
Open Information Extraction via Chunks

Kuicai Dong1,2, Aixin Sun1, Jung-Jae Kim2, Xiaoli Li1,2,3
1 School of Computer Science and Engineering, Nanyang Technological University, Singapore

kuicai001@e.ntu.edu.sg, axsun@ntu.edu.sg
2 Institute for Infocomm Research, A*STAR, Singapore
3 A*STAR Centre for Frontier AI Research, Singapore

{jjkim, xlli}@i2r.a-star.edu.sg

Abstract

Open Information Extraction (OIE) aims to ex-
tract relational tuples from open-domain sen-
tences. Existing OIE systems split a sentence
into tokens and recognize token spans as tuple
relations and arguments. We instead propose
Sentence as Chunk sequence (SaC) and recog-
nize chunk spans as tuple relations and argu-
ments. We argue that SaC has better properties
for OIE than sentence as token sequence, and
evaluate four choices of chunks (i.e., CoNLL
chunks, OIA simple phrases, noun phrases,
and spans from SpanOIE). Also, we propose a
simple end-to-end BERT-based model, Chunk-
OIE, for sentence chunking and tuple extraction
on top of SaC. Chunk-OIE achieves state-of-
the-art results on multiple OIE datasets, show-
ing that SaC benefits the OIE task. Our model
will be publicly available in Github upon paper
acceptance.

1 Introduction

Open Information Extraction (OIE) is to extract
structured tuples from unstructured open-domain
text (Yates et al., 2007). The extracted tuples are in
the form of (Subject, Relation, Object) in the case
of binary relations, and (ARG0, Relation, ARG1,
. . . , ARGn) for n-ary relations. The structured rela-
tional tuples are beneficial to many downstream
tasks, such as question answering (Khot et al.,
2017) and knowledge base population (Martínez-
Rodríguez et al., 2018; Gashteovski et al., 2020).

When observing benchmark OIE datasets, most
relations and their arguments are token spans. As
a domain-independent information extraction task,
OIE does not specify any pre-defined extraction
schema. As a result, determining the granularity
or length of these text spans becomes challenging.
Consequently, many existing OIE systems adopt
tagging-based methods, such as BIO 1 or similar
tagging schemes, to extract tuples at the token level.

1Begin, Inside, and Outside of a subject/relation/object

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounVerb

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounNoun VerbVerb Prep

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounNoun VerbVerb Prep

NounVerb Prep

(a) OIA simple phrases

ADJP

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounVerb

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounNoun VerbVerb Prep

NounVerb Prep

Lily and JimmyMs. Lee the headmaster told she is  for this, ,
NP NP NP NPVPNPVP PP

responsible

O
Lily and JimmyMs. Lee the headmaster told she is  for this, ,

NP NP NP NPONPO O
responsible

(b) Noun phrases (NPs)
ADJP

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounVerb

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,
Noun Noun Noun NounNoun VerbVerb Prep

NounVerb Prep

Lily and JimmyMs. Lee the headmaster told she is  for this, ,
NP NP NP NPVPNPVP PP

responsible

O
Lily and JimmyMs. Lee the headmaster told she is  for this, ,

NP NP NP NPONPO O
responsible

(c) CoNLL-chunked phrases

Figure 1: A sentence in different chunk sequences.

Recently, Sun et al. (2020) and Wang et al.
(2022) propose to use Open Information Annota-
tion (OIA) as an intermediate layer between the
input sentence and OIE tuples. OIA represents a
sentence as a graph where nodes are simple phrases,
and edges connect predicate nodes and their argu-
ment nodes. By employing dataset-specific rules,
these OIA graphs can be transformed into OIE tu-
ples. Nevertheless, accurately generating the com-
plete OIA graph for a given sentence poses a chal-
lenge.

Inspired by OIA, we propose a novel notion of
Sentence as Chunk sequence (SaC), as an alter-
native intermediate layer representation. Chunk-
ing, a form of shallow parsing, divides a sentence
into syntactically related non-overlapping phrases,
known as chunks (Tjong Kim Sang and Buchholz,
2000). For instance, the simple phrases in OIA
can be considered as chunks (Figure 1a). To jus-
tify the adaptability of SaC for OIE, we also em-
ploy other chunking options including Noun Phrase
chunks (Figure 1b) and CoNLL chunks (Figure 1c).
Figure 1 shows an example sentence with differ-
ent chunking schemes. Subsequently, we propose
Chunk-OIE, an end-to-end tagging-based neural
OIE model. Chunk-OIE performs multi-task learn-
ing among two subtasks: (i) to represent sentence
in SaC, and (ii) to extract tuples based on SaC. Our
findings reveal that SaC-based OIE outperforms the



traditional OIE approach representing sentences as
token sequences, particularly when the OIE tuple
relations and arguments align well with the chunks,
as it is often the case.

Our contributions are as follows. Firstly, we pro-
pose a novel notion of Sentence as Chunk sequence
(SaC) for OIE. On top of SaC, we further propose
to simplify token-level dependency structure of sen-
tence into chunk-level dependency structure in or-
der to also encode chunk-level syntactic informa-
tion for OIE. Secondly, we propose Chunk-OIE,
an end-to-end learning model that (i) represents a
sentence as a SaC, and (ii) extracts tuples based on
the SaC. Finally, experimental results show the ef-
fectiveness of Chunk-OIE against strong baselines.
Through data analysis against gold tuples, we show
that chunks provide a suitable granularity of token
spans for OIE.

2 Related Work

OIE Systems. OIE was first proposed by Yates
et al. (2007), and TextRunner is the first system
that generates relational tuples in open domain.
Many statistical and rule-based systems have been
proposed, including ReVerb (Fader et al., 2011),
OLLIE (Mausam et al., 2012), ClausIE (Corro and
Gemulla, 2013), Stanford OIE (Angeli et al., 2015),
OpenIE4 (Mausam, 2016), and MINIE (Gash-
teovski et al., 2017). These models extract rela-
tional tuples based on syntactic structures such as
part-of-speech (POS) tags and dependency trees.

Recently, two kinds of neural systems have
been explored, generative and tagging-based sys-
tems (Zhou et al., 2022). Generative OIE sys-
tems (Cui et al., 2018; Kolluru et al., 2020a; Dong
et al., 2021) model tuple extraction as a sequence-
to-sequence generation task with copying mech-
anism. Tagging-based OIE systems (Stanovsky
et al., 2018; Kolluru et al., 2020b; Kotnis et al.,
2022) tag each token as a sequence labeling task.
SpanOIE (Zhan and Zhao, 2020) uses a different
approach. It enumerates all possible spans (up to
a predefined length) from a sentence. After rule-
based filtering, the remaining candidate spans are
classified to relation, argument, or not part of a
tuple. However, enumerating and filtering all possi-
ble spans for scoring is computationally expensive.

Early neural models typically seldom utilize syn-
tactic structure of sentence, which was required by
traditional models. Recently works show that en-
coding explicit syntactic information benefits neu-

ral OIE as well. RnnOIE (Stanovsky et al., 2018)
and SenseOIE (Roy et al., 2019) encode POS / de-
pendency as additional embedding features. MGD-
GNN (Lyu et al., 2021) connects words, if they are
in dependency relations, in an undirected graph and
applies GAT as its graph encoder. RobustOIE (Qi
et al., 2022) uses paraphrases (with various con-
stituency form) for more syntactically robust OIE
training. SMiLe-OIE (Dong et al., 2022) incor-
porates heterogeneous syntactic information (con-
stituency and dependency graphs) through GCN en-
coders and multi-view learning. Inspired by them,
we design a simple strategy to model dependency
relation at the chunk level. Note that chunks in SaC
partially reflect constituency structure as words in
a chunk are syntactically related, by definition.

Sentence Chunking. Our proposed notion of
SaC is based on the concept of chunking. Chunk-
ing is to group tokens in a sentence into syntac-
tically related non-overlapping groups of words,
i.e., chunks. Sentence chunking is a well studied
pre-processing step for sentence parsing. We can
naturally use the off-the-shelf annotations as exter-
nal knowledge to enhance OIE. The earliest task of
chunking was to recognize non-overlapping noun
phrases (Ramshaw and Marcus, 1995) as exem-
plified in Figure 1b. Then CoNLL-2000 shared
task (Tjong Kim Sang and Buchholz, 2000) pro-
posed to identify other types of chunks such as verb
and prepositional phrases, see Figure 1c.

