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Abstract
Foundation models pre-trained on massive un-
labeled datasets have revolutionized natural lan-
guage and computer vision, exhibiting remarkable
generalization capabilities, thus highlighting the
importance of pre-training. Yet, efforts in robotics
have struggled to achieve similar success, limited
by either the need for costly robotic annotations or
the lack of representations that effectively model
the physical world. In this paper, we introduce
ARM4R, an Auto-regressive Robotic Model that
leverages low-level 4D Representations learned
from human video data to yield a better pre-
trained robotic model. Specifically, we focus on
utilizing 3D point tracking representations from
videos derived by lifting 2D representations into
3D space via monocular depth estimation across
time. These 4D representations maintain a shared
geometric structure between the points and robot
state representations up to a linear transformation,
enabling efficient transfer learning from human
video data to low-level robotic control. Our exper-
iments show that ARM4R can transfer efficiently
from human video data to robotics and consis-
tently improves performance on tasks across vari-
ous robot environments and configurations.

1. Introduction
Recently, foundation models (FMs) have shown remarkable
success, particularly in the domains of language (Brown
et al., 2020; Touvron et al., 2023), vision (Kirillov et al.,
2023), and multi-modal models (Chen et al., 2022; Alayrac
et al., 2022; Liu et al., 2023; Li et al., 2023; OpenAI, 2023)
pre-trained on vast amounts of vision and text data. These
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models exhibit impressive zero-shot and few-shot learning
capabilities (Radford et al., 2021; Ouyang et al., 2022; Wei
et al., 2021; Chung et al., 2024), highlighting the power of
pre-training on generic data. However, numerous attempts
in robotics (Xiao et al., 2022; Kim et al., 2024; Zhen et al.,
2024b; Niu et al., 2024; Ye et al., 2024) have yet to achieve
the same pre-training success seen in other domains. This
could potentially be attributed to the scarcity of large-scale,
diverse robotic data, unlike the abundance of text and image
data available for vision and language FMs.

The lack of robotic data poses a significant bottleneck in
training foundation models that can effectively generalize
across diverse robotic platforms and tasks. To overcome this
limitation, several recent approaches (Xiao et al., 2022; Ye
et al., 2024) employ representation learning by pre-training
on an abundance of human data, enabling transfer to robotic
systems. These approaches aim to recognize the inherent
similarities between human and robot manipulation tasks
and exploit the vast repositories of human video data avail-
able on the internet. Yet, these approaches have not been
able to demonstrate effective generalization to downstream
tasks. In part, this is due to their representations lacking an
understanding of the physical world (Zhen et al., 2024a),
and therefore being less effective for robotics.

In contrast with these methods, Vision-Language-Action
(VLAs) models take a slightly different approach, implic-
itly leveraging human data in robotics by incorporating
pre-trained components from Vision-and-Language Models
(VLMs). In particular, they use language decoders pre-
trained on tasks like visual question answering (e.g., RT-
2 (Brohan et al., 2023a)) and image captioning (e.g., Open-
VLA (Kim et al., 2024)). Despite such efforts, there is a
discrepancy between these models’ high-level pre-training
objective and the goal of enabling robotic models to handle
low-level action prediction. While these initial objectives
are valuable for comprehending visual and linguistic content,
they don’t directly address the nuances of low-level robot
control, which involves aspects like precise manipulation
and spatial reasoning. To address this, this paper’s method
employs a lower-level pre-training objective by starting with
a model that utilizes next-token prediction to learn 4D rep-
resentations from human video data. These representations
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Figure 1: Overview of ARM4R. We introduce an Auto-regressive Robotic Model that leverages low-level 4D
Representations (3D point tracks across time) learned from human videos to yield a better pre-trained robotic model.

can then be transferred to more specialized scenarios by fine-
tuning on robotic scenes and subsequently on proprioceptive
data, while maintaining the same training objective.

In this paper, we introduce ARM4R (Auto-regressive
Robotic Model with 4D Representations).1 The key in-
sight behind ARM4R is to learn a low-level representation
from the abundance of human video data that can capture
properties of the physical world. This involves lifting 2D
representations to 3D using monocular depth estimation and
subsequently tracking the 3D points. The resulting 4D rep-
resentations maintain a shared geometric structure — up to
a linear transformation — between the 3D points and robot
state representations used downstream, enabling efficient
transfer learning from human video data to robotic manip-
ulation tasks. Surprisingly, pre-training our method solely
on human data yields superior results compared to other
models like VLAs (Kim et al., 2024) that are pre-trained on
robotic data such as OpenX (Collaboration et al., 2023).

We summarize our main contributions as follows: (i) We in-
troduce a novel robotics pre-training approach that incorpo-
rates low-level 4D representations that enhance understand-
ing of the physical world while also learning from unlabeled
videos. (ii) Our approach shows that pre-training solely on
human video data can lead to better performance than other
methods that are pre-trained only on robotic data; (iii) Our

1ARM4R is pronounced “armor”.

method on average surpasses baselines like PerAct (Shrid-
har et al., 2023) on RLBench, and LLARVA (Niu et al.,
2024), OpenVLA (Kim et al., 2024), and π0-FAST (Pertsch
et al., 2025) on real tasks with a 7-DoF Kinova Gen3 robot;
(iv) Our model also exhibits several advantageous proper-
ties, including cross-robot generalization and 3D point track
prediction for out-of-domain human and robotic videos.

2. Related Work
Vision-Language-Action Models. VLAs are a type of
robotic model that combines visual perception, language
understanding, and action generation capabilities. VLAs
take as input visual observations along with a language in-
struction, and output a sequence of robot control actions.
Several VLAs, such as LLARVA (Niu et al., 2024), Open-
VLA (Kim et al., 2024), LLaRA (Li et al., 2024a), and
RoboPoint (Yuan et al., 2024) directly fine-tune a VLM to
predict robot actions, often using special tokens to represent
the action space. These models differ in the choice of VLM
and the specific method used to encode robot actions, but
they share the underlying principle of adapting a pretrained
VLM for robotic control. A similar model is 3D-VLA (Zhen
et al., 2024a), which consists of components for generating
future states of an environment based on data that includes
3D information, such as point clouds. These existing VLAs
utilize language decoders that have been pre-trained for
high-level tasks like image captioning (Kim et al., 2024)
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and VQA (Brohan et al., 2023b), which may be inadequate
for low-level robotic environments. In contrast, we show
that leveraging low-level vision representations from human
video data can result in a better pre-trained robotic model.

3D Motion Fields. Motion estimation spans from 2D opti-
cal flow (Horn & Schunck, 1981) and object tracking (Wu
et al., 2013) to recent dense point tracking (Harley et al.,
2022). Moving from 2D to 3D further enriches the geomet-
ric understanding. Early work on scene flow (Vedula et al.,
1999) estimates short-term 3D motion based on explicit 3D
structure (Menze & Geiger, 2015) or depth images (Teed
& Deng, 2021). More recently, SpatialTracker (Xiao et al.,
2024) tackles long-range 3D point tracking by lifting 2D pix-
els into 3D with monocular depth estimates and iteratively
refining 3D trajectories with as-rigid-as-possible motion pri-
ors. This 3D-driven strategy greatly improves occlusion
robustness and yields impressive 3D point tracking results.

