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ABSTRACT

PDE surrogate models such as FNO and PINN struggle to predict solutions across
inputs with diverse physical units and scales, limiting their out-of-distribution
(OOD) generalization. We propose a π-invariant test-time projection that aligns
test inputs with the training distribution by solving a log-space least squares prob-
lem that preserves Buckingham π-invariants. For PDEs with multidimensional
spatial fields, we use geometric representative π-values to compute distances and
project inputs, overcoming degeneracy and singular points that limit prior π-
methods. To accelerate projection, we cluster the training set into K clusters,
reducing the complexity from O(MN) to O(KN) for the M training and N test
samples. Across wide input scale ranges, tests on 2D thermal conduction and
linear elasticity achieve MAE reduction of up to ≈ 91% with minimal overhead.
This training-free, model-agnostic method is expected to apply to more diverse
PDE-based simulations.

1 INTRODUCTION

A central principle of physics is dimensional homogeneity: every valid physical law can be expressed
in terms of dimensionless groups, known as Buckingham π-invariants. Once recast in terms of these
invariants, a system’s behavior remains unchanged under any rescaling of dimensional variables
that preserves the values of the π-groups. For instance, flows in a narrow pipe and in a vast river
are dynamically equivalent when their Reynolds number matches. This implies that certain apparent
out-of-distribution (OOD) shifts, often regarded as a major challenge in physics-informed machine
learning and neural operator models, may not constitute genuine distribution shifts at all, but merely
scale changes that are physically equivalent under the Buckingham π framework.

Building on this observation, we propose a general, training-free, and model-agnostic test-time
procedure, π-invariant projection. Given the input fields and parameters of a partial differential
equation (PDE), we map each test sample into the neighborhood of the training distribution while
preserving its π-values: specifically, we move the sample within its own π-equivalence class and
project it onto the nearest training π-equivalence class. As a result, inputs are aligned according to
their essential physical similarity rather than arbitrary scale. The framework is applicable to a broad
class of PDEs wherever dimensional analysis identifies invariant groups, and integrates as a drop-in
inference step for any surrogate model, including U-Nets and neural operators. To reduce compu-
tational cost, we replace exhaustive pairwise comparisons with a centroid scheme: clustering M
training samples into K representatives yields O(KN) test-time complexity instead of O(MN) for
N test instances. Across diverse physical simulations, π-invariant projection substantially improves
OOD generalization, often approaching in-distribution accuracy.

2 RELATED WORKS

Fourier Neural Operator (FNO). The Fourier neural operator (FNO) is a resolution-agnostic sur-
rogate that learns mappings in Fourier space, enabling resolution-independent predictions (Li et al.,
2020). Numerous FNO variants followed (Bartolucci et al., 2023; Kossaifi et al., 2023; Rahman
et al., 2022). However, truncating to a limited set of low-frequency modes can discard physically
relevant high-frequency content; Physics-Informed Neural Operators (PINO) mitigate this by adding
PDE-constrained losses to recover high-frequency behavior (Li et al., 2024). Overall, FNO excels at
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in-distribution interpolation but struggles to extrapolate OOD when inputs have disparate units and
scales.

Dimensionless learning. Learning dimensionless π-groups reduces variables and enforces scale
invariance, enabling scalar extrapolation with neural networks or SINDy (Bakarji et al., 2022; Xie
et al., 2022; Oppenheimer et al., 2023; Gunaratnam et al., 2003; Brunton et al., 2016). However,
most work focuses on scalars rather than spatial fields. For fields, naive Buckingham–π scaling has
two failures: (i) numerator zeros collapse many inputs to zero; and (ii) near-zero denominators make
π undefined or unbounded, destabilizing learning and analysis. These issues are rarely addressed,
limiting direct use in 2D/3D. Recent efforts couple π-groups with nonlinear maps in turbulent flows
(Fukami et al., 2024), but a systematic treatment of zero-set collapse and denominator blow-ups
remains missing.

Generalization for the Out-of-distribution (OOD) data. Uncertainty methods estimate OOD er-
ror but seldom improve accuracy without fine-tuning (Gal & Ghahramani, 2016; Lakshminarayanan
et al., 2017; Fuchsgruber et al., 2024; Angelopoulos et al., 2024). Test-time training/adaptation up-
dates a pretrained model during inference to boost OOD performance (Gandelsman et al., 2022;
Wang et al., 2020; Adachi et al., 2024), but adds optimization overhead and latency and remains
rare for regression and spatial fields. A promising alternative is sample-wise, π-preserving test-time
alignment without TTT, which is underexplored.