OIX and OIA. Sun et al. (2020) propose Open
Information eXpression (OIX) to build OIE sys-
tems. OIX is to represent a sentence in an interme-
diate layer, so that reusable OIE strategies can be
developed on OIX. As an implementation, they pro-
pose Open Information Annotation (OIA), which
is a single-rooted directed-acyclic graph (DAG) of
a sentence. Its basic information unit, i.e., graph
node, is a simple phrase. A simple phrase is either
a fixed expression or a phrase. Sun et al. (2020)
define simple phrases to be: constant (e.g., nominal
phrase), predicate (e.g., verbal phrase), and func-
tional (e.g., wh-phrase). Edges in an OIA graph
connect the predicate/function nodes to their argu-
ments. Wang et al. (2022) extend OIA by defining
more simple phrase types and release an updated
version of the OIA dataset. The authors also pro-
pose OIA@OIE, including OIA generator to pro-
duce OIA graphs of sentences, and rule-based OIE
adaptors to extract tuples from OIA graphs.



3 Methodology: Chunk-OIE

3.1 Task Formulation
We formulate the OIE tuple extraction process as
a two-level sequence tagging task. The first level
sequence tagging is to perform sentence chunking
by identifying boundary and type of each chunk,
and representing Sentence as Chunks (SaC). The
second level sequence tagging is to extract OIE
tuples on top of SaC.

Formally, given a sentence with input tokens
st = [t1, . . . , tn], we first obtain the chunk se-
quence sc = [c1, . . . , cm] (m ≤ n) (Section 3.2).
This process can be formulated as two sequence tag-
ging sub-tasks: (i) binary classification for chunk
boundary, and (ii) multi-class classification for
chunk type (See example chunk boundaries and
types in the outputs of “Boundary & Type Tag-
ging" module in Figure 2). Note that tokens at
boundaries are tagged as 1 and non-boundaries
as 0. Subsequently, we perform the tagging on
the chunk sequence [c1, . . . , cm] to extract OIE tu-
ples (Section 3.3). A variable number of tuples
are extracted from a sentence. Each tuple can be
represented as [x1, . . . , xL], where each xi is a con-
tiguous span of chunks, either an exact match or
chunk concatenation. One of xi is a tuple relation
(REL) and the others are tuple arguments (ARGl).
For instance, the tuple in Figure 2 can be repre-
sented as (arg0=‘Ms. Lee’, rel=‘told’, arg1=‘Lily
and Jimmy’). We address the two-level sequence
tagging via multi-task learning (Section 3.4).

3.2 Representing Sentence as Chunks (SaC)
We first use BERT to get the contextual representa-
tions of input tokens [t1, . . . , tn] and then concate-
nate them with the POS representations to obtain
the hidden representations of tokens as follows:

hi = WBERT(ti) +WPOS(pos_type(ti)) (1)

where WBERT is trainable and initialized by
BERT word embeddings, and WPOS is a trainable
embedding matrix for POS types. The function
pos_type(·) returns the POS type of input token.

hi is then passed into tagging layers for chunk
boundary and type classification concurrently.

pbi = softmax(hi ·W T
bound + b1) (2)

pti = softmax(hi ·W T
type + b2) (3)

where pbi and pti are the softmax probabilities for
chunk boundary and type of token ti, respectively.

Then, we chunk the sentence according to the
boundary predictions, i.e., the sentence is chunked
to m pieces if there are m boundary tokens. The
token is marked to be boundary if argmax(pbi) =
1. The type of each chunk is determined by the
type of boundary token, which is argmax(pti). In
overall, we convert the token sequence [t1, . . . , tn]
into chunk sequence [c1, . . . , cm] by SaC.

3.3 SaC-based OIE Extractor

We design SaC-based OIE extractor on top of SaC.
Given the typed chunks inferred by SaC (Sec-
tion 3.2), we convert the BERT token represen-
tations into chunk representations, and encode the
chunk types. Subsequently, we model the chunk
sequence into chunk-level dependency graph. Fi-
nally, we use Graph Convolution Network (GCN)
to get the chunk-level dependency graph represen-
tations. The last tagging layer performs tagging
at the chunk-level to extract OIE tuples, based on
the concatenation of BERT-based and GCN-based
chunk representations.

BERT-based Chunk Encoder. The chunk rep-
resentations are based on the token represen-
tations hi in Equation 1. Also, as each
verb in a sentence is a potential relation in-
dicator, verb embedding is useful to highlight
this candidate relation indicator (Dong et al.,
2022). We follow Dong et al. (2022) to en-
code tokens with additional verb embeddings, i.e.,
htokeni = hi +Wverb(rel_candidate(ti)), where
rel_candidate(ti) returns 1 if ti is the candidate
relation indicator of the instance (otherwise, 0), and
Wverb is a trainable verb embedding matrix.

For a single-token chunk (ci = [tj ]), its chunk
representation hc

′
i is the same as the token rep-

resentation htokenj . For a chunk with multiple
tokens (ci = [tj , . . . , tk]), the chunk represen-
tation hc

′
i is the averaged token representations

(avg([htokenj , . . . , htokenk ]). Moreover, we encode
chunk types with a trainable chunk type embedding
Wchunk for additional type information:

hci = hc
′
i +Wchunk(chunk_type(ci)) (4)

where the function chunk_type(·) returns the type
(e.g., Noun Phrase, Verbal Phrase) of input chunk.

Chunk-level Dependency Graph. Recent stud-
ies show that syntactic structures benefit neural
models for NLP tasks including OIE (Fei et al.,



BERT Encoder

Lee
Ms.

the
headmaster
told

 Jimmy
she
is
responsible
for
this

Lily 
and

Boundary &
 Type Tagging

Lee
Ms.

the
headmaster

told

 Jimmy
she
is

responsible
for
this

Lily 
and

0
1
0
1
1

0
0
1

0
1

1

1
1

Noun

Noun

Noun

Noun

Noun

Verb

Verb

Prep

the 
headmaster

Ms. Lee told Lily and 
Jimmy 

this

forshe

is 
responsible

appos

nsubj dobj

ccomp

prep pobj
nsubj

Dep‐GCN Encoder
Tagging Layer

arg0

rel

arg1

O

O

O

O
O

Chunk‐level 
Dependencies

POS tags

POS 
Embedding

Chunk Encoder

Representing Sentence as Chunks (SaC) SaC‐based OIE

Figure 2: The overview of Chunk-OIE. Punctuation marks in the sentence are neglected for conciseness. Chunk-OIE
is an end-to-end model with (i) representing Sentence as Chunks (SaC) and (ii) SaC-based OIE tuple extraction.

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,

nsubj
dobj

ccomp
compound

apposdet

conj
cc

nsubj acomp prep pobj

nsubj

appos

ccomp
dobj nsubj prep pobj

Noun Noun Noun NounVerbNounVerb Prep

(a) Dependency tree (results from spaCy).

LeeMs. the headmaster, told, Lily and Jimmy she is responsible for this

Lily and JimmyMs. Lee the headmaster told she is responsible for this, ,

nsubj
dobj

ccomp
compound

apposdet

conj
cc

nsubj acomp prep pobj

nsubj

appos

ccomp
dobj nsubj prep pobj

Noun Noun Noun NounVerbNounVerb Prep

(b) Dependency tree at chunk level with OIA-SP.

Figure 3: Dependency trees at token-level and chunk-
level (in OIA simple phrases), respectively. Note that
we use spaCy to extract the dependency relations for
sentences.

2021; Dong et al., 2022). Thus, given the sen-
tence represented in SaC, we model the depen-
dency structure of input sentence at chunk level.
For this purpose, we convert a token-level depen-
dency structure to that of a chunk level by ignoring
intra-chunk dependencies and retaining inter-chunk
dependencies. Figure 3 shows the chunk-level de-
pendency tree of the example sentence in Figure 1
(with OIA simple phrases as chunks) and its depen-
dency tree at word level.

The chunk-level dependency graph is formulated
as G = (C,E), where the nodes in C correspond
to chunks [c1, . . . , cm] and eij in E equals to 1 if
there is a dependency relation between a token in
node ci and a token in node cj ; otherwise, 0. Each
node ci ∈ C has a node type. We label a node with
the type of the dependency from the node to its
parent node. Notice that SaC greatly simplifies the
modelling of sentence syntactic structure.

