ✔ ✗ ✗ -
DPO (Rafailov et al., 2023) ✔ ✗ ✗ -
FIGA (Guo et al., 2023) ✔ ✗ ✔ DIS
PPO (Schulman et al., 2017) ✔ ✔ ✗ DIS

ToRA (Gou et al., 2023) ✔ ✗ ✗ -
Shep. (Wang et al., 2023b) ✔ ✔ ✗ DIS
WMath (Luo et al., 2023) ✔ ✔ ✗ DIS

RLMEC ✔ ✔ ✔ GEN

Table 1: The difference between RLMEC and previous
related work. NS, RL, and TLS denote the usage of
negative samples, reinforcement learning, and token-
level supervision. RM denotes the type of the reward
model. DIS and GEN denote the discriminative reward
model and generative reward model, respectively.

from the policy model, and utilize our generative 359

reward model to rewrite it into a correct one 𝑠 for 360

learning. As discussed before, the original solution 361

𝑠𝑖 may contain only few error tokens that lead to 362

the wrong solution. Therefore, we consider focus- 363

ing on these error tokens in 𝑠, and identify them for 364

targeted learning. Specifically, we leverage the Lev- 365

enshtein Distance algorithm (Levenshtein, 1965), 366

an effective method to find the revised tokens in 𝑠, 367

and employ the token-level weights to emphasize 368

them. The Levenshtein Distance algorithm utilizes 369

dynamic programming (DP) to calculate the edit 370

distance between 𝑠 and 𝑠, and the replaced and 371

added tokens are selected into the error token set 372

T . Then, the token-level weight is computed as: 373

𝑤 𝑗 =

{
𝛾, 𝑡 𝑗 ∈ T
𝜙 × 𝛾, 𝑡 𝑗 ∉ T

, (8) 374

where 𝛾 denotes the weight for emphasized tokens 375

in T , and 𝜙 is the penalty coefficient for unimpor- 376

tant tokens. By incorporating term-level weights, 377

the gradients of the imitation regularization are: 378

∇L𝐼𝑅 (𝜃) = −
𝑛∑︁
𝑖=1

∑︁
𝑡 𝑗 ∈𝑠𝑖
∇ log 𝑃𝜃 (𝑡 𝑗 |𝑞𝑖 , 𝑡< 𝑗 ) × 𝑤 𝑗 . (9) 379

Finally, the policy model is optimized by both the 380

RL objective and imitation-based regularization. 381

4.3 Summary and Discussion 382

Here, we present the summary of our approach and 383

discuss its difference with existing methods. 384

Summary. We present the pseudo-code of 385

RLMEC in Algorithm 1 to better demonstrate our 386
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approach. The procedure of RLMEC can be di-387