Our Contributions. This work addresses inefficiency and generalization challenges in PDE-based
physical prediction caused by differences in input units and ranges, by introducing a test-time projec-
tion based on Buckingham π-invariance. The projection maps test samples near the training samples
while preserving a governing dimensionless group, and a centroid-based scheme reduces compu-
tational complexity from O(MN) to O(KN). The module is training-free and model-agnostic,
significantly improving OOD performance across various physical simulations, often approaching
in-distribution accuracy. The key contributions are three-fold.

1. π-preserving test-time projection for spatial fields: an explicit, invariant input transform
that maps each test sample toward the training distribution under the governing π, improv-
ing robustness to out-of-distribution shifts.

2. π-uniform strategy: uniformizes the sample-wise π distribution by tuning the dominant-
scale input while others fixed, enabling balanced training coverage which can be a general
methodology in dimensionless modeling.

3. centroid reduction for projection: replaces exhaustive pairwise comparisons with centroid
representatives, reducing test-time complexity from O(MN) to O(KN) with negligible
accuracy impact.

Although our proposed framework can be applied to a wide range of PDE analyses, we focused
on thermal and stress problems. In Section 3, we introduce the background of Buckingham-π and
define the dimensionless parameters in the thermal conduction and linear elasticity. Section 4, the
method for model-agnostic π-invariant projection is explained. In addition, at the test-time, efficient
method in terms of computation cost is introduced throughout the π-uniform strategy and K-means
clustering. Section 5 describes the experimental procedure in detail, while Section 6 presents the
corresponding results. Finally, Section 7 present a discussion on the experimental limitations and
the conclusions.

3 BUCKINGHAM π THEOREM

The Buckingham π-theorem provides a framework for dimensional analysis, transforming physical
variables into dimensionless π-groups to reduce complexity and ensure scale invariance. If we
know the units of parameters in the given PDE, the π-groups are easily extracted by eliminating the
units of denominator and numerator. For a system with n variables and m fundamental units (e.g.,
mass, length, time), it yields n − m dimensionless groups, enabling robust OOD generalization
in PDEs. We leverage π-invariance to align test inputs with training data, mitigating issues like
degeneracy (e.g., q → 0). Below, we define representative π-groups for thermal conduction and
stress simulation, used to motivate invariants and scaling rules.
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Theorem 1 ((Buckingham π, log form)). Given p dimensional variables x ∈ Rp>0 and a dimension
matrix D ∈ R|B|×p (rows = base units, columns = variables), let r = rank(D). Then there exist
p− r independent dimensionless combinations (“π-groups”). If Φ ∈ Rp×(p−r) spans ker(D), then

log Π(x) = Φ⊤ log x ⇐⇒ Π(x) = exp(Φ⊤ log x)

is a complete set of p− r independent π-groups. (See App. A for details.)

Notation. Φ = [ϕ(1) · · ·ϕ(p−r)] stacks the null-space basis vectors; each column ϕ(ℓ) defines
one dimensionless monomial (a π-group). The set of log-rescalings that preserve all π-values is
ker(Φ⊤) = { v ∈ Rp : Φ⊤v = 0 }.

How scaling acts (log-space translation). A componentwise rescaling x 7→ x⊙ exp(v) becomes
a translation z = log x 7→ z+v in log space. If v ∈ ker(Φ⊤), then Φ⊤(z+v) = Φ⊤z, i.e., π-values
are unchanged. Thus each input z generates an affine π-equivalence class z + ker(Φ⊤).

In short, the physics lives in the π-values: unit or scale changes are just π-preserving shifts in log
space, so inputs related by such shifts are the same case.

Worked example (thermal). With base units (M,L, T,Θ) and variables (k, q,∆T, L),

[k] =MLT−3Θ−1, [q] =ML−1T−3, [∆T ] = Θ, [L] = L.

Solving Dα = 0 gives α ∝ (−1, 1,−1, 2), hence

πth =
qL2

k∆T
.

This is the constraint our projection enforces (thermal row of equation 10). (Elasticity proceeds
analogously; see App. A for the task-specific π and the resulting linear log-constraint.)