Dependency Graph Encoder. Given the chunk-
level dependency graph G = (C,E), we use
GCN to encode the chunk-level dependency struc-
ture. We compute the node type embedding
li = Wdep(dep_type(ci)) with a trainable matrix
Wdep ∈ Rdl×Ndep , where dl is the embedding
dimension and Ndep is the number of unique de-
pendency relations. The function “dep_type(·)”
returns input chunk type. Subsequently, we use
GCN to encode G with representations as follows:

hdepi = ReLU
( m∑

j=1

αij(h
c
j +Wl · lj + b3)

)
(5)

where m refers to the total number of chunk nodes
in G, Wl ∈ Rdh×dl is a trainable weight matrix
for dependency type embeddings, and b ∈ Rdh is
the bias vector. The neighbour connecting strength
distribution αij is calculated as below:

αij =
eij · exp

(
(mi)

T ·mj

)∑m
k=1 eik · exp

(
(mi)T ·mk

) (6)

where mi = hci ⊕ li, and ⊕ is concatenation oper-
ator. In this way, node type and edge information
are modelled in a unified way.

For OIE extraction, we aggregate chunk repre-
sentations from the BERT-based representations in
Equation 4 and from the GCN-based representa-
tions in Equation 5. We then pass them into tagging
layers for OIE span classification.

poiei = softmax((hdepi + hci ) ·W T
OIE + b4) (7)

3.4 Multi-task Learning Objective
As mentioned, we perform the two-level sequence
tagging of sentence chunking and OIE extraction.



We combine losses from SaC and OIE tagging to
jointly optimize the Chunk-OIE model.

For SaC, considering that boundary and type
classification are complementary to each other, we
combine the following cross-entropy losses:

Lbound = −
n∑

i=1

ybi log(p
b
i) + (1− ybi )log(1− pbi)

(8)

Ltype = −
n∑

i=1

c1∑
j=1

yti,j log(p
t
i,j) (9)

Lchunk = αLbound + (1− α)Ltype (10)

where yb and yt are gold labels for chunk boundary
and type, respectively. pb and pt are the softmax
probabilities for chunk boundary and type tagging
obtained from Equatios 2 and 3, respectively. c1
refers to the number of unique chunk types. α is a
hyperparameter balancing the two losses.

For OIE, the gold labels are provided at token
level, whereas our predicted labels are at chunk
level. To enable evaluation of the generated chunk-
level tuples against the token-level gold labels, we
assign the predicted probability of a multi-token
chunk to all its member tokens. The correspond-
ing cross-entropy loss is computed between the
predicted and the gold OIE tags:

LOIE = −
n∑

i=1

c2∑
j=1

yoiei,j log(p
oie
i,j ) (11)

where yoie is the gold label, and poie is the softmax
probability obtained from Equation 7. c2 is the
number of unique OIE span classes.

Finally, we combine losses from Equations 11
and 12, and minimize the following multi-task
learning loss:

Lmulti = βLchunk + (1− β)LOIE (12)

where β is a hyperparameter balancing the chunk-
ing and OIE losses. More training details are in
Appendix A.2.

4 Experiments

4.1 Chunk-OIE Setups
OIE Dataset. We conduct experiments on four
datasets: the two LSOIE datasets (Solawetz and
Larson, 2021), CaRB (Bhardwaj et al., 2019), and
BenchIE (Gashteovski et al., 2022). More details
for the OIE train/test sets are in Appendix A.6.

LSOIE is a large-scale OIE dataset converted
from QA-SRL 2.0 in two domains, i.e., Wikipedia
and Science. It is 20 times larger than the next
largest human-annotated OIE data, and thus is reli-
able for fair evaluation. LSOIE provides n-ary OIE
tuples in the (ARG0, Relation, ARG1, . . . , ARGn)
format. We use both datasets, namely LSOIE-wiki
and LSOIE-sci, for comprehensive evaluation.

CaRB dataset is the largest crowdsourced OIE
dataset. CaRB provides 1,282 sentences with bi-
nary tuples. The gold tuples are in the (Subject,
Relation, Object) format.

BenchIE dataset supports a comprehensive eval-
uation of OIE systems for English, Chinese, and
German. BenchIE provides binary OIE annota-
tions and gold tuples are grouped according to fact
synsets. In our experiment, we use the English
corpus with 300 sentences and 1,350 fact synsets.

Note that the multi-task training requires both
chunking and OIE labels of ground-truth. However,
chunking labels are not present in OIE datasets.
We construct chunk labels for the OIE datasets
used in our experiment (in Section 4.2).

Evaluation Metric. For LSOIE-wiki and LSOIE-
sci datasets, we follow Dong et al. (2022) to use ex-
act tuple matching. A predicted tuple is counted as
correct if its relation and all its arguments are iden-
tical to those of a gold tuple; otherwise, incorrect.
For the CaRB dataset, we use the scoring function
provided by authors (Bhardwaj et al., 2019), which
evaluates binary tuples with token level matching,
i.e., partial tuple matching. The score of a pre-
dicted tuple ranges from 0 to 1. For the BenchIE
dataset, we also adopt the scoring function pro-
posed by authors (Gashteovski et al., 2022), which
evaluates binary tuples with fact-based matching.
A predicted tuple is counted as correct if it exactly
matches to one fact tuple, and otherwise incorrect.

4.2 Chunk Choices and Labels Construction

SaC is to represent a sentence in syntactically re-
lated and non-overlapping chunks. However, there
is no standard definition on what word groups
should be chunked, though SaC can be achieved by
any chunking scheme. We use four types of chunks
to realize SaC. Also, we construct the chunking la-
bels among OIE datasets through (i) our pre-trained
chunking model or (ii) existing parser.

CoNLL chunks. The CoNLL-2000 (Tjong
Kim Sang and Buchholz, 2000) chunking task de-
fines 11 chunk types based on Treebank (Bies et al.,



Models LSOIE-wiki LSOIE-sci CaRB BenchIE
F1 AUC F1 AUC F1 AUC F1 Pr Re

Token-level OIE Systems
CopyAttention (Cui et al., 2018) 39.5† 35.9† 48.8† 46.8† 51.6‡ 32.8‡ 21.5 26.4 17.5
IMoJIE (Kolluru et al., 2020a) 49.2† 47.5† 58.7† 55.8† 53.5‡ 33.3‡ 18.4 38.3 12.1
CIGL-OIE (Kolluru et al., 2020b) 44.7† 41.9† 56.6† 52.3† 54.0‡ 35.7‡ 25.4§ 31.1§ 21.4§

BERT (Solawetz and Larson, 2021) 47.5† 44.7† 57.0† 53.2† 51.4† 30.6† 23.1 32.5 17.9
BERT+Dep-GCN (Dong et al., 2022) 48.7† 47.9† 58.1† 55.3† 52.5† 32.9† 25.1 35.3 19.5
SMiLe-OIE (Dong et al., 2022) 51.7† 50.8† 60.5† 57.2† 53.8† 34.9† 25.7 37.5 19.6

Chunk-level OIE Systems
SpanOIE (Zhan and Zhao, 2020) 47.5 - 57.5 - 49.4‡ - 23.4 38.1 16.9
OIE@OIA (Wang et al., 2022) - - - - 52.3∗ 32.6∗ - - -

Chunk-OIE
with various
SaC choice

NPshort (2-stage) 50.7 48.9 60.3 58.4 53.0 33.8 25.3 40.2 18.5
NPshort (end-to-end) 51.0 49.1 60.1 58.8 52.0 33.5 25.1 40.5 18.2
NPlong (2-stage) 48.5 46.4 57.2 56.7 50.9 31.7 23.4 35.1 17.6
NPlong (end-to-end) 49.4 48.2 58.0 57.3 51.5 32.1 24.3 36.8 18.2
OIA-SP (2-stage) 52.1 50.4 61.2 60.1 53.6 35.5 26.7 41.5 19.7
OIA-SP (end-to-end) 52.1 51.0 61.0 60.4 54.2 35.2 27.2 42.4 20.1
CoNLL (2-stage) 52.6 50.2 60.8 60.2 53.2 34.7 26.9 42.0 19.8
CoNLL (end-to-end) 52.8 50.5 61.5 59.7 53.5 34.0 26.9 42.7 19.6

Table 1: Results on four OIE datasets (best scores in boldface and second best underlined). Scores with special
mark are from (Kolluru et al., 2020b)‡, (Gashteovski et al., 2022)§, (Wang et al., 2022)∗, (Dong et al., 2022)†.