In robot learning, 2D motion fields have been used to enable
fine-grained control, guiding manipulation and imitation
learning (Goyal et al., 2022; Vecerik et al., 2023; Gu et al.,
2023; Yuan et al., 2024; Zheng et al., 2024; Bharadhwaj
et al., 2024; Xu et al., 2024). Despite their success, these
approaches remain limited by the lack of geometric cues
and less spatial awareness. In contrast, 3D motion fields of-
fer more spatially grounded representations, enabling more
efficient policy learning. ToolFlowNet (Seita et al., 2022)
leverages scene flow to estimate tool trajectories in behavior
cloning, though it uses only a relatively coarse 3D signal.
We instead adopt dense 3D point tracking on diverse human
videos, and use these rich 4D representations (3D points
tracked across time) to pre-train a general auto-regressive
robotic model with robust and versatile action generation.

RVT (Goyal et al., 2023) and RVT-2 (Goyal et al., 2024)
are recent transformer-based methods that use a more direct
approach for learning 3D information, leveraging ground-
truth RGB-D images to reconstruct a scene’s point cloud
and then predict keyframes. This point cloud reconstruction
relies on a similar principle to our method, with ARM4R
instead using pre-training on 3D point tracking to learn
scene structure.

Pre-training for Robotic Models. Pre-training has
emerged as a crucial technique for improving the perfor-
mance and generalization capabilities in robotics. Large-
scale datasets such as OpenX (Collaboration et al., 2023)
contain diverse sensor modalities, tasks and action spaces
across various robots. Models trained with these datasets,
such as RT-1-X (Brohan et al., 2023c), RT-2-X (Brohan
et al., 2023a), Octo (Team et al., 2024), OpenVLA (Kim
et al., 2024) and LLARVA (Niu et al., 2024), can be applied
in various robot embodiments and tasks. Yet, these robot
pre-training datasets are still orders of magnitude smaller
than the data that current LLMs and VLMs are trained on.

To address the data issue, another prominent pre-training
approach is to leverage large-scale datasets of human
videos. This harnesses the abundance of freely avail-
able human activity data on the internet, offering a scal-
able alternative to collecting expensive robot demonstra-
tions. For example, Track2Act (Bharadhwaj et al., 2024)
trains a 2D point-tracking model on human videos from
Epic-Kitchens100 (Damen et al., 2018) and Something-
Something-v2 (Goyal et al., 2017), then re-purposes it to
guide robotic manipulation. Any-Point Trajectory Modeling
(ATM) (Wen et al., 2024) similarly utilizes a small set of
human demonstrations to aid cross-embodiment transfer,
though in a more task-specific setting and still relying on 2D
motion. By contrast, our approach lifts 2D observations into
4D representations (3D plus time), which not only enhances
spatial awareness and occlusion handling, but also allows
pre-training on human videos at scale, providing broader
applicability and more robust policy learning in robotics.

3. Auto-regressive Robotic Models
To address the challenge of leveraging pre-trained vision
representations from human video in robotic models, we
present an auto-regressive model that relies on low-level 4D
representations. The model is trained in three stages. The
first stage—the pre-training stage—focuses on learning gen-
eralized low-level representations through 3D point tracking
from human videos. In the second stage, the model is fine-
tuned for the same task, but using a small amount of data for
the robot that we intend to use in downstream tasks. Finally,
the third stage fine-tunes the model for robotic control. We
begin by discussing the preliminaries (Section 3.1), then
introduce the architecture (Section 3.2), and the training
procedures (Section 3.3). Our method is shown in Figure 2.

3.1. Preliminaries

4D Scene Representations. Our 4D representations result
from solving the 3D point tracking problem, which involves
finding the 3D coordinates of discrete points across time,
given a monocular video consisting of T discrete frames.
Formally, the objective is to find pt as defined below:

pt = {(xjt, yjt, zjt)| 0 ≤ j < n} (1)

where n is the total number of points being tracked, and
0 ≤ t < T . In solving this tracking problem, the identities
of the points are fixed and consistent across all frames: the
j-th point in pt refers to the same physical point in 3D space
across all time steps t ∈ [0, T ). To initialize these points,
we define a square grid of size g×g on the first frame (frame
t = 0), resulting in n = g2 points. The task is to track the
3D coordinates of these initial queried n points throughout
the video while maintaining their unique identities.

4D Representations for Robotic Manipulators. One of
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Figure 2: ARM4R is trained in three stages. Top Grey Box: The first two stages focus on learning a scene-wide 4D
representation by predicting 3D points across time, where Stage 1 pre-trains on a large egocentric human dataset (Epic-
Kitchens100), and Stage 2 fine-tunes on a smaller dataset (1-2K demonstrations) of robotic scenes, adapting the point
tracking to robotic scene and camera. Bottom Grey Box: Finally, the model is fine-tuned to predict robot proprioceptive
states rather than 3D points to enable robotic control.

the main benefits of using 4D representations is that the
3D point tracks in a robotic setting are described by linear
transformations constructed using the robot states. We now
present a simple proof of this claim.

Consider a n-DoF open-chain manipulator, initially in its
reference configuration θ1 = 0, θ2 = 0, · · · , θn = 0.
Suppose the manipulator is commanded to a new position
θ1 = θd1 , θ2 = θd2 , · · · , θn = θdn. Next, we take any arbi-
trary point p on the body of the manipulator lying between
joints i, i + 1. Let p be described by the transformation
gi,p(0) in joint i’s frame. Then, p’s new position in the base
frame can be described by:

g1,p(θ) = eξ̂1θ
d
1 · · · eξ̂iθ

d
i gi,p(0)

where ξ̂j are the twists associated with each joint. Since this
product of 4x4 SE(3) matrices represents a linear transfor-
mation, points on the robot body as well as attached rigid
bodies evolve through linear transformations in terms of the
robot states. Additionally, for overactuated manipulators
(7-DoF), the robot learning problem simplifies to tracking
arbitrary trajectories, as configuration space limitations are
less restrictive. This allows the model to benefit more effec-
tively from the 3D point tracking pre-training task.

Robotic Episodes. Robotic control can be formulated as a
finite-horizon Markov Decision Process (MDP), character-

ized by temporal sequences that capture the robot complet-
ing a particular task. The task is described by the language
instruction l. The temporal sequences typically consist of
visual observations i0:T−1 and proprioceptive states s0:T−1,
which can lie in Cartesian space or joint position space.
Then, the objective is to learn a policy that predicts one
or more future actions, conditioned on a finite number of
previous timesteps, to successfully complete a given task.