4 METHOD

We propose a training-free, model-agnostic π-invariant projection to align OOD inputs with training
data while preserving Buckingham π-groups (Section 3). The pipeline has three stages: (1) π-
preserving test-time projection which projects each test sample toward the training data sample
while preserving the π via dimension reduction, log-scale linearization, projection, and prediction;
(2) π-uniform strategy that generate uniform log π distribution to cover the wide range of π group,
improving the model prediction accuracy; (3) Centroid reduction for projection: combined with
the π-uniform strategy, we run K-means clustering on log-space training features and use the K
centroids as projection representatives.

4.1 PROBLEM DEFINITION

We are given a training dataset Dtr = {(Xi, Yi)}Mi=1, where each input Xi consists of discretized
input fields together with the associated physical parameters and discretization step, and each output
Yi is the corresponding discretized solution of a governing PDE. All variables and field values are di-
mensional; see Fig. 2. This dataset is used to train a chosen surrogate PDE model. Then, for a given
test input X̃ , our goal is to construct a transformed input X̃∗ that (i) preserves the Buckingham–π
invariants of X̃ and (ii) lies close to the training distribution under a scale-appropriate metric.

More formally, let x̃ = ψ(X̃) denote the vector of dimensional variables extracted from X̃ , where
ψ is a feature extractor. For algebraic equations, ψ(·) = Id(·). For differential equations, we need
to extract the representative variables from X̃ using ψ, which will be discussed later. Then, the
problem is defined as

x̃∗ = argmin
x̃′∈[ψ(X̃)]π

[
dist(x̃′, {ψ(Xi)}Mi=1)

]
, (1)

where dist(·) is a chosen distance measure between a candidate point and the training set.
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4.2 DOMAIN PROFILE REDUCTION

For algebraic systems, once the physical units of all variables are known, the π-groups can be ex-
tracted directly by enforcing dimensional homogeneity as described in Theorem 1. For PDEs, how-
ever, the inputs X include high-dimensional spatial fields, so Buckingham–π analysis cannot be
applied directly to the discretized field values. Instead, one must identify characteristic scales that
summarize the dimensional magnitudes of the fields. To overcome this issue, we introduce a fea-
ture extractor ψ : X 7→ x that maps each discretized field to a finite set of characteristic variables.
Among possible choices, we adopt the arithmetic mean of the field values, which is robust to zero
values and outliers, and ensures numerical stability in the subsequent log-linear projection. For
non-spatial inputs, these characteristic variables are used directly in the Buckingham–π analysis.

4.3 π-INVARIANT PROJECTION

The main goal is to find the optimal projection, i.e., the closest point between the equivalence class
generated by the test point X̃ and equivalence classes generated by each train data (Xi, Yi). Since
the vector v that generates equivalence classes in log-space is simply a parallel translation, the space
it spans is of the form z + ker(Φ⊤). This implies that the entire space decomposes into two parts:
(i) the component perpendicular to ker(Φ⊤) (inter-class variation, i.e., the physical change), and
(ii) the component parallel to ker(Φ⊤) (intra-class change, i.e., the scaling variation). Ultimately,
we identify the closest training class to the test class in the inter-class direction, and then adjust the
test sample within its own equivalence class to achieve a scale consistent with the chosen training
samples.

More formally, setting zi = log xi and z̃ = log x̃, the optimization problem equation 1 becomes

min
z̃′∈z̃+kerΦ⊤

dist
(
z̃′, {zi}Mi=1

)
= min
i=1,...,M

min
v∈kerΦ⊤

∥zi − (z̃ + v)∥2 = min
i=1,...,M

d∼π ([xi], [x̃]), (2)

where i indexes the training samples, [x̃]π and [xi]π denote the equivalence classes of the test and
i-th training samples, respectively. Thus, the problem reduces to finding the nearest training class
in terms of the quotient distance between the fixed [x̃]π and the union of the training equivalence
classes

⋃M
i=1[xi]π . See App. B for details on the used metric.

Figure 1: The schematic of π-invariant projection; the test sample (marked as circle) projects to the
optimal train sample xA(∵ DA < DB).