1995). We train our own CoNLL-style chunking
model, as described in Appendix A.3.

OIA simple phrases (OIA-SP). The OIA sim-
ple phrases has 6 types defined by Wang et al.
(2022). We also train our own OIA-style chunking
model, as described in Appendix A.3.

NP chunks. In this scheme, the tokens of a
sentence are tagged with binary phrasal types: NP
and O, where O refers to the tokens that are not
part of any noun phrases. We notice that there often
exists nested NP. Accordingly, we create two types
of NP chunks, i.e., NPshort and NPlong. For example,
the phrase “Texas music player” is a nested NP.
NPlong will treat it as a single NP, whereas NPshort
will split it to “Texas” and “music player” as two
NPs. We use Stanford constituency parser to get
NP chunks.

SpanOIE spans. SpanOIE (Zhan and Zhao,
2020) enumerates all possible spans of a sentence,
up to 10 words. To reduce the number of candidate
spans, it keeps only the spans with certain syntactic
dependency patterns.

The total numbers, and average lengths of the
chunks of the four types and of the gold spans of
the four datasets are listed in Table 2.

4.3 OIE systems for Comparison
Token-level OIE systems. CopyAttention (Cui
et al., 2018) is the first neural OIE model which
casts tuple generation as a sequence generation task.
IMOJIE (Kolluru et al., 2020a) extends CopyAtten-

Spans/Chunks Number of Spans Average Length

Gold Spans 76,176 4.40

CoNLL 339,099 1.62
OIA-SP 307,505 1.77
NPshort 335,939 1.53
NPlong 225,796 2.28
SpanOIE 1,995,281 4.34

Table 2: Number and average length of gold tuple spans,
proposed phrases for SaC, and SpanOIE spans.

tion and produces a variable number of extractions
per sentence. It iteratively generates the next tu-
ple, conditioned on all previously generated tuples.
CIGL-OIE (Kolluru et al., 2020b) models OIE as a
2-D grid sequence tagging task and iteratively tags
the input sentence until the number of extractions
reaches a pre-defined maximum. Another base-
line, BERT (Solawetz and Larson, 2021), utilizes
BERT and a linear projection layer to extract tuples.
SMiLe-OIE (Dong et al., 2022) explicitly models
dependency and constituency graphs using multi-
view learning for tuple extractions. BERT+Dep-
GCN is a baseline used in Dong et al. (2022), which
encodes semantic and syntactic information using
BERT and Dependency GCN encoder. It is the
closest baseline to our Chunk-OIE. The difference
is that Chunk-OIE encodes dependency structure
at chunk level and the chunks partially reflect the
sentence syntactic information.



Chunk-level OIE systems. SpanOIE (Zhan and
Zhao, 2020) enumerates all possible spans from a
given sentence and filters out invalid spans based on
syntactic rules. Each span is subsequently scored
to be relation, argument, or not part of a tuple.
OIE@OIA (Wang et al., 2022) is a rule-based sys-
tem that utilizes OIA graph. As the nodes of OIA
graph are simple phrases (i.e., chunks), we consider
OIE@OIA as a chunk-level OIE system.

Chunk-OIE is our proposed model that is based
on SaC for tuple extraction. To explore the effect
of different chunks in SaC, we implement four vari-
ants: Chunk-OIE (NPshort), Chunk-OIE (NPlong),
Chunk-OIE (OIA-SP), and Chunk-OIE (CoNLL).
Besides the end-to-end Chunk-OIE proposed in
Section 3, we also experiment on variants that con-
duct two-stage training, i.e., the SaC part is pre-
trained with chunking dataset and frozen during
the training of OIE tuple extraction (more details
about 2-stage Chunk-OIE are in Appendix A.5).

4.4 Main Results

Experimental results in Table 1 show that Chunk-
OIE, in particular its Sac-OIA-SP and SaC-
CoNLL variants, achieve state-of-the-art results
on three OIE datasets: LSOIE-wiki, LSOIE-sci,
and BenchIE. Meanwhile, their results on CaRB
are comparable with baselines. We evaluate the
statistical significance of Chunk-OIE against its
token-level baseline based on their F1’s (each ex-
periment is repeated three times with different ran-
dom seeds). The p-values for Chunk-OIE (OIA-SP)
and Chunk-OIE (CoNLL) are 0.0021 and 0.0027,
indicating both results are significant at p < 0.01.

Comparing to token-level system: Chunk-OIE
surpasses its token-level counterpart BERT+Dep-
GCN on all the four datasets. Note that both
Chunk-OIE and BERT+Dep-GCN rely on BERT
and Dependency GCN encoder; the only differ-
ence is the input unit, i.e., chunks for Chunk-OIE
and tokens for BERT+Dep-GCN. Consequently,
we suggest using chunks is more suitable to OIE.
We observe SMiLe-OIE is a strong baseline. It
explicitly models additional constituency informa-
tion and the multi-view learning is computational
complex. Comparing to it, Chunk-OIE is simple
yet effective. CIGL-OIE performs good on CaRB
dataset. It adopts coordination boundary analysis
to split tuples with coordination structure, which
well aligns with the annotation guidelines of CaRB
dataset, but not with the guidelines of the LSOIE

Chunk-OIE LSOIE-wiki LSOIE-sci
F1 AUC F1 AUC

OIA-SP 52.1 50.4 61.2 60.1
– w/o Dep-GCN 51.3 50.2 59.0 57.8
– w/o Chunk type 50.7 49.8 59.7 58.1

CoNLL 52.6 50.2 60.8 60.2
– w/o Dep-GCN 52.0 49.6 58.4 58.7
– w/o Chunk type 50.4 49.1 59.8 58.5

Table 3: Ablation study of Chunk-OIE.

Scenario Example

Match Exact

source of observed increase in trade

an emissions trading system

the editor of the journal

Concat.

source of observed increase in trade

an emissions trading system

the editor of the journal

Mismatch Overlap observed increase in trade

an emissions trading system

the editor of the journal

water dissolves minerals
NoOverlap

observed increase in trade

an emissions trading system

the editor of the journal

water dissolves minerals

Table 4: Four scenarios for matching a gold tuple span
(in blue) to a generated chunk (in green).

and BenchIE datasets. In Chunk-OIE, SaC treats
chunks with coordination (e.g., “Lily and Jimmy”)
as a single unit, resulting in poor scores in such
cases. Except on CaRB, CIGL-OIE cannot gener-
alize well to other datasets.

Comparing to Chunk-level system: Chunk-
OIE with OIA-SP and CoNLL chunking schemes
outperform the other two variants with NPshort
and NPlong for all the four datasets. This indi-
cates that multi-label chunking is more effective
for the chunk-level OIE than simply recognizing
noun phrases in a sentence. And, Chunk-OIE with
NPshort outperforms Chunk-OIE with NPlong for
all the four datasets, which may reflect the fact
that OIE tuple arguments are often simple noun
phrases rather than cascaded noun phrases. How-
ever, Chunk-OIE with OIA-SP and CoNLL chunk-
ing schemes show comparable performance.

Chunk-OIE achieves better results than
SpanOIE, indicating that SaC is more reasonable
than the spans enumerated by SpanOIE. Note that
OIE@OIA generates tuples with rules manually
crafted for OIE2006 and CaRB datasets. Also,
the authors have not released source code of their
rules. Therefore, OIE@OIA cannot be evaluated
on LSOIE-wiki, LSOIE-sci, and BenchIE.

Chunk-OIE: 2-stage versus end-to-end: We
notice that Chunk-OIE trained end-to-end achieves
slightly better performance than Chunk-OIE with
2-stage training. This indicates that learning of
sentence chunking can benefit OIE learning.