vided into two parts, i.e., generative reward model388

training and RL training with fine-grained super-389

vision. For reward model training, we leverage a390

teacher model to synthesize the examples for the er-391

ror locating and solution rewriting subtasks, to com-392

pose the dataset for distilling our generative reward393

model the capability of erroneous solution rewrit-394

ing. Then, for RL training, we first generate the395

rewards for all the tokens in the sampled solutions396

from the LLM using Eq. 4, where we set suitable397

thresholds 𝛼 and 𝛽 to control our model to focus on398

key error tokens. Based on the token-level reward,399

we perform RL training using the PPO framework400

with the optimization function Eq. (5), and we de-401

sign the reward clip strategy using Eq. (7) to sta-402

bilize the training process. Besides, we also add403

the imitation-based regularization using Eq. (9), to404

further help our LLM focus on learning key tokens.405

Discussion. In Tabel 1, we present the difference406

between RLMEC and the existing work. Previ-407

ous work mostly adopts the instance-level reward408

model, and only FIGA employs the token-level su-409

pervision but not using RL. Besides, there are sev-410

eral methods (e.g., WizardMath, Math-Shepherd)411

that leverage step-level reward to perform RL. As a412

comparison, our proposed RLMEC enables token-413

level supervision in a RL framework, and thus can414

benefit from more fine-grained supervision and fo-415

cus on punishing error tokens during training. A416

major novelty of our implementation is that we417

design the generative reward model trained by the418

erroneous solution rewriting task, to replace the419

conventional discriminative reward model, which420

can produce rewritten probability of each token that421

can be naturally used as token-level supervision.422

Besides, by comparing with supervised fine-tuning423

methods (e.g., SFT and RFT), our approach can424

utilize the negative samples that will not be used425

by them, which extends the understanding of failed426

examples and fully utilizes the data.427

5 Experiment428

5.1 Experimental Settings429

We simply introduce the experimental settings in430

this part. More details are shown in Appendix A.2.431

Datasets. We employ mathematical tasks and432

question-answering tasks for evaluation. The433

specifics of each dataset are delineated in Ta-434

ble 2. Mathematical tasks include GSM8k (Cobbe435

Task Train/Test Dataset Num. Data

Math

Train MathInst 118088

Test

GSM8k 1319
MATH 5000
SVAMP 1000

MM 974

QA

Train ECQA 7598
QASC 8134

Test

ECQA 2194
QASC 926
OBQA 500
ARC 2376

Table 2: Statistics of the used datasets. MathInst and
MM denote MathInstruct and the mathematical task in
MMLU, respectively.

et al., 2021), MATH (Hendrycks et al., 2021c), 436

SVAMP (Patel et al., 2021) and the mathemati- 437

cal problems in MMLU (MM) (Hendrycks et al., 438

2021b,a). We adopt MathInstruct (Yue et al., 2023) 439

as the training set and eliminate the code sam- 440

ples. Question-answering tasks contain ECQA (Ag- 441

garwal et al., 2021), QASC (Khot et al., 2020), 442

OpenbookQA (Mihaylov et al., 2018b) and ARC- 443

Easy (Clark et al., 2018). We merge the training 444

set of ECQA and QASC, and adopt the mixture as 445

the training set in the experiment. 446

Baselines. For a more comprehensive assess- 447

ment, we incorporate three categories of meth- 448

ods as baseline approaches. We conduct the 449

SFT (Ouyang et al., 2022) and the Rejection sam- 450

pling Fine-Tuning (RFT) (Liu et al., 2023b; Yuan 451

et al., 2023) as the baseline methods of super- 452

vised fine-tuning. Besides, the representative meth- 453

ods of alignment without reinforcement learning, 454

e.g., DPO (Rafailov et al., 2023), CoH (Liu et al., 455

2023a), and FIGA (Guo et al., 2023) are conducted 456

as the baseline. Moreover, We conduct the vanilla 457

PPO (Schulman et al., 2017) and Actor-Critic ver- 458

sion of PPO (PPO A2C) (Zheng et al., 2023b) as 459

the baseline of RL methods. Additionally, we also 460

report the performance of base LLMs, including 461

LLaMA 2 (Touvron et al., 2023), Vicuna (Zheng 462

et al., 2023a), and WizardLM (Xu et al., 2023). 463

5.2 Main Results 464

The evaluation results of RLMEC and the baseline 465

methods are presented in Table 3. 466

First, RLMEC outperforms other baselines on 467

the average accuracy of both scenarios. RLMEC 468

demonstrates a strong capacity to further enhance 469
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Methods
Question-Answering Tasks Mathematical Tasks

ECQA QASC OBQA ARC Avg. GSM8k MATH SVAMP MM Avg.

7B Parameters LLMs
LLaMA 2 55.97 39.74 48.40 52.48 49.15 11.22 4.80 29.70 28.44 18.54
Vicuna 49.82 32.18 46.40 51.52 44.98 12.20 4.26 24.30 26.08 16.71
WizardLM 36.28 18.68 27.80 46.59 32.34 14.48 3.34 34.80 27.10 19.93
SFT LLM 71.88 55.40 52.00 56.27 58.89 51.02 10.48 47.80 38.50 36.95
+ SFT 70.65 55.94 51.60 56.99 58.80 50.34 11.04 47.20 38.40 36.75
+ RFT 72.24 58.64 55.20 57.15 60.81 49.66 10.80 48.30 39.01 36.94
+ RFT w/ GT 72.47 58.53 53.60 57.11 60.43 49.89 11.26 46.70 38.91 36.69
+ RFT w/ TD 73.11 58.21 54.20 57.53 60.76 51.86 11.04 49.40 38.19 37.62
+ RFT w/ RD 72.47 59.29 54.60 57.03 60.85 51.78 11.24 48.70 40.76 38.12
+ CoH 71.06 54.86 51.40 56.61 58.48 50.11 10.94 48.60 38.50 37.04
+ DPO 72.47 58.53 55.40 55.26 60.42 34.19 5.38 25.80 32.58 24.49
+ FIGA 69.83 52.48 51.00 46.21 54.88 - - - - -
+ Vanilla PPO 72.88 50.22 43.40 56.27 55.69 48.97 10.64 44.90 38.60 35.78
+ PPO A2C 70.83 55.08 52.40 56.02 58.58 50.94 9.38 46.60 38.50 36.36
+ RLMEC 73.66 59.50 56.80 58.50 62.12 51.18 11.16 49.60 40.97 38.23