Step 1. Decomposition of optimal scaling vector
Let vti = zi − z̃ = log(xi/x̃) in equation 2 denote the unconstrained log-scaling factor between xi
and x̃. Each vti can be decomposed into intra-class (scaling) and inter-class (physics) parts using
the projector onto ker(Φ⊤):

P∥ = I − Φ(Φ⊤Φ)−1Φ⊤ (
or P∥ = I − Σ−1Φ(Φ⊤Σ−1Φ)−1Φ⊤ with a weight Σ

)
,

vti = P∥v
t
i︸︷︷︸

intra-class (scales, π-preserving)

+ (I − P∥)v
t
i︸ ︷︷ ︸

inter-class (changes π)

(3)
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As an example, Figure 1 illustrates vt1 and vt2, which are defined from the test sample x̃ and the two
training candidates x1 and x2. For each i, choosing v∗i = P∥v

t
i yields the quotient distance between

[xi] and [x̃], as the projection aligns the training and test samples in their respective affine spaces,
isolating the class-wise irreducible component of the distance (I − P∥)v

t
i .

Step 2. Optimum train sample to be projected

The optimum equivalence class to be projected has a minimum value of ∥vti − v∗i ∥2 among whole
training equivalence classes. The optimization problem can be represented as below:

i∗ = argmin
i=1,...,M

∥vti − v∗i ∥2, (4)

where i represents the equivalence class number to be projected. For example, in the Figure 1, x̃∗1
is the optimum point because DA = ∥vt1 − v∗1∥2 < DB = ∥vt2 − v∗2∥2. After that, the optimally
scaled test sample is finally given by

x̃∗ = exp(z̃∗) = exp(z̃ + v∗) = x̃⊙ exp(v∗).

4.4 π-UNIFORM STRATEGY

The π-uniform strategy is adopted for enabling a balanced training coverage. It uniformizes the
sample-wise π distribution in train samples by tuning the dominant scale input (e.g., q in thermal
case) while others fixed. By making K clusters in uniformized π distribution, the centers of K
clusters represent whole distribution. In our approach, the distribution of log π is uniformized rather
than that of π for enlarging the coverage.

4.5 CENTROID REDUCTION FOR PROJECTION

We first uniformize the training histogram of log π across scales. Naı̈vely, comparing N tests to all
M training samples entails O(MN) pairwise evaluations of the inter-class residual in ( equation 1).
To reduce this cost, we cluster training log-features with K-means and keep K centroids, cutting
complexity to O(KN) while preserving projection accuracy (App. D; Sec. 5.4).

Figure 2: The PDE datasets for thermal and linear elasticity. With given distributions of k, q, E, f ,
the surrogate model predicts the fields of T and σ in each case (Thermal and Stress). Pixel-wise π
values go to zero when q → 0 and f → 0, which is described as π-information loss.

5 EXPERIMENTAL SETUP

5.1 TRAINING

Thermal conduction model We solve the steady 2D conduction problem with Dirichlet boundary
conditions on Tbc:

−∇ · (k∇T ) = q. (5)

5
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Figure 3: Flowchart of Buckingham π-Invariant Projection (Thermal case)

We use three surrogate architectures: a plain CNN, U-Net, and FNO. Training and test sets are
generated by numerically solving equation 5 on uniform grids, but with disjoint parameter ranges
to induce OOD shift. For example, log10 q ∈ [0, 7.5] for training and log10 q ∈ [7.5, 12] for testing.
Distributions of k, q, Tbc, and dx are shown in Figure 4 (thermal panels). we encode this input into
five channels (k, q, Tbc, dx, dy).

Linear elasticity model We consider plane stress/strain in 2D:
−∇ · σ = f, σ = C(E, ν) : ε(u). (6)

As in the thermal case, we evaluate CNN, U-Net, and FNO surrogates. Inputs are field maps E,
ν, and f , the displacement boundary condition ubc, and grid spacings dx, dy. We encode f and
ubc via components (fx, fy, uxbc, u

y
bc), yielding eight input channels: (E, fx, fy, uxbc, u

y
bc, ν, dx, dy).

Parameter distributions for (E, f, ubc, dx) are shown in Figure 4 (elasticity panels).