Match Case
Chunk CoNLL OIA-SP NPshort NPlong SpanOIE

Percent Lp Percent Lp Percent Lp Percent Lp Percent Lp
Pr

ec
is

io
n Match 51.0% 1.8 49.7% 2.0 49.0% 1.7 40.5% 2.3 3.3% 3.5

-Exact 8.4% 2.3 10.2% 2.5 7.2% 2.1 11.0% 3.4 3.3% 3.5
-Concatenation 42.6% 1.7 39.5% 1.9 41.8% 1.6 29.5% 1.9 - -

Mismatch-NoOverlap 49.0% 1.4 50.3% 1.6 51.0% 1.4 59.5% 2.3 96.7% 4.4

Matching case Percent Ls Percent Ls Percent Ls Percent Ls Percent Ls

R
ec

al
l Match 90.5% 4.4 89.9% 4.5 79.7% 4.3 58.7% 4.7 86.0% 3.3

-Exact 45.7% 2.3 48.9% 2.5 37.1% 2.1 36.7% 3.4 86.0% 3.3
-Concatenation 44.8% 6.4 41.0% 6.8 42.6% 6.2 22.0% 7.1 - -

Mismatch-Overlap 9.5% 4.3 10.1% 3.6 20.3% 4.4 41.3% 4.1 14.0% 12.7

Table 5: Precision and Recall Analysis. Ls and Lp are length of gold spans and generated chunks, respectively. For
each type of match/mismatch case, the highest score is in boldface and second highest score is underlined.

Candidate chunks Precision Recall F1

CoNLL 51.0 90.5 65.2
OIA-SP 49.7 89.9 64.0
NPshort 49.0 79.7 60.7
NPlong 40.5 58.7 47.9
SpanOIE 3.3 86.0 6.4

Table 6: Precision, Recall, and F1 of generated chunks;
best scores are in boldface, second best underlined.

4.5 Ablation Study

We ablate each part of Chunk-OIE (OIA-SP,
CoNLL), and evaluate the ablated models on
LSOIE-wiki and LSOIE-sci. The results are re-
ported in Table 3. We first remove the dependency
graph encoder. In this setting, chunking representa-
tion obtained in Equation 4 is directly used for tuple
extraction. Results show that removing chunk level
dependencies decreases the performance of Chunk-
OIE, indicating the importance of chunk-level de-
pendency relations. To explore the importance of
chunk type, we ablate the chunk type embedding
as described in Equation 4. Observe that this also
leads to performance degradation.

4.6 Boundary Analysis on SaC

It is critical to understand the suitability of adopting
chunks as the granularity for OIE. In this section,
we perform boundary alignment analysis of SaC
against gold spans in a benchmark OIE dataset
named LSOIE. Gold Spans are the token spans of
tuple arguments / relations in ground truth anno-
tations. We analyze CoNLL chunks, OIA simple
phrases, NP chunks, and SpanOIE spans as de-
scribed in Section 4.2.

The boundary alignment analysis is conducted
from two perspectives. (1) Precision: How often
do the boundaries of SaC chunks match those of

gold spans? (2) Recall: How often do the bound-
aries of gold spans match those of SaC chunks?
There are four scenarios of boundary alignment,
as exemplified in Table 4. Match-Exact: A gold
span is exactly matched to a chunk span. Match-
Concatenation: A gold span is mapped to multiple
chunks in a consecutive sequence.2 Mismatch-
Overlap: A chunk overlaps with a gold span, and
at least one token of the chunk is not in the gold
span. Mismatch-NoOverlap: A chunk does not
overlap with any gold span.

We show the precision and recall analysis of
four boundary alignment scenarios in Table 5 and
summarize the overall scores in Table 6. Observe
that CoNLL chunks and OIA simple phrases show
higher precision and recall of the Match bound-
ary alignment than the other chunks. We note
that the boundary alignment of CoNLL chunks to
LSOIE is better than that of OIA simple phrases
to LSOIE, but the two Chunk-OIE variants with
CoNLL chunks and with OIA simple phrases show
comparable performance. This may indicate that
the precision and recall analysis of boundary align-
ment is ‘generally good’ but not ‘precise’ indicator
for Chunk-OIE performance. We also note that
SpanOIE has only 3.3% of precision, indicating
that enumerating all possible spans should bear
heavy burden to detect correct spans.

5 Conclusion

We propose Sentence as Chunk sequence (SaC) as
an intermediate layer for OIE tuple extraction. We
then propose Chunk-OIE, by leveraging SaC and
chunk-level dependencies, achieves state-of-the-art
results on several OIE datasets. We experiment on

2This is not applicable to SpanOIE, since it emulates all
possible spans; if there is a match, it should be an exact match.



Chunk-OIE with various chunk choices as SaC, and
perform detailed statistical study to understand to
what extent these chunks align with OIE gold tuple
spans, and how the boundary alignment impacts
the overall OIE performance.. We indicate that
CoNLL and OIA-SP chunks have better boundary
alignment with OIE gold tuple spans than noun
phrases, and Chunk-OIE adopting them as SaC
achieves best results. In our future work, we aim
to build upon SaC to develop even more effective
OIE models.

Acknowledgments

This research is supported by the Agency for Sci-
ence, Technology and Research (A*STAR) under
its AME Programmatic Funding Scheme (Project
#A18A2b0046 and #A19E2b0098).

Limitations

The limitations of Chunk-OIE are analyzed from
three perspectives: SaC chunking errors, syntac-
tic parsing errors, and multiple extractions issue.
(1) Both CoNLL-chunked phrases and OIA simple
phrases suffer around 10% boundary violations as
shown in Table 5 (under Recall analysis). Since
we use SaC as intermediate layer for OIE and per-
form tagging at chunk level, the chunk boundaries
become a hard constraint of the extracted tuples.
Among these violations, we examine 100 examples
of OIA simple phrases and find that 55% of these vi-
olations are caused by chunking errors due to some
complicated sentence structures. The rest is mainly
caused by tuple annotation errors, meaning that
all OIE systems will suffer from these annotation
errors. (2) Chunk-OIE relies on the chunk-level
dependency relations as additional syntactic knowl-
edge. Therefore, Chunk-OIE will inevitably suffer
from the noises introduced by the off-the-shelf de-
pendency parsing tools. Also, we use POS tagger
to extract all verbs in the sentence as tuple rela-
tion indicators. It is reported that the POS tagger
fails to extract 8% of verbs that are suppose to be
relation indicators (Dong et al., 2022). Therefore,
the discrepancy between POS verbs and tuple re-
lations may affect the OIE quality. (3) Moreover,
there are 6% of relation indicators corresponding
to multiple tuple extractions (one verb leading to
more than one tuple), while our system extracts up
to one tuple per relation indicator.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 344–354,
Beijing, China. Association for Computational Lin-
guistics.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam
Mausam. 2019. CaRB: A crowdsourced benchmark
for open IE. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6262–6267, Hong Kong, China. Association
for Computational Linguistics.

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995. Brack-
eting guidelines for treebank ii style penn treebank
project.

Luoxin Chen, Xinyue Liu, Weitong Ruan, and Jianhua
Lu. 2020. Enhance robustness of sequence labelling
with masked adversarial training. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 297–302, Online. Association for Com-
putational Linguistics.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In 22nd
International World Wide Web Conference, WWW
’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages
355–366. International World Wide Web Conferences
Steering Committee / ACM.

Lei Cui, Furu Wei, and Ming Zhou. 2018. Neural open
information extraction. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 407–413,
Melbourne, Australia. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.18653/v1/D19-1651
https://doi.org/10.18653/v1/D19-1651
https://doi.org/10.18653/v1/2020.findings-emnlp.28
https://doi.org/10.18653/v1/2020.findings-emnlp.28
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.18653/v1/P18-2065
https://doi.org/10.18653/v1/P18-2065
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Kuicai Dong, Aixin Sun, Jung-Jae Kim, and Xiaoli Li.
2022. Syntactic multi-view learning for open infor-
mation extraction. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, Online. Association for Computational
Linguistics.

Kuicai Dong, Zhao Yilin, Aixin Sun, Jung-Jae Kim,
and Xiaoli Li. 2021. DocOIE: A document-level
context-aware dataset for OpenIE. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2377–2389, Online. Association
for Computational Linguistics.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1535–1545, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Hao Fei, Shengqiong Wu, Yafeng Ren, Fei Li, and
Donghong Ji. 2021. Better combine them together!
integrating syntactic constituency and dependency
representations for semantic role labeling. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 549–559, Online. Associa-
tion for Computational Linguistics.

Kiril Gashteovski, Rainer Gemulla, and Luciano del
Corro. 2017. MinIE: Minimizing facts in open in-
formation extraction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2630–2640, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Kiril Gashteovski, Rainer Gemulla, Bhushan Kotnis,
Sven Hertling, and Christian Meilicke. 2020. On
aligning OpenIE extractions with knowledge bases:
A case study. In Proceedings of the First Work-
shop on Evaluation and Comparison of NLP Systems,
pages 143–154, Online. Association for Computa-
tional Linguistics.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Mathias Niepert, and Goran Glavaš.
2022. BenchIE: A framework for multi-faceted fact-
based open information extraction evaluation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4472–4490, Dublin, Ireland. As-
sociation for Computational Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 311–316,
Vancouver, Canada. Association for Computational
Linguistics.