13B Parameters LLMs
LLaMA 2 61.53 45.46 57.90 64.31 57.30 21.23 6.58 34.40 34.39 24.15
Vicuna 50.14 39.96 48.40 53.70 48.05 24.10 4.74 33.80 29.98 23.16
WizardLM 52.60 40.93 52.30 58.96 51.20 31.01 3.18 52.00 21.36 26.89
SFT LLM 76.12 59.40 60.80 62.46 64.70 56.63 12.74 53.50 41.27 41.04
+ SFT 75.89 57.87 63.40 62.50 64.92 55.88 13.62 58.00 41.27 42.19
+ RFT 75.71 60.48 61.00 64.06 65.31 55.80 13.62 54.10 41.68 41.30
+ RFT w/ GT 76.66 60.37 63.40 63.17 65.90 57.32 13.74 56.70 43.94 42.93
+ RFT w/ TD 76.71 61.56 61.80 64.14 66.05 58.15 13.98 58.80 41.58 43.13
+ RFT w/ RD 76.62 62.20 63.20 63.17 66.30 57.39 14.34 56.20 42.81 42.96
+ CoH 76.62 60.37 59.80 63.93 65.18 57.31 13.10 54.00 42.30 41.68
+ DPO 78.26 61.45 62.20 63.80 66.43 44.20 4.38 39.70 32.14 30.11
+ FIGA 61.21 60.26 52.80 46.34 55.15 - - - - -
+ Vanilla PPO 76.34 57.99 61.80 62.29 64.61 53.45 11.76 55.10 43.12 40.86
+ RLMEC 79.49 64.15 65.60 65.19 68.61 58.15 14.00 60.00 45.07 44.31

Table 3: Experimental results on question answering tasks and mathematical tasks. Avg. is the average accuracy of
all sub-tasks. GT, TD, and RD denote ground truth, the data generated by the teacher model, and the data generated
by the generative reward model. The best are denoted in bold and the second-best are underlined.

the specific ability (e.g., reasoning ability) of LLMs.470

With the limited training data, compared with the471

previous methods (e.g., RFT, PPO), RLMEC lever-472

ages both positive and negative samples to provide473

fine-grained supervision signals, guiding LLMs to474

focus on the mistakes and correct them.475

Second, RLMEC can prevent overfitting during476

domain adaption. Previous methods (e.g., SFT)477

utilize the data from the training set or gener-478

ated by LLMs to fine-tune the LLMs which might479

cause overfitting. We can observe that the perfor-480

mance decreases after SFT on the unseen tasks481

(e.g., OBQA and SVAMP) of the 7B LLM. In con-482

trast, the performance of LLMs on all of the unseen483

tasks is improved after RLMEC. The reason is that484

RLMEC makes LLMs focus on mistakes rather485

than correct components and utilize the clip mech-486

anism to avoid overfitting.487

Third, RLMEC can better leverage the gener-488

ated response containing undesired components489

than other methods. Comparing the performance of 490

RLMEC and DPO, we can observe that RLMEC en- 491

hance the reasoning ability of LLMs in both scenar- 492

ios, but DPO only works on question-answer tasks. 493

That is because RLMEC utilizes soft rewards to 494

indicate positive or negative responses, while DPO 495

collects the positive-negative response pairs to train 496

LLMs which can be regarded as utilizing the hard 497

labels to identify the quality of generated responses. 498

Given the quality of generated responses is diffi- 499

cult to assess, it is hard to collect response pairs 500

in the challenge tasks (e.g., mathematical tasks). 501

On mathematical tasks, the performance of DPO is 502

even worse than the backbone LLM because of the 503

low quality of the training data. 504

Finally, token-level supervision signals can fur- 505

ther improve the performance of the policy model. 506

The results of vanilla PPO, PPO A2C, and RLMEC 507

present the importance of fine-grained supervision 508

signals. Vanilla PPO utilizes instance-level signals 509
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Methods ECQA ARC GSM8k MM

TLS RL IR Acc. Acc. Acc. Acc.