5.2 DOMAIN PROFILE REDUCTION

To represent global characteristics of the domain, arithmetic mean values of input fields are adopted.
As defined in Section 4.2, fields of k, q (thermal) and E, f (elasticity) are summarized to represen-
tative values k̄, q̄, Ē, f̄ respectively. However, representive f (f̄ ) may be extracted in a slightly
different manner, because it is represented as two channels corresponding to fx, fy components.
Therefore, in this case we first compute the means f̄x, f̄y of fx, fy , respectively, and then compute

f̄ using the L2-norms of f̄x, f̄y (f̄ =

√
f̄x

2
+ f̄y

2). we set dx = dy = L unless otherwise stated.
For quantities that have zero values are not considered. The resulting feature vectors x̃ are shown in
the pipeline (Figure 3).

5.3 π-INVARIANT PROJECTION

Prior to projection, the scaling process is essential in projection, enabling the surrogate model to
relocate OOD onto an interpolative (in-distribution) scale and reliable predictions. For the thermal
case, the scaling coefficients α, β, γ and δ are used to scale the parameters while preserving the πth.
Log-scale linearization is applied for efficient calculation (Section 3).

k̄′ = αk̄, q̄′ = βq̄, ∆T ′ = γ∆T, L′ = δL (7)
For preserving the πth, scaling coefficients should follow the constraint.

πth =
q̄′L′2

k̄′∆T ′ =
(βq̄)(δL)2

(αk̄)(γ∆T )
=

q̄L2

k̄∆T
(8)
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Likewise, scaling coefficients are applied to each input in stress case as below:

Ē′ = αĒ, f̄ ′ = βf̄ , L′ = γL

πel =
f̄ ′L′

Ē′ =
(βf̄)(γL)

(αĒ)
=
f̄L

Ē

(9)

Log formats are used to equations 8, 9 linearly transform scales of parameters.{
log β + 2 log δ − logα− log γ = 0 (thermal)
log β + log γ − logα = 0 (elasticity)

(10)

which preserves πth, πel in Appendix A.1, A.2. After that, inputs (k, q,∆T, L) of given test
sample x̃ are scaled by (α, β, γ, δ), and moved to the optimal projection point x̃′ having inputs
(αk, βq, γ∆T, δL) from calculating the nearest class with π-preserving correction described in Sec-
tion 4.3. The same rule is applied in the calculation of the elasticity.

Figure 4: Histogram comparison for train (blue) and test (orange). Thermal (a–f): (a) log10 k, (b)
log10 q, (c) Tbc, (d) dx; (e) log10 πth before and (f) after π-uniform sampling. Elasticity (g-l): (g)
log10E, (h) log10 ∥f∥, (i) ubc, (j) dx, (k,l) log10 πel (before vs. after).

5.4 CENTROID REDUCTION FOR PROJECTION

In calculation the nearest class in Section 5.3, We apply a π-uniform sampling strategy to obtain an
approximately uniform distribution of log π (Figure 4 (e,f), (k,l)). Prior to applying the strategy, the
log π distribution is one-sided and skewed; afterwards it becomes approximately uniform, indicating
that the training space covers a broader range of π values. For thermal we vary q to target desired πth
values; for elasticity we analogously vary f for πel. After π-uniform sampling, we run K-means on
the training log-features z to obtain K ∈ {1, . . . , 10} centroids. Because K-means is stochastic, we
average results over 10 seeds (for both clustering and test sets). We compare Baseline (nearest over
all training samples), Clustered (nearest over K centroids), and Random (nearest over K random
training samples) using MAE, RMSE, and wall-clock. Timing excludes surrogate forward passes
and reports only the projection stage (candidate selection + solving equation 1).

5.5 PREDICTION PROCESS (SCALING, INVERSE SCALING)

After computing the optimal v∗, we rescale the test input channel-wise X̃⋆ = X̃ ⊙ exp(v⋆), i.e.,

X̃∗ =

{
[αk, βq, γTbc, δdx, δdy] (thermal)

[αE, βfx, βfy, u
x
bc, u

y
bc, ν, δdx, δdy] (elasticity)

(11)
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Feeding X̃∗ to the surrogate model predicts Tscaled, and we invert the temperature scaling using the
∆T scale factor γ: T = Tmin + γ−1

(
Tscaled − Tmin

)
, where Tmin is the minimum Dirichlet

boundary temperature. (Analogous inverse maps apply for elasticity outputs.)