Inputs. Given any video, we structure our models’ input at
timestep t, into three parts: the language instruction l, the
image input it, and the current 3D coordinates of the tracked
points, pt. These elements together provide the contextual,
visual, and spatial information necessary for 3D point track-
ing. The output is the future 3D coordinates of the tracked
points, pt+1. When fine-tuning the model for robotic control
(see Section 3.3), we replace the tracked input points with
the robot’s current state st, and the output points with the
next state, st+1. We hypothesize that the shared geomet-
ric structure — up to a linear transformation — between
the points and robot state representations enables efficient
transfer learning between the second and third stages.

3.2. Architecture

In the first and second training stages, our objective is to
develop an auto-regressive model π capable of predicting
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3D point tracks. The predictions are conditioned on the
input (l, it, pt) from a context window of C timesteps:

π(l, it−C+1:t, pt−C+1:t) → pt+1 (2)

During control fine-tuning, the objective changes slightly, as
the model conditions on, and predicts proprioceptive states:

π(l, it−C+1:t, st−C+1:t) → st+1 (3)

Before being fed into the causal transformer for next-token
prediction, each part of the input and output must be pro-
cessed and projected into the same latent space. To achieve
this, separate encoders are used for the language, image,
points, and robot states, as we discuss below.

Language Encoder. We use a frozen CLIP (Radford et al.,
2021) text encoder trained on LAION-2B (Schuhmann et al.,
2021) to process text, with a learnable linear projection layer
added at the end to get the language token zl.

Image Encoder. To process the image, we use a standard
Vision Transformer (Dosovitskiy et al., 2021) to get the im-
age token zimt . This ViT is frozen while training our model,
and is pre-trained using CrossMAE on a combination of
ImageNet (Deng et al., 2009) and the OpenX dataset (Col-
laboration et al., 2023). This enables the vision transformer
to learn to encode both non-robotic and robotic data, which
is important since our pre-training stage emphasizes the
former, while fine-tuning targets the latter.

4D Representations. To encode the point coordinates, we
use a standard 2-layer MLP. The resulting feature zptst is
combined with zimt via an attention pooling layer to get the
current observation token, zobst . A separate MLP is used to
encode the next timestep’s point coordinates and get ẑt.

Causal Transformer. For each timestep, we get three
tokens, one each for language, current visual observa-
tion and prediction, which are fed into the transformer.
In our implementation, we use a randomly initialized
causal Transformer (ViT-Base). The Transformer is
trained for standard next-token prediction on the sequence
(zl, z

obs
t , ẑt, zl, z

obs
t+1, ẑt+1, · · · ), with loss only being calcu-

lated for ẑt. During inference, we input (zl, zobs0 ) at timestep
0, and the model predicts ẑt for every timestep.

Decoder and Loss Function. We calculate the loss using
only ẑt, as predicting zl and zobst is not the objective in either
3D point tracking or robotic control tasks. The predicted
token is decoded using a two-layer MLP into the predicted
point tracks p̂t+1. The L1 distance between p̂t+1 and the
ground truth point tracks p∗t+1 is used as the final loss:

L(p̂t+1, pt+1) =
1

n
∥p̂t+1 − p∗t+1∥1 (4)

Adaptation for Robotic Control. We note that when fine-
tuning for robotic control, we replace the MLPs for pro-

cessing points pt with similar MLPs for processing robot
states st. Additionally, when processing multiple images in
the fine-tuning stage, we combine the observation tokens
by concatenating linear transforms of the different views
to get a single ztobs token. The model is also trained to pre-
dict multiple future proprioceptive states. The rest of the
architecture is kept the same (e.g. loss function). For more
details, please see Appendix C.1.

3.3. Training

As previously mentioned, ARM4R is trained in three stages:
the first two stages focus on the 3D point tracking task for
human and robot videos respectively, and the last stage
focuses on robotic control. Next, we describe these stages.

Stage 1: Human Videos Pre-training. In the pre-training
stage, we focus on learning 3D point tracking, since this
task allows our model to leverage large-scale human video
data with a representation that also transfers over to the
robotic domain. Specifically, we train our model on 76K
videos from the Epic-Kitchens100 dataset (Damen et al.,
2018), which contains rich human-object interactions with
97 verbs and 300 noun classes. By training to predict 3D
point tracks for such large-scale human data, ARM4R gains
a deeper understanding of the spatial dynamics and physical
interactions of different bodies and objects, knowledge that
is critical for enhancing robotic models.

To extract pseudo-annotations for 3D point tracks, we use
an off-the-shelf tracker that generates 3D tracks for points
arranged on a g × g grid. Points on the grid are initialized
in the first frame of the video and tracked throughout the
sequence. We note that the pseudo-labeled tracks are gener-
ated in the camera coordinate frame, inherently capturing
both object and camera motion due to the egocentric nature
of the human videos. In contrast, our robotic applications
typically involve stationary cameras and different object-
hand interaction patterns, introducing discrepancies in both
camera dynamics and embodiment. To reconcile these dif-
ferences and ensure smooth transfer to robotic domains, we
introduce a fine-tuning stage focusing on 3D point tracking
in the downstream robotic setup.

Stage 2: Fine-tuning on 3D Point Tracking for Robotic
Settings. After the pre-training stage on human video data,
we fine-tune ARM4R for the same 3D point tracking task
with videos from the robotic setup we use in the downstream
application. We note that this fine-tuning only needs to be
performed once for every robot setup for all tasks combined,
with a modest amount of data (≈ 5−10% compared to Stage
1). This step helps transition from the camera dynamics and
embodiment gaps between the human video pre-training
and the control fine-tuning in the next stage.

Stage 3: Fine-tuning for Robotic Control. Having trained
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Table 1: Success rate (%) on RLBench Multi-Task setting. We compare ARM4R’s performance against several related
baselines on 12 tasks from the RLBench benchmark. We use 25 episodes per task and 5 random seeds, averaging the results
to get the success rate. ARM4R achieves the best performance on 4 of 12 tasks and the best average success rate.

Method
Task

open
drawer

meat off
grill

turn
tap

put
money

push
buttons

sweep
dustpan

slide
block

close
jar

screw
bulb

place
wine

reach and
drag

stack
blocks

Average
Success Rate (%)

Image-BC (ViT) 0 0 16 0 0 0 0 0 16 0 0 0 2.67
C2FARM-BC 20 20 68 12 72 0 16 24 8 18 24 4 23.83
ManiGaussian 76 60 56 - 20 64 24 28 - - 92 12 48.00
LLARVA 60 80 56 44 56 84 100 28 8 12 52 0 48.33
PerAct 80 84 80 44 48 56 72 60 24 12 68 36 55.33
ARM4R 88.8 94.4 61.6 92.0 67.2 72.0 85.6 24.0 10.4 36.0 77.6 4.0 59.47

the model on 3D point tracking, we then fine-tune it for
robotic control. In this stage, we collect a number of robotic
demonstrations depending on the downstream tasks. We
note that we use significantly fewer demonstrations for real
robotic tasks than other baselines (See Section 4.3). After
collecting successful data of the robot performing the target
task, we replace the current and predicted point tracks in the
training process with current and predicted robot states.