✔ ✔ ✔ 79.49 65.19 58.15 45.07
✗ ✔ ✔ 78.81 64.52 58.38 44.45
✗ ✗ ✔ 77.85 64.18 58.56 43.84
✔ ✔ ✗ 74.34 61.32 7.35 20.12

Table 4: The results of ablation study on 13B LLMs.
TLS, RL, and IR denote token-level supervision, rein-
forcement learning, and imitation-based regularization.

to train the LLMs, which do not conform to real-510

ity because the generated response might contain511

both desired and undesired components. PPO A2C512

trains the critic model to provide fine-grained super-513

vision signals which will increase the requirement514

of the computation resources. In RLMEC, the gen-515

erative reward model is competent to implement516

the functionality of the reward model and the critic517

model in the PPO A2C at the same time.518

5.3 Detailed Analysis519

To further verify the effectiveness of RLMEC, we520

conduct the ablation study and analyze the model521

performance during the training process. Besides,522

we analyze the scaling of the generative reward523

model and present the case study of supervision524

signals and the model outputs in Appendix B and C.525

Ablation Study. We evaluate the effectiveness526

of token-level supervision, reinforcement learning,527

and imitation-based regularization. Results are pre-528

sented in Table 4. Given the results of the QA tasks529

(i.e., ECQA and ARC), we can observe that remov-530

ing any of the modules will hurt the performance531

of the LLMs. In the mathematical tasks, without532

token-level supervision and reinforcement learn-533

ing, LLMs overfit the training set, which brings534

the improvement on the seen task (i.e., GSM8k)535

and hurts the performance on the unseen task (i.e.,536

MM). The evaluation results demonstrate the abil-537

ity of RLMEC to prevent overfitting and achieve538

the balance between seen tasks and unseen tasks.539

Besides, imitation-based regularization is also an540

important module in RLMEC. Without regulariza-541

tion, LLMs learn to generate correct responses only542

through token-level rewards. Because of the large543

search space, it is very difficult for LLMs to find544

the correct behavior in the challenge tasks. In the545

setting of removing imitation-based regularization,546

the decreasing performance on all of the tasks can547

verify our analysis.548

Figure 3: The performance of 7B LLMs on question-
answering tasks during different training strategies. To
better present the difference, we smooth out the lines.

Performance During Training Process. To com- 549

prehensively assess the performance of RLMEC, 550

we conduct experiments on the accuracy of the 551

training set during the training process. In Figure 3, 552

we can observe that RLMEC can fit the training set 553

more effectively and rapidly than other methods 554

(i.e., RFT and DPO). Around 120 training steps, 555

the policy model almost fits the training set through 556

RLMEC. That is because our methods focus on the 557

mistakes in the generated response and guide LLMs 558

to correct these errors, which is more efficient. In 559

contrast, RFT optimizes the whole tokens in the 560

correct solution which might include many unim- 561

portant tokens, and DPO is overemphasized about 562

the negative samples. These futures will decrease 563

the speed of optimization and hurt the performance. 564

6 Conclusion 565

In this paper, we proposed RLMEC, a new rein- 566

forcement learning framework with minimum edit- 567

ing constraint, to leverage fine-grained supervision 568

signals to further improve the ability of LLMs. In 569

our RLMEC, we first trained the generative reward 570

model via the erroneous solution rewriting task un- 571

der the minimum editing constraint, with the help 572

of a teacher LLM. Then, we leveraged it to produce 573

token-level rewards, and devised the token-level RL 574

objective and an imitation-based regularization for 575

training our LLM, which both focus on the revision 576

of the key tokens leading to errors in the solution. 577

Experimental results on mathematical tasks and 578

question-answering tasks have demonstrated the 579

effectiveness of RLMEC. 580

As future work, we will consider implementing 581

our RL method on more advanced LLMs to further 582

improve their performance on complex reasoning 583

tasks. Besides, we will also evaluate the capacity 584

of our approach on enhancing human alignment 585

and reducing hallucination. 586
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Limitations587

In this section, we discuss the limitations of our588

work. First, in this work, we focus on the complex589

reasoning tasks and only conduct experiments on590

the QA tasks and mathematical tasks. However,591

RLMEC can also be employed in other scenarios,592

e.g., human alignment and reducing hallucination,593

which has not been verified in this work. We leave594

it as the future work. Second, due to the limitation595

of computing resources, we only assess the perfor-596

mance of RLMEC on 7B and 13B LLMs, without597

the experiments on larger LLMs. Actually, by com-598

paring the performance of baseline methods and599

RLMEC on 7B and 13B LLMs, we can observe600

the effectiveness of RLMEC. Third, our approach601

mainly focuses on enhancing LLMs on complex602

reasoning tasks, and does not consider the possi-603

ble bias and ethic risks when using LLMs. It is604

also a promising direction that our RLMEC can be605

applied to, and we will investigate it in the future.606
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(a) Edit distance between refined responses and predictions.