Keshav Kolluru, Samarth Aggarwal, Vipul Rathore,
Mausam, and Soumen Chakrabarti. 2020a. IMoJIE:

Iterative memory-based joint open information ex-
traction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5871–5886, Online. Association for Computa-
tional Linguistics.

Keshav Kolluru, Adlakha Vaibhav, Samarth Aggarwal,
Mausam, and Soumen Chakrabarti. 2020b. OpenIE6:
Iterative Grid Labeling and Coordination Analysis for
Open Information Extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3748–3761,
Online. Association for Computational Linguistics.

Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Am-
mar Shaker, Vanesa Rodriguez-Tembras, Makoto
Takamoto, Mathias Niepert, and Carolin Lawrence.
2022. MILIE: Modular & iterative multilingual open
information extraction. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6939–
6950, Dublin, Ireland. Association for Computational
Linguistics.

Zhiheng Lyu, Kaijie Shi, Xin Li, Lei Hou, Juanzi Li,
and Binheng Song. 2021. Multi-grained dependency
graph neural network for chinese open information
extraction. In Advances in Knowledge Discovery
and Data Mining, pages 155–167, Cham. Springer
International Publishing.

José-Lázaro Martínez-Rodríguez, Ivan López-Arévalo,
and Ana B. Ríos-Alvarado. 2018. Openie-based ap-
proach for knowledge graph construction from text.
Expert Syst. Appl., 113:339–355.

Mausam. 2016. Open information extraction systems
and downstream applications. In Proceedings of the
Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2016, New York, NY, USA, 9-
15 July 2016, pages 4074–4077. IJCAI/AAAI Press.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 523–534, Jeju Island,
Korea. Association for Computational Linguistics.

Ji Qi, Yuxiang Chen, Lei Hou, Juanzi Li, and Bin
Xu. 2022. Syntactically robust training on partially-
observed data for open information extraction. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Arpita Roy, Youngja Park, Taesung Lee, and Shimei Pan.
2019. Supervising unsupervised open information ex-
traction models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference

https://doi.org/10.18653/v1/2021.findings-acl.210
https://doi.org/10.18653/v1/2021.findings-acl.210
https://www.aclweb.org/anthology/D11-1142
https://www.aclweb.org/anthology/D11-1142
https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/2020.eval4nlp-1.14
https://doi.org/10.18653/v1/2020.eval4nlp-1.14
https://doi.org/10.18653/v1/2020.eval4nlp-1.14
https://doi.org/10.18653/v1/2022.acl-long.307
https://doi.org/10.18653/v1/2022.acl-long.307
https://doi.org/10.18653/v1/P17-2049
https://doi.org/10.18653/v1/P17-2049
https://doi.org/10.18653/v1/2020.acl-main.521
https://doi.org/10.18653/v1/2020.acl-main.521
https://doi.org/10.18653/v1/2020.acl-main.521
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://doi.org/10.18653/v1/2022.acl-long.478
https://doi.org/10.18653/v1/2022.acl-long.478
https://doi.org/10.1016/j.eswa.2018.07.017
https://doi.org/10.1016/j.eswa.2018.07.017
http://www.ijcai.org/Abstract/16/604
http://www.ijcai.org/Abstract/16/604
https://www.aclweb.org/anthology/D12-1048
https://www.aclweb.org/anthology/D12-1048
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
https://doi.org/10.18653/v1/D19-1067
https://doi.org/10.18653/v1/D19-1067


on Natural Language Processing (EMNLP-IJCNLP),
pages 728–737, Hong Kong, China. Association for
Computational Linguistics.

Jacob Solawetz and Stefan Larson. 2021. LSOIE: A
large-scale dataset for supervised open information
extraction. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2595–2600,
Online. Association for Computational Linguistics.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 885–895,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Mingming Sun, Wenyue Hua, Zoey Liu, Xin Wang,
Kangjie Zheng, and Ping Li. 2020. A Predicate-
Function-Argument Annotation of Natural Language
for Open-Domain Information eXpression. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 2140–2150, Online. Association for Computa-
tional Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task chunking.
In Fourth Conference on Computational Natural Lan-
guage Learning and the Second Learning Language
in Logic Workshop.

Xin Wang, Minlong Peng, Mingming Sun, and Ping Li.
2022. OIE@OIA: an adaptable and efficient open
information extraction framework. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6213–6226, Dublin, Ireland. Association for
Computational Linguistics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated concatenation of embeddings for struc-
tured prediction. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2643–2660, Online. Association for
Computational Linguistics.

Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev.
2018. Robust multilingual part-of-speech tagging
via adversarial training. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 976–986, New Orleans, Louisiana. Association
for Computational Linguistics.

Alexander Yates, Michele Banko, Matthew Broadhead,
Michael Cafarella, Oren Etzioni, and Stephen Soder-
land. 2007. TextRunner: Open information extrac-

tion on the web. In Proceedings of Human Lan-
guage Technologies: The Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL-HLT), pages 25–26,
Rochester, New York, USA. Association for Compu-
tational Linguistics.

Junlang Zhan and Hai Zhao. 2020. Span model for open
information extraction on accurate corpus. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 9523–
9530. AAAI Press.

Shaowen Zhou, Bowen Yu, Aixin Sun, Cheng Long,
Jingyang Li, and Jian Sun. 2022. A survey on neural
open information extraction: Current status and fu-
ture directions. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 5694–5701. International
Joint Conferences on Artificial Intelligence Organi-
zation. Survey Track.

A Appendix

A.1 Implementation Details and Resources
We build and run our system with Pytorch 1.9.0 and
AllenNLP 0.9.0 framework. The experiments are
conducted with RTX 24GB 3090 GPU and Intel®

Xeon® W-2245 3.90GHz CPU. Each epoch takes
roughly 20 minutes for training on a single RTX
24GB 3090 GPU. We run each experiment with
three random seeds and report the averaged results.
We use NLP toolkit spaCy3 to extract the POS tags
and dependency relations for sentences. In addi-
tion, we obtain constituency parsing results through
Stanford CoreNLP4 and use the noun phrases to
create NP-chunked phrases as part of our phrase
selection exploration. The hidden dimension dh for
BERT representation hberti , chunked phrase repre-
sentation hpi , and Dep-GCN graph representation
hdepi are all set to 768. The hidden dimension dl
for Dep-Encoder type embedding ldepi is 400.

The datasets, and their corresponding scoring
scripts if applicable, used in this study are listed in
Table 7. The table also list the source code URLs
of the baseline models.

A.2 Multi-Task Training
The multi-task training is elaborated in Algo-
rithm 1. Inputs are the sentence with tokens st =
[t1, . . . , tn], its chunk boundary labels [yb1, . . . , y

b
n],

3https://spacy.io/
4https://stanfordnlp.github.io/CoreNLP/

https://doi.org/10.18653/v1/2021.eacl-main.222
https://doi.org/10.18653/v1/2021.eacl-main.222
https://doi.org/10.18653/v1/2021.eacl-main.222
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/2020.emnlp-main.167
https://doi.org/10.18653/v1/2020.emnlp-main.167
https://doi.org/10.18653/v1/2020.emnlp-main.167
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://doi.org/10.18653/v1/2022.acl-long.430
https://doi.org/10.18653/v1/2022.acl-long.430
https://doi.org/10.18653/v1/2021.acl-long.206
https://doi.org/10.18653/v1/2021.acl-long.206
https://doi.org/10.18653/v1/N18-1089
https://doi.org/10.18653/v1/N18-1089
https://www.aclweb.org/anthology/N07-4013
https://www.aclweb.org/anthology/N07-4013
https://aaai.org/ojs/index.php/AAAI/article/view/6497
https://aaai.org/ojs/index.php/AAAI/article/view/6497
https://doi.org/10.24963/ijcai.2022/793
https://doi.org/10.24963/ijcai.2022/793
https://doi.org/10.24963/ijcai.2022/793
https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/