4. Experiments and Results
We evaluate ARM4R on 12 tasks in RLBench (James et al.,
2020) and compare to relevant 2D and 3D baselines. We
also test and ablate our model on two real robots: a 7-DoF
Kinova Gen3 robot, and a 7-DoF Franka Emika Panda robot.

4.1. Implementation Details

ARM4R is implemented using PyTorch (Paszke et al., 2019).
We use ViT-Base as our vision encoder, which is pretrained
as described in Section 3.2. We use SpatialTracker (Xiao
et al., 2024) as our off-the-shelf 3D point tracker. We note
that the model uses a maximum context window C, which
is the number of previous timesteps it considers when pre-
dicting the next action. In practice, we use C = 16 for most
tasks, increasing it to C = 32 for some long-horizon tasks
(details in Appendix D). The model is also trained to predict
the next 16 actions, but we only execute the first prediction
during evaluation. In both our simulation and real settings,
we use end-effector control, with the model predicting the
Cartesian position and rotation of the end-effector, and a bi-
nary value for the gripper. Finally, we use 4 NVIDIA A6000
GPUs for training and a single NVIDIA A6000 GPU for
evaluation. More information, like training and fine-tuning
recipes, is in Appendix C.2.

4.2. Simulation Evaluation

Experimental Setup. We evaluate ARM4R on 12 RLBench
tasks, and follow the settings in PerAct (Shridhar et al.,

2023). A task is defined as a collection of demonstrations of
the robot interacting in a given scene, with object variations
(such as color or size). We train ARM4R for each task
using 190 successful demos for every variation of the task
(for more details, see Appendix D), and evaluate using 25
episodes per task in the validation set. Every episode is
scored either 0 for failure or 100 for success. We use 5
seeds, which are averaged to get the final success rate.

Baselines. We compare to several baselines for our sim-
ulation evaluation. Image-BC (ViT) is a 2D language-
conditioned baseline model that uses a ViT vision encoder,
reported in PerAct (Shridhar et al., 2023). To compare
against two different methods that use 3D representations,
we select C2FARM-BC (James et al., 2022) and PerAct,
which use voxels as 3D input to calculate robot actions. To
compare to a method with 3D temporal tracking similar to
ours, we evaluate against ManiGaussian (Lu et al., 2025),
which uses a dynamic Gaussian splatting representation to
predict robot actions. Lastly, LLARVA (Niu et al., 2024) is
a recent state-of-the-art VLA that directly predicts low-level
robot actions given an image and proprioceptive information
as part of a language prompt.

Results. We report our simulation results in Table 1.
ARM4R achieves the highest average success rate across all
the tasks, and the best success rate for 4 out of 12 tasks. In
particular, ARM4R surpasses PerAct, which directly uses
voxel information from the simulation environment as input.
This approach is not scalable since voxel data is expensive
to collect in the real world. Instead, ARM4R learns to model
the 3D world by pre-training on 3D point tracking, and the
impressive performance highlights the model’s strong grasp
of physical understanding. We also note that ARM4R’s su-
perior performance compared to LLARVA — a VLA which
uses a pre-trained language decoder — emphasizes the ef-
fectiveness of our representation and pre-training approach.

Failure Cases Analysis. We also found some abnormal
behaviors when evaluating ARM4R on RLBench, which
can be further summarized into two categories. (1) Un-
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Table 2: Success rate (%) on the real Kinova Multi-Task setting. We compare ARM4R’s performance to four related
baselines on 13 real tasks grouped into five categories. We use 25 episodes per task for evaluation, averaging the results over
3 seeds to get the final success rate. ARM4R outperforms both baselines on all the tasks.

Method
pick cube up destack stack

yellow cyan green yellow cyan yellow on cyan cyan on yellow
ATM 5.3 ± 3.5 6.7 ± 2.7 9.3 ± 1.3 4.0 ± 2.3 9.3 ± 3.5 1.3 ± 1.3 2.6 ± 1.3

LLARVA 44.4 ± 6.4 41.6 ± 4.2 54.2 ± 11.0 8.3 ± 4.8 10.3 ± 2.6 5.6 ± 2.8 12.8 ± 2.6
π0-FAST 63.0 ± 3.7 33.3 ± 8.3 25.0 ± 0.0 5.5 ±2.8 25.6 ± 2.6 22.2 ± 2.8 25.6 ±6.8
OpenVLA 77.8 ± 6.4 45.8 ± 4.2 91.7 ± 8.3 55.6 ± 2.8 51.3 ± 2.6 27.8 ± 2.8 38.5 ± 4.4

Ours 92.6 ± 3.7 100 ± 0.0 95.8 ± 4.2 94.4 ± 2.7 94.9 ± 5.1 63.6 ± 5.2 59.5 ± 2.4

Method
pick toys then place to target push Average

spiderman penguin pig play basketball push red button push red then blue
ATM 5.3 ± 1.3 6.7 ± 1.3 5.3 ± 3.5 24.0 ± 4.6 4.0 ± 2.3 0.0 ± 0.0 6.4 ± 2.2

LLARVA 9.3 ± 1.3 9.3 ± 1.3 8.0 ± 2.3 10.7 ± 3.5 20.5 ± 5.1 2.8 ± 2.8 18.3 ± 3.9
π0-FAST 16.0 ± 2.3 17.3 ± 1.3 9.3 ± 2.7 13.3 ± 3.5 20.5 ± 2.6 0.0 ± 0.0 21.2 ± 3.0
OpenVLA 2.7 ± 1.3 17.3 ± 1.3 2.7 ± 2.7 49.3 ± 3.5 23.1 ± 4.4 0.0 ± 0.0 37.2 ± 3.4

Ours 90.7 ± 1.3 94.7 ± 1.3 93.3 ± 1.3 92.0 ± 2.3 84.6 ± 4.4 25.0 ± 4.8 83.1 ± 3.0

natural rotation: we examined a new task,“put knife” in
RLBench and found our model struggles to succeed at this
task. Interestingly, this simulated task features an unnatu-
ral whole-arm rotation to grasp the knife handle, based on
the expert demonstrations created by the simulator’s mo-
tion planning. As the movement between two key points
is very long, we hypothesize that our model has difficulty
learning this rotation. (2) Lack of Precision: we observed
that ARM4R struggles with the ‘screw bulb’ task, a pro-
cedure requiring precise insertion into the bulb holder. In
contrast, our model effectively performs other standard pre-
cision tasks, such as ‘open drawer’ which necessitate only
standard precision.