(b) Accuracy of the refined response.

Figure 4: The comparison of the rewriting performance
of teacher model and generative reward model. TM
and GRM denote the response refined by the teacher
model and the generative reward model, respectively.
GT denotes the ground truth solution of the problems.

A Details for RLMEC 952

A.1 Prompts for Generative Reward Model 953

Training 954

We present the template of the prompt for teacher 955

model distillation, and generative reward model 956

training and inference in Table 5 and Table 6, re- 957

spectively. In practice, the information (i.e., ques- 958

tion 𝑞, Ground-Truth Solution 𝑠 and Generated 959

Erroneous Solution 𝑠) should be filled into the cor- 960

responding curly brackets. For error locating task, 961

to better guide teacher model and generative reward 962

model to figure out the first undesired step, we uti- 963

lize the index to format the ground-truth solution. 964

The formatted solution is as follows, 965

[0] The First Reasoning Step 𝑟0 966

[1] The Second Reasoning Step 𝑟1 967

· · · 968

[𝑛] The Last Reasoning Step 𝑟𝑛 969

For the generative reward model, the training 970

instruction and inference prompt are similar. The 971

target output of the training procedure (i.e., the 972

bold sentence in the table) will be removed during 973

inference. 974

A.2 Implementation Details for Experiments 975

Datasets. We employ mathematical tasks and 976

question-answering tasks for evaluation. Success- 977
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Error
Locating

Given the problem, correct solution and the prediction from language models. The method in prediction
might be different with correct solution, but it is also correct. You need to identify which step of the
prediction is the first wrong step, and write down the label of the first wrong step.

Problem: {Problem 𝑞}

Correct solution: {Formatted Ground-Truth Solution 𝑠}

Prediction: {Generated Erroneous Solution 𝑠}

Which step of prediction is error? Only write down the label of the first wrong step. If the prediction is
correct, you need to write down correct. You should not write down any other words.

Solution
Rewriting

Given the problem and the correct solution, you need to correct the mistakes in prediction to get the
correct answer. You should make minimal modifications.

Problem: {Problem 𝑞}

Correct solution: {Generated Erroneous Solution 𝑠}

Prediction: {Generated Erroneous Solution 𝑠}

Correct prediction:

Table 5: The prompt for the teacher model distillation.

Figure 5: The position of the first error in the generated
solution. The X-axis denotes how many reasoning steps
between the first error and the final answer, and the Y-
axis is the ratio of the corresponding problems in these
problems.