6 RESULTS AND DISCUSSION (THERMAL AND ELASTICITY)

Figure 5 compares Top-3 best and Top-3 worst OOD cases for thermal and elasticity. Across both,
π-projection substantially improves fidelity, with the largest gains in the worst cases where the raw
surrogate fails to extrapolate. Table 1 reports MAE/MSE and projection time for each architecture1.
With the Buckingham-π projection, both thermal and stress simulations achieve lower MAE and
RMSE errors, but the inference time increases. However, applying the cluster algorithm with π sig-
nificantly reduce the inference time, while achieving a level of accuracy comparable to that obtained
when computing distances over all training data.

The centroid reduction algorithm as described in 5.4 has demonstrated the efficiency in terms of
computation cost when predicting the temperature distribution without a significant degradation in
accuracy. From Figure 6, it is shown that the MAE tends to converge with the baseline projection as
the number of candidates (cluster centers and random samples) increases while making a gap with
random projection. The clustered projection matches Baseline MAE within statistical noise while
reducing projection time by ∼100× (Figure 6(c)).

Handling π-degeneracy. When πth is ill-defined or ill-conditioned (e.g., q ≈ 0 or ∆T ≈ 0), we
drop the explicit π constraint and solve the same log-space alignment on the non-degenerate chan-
nels (e.g., k,∆T, dx, dy in thermal). This removes global scale mismatch while preserving spatial
heterogeneity, which empirically restores OOD accuracy. When valid π-groups are available (e.g.,
advection–diffusion, Navier–Stokes), the same log-affine machinery applies with the corresponding
constraint.

Figure 5: Comparison of true and predicted fields for Top-3 best (a) and Top-3 worst (b) cases in
thermal (temperature) and elasticity (stress), under raw input vs. Buckingham π-invariant projection.

1We follow the authors’ public implementation and adapt it to image-wise outputs; details in App. E.
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Table 1: Test scores on thermal and elasticity. The best scores are bolded.

Method Thermal Stress
MAE RMSE Time MAE RMSE Time

CNN 8.43 9.99 - 0.96 1.17 -
CNN + Pairwise Projection 2.63 3.24 100.31 0.53 0.71 73.58
CNN + π-uniform + 10-Centroids 1.79 2.23 1.80 0.60 0.84 1.36
U-Net 13.60 15.29 - 0.81 0.99 -
U-Net + Pairwise Projection 1.75 2.31 99.12 0.17 0.28 94.91
U-Net + π-uniform + 10-Centroids 1.18 1.53 2.31 0.22 0.39 1.58
FNO 9.88 11.43 - 3.20 4.19 -
FNO + Pairwise Projection 1.38 1.74 151.44 0.28 0.42 94.02
FNO + π-uniform + 10-Centroids 1.25 1.60 2.31 0.33 0.53 1.54

Figure 6: Performance comparison on (a) MAE, (b) RMSE, and (c) Time cost between cluster-
ing/random/baseline projection methods with 10 different test sets.

7 LIMITATIONS AND CONCLUSION

7.1 LIMITATIONS

Our π-invariant projection assumes PDE-governed behavior and may underperform in hybrid set-
tings with empirical components. Using representative statistics (e.g., arithmetic means k̄, q̄) can
blur highly irregular spatial patterns. While π-uniform sampling widens scale coverage, extreme
OOD beyond the trained π range still degrades accuracy.

7.2 CONCLUSION

We introduce a compact, training-free, and model-agnostic π-invariant test-time projection that en-
forces physical similarity via Buckingham-π and aligns OOD inputs to the training manifold through
a tiny log-space least-squares scaling. This explicit log-scale transformation enables accurate predic-
tions even under extreme out-of-distribution shifts. A centroid-based clustering variant accelerates
inference, reducing complexity fromO(MN) toO(KN) with negligible accuracy loss, and outper-
forms traditional test-time training in speed while maintaining high performance. On 2D thermal
conduction and linear elasticity, the method reduces MAE by up to ≈91% with minimal overhead.
Future work includes uncertainty-aware projections, extensions to transient and convective PDEs
(e.g., advection–diffusion, Navier–Stokes), and hybrid settings that incorporate empirical compo-
nents.
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A DIMENSIONAL ANALYSIS VIA MATRIX NULL SPACE

By following the processes for each task, Buckingham π groups can be defined.