4.3. Real Robot Evaluation

Experimental Setup. For our real experiments, we use a
7-DoF Kinova Gen3 robot mounted with a Robotiq 2F-85
adaptive gripper. We test our model and the baselines on
13 total tasks, grouped into five broad categories based on
the dominant action: pick, destack, stack, pick and place,
and push. For each task, training is performed using 190
episodes of every variation. Evaluation is conducted over
25 episodes per task, with results averaged across three
different seeds to calculate the final success rate.

Baselines. We evaluate our model against four baselines in
real-world settings: ATM (Wen et al., 2024), LLARVA (Niu
et al., 2024), π0-FAST (Pertsch et al., 2025) and Open-
VLA (Kim et al., 2024). ATM utilizes a hierarchical frame-
work to predict 2D point trajectories, which are then used
to condition a policy, while LLARVA uses 2D point pre-
diction as an auxiliary task for learning action prediction.
In contrast, ARM4R predicts 3D point trajectories, a more
intuitive and natural representation for robotic tasks. π0-

FAST and OpenVLA are state-of-the-art VLA models pre-
trained on the OpenX dataset, while ARM4R is trained on
a significantly smaller dataset, with pre-training consisting
exclusively of human video data. More details for these
implementations are in Appendix D.1.

Results. Table 2 shows that ARM4R outperforms all base-
lines across all tasks, achieving an average success rate of
83.1%, compared to OpenVLA’s 37.2% and ATM’s 6.4%.
ATM in particular does not perform well in our real setting
despite training with a significantly larger number of demon-
strations than we use in our fine-tuning. We believe that
this significant gap in performance is due to how we track
points: ARM4R utilizes 3D coordinates, while ATM relies
on 2D. The use of 3D coordinates provides a more natural
and accurate representation for robotic tasks, which may
contribute to our model’s improved performance.

In contrast to ATM, OpenVLA and π0-FAST use a similar
number of fine-tuning episodes to our evaluation setting.
However, we believe that our superior performance over
these baselines can again be attributed to our use of low-level
4D representations, which enable 3D scene understanding.

4.4. Ablation Studies

We conduct ablations to assess the importance of human
video pre-training (Stage 1), and the robotic fine-tuning
(Stage 2). All model versions in this section include robotic
control fine-tuning (Stage 3). For this, we train the following
versions: (i) Stages 1, 2, and 3; (ii) Stages 1 and 3; (iii)
Stages 2 and 3, and (iv) Stage 3 only.

Human Video Pre-Training. Figure 3 shows that the
model with all stages performs better on all tasks than the
Stages 2+3 model, indicating that pre-training on the human
dataset provides a large benefit compared to only training
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Figure 3: Ablation Study for Stages 1 and 2. We train ARM4R on three real tasks in the Kinova setting, ablating Stages 1
and 2. The results indicate that while both stages improve performance, Stage 1 has a more significant impact.

Table 3: Pre-training approaches comparison. We com-
pare ARM4R to several other robotic models that leverage
pre-training on three tasks with a Kinova robot. We find that
our approach yields the best average success rate.

Method pick cube stack cubes destack cubes
MVP 75.00 18.75 81.25
RPT 87.50 31.25 93.75
Octo 56.25 12.50 37.50
ATM 7.11 2.00 6.67

OpenVLA 68.75 31.25 53.33
LLARVA 93.75 56.25 100.00
ARM4R 96.0 ± 2.3 61.3 ± 1.3 94.7 ± 1.3

for 3D point tracking on robotics videos. The performance
boost observed when adding Stage 1 to Stage 3 is greater
than the boost from adding Stage 2 to Stage 3, indicating
that 4D pre-training on human videos provides a larger in-
crease in performance than robotic videos. The key resulting
insight is that when sufficient robotic pre-training data is
unavailable, human video data can be a viable alternative,
provided the proper 4D representations are used.

Robotic Video Fine-Tuning. The ablation results shown
in Figure 3 reveal that adding robotic video fine-tuning
(Stages 2+3; green) leads to improved performance over
models trained solely for robotic control (Stage 3; pink).
Adding Stage 2 to the training regime still improves perfor-
mance, as the model performing all stages (blue) yields the
highest success rate. As mentioned in Section 3.3, Stage 2 is
useful in addressing the distribution shift and embodiment
gap when switching from human to robotic data.

4.5. Additional Experiments

We conduct additional experiments to assess the benefits of
pre-training, generalization of 3D point representations, and

robustness to noise. More experiments are in Appendix A.

The Effectiveness of Pre-training. In order to study the
effectiveness of pre-training on the 3D point track predic-
tion task, we take three tasks from our real setting: pick
cube, destack cubes, and stack cubes, and compare to other
works that use pre-training. MVP focuses on pre-training
the vision encoder using human data, while RPT focuses
on pre-training with visual and proprioceptive states. Octo,
which is a transformer-based policy, is pre-trained on the
OpenX dataset, similar to the VLA models LLARVA and
OpenVLA. Lastly, ATM pre-trains a 2D point track trans-
former whose output is used to condition a policy.

The results are shown in Table 3. It can be seen that our pre-
training improves performance over the baselines. ARM4R
outperforms other representation learning based pre-training
methods, such as MVP, RPT, Octo and ATM, validating the
benefits of using a 4D point-tracking based representation.
In addition, while the two VLA baselines (OpenVLA and
LLARVA) perform well, our approach still surpasses their
results, possibly demonstrating the importance of using low-
level representations as opposed to language decoders that
were pre-trained on high-level vision-language tasks.

Table 4: Success rate (%) of ARM4R on cross-robot set-
ting. We fine-tune the pre-trained model for motor control
on different robots and report success rates of cube tasks.

Pre-train FT Robot pick stack destack
Epic Kinova Kinova 96.0 ± 2.3 61.3 ± 1.3 94.7 ± 1.3

– – Franka 73.3 ± 2.7 49.3 ± 5.8 65.3 ± 3.5
Epic Kinova Franka 93.3 ± 1.3 56.0 ± 2.3 97.3 ± 1.3

– Kinova Franka 81.3 ± 1.3 52.0 ± 2.3 73.3 ± 2.7

Generalization from Kinova to Franka. In order to study
how our low-level 4D representations can help a model
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generalize across different robots, we perform an ablation
experiment involving fine-tuning ARM4R on Kinova robot
videos, and fine-tuning for control on a 7 DoF Franka Emika
Panda robot. We note that besides having different robots,
the two setups also have very different configurations, as the
Kinova robot is mounted on a stand as part of a bimanual
setup, while the Franka robot is mounted on a table.

Despite these significant differences, the results in Table 4
show that adding the human video pre-training and Kinova
video fine-tuning improves the average performance on the
Franka robot by 19.6%. This supports our claim that the
4D representations are sufficiently generalizable to transfer
across different robotic setups.