fully solving these tasks necessitates LLMs to pos-978

sess domain-specific knowledge and engage in sys-979

tematic, step-by-step reasoning to reach the ulti-980

mate answer. The specifics of each dataset are981

delineated in Table 2.982

• Mathematical tasks include GSM8k (Cobbe983

et al., 2021), MATH (Hendrycks et al., 2021c),984

SVAMP (Patel et al., 2021) and the mathemati-985

cal problems in MMLU (MM) (Hendrycks et al.,986

2021b,a). We adopt MathInstruct (Yue et al., 2023)987

as the training set and eliminate the code samples.988

Given MathInstruct contains the training set of989

GSM8k and MATH, they are seen tasks for LLMs,990

while SVAMP and MM are unseen tasks. 991

• Question-answering tasks contain ECQA (Ag- 992

garwal et al., 2021), QASC (Khot et al., 2020), 993

OpenbookQA (Mihaylov et al., 2018b) and ARC- 994

Easy (Clark et al., 2018). We merge the training set 995

of ECQA and QASC, and adopt the mixture as the 996

training set in the experiment, Therefore, ECQA 997

and QASC are seen tasks for LLMs, while Open- 998

bookQA and ARC are unseen tasks for LLMs. 999

Baselines. For a more comprehensive assessment, 1000

we incorporate three categories of methods as base- 1001

line approaches. including supervised fine-tuning, 1002

alignment without reinforcement learning, and re- 1003

inforcement learning. 1004

• Supervised Fine-tuning trains LLMs to imi- 1005

tate the human desired behavior. We conduct the 1006

SFT (Ouyang et al., 2022) and the Rejection sam- 1007

pling Fine-Tuning (RFT) (Liu et al., 2023b; Yuan 1008

et al., 2023) as the baseline methods. 1009

• Alignment without Reinforcement Learning is 1010

the method to align LLMs to human preference 1011

and prevent instability in reinforcement learning. 1012

Representative methods, e.g., DPO (Rafailov et al., 1013

2023), CoH (Liu et al., 2023a), and FIGA (Guo 1014

et al., 2023) are conducted as the baseline. 1015

• Reinforcement Learning is the traditional 1016

method to guide LLMs to explore the world and 1017

learn from external feedback. PPO (Schulman 1018

et al., 2017) is the classical algorithm to employ 1019

reinforcement learning. We conduct the vanilla 1020

PPO (Schulman et al., 2017) and Actor-Critic ver- 1021

13



Error
Locating

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the problem, correct solution and the prediction from language models. The method in prediction
might be different with correct solution, but it is also correct. You need to identify which step of the
prediction is the first wrong step, and write down the label of the first wrong step.

### Input:
Problem: {Question 𝑞}
Correct solution: {Formatted Ground-Truth Solution 𝑠}
Prediction: {Generated Erroneous Solution 𝑠}

### Response:
The first error step is [{First Undesired Reasoning Step 𝑟𝑡 }]

Solution
Rewriting

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the problem and the correct solution, you need to correct the mistakes in prediction to get the
correct answer. You should make minimal modifications.

### Input:
Problem: {Question 𝑞}
Correct solution: {Ground-Truth Solution 𝑠}
Prediction: {Generated Erroneous Solution 𝑠}

### Response:
Correct prediction:{refined solution 𝑠}

Table 6: The instruction for the generative reward model training. The bold sentence will be utilized to optimize
the generative reward model in cross entropy loss. The prompt for inference is the same as the training instruction
without the bold part.

GRM
PM 7B PM 13B PM

QA Math QA Math

7B GRM 62.12 38.23 66.40 43.74
13B GRM 61.32 37.46 68.61 44.31

Table 7: The comparison of the different scaling of
the generative reward model. GRM and PM denote the
generative reward model and policy model, respectively.

sion of PPO (PPO A2C) (Zheng et al., 2023b) in1022

the experiment.1023

Moreover, we also report the performance of1024

base LLMs, including LLaMA 2 (Touvron et al.,1025

2023), Vicuna (Zheng et al., 2023a), and Wiz-1026

ardLM (Xu et al., 2023).1027

Hyper-Parameters Setting. In the experiment, we1028

adopt Claude 2 (Anthropic, 2023) as the teacher1029

model. For backbone LLMs, we utilize the mixture1030

dataset of ECQA and QASC to fine-tune LLaMA1031

2 (Touvron et al., 2023) to obtain the domain-1032

adapted SFT backbone model in QA tasks, and1033

adopt MAmmoTH (Yue et al., 2023) as the back-1034

bone model for mathematical tasks. The backbone1035

LLMs of the policy model and the generative re-1036

ward model are the same SFT LLMs. In the train-1037

ing procedure, we employ 5 × 10−6 as the learning1038

rate for all tasks and train LLMs for 1 epoch. Be-1039

sides, we set 128 and 768 as the batch size for 1040

QA tasks and mathematical tasks. For the value 1041

of 𝜀, we leverage 0.3 and 0.4 for 7B model and 1042

13B model, respectively. Because the LLMs have 1043

adapted to the corresponding domain after training, 1044

we adopt the 0-shot setting during evaluation. 1045

B Performance Analysis of RLMEC 1046

B.1 Analysis of Generative Reward Model. 1047

The effectiveness of the generative reward model 1048

will influence the quality of the token-level rewards 1049

and the refined response. Thus, we present the 1050

comparison of the teacher model and the genera- 1051

tive reward model on QA tasks in Figure 4. We 1052

can observe that both the teacher model and the 1053

generative reward model can significantly reduce 1054

the edit distance and even perform slightly better 1055

than the teacher model. That is because we uti- 1056

lize the two-stage prompting strategy to distillate 1057

knowledge from the teacher model and conduct the 1058

high-quality data to fine-tune the generative reward 1059

model. Through fine-tuning, it can adapt to the 1060

erroneous solution rewriting task well. Moreover, 1061

the teacher model and the generative reward model 1062

have shown similar performance on the accuracy 1063

of the refined responses, which verifies that the 1064

rewriting task can be easily learned by the LLMs 1065
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Algorithm 1: The RLMEC algorithm.
Input :Training set D = {⟨𝑞𝑖 , 𝑠𝑖⟩}𝑛𝑖=1, the teacher

model (Claude 2), and the parameters of
SFT model 𝜃𝑆𝐹𝑇 .

Output :A well trained policy model.