A.1 THERMAL CONDUCTION

Let the base dimensions be B = {M,L, T,Θ} (i.e. mass M , length L, time T , and temperature
Θ). We encode units as exponent vectors x over B. For example, the unit of thermal conductivity
(k) [W/(m ·K)] is expressed as xk = [M1L1T−3Θ−1], and taking a transpose, it is transformed
into x⊤k = [1, 1, −3, −1]⊤. Stacking the columns x⊤k , x

⊤
q , x

⊤
∆T , x

⊤
L for the variables [k, q,∆T, L]

forms the dimension matrix D ∈ R|B|×p where p is a total number of input and output parameters.

D =

 1 1 0 0
1 −1 0 1
−3 −3 0 0
−1 0 1 0

 , columns: {k, q, ∆T, L}, rows: {M, L, T, Θ}. (12)

In general, for a variable xj with units
∏
b∈B

bDb,j , the j-th column of D stores its exponents. The

number of π groups defined by the Buckingham π theorem is p − rank(D). Because rank(D) = 3,
only one π value is defined by the theorem.

A dimensionless monomial corresponds to a null-space vector ϕ ∈ ker(D), i.e., Dϕ = 0. Stacking
independent solutions gives a π-basis Φ = [ϕ(1) · · ·ϕ(p−r)] withDΦ = 0, but in this case p−r = 1,
so one vector suffices. A π-basis (null-space basis) is Φ =

[
ϕ(1)

]
, where

ϕ(1) =


−1

1

−1

2

 ,
which produces

πth = kϕkqϕq (∆T )ϕ∆TLϕL = k−1q1(∆T )−1L2 =
q L2

k∆T
.

Unit check:

[πth] =
(W/m3) · (m2)

(W/(m ·K)) · (K)
=

W/m

W/m
= 1,

so πth is dimensionless (any nonzero scalar multiple of ϕ yields the same π up to a constant power).

A.2 LINEAR ELASTICITY

We use base dimensions B = {M,L, T} (no temperature). Let the variables be (E, σ, f, L,∆u)
with units [E] = [σ ] =M L−1T−2, [f ] =M L−2T−2 (body force per volume), and [L] = [∆u] =
L. The corresponding dimension matrix (rows M,L, T ; columns as ordered) is

D =

[
1 1 1 0 0
−1 −1 −2 1 1
−2 −2 −2 0 0

]
.

Here p = 5 and rank(D) = 2, so the nullity is p− rank(D) = 3, i.e., three independent π-groups.

A π-basis (null-space basis) is collected as

Φ =
[
ϕ(1) ϕ(2) ϕ(3)

]
, DΦ = 0,

with columns

ϕ(1) =


−1

1

0

0

0

 ⇒ π1 = σ/E, ϕ(2) =


−1

0

1

1

0

 ⇒ π2 = fL/E, ϕ(3) =


−1

0

1

0

1

 ⇒ π3 = f ∆u/E.
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(If grid spacings are anisotropic, replace L by the arithmetic mean Leff =
√
dx dy; equivalently, use

1
2 (log dx+ log dy) in the log constraints.)

A.2.1 MULTI π-INVARIANT PROJECTION

At test-time we enforce only input-side π-groups to avoid using unknown outputs. Thus we exclude
π1 = σ/E and enforce π2 = fL/E; if ∆u is provided as an input, we may additionally enforce
π3 = f ∆u/E for a tighter projection. Default: if ∆u is unavailable, enforce only π2 = fL/E.

Let the input-side log-scales be v = [logα, log β, log γ, log δ]⊤ acting on E, f, L,∆u respectively,
i.e.,

E′ = αE, f ′ = βf, L′ = γL, ∆u′ = δ∆u.

Then the enforced π-constraints become linear equations in v:[
−1 1 1 0
−1 1 0 1

]
︸ ︷︷ ︸

C

v = 0 ⇐⇒

{
log β + log γ − logα = 0 (π2 : fL/E),

log β + log δ − logα = 0 (π3 : f∆u/E).

Given test log-features z̃ and a candidate train zi, define vti = zi−z̃. Project vti onto the π-preserving
subspace using either

(i) projector onto ker(C) : P∥ = I − C⊤(CC⊤)−1C ⇒ v⋆ = P∥ v
t
i⋆

Or equivalently
(ii) KKT solve for min

v
∥v − vti ∥22 s.t. Cv = 0.