Robustness Analysis. We conduct an experiment to test
how ARM4R handles dynamic changes in its environment.
We test the model on three cube tasks (Pick, Stack, and
Destack) in our real Kinova setting, manually moving the
cube during rollout when the arm reaches 1/3 and 2/3 of its
descent. The results are presented in Table 5, and show con-
sistent performance despite movement of the target object.
This highlights the model’s robustness to environmental
and object-level changes, which we believe is partly due
to the fact that it predicts each step in a trajectory and thus
interacts with the environment continuously.

Table 5: Performance in dynamic environments. The
cube is disturbed at varying phases of the robot trajectory.

Disturbance Time Pick Stack Destack

No Disturbance 96.0±2.3 61.3±1.3 94.7±1.3
At 1/3 Descent 94.7±3.5 60.0±0.0 93.3±1.3
At 2/3 Descent 92.0±2.3 57.3±1.3 90.7±1.3

To further assess ARM4R’ robustness in dealing with factors
like camera noise, occlusions, and sensor drift, we perform
additional evaluations on the three cube tasks under the
following conditions: (1) Dim lighting: ambient light is
reduced to 50%, (2) Background distractors: dynamic back-
ground changes, such as people walking by or movement
of background curtains, and (3) Tabletop distractors: two
random objects are placed near the target. The results are
presented in Table 6. Overall, ARM4R demonstrates robust-
ness to lighting and background changes. This is likely due
to the use of attention pooling, which guides the model to
focus on the target region rather than background features.
This hypothesis is supported by the observed performance
drop when tabletop distractors are introduced.

5. Conclusion
In this work, we demonstrate that our pre-training ap-
proach from human video data to robot learning is effective
in addressing longstanding challenges of robotic learning
pre-training. We introduced ARM4R, an Auto-regressive

Table 6: Performance under different real-world robust-
ness conditions.

Noise Source Pick Stack Destack

Standard 96.0±2.3 61.3±1.3 94.7±1.3
Dim Light 86.7±1.3 52.0±2.3 81.3±2.7
Background Distractor 94.7±1.3 57.3±1.3 90.7±1.3
Table-top Distractors 81.3±1.3 48.0±2.3 74.7±1.3

Robotic Model that leverages low-level 4D representations
by lifting 2D representations into 3D using monocular depth
estimators, and tracking 3D points in videos. Our results
in simulation and real-world setups show that our method
consistently outperforms existing methods across diverse
robotic tasks, showcasing its superior transferability and
generalization capabilities. More broadly, our approach
shows that training solely on human video data can lead to
better performance than methods like OpenVLA that are
pre-trained on robotic data alone. This suggests that ef-
fective pre-training can be achieved without the need for
large-scale robotic datasets by bridging the gap between
human-centric visual data and robotic applications, unlock-
ing new possibilities for scalable and data-efficient robotics.
As we continue to explore the boundaries of representation
learning for robotics, ARM4R lays a foundation for future
research into autonomous systems that can learn from the
vast repository of human experience available in video data.

6. Limitations and Future Work
While ARM4R offers substantial benefits for pre-training
with human video data for robotic learning, it is impor-
tant to recognize certain limitations that accompany our
approach. Our approach tracks 3D points in camera co-
ordinates, leading to learned representations that combine
object and camera motion. This coupling makes it difficult
for the model to disentangle the two, leading to potentially
inaccurate predictions due to a lack of invariance to cam-
era intrinsics and motion. An improvement addressing this
concern could involve pre-training on 3D tracks in world co-
ordinates, leveraging recent dynamic SLAM methods such
as MonST3R (Zhang et al., 2024) or MegaSAM (Li et al.,
2024b), which we leave for future work. Other improve-
ments could include scaling the pre-training data to help the
model generalize better to different camera viewpoints, or
using multi-view fusion to reduce the dependency on a sin-
gle viewpoint to improve robustness to occlusions. Another
line of future work could focus on selectively tracking only
relevant or moving points instead of a fixed uniform grid
across frames. This would allow greater resolution in areas
with small objects, and also help the model focus on objects
critical to the task, improving its ability to disentangle object
motion from background noise and camera movement.
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Appendix
Here, we provide qualitative results of our 3D point tracking
for both in-domain and out-of-domain videos (Appendix A),
statistics of the used datasets (Appendix B), implementation
details (Appendix C), evaluation details (Appendix D), and
robotic setup details (Appendices E and F).

A. Additional Experiment Results
A.1. Qualitative Results of 3D Points Tracking.

We conduct additional experiments to evaluate our pre-
trained model’s ability to track 3D points. Specifically,
we run inference on a few randomly chosen episodes from
Epic-Kitchens100 (Damen et al., 2018) (in-domain human
videos), Ego4D (Grauman et al., 2021) (out-of-domain hu-
man videos), Kinova robot videos (in-domain robot videos)
and Open X Embodiment (Collaboration et al., 2023) (out-
of-domain robot videos).

In Figure 4, we present the tracking results on human videos
from a version of our model that has undergone human video
pre-training (Stage 1). The top two rows show the results for
an episode from Epic-Kitchens (in-domain human videos)
with the action “stir potatoes.” The bottom two rows display
monocular human videos and their corresponding 3D point
tracking predictions for an episode from Ego-4D (out-of-
domain human videos) with the action “pick up plate”.

In Figure 5, we present the tracking results on robot videos,
from a version of our model that has undergone human
video pre-training on Epic-Kitchens100 as well as robot
video fine-tuning on Kinova demonstration videos (Stage
1+2). The top four rows display monocular robot videos
and their corresponding 3D point tracking predictions for
two episodes from in-domain Kinova robot videos, with the
actions “push red button” and “place spiderman into bowl”
respectively. The bottom two rows show the results for an
episode from the Autolab subset of the OpenX Embodiment
dataset (out-of-domain robot videos) with the action “pick
the tiger and place it into bowl.”

These visualizations verify that our model is not overfit to
a certain dataset or robotic setup, but can in fact generalize
well to new videos.

B. Additional Dataset Details
B.1. Epic-Kitchens100

Epic-Kitchens100 (Damen et al., 2018) is a large-scale, ego-
centric video dataset designed for action recognition and
understanding in daily kitchen activities. Captured from a
first-person perspective using head-mounted cameras, the
dataset provides rich, untrimmed video recordings of in-
dividuals performing various cooking and kitchen-related

tasks. It features a diverse range of object interactions, fine-
grained action labels, and naturalistic, unscripted activities,
making it particularly valuable for studying human-object
interactions and long-term temporal dependencies.

The dataset includes diverse hand-object interactions, de-
scribed by combinations of 97 verbs (for the hand mo-
tions) with 300 nouns (for the object categories). In our
human video pre-training stage, we use almost all the la-
beled episodes available in the original dataset. We first
subsample videos at 10 fps, an experimentally chosen rate,
as the original 50 fps provides unnecessary redundancy for
slow movements. We then model the duration distribution
of all 75,886 episodes, and filter out ≈ 1% of episodes that
are of length > 256 frames. As a result, we get a final set of
75,041 episodes for pre-training. For each episode, we use
a simple ‘verb + noun’ instruction derived from the official
annotation files.