Dataset Resource URL

CoNLL-2000 (Tjong Kim Sang and Buchholz, 2000) https://www.clips.uantwerpen.be/conll2000/chunking/
OIA dataset v1.1 (Wang et al., 2022) https://github.com/baidu-research/oix
LSOIE dataset (Solawetz and Larson, 2021) https://github.com/Jacobsolawetz/large-scale-oie
CaRB dataset and scoring code (Bhardwaj et al., 2019) https://github.com/dair-iitd/CaRB
BenchIE and scoring code (Gashteovski et al., 2022) https://github.com/gkiril/benchie

Model Source code URL

BERT(base-uncased) (Devlin et al., 2019) https://huggingface.co/bert-base-uncased
CopyAttention (Cui et al., 2018) https://github.com/dair-iitd/imojie
IMoJIE (Kolluru et al., 2020a) https://github.com/dair-iitd/imojie
SpanOIE (Zhan and Zhao, 2020) https://github.com/zhanjunlang/Span_OIE
CIGL-OIE (Kolluru et al., 2020b) https://github.com/dair-iitd/openie6
SMiLe-OIE (Dong et al., 2022) https://github.com/daviddongkc/SMiLe_OIE

Table 7: Online resources for datasets and models.

chunk type labels [yt1, . . . , y
t
n], and OIE span labels

[yoie1 , . . . , toien ]. We target to train two sub-modules
NSaC (SaC described in Section 3.2) and NOIE

(OIE extractor described in Section 3.3) via multi-
task learning.

We first feed input tokens into NSaC and ob-
tained token-level contextualized representations
hst , and the softmax probabilities pb, pt for chunk
boundaries and chunk types, respectively. We
then chunk the sentence to generate SaC as sc =
[c1, . . . , cm]. Subsequently, we pass the token-level
representations hst and the SaC sequence sc into
NOIE . We can obtain the softmax probabilities
poie for OIE span predictions. For chunking, we
compare the predicted chunk boundaries and types
(obtained from NSaC) with the true labels. For OIE
extraction, we compare the predicted OIE spans
(obtained from NOIE) with the true spans. The
cross-entropy losses for chunking and OIE extrac-
tion are combined. Finally, we calculate the gradi-
ent of the combined loss with respect to the weights
of both NSaC and NOIE . These gradients will be
used for updating the model parameters during the
training process.

A.3 Pre-trained Chunking Model
Model Details. The sentence chunking is dis-
played in Figure 4. It is identical to the SaC part of
Chunk-OIE, as described in Section 4.6. However,
the training and optimization of chunking model
purely relies on chunking loss in Equation 12.

Sentence Chunking Datasets. CoNLL-2000
Shared Task dataset by Tjong Kim Sang and Buch-
holz (2000) annotates 8,936 / 2,012 sentences for
Train/Test sets, respectively. Open Information An-
notation (OIA) v1.1 dataset by Wang et al. (2022)
contains 12,543 / 2,002 / 2,077 examples for Train

Algorithm 1 Multi-Task Training

Require:
Input sentence st = [t1, . . . , tn],
Chunk boundary labels yb = [yb1, . . . , y

b
n],

Chunk type labels yt = [yt1, . . . , y
t
n],

OIE span labels yoie = [yoie1 , . . . , toien ].
Ensure:

1: Model parameter NSaC and NOIE ;
2: Initialize NSaC and NOIE ;
3: repeat
4: hst , p

b, pt = NSaC(s);
5: sc = [c1, . . . , cm]← chunking(pb, pt)
6: poie = NOIE(h

s
t , sc);

7: Lchunk = CE(pb, yb) + CE(pt, yt);
8: LOIE = CE(poie, yoie);
9: Lmulti = Lchunk + LOIE ;

10: Calculate the gradient;
11: Update model parameter NSaC and NOIE ;
12: until Stop criterion reached;
13: return NSaC and NOIE

BERT Encoder

Lee
Ms.

the
headmaster
told

 Jimmy
she
is
responsible
for
this

Lily 
and

Boundary &
 Type Tagging

Lee
Ms.

the
headmaster

told

 Jimmy
she
is

responsible
for
this

Lily 
and

0
1
0
1
1

0
0
1

0
1

1

1
1

Noun

Noun

Noun

Noun

Noun

Verb

Verb

Prep

the 
headmaster

Ms. Lee told Lily and 
Jimmy 

this

forshe

is 
responsible

appos

nsubj dobj

ccomp

prep pobj
nsubj

Dep‐GCN Encoder

Tagging Layer

arg0

rel

arg1

O

O

O

O
O

Chunk‐level 
Dependencies

POS tags

POS 
Embedding

Chunk Encoder

Figure 4: Sentence Chunking model. It is used to pro-
vide chunking labels for CoNLL and OIA-SP.

https://www.clips.uantwerpen.be/conll2000/chunking/
https://github.com/baidu-research/oix
https://github.com/Jacobsolawetz/large-scale-oie
https://github.com/dair-iitd/CaRB
https://github.com/gkiril/benchie
https://huggingface.co/bert-base-uncased
https://github.com/dair-iitd/imojie
https://github.com/dair-iitd/imojie
https://github.com/zhanjunlang/Span_OIE
https://github.com/dair-iitd/openie6
https://github.com/daviddongkc/SMiLe_OIE


Chunking model on CoNLL2000 Chunk type F1

AT (Yasunaga et al., 2018) 95.3
Flair (Akbik et al., 2018) 96.7
MAT (Chen et al., 2020) 97.0
ACE (Wang et al., 2021) 97.3

Ours (BERT+Multi-task) 97.0

Table 8: Chunk type F1 on CoNLL 2000 chunking
dataset. Detailed results in Appendix A.4.

Chunking model on OIA dataset Boundary F1 Type F1

Rule-based (Sun et al., 2020) 82.4 -
Neural model (Wang et al., 2022) 88.5 85.3†

Ours (BERT+Multi-task) 90.9 87.1

Table 9: Performance of chunking on OIA dataset. Note
that Wang et al. (2022) report chunk boundary result
only and state that 96.4% of them are labelled with
correct types. We hence estimate their chunk type F1

(marked with †) based on the given percentage.

/ Development / Test sets. Each OIA annotation is
a sentence-graph pair. We only utilize the graph
nodes (i.e., simple phrases) for the chunking task.

SaC Evaluation Metric. We report Precision
/ Recall / F1 for both chunk boundary detection
and chunk type classification. For chunk bound-
ary detection, we consider exact boundary match
between a predicted chunk and a gold chunk as
correct. For chunk type classification, the chunk is
counted correct if both the boundary and type are
exactly matched. That is, chunk type is meaningful
only if its boundary is detected correctly.

SaC (Chunking) Results. Reported in Table 8,
our SaC model is comparable to the state-of-the-art
on the CoNLL-2000 dataset. Note that the best
model ACE (Wang et al., 2021) leverages multiple
PLMs including GloVe, fastText, ELMo, BERT,
XLM-R, and XLNet, which requires significant
computational resources and is slow in inference.
By contrast, our model is much simpler and only
utilizes BERT. On OIA dataset (see Table 9), our
SaC model outperforms all the previous methods.
The detailed results of chunk boundary detection
and type classification, by chunk length and types,
are summarized in Appendix A.4.

In overall, our proposed SaC (chunking) model
achieves SOTA or comparable results in all datasets.
We believe a simple BERT-based SaC is sufficient
to support our study on SaC-based OIE extraction,
as chunking is not the key focus of our study.

A.4 Chunk Boundary and Type Analysis of
Pre-trained Chunking Model

Table 10 reports the chunk boundary accuracy of
our SaC model (Section 3.2) by chunk length in
number of tokens. Observe that the F1 of chunk
boundary decreases when chunks become longer
on both datasets. As expected, the longer the
chunks, the harder the boundary detection becomes.
Nevertheless, the F1 of long chunk (e.g., more than
5 tokens) is 94% and 80.44% on CoNLL-2000
and OIA datasets, respectively. This shows that
our chunking model performs reasonably well in
detecting long chunks. On the other hand, short
chunks (e.g., with 1 or 2 tokens) dominate the num-
bers, leading to high overall accuracy. We observe
that the annotated sentences in CoNLL-2000 are
longer and more formally written than that in OIA
dataset. This could be a reason contributing to the
higher F1 on the CoNLL-2000 dataset.