Initialize the parameters of the generative reward
model: 𝜃𝐺𝑅𝑀 ← 𝜃𝑆𝐹𝑇 ;

Initialize the parameters of the policy model:
𝜃 ← 𝜃𝑆𝐹𝑇 ;

// Generative Reward Model Training
for each instance ⟨𝑞𝑖 , 𝑠𝑖⟩ in D do

The policy model generates 𝑠𝑖 based on 𝑞𝑖 ;
if the data is sampled then

The teacher model locals the first error at 𝑟𝑖
using Eq. 2;

The teacher model rewrites 𝑠𝑖 to obtain 𝑠𝑖
using Eq. 3;

Use 𝑞𝑖 , 𝑠𝑖 , 𝑠𝑖 , 𝑟𝑖 , and 𝑠𝑖 to construct D′;
Leverage D′ to supervised-finetune the generative

reward model through Seq2Seq training paradigm;

// RL with Fine-grained Supervision
for each instance ⟨𝑞𝑖 , 𝑠𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝑠𝑖⟩ in D′ do

Generate the token-level rewards using Eq. 4;
Compute the reward J𝑅𝐿 (𝜃) using Eq. 5;
Use Levenshtein Distance algorithm to compute

the token-level weight;
Compute the loss of imitation-based

regularization L𝐼𝑅 (𝜃);
Update 𝜃 through J𝑅𝐿 (𝜃) and L𝐼𝑅 (𝜃);

with smaller parameters. Besides, given the perfor-1066

mance of RFT w/ TD and RFT w/ RD in Table 3,1067

we can observe that the higher accuracy of the re-1068

fined responses will lead to higher performance in1069

downstream tasks through simply supervised fine-1070

tuning.1071

B.2 Scaling Analysis of Reward Model.1072

To explore the influence of the scale of the genera-1073

tive reward model, we conduct the experiment and1074

present the results in Table 7. For both 7B and 13B1075

LLMs, the rewriting model trained from the same1076

backbone LLMs with the policy model performs1077

better. The potential reason might be that the pol-1078

icy model and the rewriting model with the same1079

backbone model will have a similar distribution.1080

In this situation, the rewriting model can provide1081

appropriate supervision signals and better guide the1082

training process.1083

B.3 Position of the First Error1084

We conduct experiments about the position of the1085

first error in the generated response after training.1086

The results are shown in Figure 5, respectively.1087

Rhe experiment on the position of the first error1088

can verify the effectiveness of RLMEC. Compared1089

with the backbone LLMs, the first error appears 1090

later after RLMEC. For example, after RLMEC, 1091

the number of problems where the first error occurs 1092

before the final answer 7 steps (i.e., the third col- 1093

umn on the right) has increased, while the number 1094

of problems where the first error occurs more than 1095

7 steps has decreased. The reason is that LLMs 1096

focus on the mistakes and learn to correct the early 1097

errors during RLMEC. In the ideal situation, all 1098

of the mistakes will be corrected through further 1099

training. In contrast, after training through other 1100

methods, the position of the first error is irregular, 1101

which means that these methods do not consider 1102

the mistakes in the generated response and guide 1103

LLMs to learn to generate the correct solution with- 1104

out purposiveness. 1105

C Case Study 1106

C.1 Analysis of the Supervision Signals 1107

We present the case study about the reward from 1108

different methods in Table 8. To better express the 1109

difference, we do not employ the clip mechanism 1110

in the case study. From the results, we can observe 1111

that the reasoning step of the generated solution is 1112

correct but the final answer is error. In PPO A2C, 1113

the reward will be calculated by the reward model 1114

and the critic model. The tokens generated earlier 1115

will receive a lower reward, which is contradictory 1116

to reality. That is because PPO A2C has assumed 1117

that the previous token will influence the last token. 1118

In this case, once the generated solution contains 1119

the wrong answer, the rewards of the previous to- 1120

kens are likely lower than the last tokens. In con- 1121

trast, we leverage the generative reward model to 1122

generate the reward in RLMEC. The reward of the 1123

current token is calculated based on the previous 1124

tokens. Therefore, the rewriting model in RLMEC 1125

can better indicate whether the token is correct and 1126

provide high-quality token-level supervision sig- 1127

nals. Besides, for the outcome-supervised method 1128

(i.e., Vanilla PPO), the reward of each token is 1129

equivalent and is based on whether the generated 1130

solution is correct. This method cannot describe the 1131

correctness of the tokens in the generated response. 1132

C.2 Analysis of the Generated Responses 1133

To further demonstrate the effectiveness of 1134

RLMEC, we present the case study about the per- 1135

formance of the LLMs trained by different methods 1136

in Table 9 and Table 10. In both cases, our proposed 1137

RLMEC can help the LLMs to focus on the previ- 1138
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Problem Look at this series: 1.25, 7.5, ____, 270, 1620, ... What number should fill the blank?
Answer Choices: (A) 50 (B) 65 (C) 45 (D) 55 (E) 40