Step 1 (nearest class under multiple π’s).

i⋆ = argmin
i

∥∥(I − P∥) v
t
i

∥∥
2
. (13)

Step 2 (π-preserving correction). Apply v⋆ = P∥ v
t
i⋆ and rescale channels by (α, β, γ, δ) =

exp(v⋆) to obtain the projected input. Run the surrogate on the projected input and inverse-scale
the outputs (details in App. B).

Notes. (i) If only one of {L,∆u} is present, the system reduces to the single-constraint case (en-
force fL/E or f∆u/E).
(ii) Under anisotropic discretization, replace the L-row in C by 1

2 [· · · , log dx + log dy ] (i.e., use
Leff =

√
dx dy).

(iii) If a constraint becomes ill-conditioned (e.g., f ≈ 0), drop that row of C and project with the
remaining valid constraints (degeneracy fallback).

B INPUT-SPACE L2 METRIC ON LOG-SCALE

Definition 1 (Logarithmic distance). For x, y ∈ Rp>0 with logarithmic coordinates z = log x and
w = log y, define the distance

d(x, y) = ∥log x− log y∥2 = ∥z − w∥2.

Then, d is a metric on Rp>0, because x 7→ log x is injective on x ∈ Rp>0 and ∥·∥2 is the standard
Euclidean norm.

Remark 1. Under the multiplicative scaling action as in Section 3, we have

d(ρ(v, x), ρ(v, y)) = ∥(z + v)− (w + v)∥2 = ∥z − w∥2 = d(x, y),

Hence, the metric d is invariant under this group action.

12
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Figure 7: The schematic of π-uniform strategy

Remark 2. The metric d induces the standard point-to-set distance from a point w = log y to the
π-equivalence class [x]π (or equivalently [z]π = E(z)) of a fixed z = log x as

dist(y, [x]π) = dist(w, E(z)) = inf
v∈kerΦ⊤

∥w − (z + v)∥2.

Then, define the class-to-class (quotient) distance by
dist([y]π, [x]π) = dist(E(w), E(z)

)
= inf
u,v∈kerΦ⊤

∥(w + u)− (z + v)∥2.

Since d is invariant under translations by −u ∈ ker(Φ⊤), this reduces to the point-to-class distance:
dist

(
E(w), E(z)

)
= inf
u,v∈kerΦ⊤

∥w − (z + v − u)∥2 = inf
s∈kerΦ⊤

∥w − (z + s) ∥2 = dist(w, E(z)).

C π-UNIFORM STRATEGY

Figure 7 shows the schematic of π-uniform strategy. The dense π-contours in train sample are
distributed uniformly by tuning dominant-scale input parameters (e.g., q̄, f̄ in thermal and elasticity
case, respectively) so that the set of centroids can cover the distribution of all train samples when
clustering is performed.

D CLUSTERING PROJECTION

The clustering projection proceeds as follows: (1) Uniformly adjust the pi distribution of the train
samples using the π-uniform strategy. (2) Perform K-means clustering based on the π values and
determine the centroid for each cluster (marked with a star symbol). (3) Find the closest centroid for
a given test sample and project the test sample to the closest position on the πtest plane (π-invariant
projection).

E EXPERIMENT METRICS

E.1 MAE AND RMSE EVALUATION

In this experiment, image-wise metric is used for evaluating the MAE, RMSE. For the each image
matrix {Yij}, MAE can be calculated by

MAEn =
1

H ×W

H∑
i=1

W∑
j=1

∣∣∣ Ŷ (n)
ij − Y

(n)
ij

∣∣∣ . (14)
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Figure 8: The scheme of clustering projection. Train samples within the same cluster are represented
in the same color with centers. The test sample is projected to the nearest center of the cluster while
preserving its πtest; it moves on the πtest plane.

Here, H and W denote the image’s height and width, respectively. (in this experiment image corre-
spond to color map). using equation 14, image-wise average MAE can be calculated by

MAE =
1

N

N∑
i=1

MAEn (15)

Additionally, RMSE can be calculated by

RMSEn =

√√√√ 1

H ×W

H∑
i=1

W∑
j=1

(
Ŷ

(n)
ij − Y

(n)
ij

)2

. (16)

from equation 15, image-wise average RMSE can be calculated by

RMSE =
1

N

N∑
i=1

RMSEn (17)
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