Recall that chunk type classification is condi-
tioned on the boundary provided, i.e., type is mean-
ingful only if boundary is correctly detected. If
the ground truth chunk boundaries are known, the
overall type classification F1 is 99.2% and 95.8%
respectively, on CoNLL-2000 and OIA datasets.
However, in reality, the chunk boundaries have to
be detected as well.

Tables 11a and 11b report the F1 of chunk type
classification by the major chunk types in both
datasets. In this set of experiments, the chunk
boundaries are detected together as type classifica-
tion (i.e., the same setting as in Section 3.2). In both
datasets, noun, verbal, and prepositional phrases
dominate the chunks. The F1 scores are reasonably
high on these major types. Again, as the sentences
in CoNLL-2000 datasets are much longer, the num-
ber of chunks in CoNLL-2000 is much larger than
that in OIA dataset, although the two datasets have
comparable number of test sentences.

A.5 Two stages Chunk-OIE model

Instead of training an end-to-end Chunk-OIE
model, we also experiment on a pipeline method
that consists of two-stage training, corresponding
to two sub-models as shown in Figure 5. The first
stage is to pre-train a SaC chunking model with
chunking datasets as described in Appendix A.3.
We then obtain the chunking labels for sentence
in OIE datasets through the SaC sub-model. The
second stage is to train the OIE extractor, during
which the chunking labels are given as inputs to the



Dataset CoNLL-2000 OIA
LChunk #Chunk Pr Re F1 #Chunk Pr Re F1

1 token 19,414 98.5 98.1 98.3 11,201 92.8 92.8 92.8
2 tokens 6,267 97.3 97.4 97.3 2,924 88.0 89.5 88.7
3 tokens 2,865 96.8 97.3 97.1 1,245 84.5 85.8 85.1
4 tokens 945 94.1 96.4 95.2 440 78.3 78.0 78.1
5+ tokens 541 98.7 90.0 94.1 421 95.7 69.4 80.4

Overall 30,032 97.8 97.7 97.8 16,231 90.4 91.4 90.9

Table 10: Chunk boundary extraction accuracy by chunk length.

Typechunk #Chunk Pr Re F1

NP 12,422 97.5 97.3 97.4
VP 4,658 96.7 96.8 96.7
PP 4,811 98.4 98.9 98.7
ADVP 866 88.0 96.0 87.0
SBAR 535 94.1 95.9 95.0
ADJP 438 84.8 93.1 94.0
PRT 106 77.9 89.6 83.3
O 6,180 97.7 97.0 97.4

Total 30,032 97.1 97.0 97.0

(a) CoNLL-2000

Typechunk #Chunk Pr Re F1

Noun 7,159 86.8 85.8 86.3
Verbal 3,673 83.2 86.3 84.7
Prepositional 1,517 91.7 92.5 92.1
Logical 811 75.2 86.9 80.7
Modifier 336 75.9 75.0 75.5
Function 60 37.8 70.0 49.1
O 2,675 96.5 88.3 92.3

Total 16,231 86.6 87.5 87.1

(b) OIA dataset

Table 11: Accuracy of chunk type classification by chunk type. Note that, for CoNLL-2000 datasets, CONJP, INTJ,
LST and UCP each has fewer than 10 chunks, hence are excluded from the results.

OIE sub-model. The OIE sub-model is to train with
the OIE datasets (in Section 4.1) and loss function
(in Equation 11).

A.6 Details of OIE Datasets

In this section, we elaborate more details about
the train/test set of OIE datasets as mentioned in
Section 4.1. For LSOIE, we follow Solawetz and
Larson (2021) and Dong et al. (2022) to split the
train/test set in LSOIE-wiki and LSOIE-sci domain,
respectively. The statistics of LSOIE train/test sets
are listed in Table 12.

CaRB only provides 1,282 annotated sentences
and BenchIE provides 300 sentences, which are
insufficient for training neural OpenIE models. As
a result, we use the CaRB and BenchIE dataset
purely for testing. We follow Kolluru et al. (2020b)
to convert bootstrapped OpenIE4 tuples as labels
for distant supervised model training. The statistics
of CaRB and BenchIE train/test sets are listed in
Table 12.

A.7 Chunk-level Dependency Modelling

We argue that SaC simplifies the modeling of sen-
tence syntactical structure. We elaborate this point
with the example sentence shown in Figure 3a. In
this sentence, “Lee” is the appositional modifier
(‘appos’) of “headmaster”. However, it is actually

Dataset Source #Sent #Tuple

LSOIE-wiki-train QA-SRL 2.0 19,591 45,890
LSOIE-wiki-test QA-SRL 2.0 4,660 10,604

LSOIE-sci-train QA-SRL 2.0 38,826 80,271
LSOIE-sci-test QA-SRL 2.0 9,093 17,031

CaRB-train OpenIE 4 92,774 190,661
CaRB-test Crowdsourcing 1,282 5,263

BenchIE-train OpenIE 4 92,774 190,661
BenchIE-test Expert 300 1,350

Table 12: Statistics of OIE datasets used in training and
evaluating Chunk-OIE.

the phrase “Ms. Lee” that is appositional to the
phrase “the headmaster”. If we want to model the
relation between “Ms.” and “the” through token
dependencies, we need to pass through three hops
(‘compound’→ ‘appos’→ ‘det’) in order to link
them up. In contrast, connecting “Ms.” and “the”
via chunk-level dependencies only requires a sin-
gle hop (‘appos’). In another case, “Lee” is the
nominal subject (‘nsubj’) and “Lily” is the direct
object (‘dobj’) of verb “told”. Apparently, we need
additional dependency relations to locate the com-
plete subject and object of “told”. If we model
dependencies at chunk level, the complete subject
and object of “told” can be easily located to be “Ms.
Lee” and “Lily and Jimmy” respectively.



BERT Encoder

Lee
Ms.

the
headmaster
told

 Jimmy
she
is
responsible
for
this

Lily 
and

Boundary &
 Type Tagging

Lee
Ms.

the
headmaster

told

 Jimmy
she
is

responsible
for
this

Lily 
and

0
1
0
1
1

0
0
1

0
1

1

1
1

Noun

Noun

Noun

Noun

Noun

Verb

Verb

Prep

the 
headmaster

Ms. Lee told Lily and 
Jimmy 

this

forshe

is 
responsible

appos

nsubj dobj

ccomp

prep pobj
nsubj

Dep‐GCN Encoder

Tagging Layer
arg0

rel

arg1

O

O

O

O
O

Chunk‐level 
Dependencies

POS tags

POS 
Embedding

Chunk Encoder

(a) Stage 1: Training SaC and extracting chunk labels

BERT Encoder

Lee
Ms.

the
headmaster
told

 Jimmy
she
is
responsible
for
this

Lily 
and

Boundary &
 Type Tagging

Lee
Ms.

the
headmaster

told

 Jimmy
she
is

responsible
for
this

Lily 
and

0
1
0
1
1

0
0
1

0
1

1

1
1

Noun

Noun

Noun

Noun

Noun

Verb

Verb

Prep

the 
headmaster

Ms. Lee told Lily and 
Jimmy 

this

forshe

is 
responsible

appos

nsubj dobj

ccomp

prep pobj
nsubj

Dep‐GCN Encoder
Tagging Layer

arg0

rel

arg1

O

O

O

O
O

Chunk‐level 
Dependencies

POS tags

POS 
Embedding

Chunk Encoder
(b) Stage 2: Training OIE extractor and extracting OIE tuples
based on chunks

Figure 5: The overview of Chunk-OIE with two sub-models. Punctuation marks in the sentence are neglected for
conciseness. Note that stage 1 (sentence chunking) and stage 2 (OIE extraction) are trained separately.

The conversion to chunk-level dependency rela-
tions from token-level is performed in two steps.
(1) We remove a dependency relation between two
tokens if both tokens are within the same chunk.
The following dependency relations in Figure 3a
are removed: “compound” relation between “Ms.”
and “Lee”, “det” relation between “the” and “head-
master”, “cc” relation between “Lily” and “and”,
“conj” relation between “Lily” and “Jimmy”, and
“acomp” relation between “is” and “responsible”.
(2) We map the remaining dependency relations,
that are between tokens from different chunks, to be
the relations between chunks. For example, the “ap-
pos” relation between “Lee” and “headmaster” is
map to “Ms. Lee” and “the headmaster” as shown
in Figure 3b. Similarly, “Ms. Lee” turns into the
nominal subject (nsubj) and “Lily and Jimmy” be-
comes the direct object (dobj) of verb “told”.