B.2. RLBench Robot Episodes

RLBench (James et al., 2020) is a large-scale benchmark
dataset for robotic learning, designed to facilitate research in
vision-based reinforcement learning and imitation learning.
It consists of a diverse set of robot manipulation tasks per-
formed in a simulated environment using a Franka Emika
Panda arm. The dataset provides high-quality demonstra-
tions with multi-modal observations, including RGB images,
depth maps, and proprioceptive data.

In our experiments, we use 128× 128 resolution images for
training. For most tasks, we use the ‘front rgb’ and ‘wrist
rgb’ views for point track and control fine-tuning. However,
in some cases, we find that using other views yields better
performance (details on task-specific implementations are
provided in Appendix C). For robot control, we use end-
effector control: x = (x, y, z, θx, θy, θz), where (x, y, z) is
the position and (θx, θy, θz) the Euler angles for orientation.
We also have a one-dimensional binary element to control
the gripper. For language instructions, we use variation 0
from the official list of instructions for all tasks. We do not
subsample episodes for our RLBench experiments.

C. Additional Implementation Details
C.1. Architecture of Auto-regressive Model

Here, we provide details on processing the visual input
of the auto-regressive model to support two views when
adapting to robot control fine-tuning. The images from both
views are fed separately into the image encoder to obtain
the image embeddings zimt for each view. Each view is then
pooled using attention pooling with the state embeddings
to form the image tokens zobst . Next, we project each token
to half of its original hidden dimension (768 → 384 in our
implementation) and concatenate them to obtain the final
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Figure 4: Visualization of ARM4R’s 3D Point Track results on randomly chosen Epic-Kitchens (in-domain) and Ego-4D
(out-of-domain) human videos.

image tokens, incorporating information from both views.

C.2. Training Recipes

We used the following hyperparameters for the three stages
of training:

Table 7: Training Hyperparameters for the three stages.

Hyperparameter Stage 1 Stage 2 Stage 3
Learning Rate 5× 10−4 5× 10−4 5× 10−3

Weight Decay 1× 10−2 1× 10−2 1× 10−2

Batch Size 256 256 256

Number of Epochs 5 20 10-50

We note that for Stage 3, we trained our model for a variable
number of epochs depending on the downstream task, until
the loss converged.

D. Simulation on RLBench
We evaluate our model on 12 tasks in RLBench for our
simulation setup. Each task includes multiple variations,
and we generate 190 episodes using their data generation

script for ARM4R training. In most cases, we follow the
task setup of PerAct (Shridhar et al., 2023) and use the
‘front rgb’ and ‘wrist rgb’ views. We use C = 16 (C is the
context window of the auto-regressive model). The detailed
task-level configuration is provided below.

Open Drawer. The task is to open one of three drawers.
The success metric is a full extension of the prismatic joint
of the target drawer. We use the ‘front rgb’ and ‘wrist rgb’
views. The context window of the model is C = 16.

Meat off Grill. The task is to take either a piece of chicken
or steak off the grill and put it on the side. The success
metric is the placement of the specified meat on the side,
away from the grill. We use the ‘front rgb’ and ‘wrist rgb’
views. The context window of the model is C = 16.

Turn Tap. The task is to turn either the left or right handle
of the tap. Left and right are defined according to the orien-
tation of the faucet. The success metric is the joint of the
specified handle being at least 90◦ away from the starting
position. We use the ‘front rgb’ and ‘wrist rgb’ views. The
context window of the model is C = 16.

Put Money. The task is to pick up the stack of money and
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Figure 5: Visualization of ARM4R’s 3D Point Track results on randomly chosen Kinova (in-domain) and Open X-
Embodiment (out-of-domain) robot videos.

place it on the specified shelf of a safe. The safe has three
shelves: top, middle, and bottom. The success metric is the
placement of the stack of money on the specified shelf in
the safe. We use the ‘front rgb’ and ‘overhead rgb’ views.

The context window of the model is C = 16.

Push Buttons. The task is to push the colored buttons in the
specified sequence. There are always three buttons present
in the scene, whose colors are sampled from 20 options, and
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the number of buttons to press is between one and three.
The success metric is all specified buttons being pressed in
the right order. We use the ‘front rgb’ and ‘wrist rgb’ views.
The context window of the model is C = 32.

Sweep Dustpan. The task is to sweep the dirt particles
into the specified dustpan. There are two dustpans, one
short and one tall, and both are always present in the scene.
The success metric is all five dirt particles being inside
the specified dustpan. We modified this task by adding a
variation with a different-sized dustpan. We use the ‘front
rgb’ view only, repeated twice, for this task. The context
window of the model is C = 16.

Slide Block. In this task there is a block and four colored
squares in the scene (green, blue, pink, and yellow). The
task is to slide the block onto either the green or pink squares.
The success metric used is some part of the block being on
the specified target square. The original task only had one
target square, and we modified it by adding three additional
colored squares — one target and two distractors. We use
the ‘front rgb’ view only, repeated twice, for this task. The
context window of the model is C = 16.

Close Jar. The task is to screw in the lid on the jar with
the specified color. There are always two colored jars in
the scene, one target jar and one distractor jar. The success
metric used is the lid being on top of the specified jar and
the robot gripper not grasping any object. We modified this
task so that the target jar color is drawn from a list of three
possible colors (red, maroon, and lime ). The color for the
distractor jar was still chosen out of 20 options. We use the
‘front rgb’ and ‘wrist rgb’ views. The context window of the
model is C = 32.

Screw Bulb. There are two bulb holders of different colors,
and the task is to pick up a light bulb from the stand specified
by color and screw it into the bulb stand. The color of the
target holder is sampled from two colors, while the color
of the distractor holder is sampled from the original 20
color options. The success metric used is the bulb from the
specified holder being inside the bulb stand. We modified
this task to use three colors for the target holder (yellow,
purple and silver) rather than 20 as in the original task
specification. We use the ‘front rgb’ and ‘wrist rgb’ views.
The context window of the model is C = 16.

Place Wine. The task is to pick up the wine bottle and place
it at the specified location in a wooden rack. The rack has
three locations: left, middle, and right. The success metric
is the placement of the bottle on the specified location in
the rack. We use the ‘front rgb’ and ‘wrist rgb’ views. The
context window of the model is C = 16.

Reach and Drag. The environment has a cube, a stick, and
four possible colored target squares. The task is to pick up
the stick and use it to drag the cube to the target square of

a specified color. The other three squares are considered
distractors. The success metric used is some part of the
block being inside the target’s area. We modified this task to
sample the target color from a list of three colors (maroon,
magenta, teal). The colors for distractor squares are still
sampled from 20 options. We use the ‘front rgb’ and ‘wrist
rgb’ views. The context window of the model is C = 16.