Ground Truth
Solution

Let’s think about the multi-choice question.
This is a simple multiplication series. Each number is 6 times greater than the previous number.
The answer is C

Generated So-
lution

Let’s think about the multi-choice question step by step.
This is a simple multiplication series. Each number is 6 times greater than the previous number.
The answer is B

Rewards from
RLMEC

Let’s think about the multi-choice question step by step .
This is a simple multiplication series. Each number is 6 times greater than the previous number .
The answer is B

Rewards from
PPO A2C

Let’s think about the multi-choice question step by step .
This is a simple multiplication series . Each number is 6 times greater than the previous number .
The answer is B

Rewards from
Vanilla PPO

Let’s think about the multi-choice question step by step .
This is a simple multiplication series .Each number is 6 times greater than the previous number .
The answer is B

Table 8: The comparison of the reward of the generated solution from different methods. We use different
background colors to indicate the reward. The color changing from red to green denotes the reward changing from
negative to positive .

ous errors and correct the errors in the next time1139

generation. Concretely, in the question-answering1140

tasks, the keywords of the problem are “even if they1141

get it”. After being trained through RLMEC, the1142

LLMs can understand the meaning of the problem,1143

figure the key point, and reach the correct answer.1144

However, through other methods, the LLM is still1145

unable to grasp the key works in the problem and1146

generate the answer about the emotion of losing the1147

job. Moreover, for mathematical problem, the LLM1148

have made the mistake in calculating “12−15”. The1149

LLM trained by baseline methods still make simi-1150

lar mistakes. This case has shown that it is difficult1151

for the previous methods to generate the supervised1152

signals which can directly indicate the mistakes in1153

the generated content and guide the LLMs to cor-1154

rect the errors. In contrast, RLMEC leverages the1155

generative reward model to provide the token-level1156

supervised signals and guide the LLMs to focus1157

on the mistakes. Therefore, through RLMEC, the1158

LLMs can correct the previous errors and obtain1159

the correct answer.1160
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Problem

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Applying for a job can make someone feel what sort of emotion, even if they get it?
Options:
working hard
frustration
rejection
defeat
stress

### Response: Let’s think step by step.

Ground-
Truth
Solution

Stress is a feeling of tension about uncertainty.
Applying for a job has an uncertain outcome.
The answer is stress

Generated
Solution
Before
Training

Applying for a job is followed by attending an interview.
Attending an interview gives rejection or acceptance.
Rejection is an emotion.
The answer is rejection

Generated
Solution Af-
ter RLMEC

Applying for a job can make someone feel stress even if they get it.
Stress is an emotion.
The answer is stress

Generated
Solution
After RFT

Applying for a job is followed by attending an interview.
Attending an interview gives rejection or acceptance.
Rejection is an emotion.
The answer is rejection

Generated
Solution
After DPO

Frustration is the feeling of being upset or annoyed as a result of being unable to change or achieve
something.
Applying for a job can make someone feel frustration even if they get it.
The answer is frustration

Generated
Solution
After PPO
A2C

Applying for a job is followed by attending an interview.
Attending an interview gives an opportunity to sell one’s skills and abilities to the employer.
Employer decides the suitability of the candidate based on his skills and abilities.
If the employer rejects the candidate, he feels frustrated.
The answer is frustration

Table 9: The case study for question-answering tasks.

Problem

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
A waiter had 12 customers. While 15 customers left he got 14 new customers. How many customers
does he still have?

### Response: Let’s think step by step.

Generated
Solution
Before
Training

The waiter has 12-15=3 customers left.
He got 14+3=17 customers.
The answer is 17

Generated
Solution Af-
ter RLMEC

The waiter had 12 customers + 14 customers = 26 customers.
But since 15 customers left, he now has 26 customers - 15 customers = 11 customers.
The answer is 11

Generated
Solution
After RFT

The waiter has 12-15=3 customers left.
He has 14+3=17 customers now.
The answer is 17

Generated
Solution
After PPO
A2C

The waiter has 12-15=3 customers left.
He got 14+3=17 customers.
The answer is 17

Table 10: The case study for mathematical tasks.

17