Stack Blocks . The scene starts with 8 blocks and a green
platform. Four of the blocks are of a target color, and the
other four have a distractor color. The task is to stack N
blocks of the target color on the green platform. The suc-
cess metric is N blocks being inside the area of the green
platform. We use the ‘front rgb’ and ‘wrist rgb’ views. The
context window of the model is C = 16.

D.1. Baselines in Real Experiments

ATM. We reproduce ATM (Wen et al., 2024) as a baseline
for our Kinova real-world experiment setup, following the
provided code and instructions 2. In the first stage, we use
all Kinova robot episodes (5 tasks, each with 200 episodes
per variation) to train a track transformer using ground truth
point tracks generated by Co-Tracker (Karaev et al., 2025).
In the second stage, we take the best checkpoint of the
track transformer to train a policy for each task separately,
consistent with ARM4R’s real-world setup. ATM uses a
7-dimensional joint pose and one-dimensional gripper state
in its policy. To adapt it to our data format, we modify
the implementation to end-effector control, predicting a 3-
dimensional (x, y, z) position, a 4-dimensional quaternion
rotation, and a 1-dimensional gripper state.

OpenVLA. We also test OpenVLA (Kim et al., 2024) on
our Kinova robot setup, following their fine-tuning code and
instructions 3. We fine-tune OpenVLA using LoRA (Hu
et al., 2021), with rank 32 and a batch size of 16, train-
ing until convergence. To adapt OpenVLA to our control
setting, we convert our absolute proprioceptive states to 3-
dimensional delta position and 3-dimensional delta rotation
(Euler angles), with an additional binary gripper dimension.
We subsample our original collected data at a ratio of 10,
since the difference between consecutive steps in the orig-
inal data is too small for delta control, given the accuracy
limit of OpenVLA (10−3).

LLARVA. We reproduce LLARVA (Niu et al., 2024) as a
baseline for our real-world Kinova experiment setup, fol-
lowing the provided code and instructions4. We fine-tune
their released pre-trained checkpoint on our Kinova demon-
strations for single-task policies (5 tasks, each with 200
episodes per variation). We use their default learning rate

2https://github.com/Large-Trajectory-Model/ATM
3https://github.com/openvla/openvla
4https://github.com/Dantong88/LLARVA
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and batch size, and train for 4 epochs for each task.

π0-FAST. We fine-tune π0-FAST as a baseline for our Ki-
nova real-world experiment setup, following the provided
code and instructions5. We use their released base autore-
gressive π0-FAST model for fine-tuning a single-task policy
(200 demonstrations per variation). We use joint position
control instead of joint velocity control, fine-tuning the pre-
trained model to predict the absolute 7-DoF joint pose plus
1-DoF gripper status. We follow the default learning rate
used in their implementation.

E. Real-World Kinova Experiments
E.1. Hardware

Figure 6: The real-world experiment setup of Kinova robot.

For our primary real-world experiments, we use a Kinova
Gen3 7 DoF manipulator with a Robotiq 2F-85 gripper, as
shown in Figure 6. It is mounted on a base that mimics the
human shoulder orientation and height.

We set up two cameras (Logitech BRIO 4K camera) to
observe the table-top manipulation scene. One is mounted
at an ego-centric pose, and the other is mounted on the side
of the table.

We use the MoveIt motion planning framework for inverse
kinematics and end-effector position control. It takes the
end effector position objective from the model, and executes
linear trajectories in the Cartesian space.

E.2. Data Collection

To collect task demonstrations, we develop an automated
data collection procedure to record episodes of these demon-
strations. In this procedure, we give the ground truth loca-
tions of all objects on the table, and procedurally generate

5https://github.com/Physical-Intelligence/openpi

task objectives, demonstrations, and accompanying task
instruction labels. Domain randomization is applied to di-
versify robot home position, grasping approach trajectory,
and target pose.

E.3. Task Building

We build 5 tasks under the Kinova real robot setup. The
configuration of each task and its variations are shown in Fig-
ure 7. The details of each task are described as follows.

Pick Cube. The episode starts with the arm in the home
position. The robot moves to pick up the cube, placed at
a random location on the table within the manipulator’s
workspace. The episode recording stops after the robot
picks up the object and moves up by a certain distance.

Stack Cubes. The episode starts with the arm in the home
position. After picking up the cube from point A as in the
pick cube task, the robot stacks it on another object already
present in the scene at point B according to the instruction.
The episode recording stops after the robot releases the
object and moves up by a certain distance.

Destack Cubes. The episode starts with the arm in the
home position. After picking up the top cube from a stacked
pair at point A as in the grasping task, the robot moves
the grasped cube to another location, point B. The episode
recording stops after the robot releases the object and moves
up by a certain distance.

Pick & Place Toys/Basketball. The episode starts with
the arm in the home position. After picking up the toy
described in the instruction from point A, the robot moves
and places the toy into a bowl or basket at point B. The
episode recording stops after the robot releases the object
and moves up by a certain distance.

Push Buttons. The episode starts with the arm in the home
position. Following the instruction, the arm moves to a
specific height above the assigned button at point A, closes
the gripper, pushes the button, then moves to push another
button at point B. The episode recording stops after the robot
releases the object and moves up by a certain distance.

F. Real-World Franka Experiments
F.1. Hardware

We use a Franka Emika Panda robot with a Franka gripper
for real robot data collection and evaluations. The Log-
itech BRIO 4K cameras positioned to the left and right
of the Franka robot provides double-view RGB (without
depth data) vision input to our model, as shown in Figure 8.
Camera autofocus is disabled, and the data is captured at
640x480 resolution.
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Figure 7: Task building of real-world Kinova setup.

Figure 8: The real-world experiment setup of Franka robot.

F.2. Data Collection

We use the data collection code and process from
https://github.com/Max-Fu/franka-scripted to collect data
for automated tasks. The script generates data for an arbi-
trary number of episodes. For each episode, the process
generates x-y positions on the table plane using a uniform
random distribution for each axis. The script directs the
robot to place the object at each location and then collects
the camera and joint information as the robot is moving.

F.3. Task Building

We build cube tasks under the Franka real robot setup. The
configurations of each task and its variations are shown

in Figure 8. The details of each task are described as follows.

Pick Cube. The episode starts with the arm in the home
position. The robot moves to pick up the cube from point
A. The episode recording stops after the robot picks up the
object and moves up by a certain distance.

Stack Cubes. The episode starts with the arm in the home
position. After picking up the cube from point A as in the
grasping task, the robot stacks it on another object already
present in the scene at point B according to the instruction.
The episode recording stops after the robot releases the
object and moves up by a certain distance.

Destack Cubes. The episode starts with the arm in the
home position. After picking up the top cube from a stacked
pair at point A as in the grasping task, the robot moves
the grasped cube to another location, point B. The episode
recording stops after the robot releases the object and moves
up by a certain distance.
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