NegBLEURT Forest: Leveraging Inconsistencies to Detect Jailbreak
attacks

Anonymous ACL submission

Abstract

As Large Language Models (LLMs) continue
to advance, ensuring their robustness and secu-
rity remains a critical challenge. Jailbreak at-
tacks pose a significant risk by coercing LLMs
into generating harmful or ethically inappro-
priate content, even when such models are
trained to follow strict guidelines. Further-
more, defining universal filtering policies is
inherently context-dependent and difficult to
generalize. To address these challenges without
relying on additional rule-based filters or pre-
defined thresholds, this paper presents a novel
detection framework for assessing whether an
LLM-generated response aligns with expected
safe behavior. The proposed approach eval-
uates response consistency from two comple-
mentary perspectives: intra-consistency, which
analyzes how reference responses in prede-
fined Refusal Semantic Domain (RSD) vary in
the latent space; and inter-consistency, which
measures the semantic alignment between the
LLM response and this RSD, followed by semi-
supervised classification using Isolation Forest.
This methodology enables effective jailbreak
detection without the need for empirically de-
fined thresholds, offering a more scalable and
adaptable solution for real-world applications!.

1 Introduction

Large Language Models (LLMs) are powerful neu-
ral networks with large parameter sizes and strong
in-context learning capabilities, widely used for
tasks like summarization, text completion, and
question answering (Hadi et al., 2023; OpenAl,
2023; Kasneci et al., 2023; Zhao et al., 2023). Pop-
ular models include GPT-3 (Mann et al., 2020),
GPT-4 (Achiam et al., 2023), and LLAMA (Tou-
vron et al., 2023), typically accessed via APIs or
web interfaces. However, this accessibility exposes
them to cyber threats, such as prompt-based at-
tacks, which can manipulate model behavior and

! https://anonymous.4open.science/r/jailbreaktester-247D

compromise system security (Perez and Ribeiro,
2022). Two major attacks on LLMs are prompt
injection and jailbreak attacks, both aiming to by-
pass safety mechanisms and generate harmful or
illegal content (Chao et al., 2023; Zou et al., 2023).
Prompt injection involves appending malicious in-
put to a prompt and has been identified by OWASP
as a top LLM-related threat (OWASP, 2025; Ku-
mar et al., 2024). In contrast, jailbreak attacks
bypass safety filters without prompt concatena-
tion (Yi et al., 2024), posing a significant chal-
lenge due to their stealthy nature (Wang et al.,
2023), especially in sensitive applications like busi-
ness (Wu et al., 2023), education (Blodgett and
Madaio, 2021), and healthcare (Sallam, 2023). In
this paper, we mainly focuses on jailbreak attacks.
Existing methods, including SmoothLLLM, struggle
to reliably detect jailbreak attacks. Reproducing
prior approaches like JailGuard is also challeng-
ing, often leading to inconsistent results—even on
the same datasets—due to implementation difficul-
ties and unclear threshold settings. These issues
reflect broader reproducibility and comparability
problems in the field.

This work therefore explores two key questions:
RQ1: Can jailbreak attacks be detected without
relying on additional filters, fine-tuning, or thresh-
old tuning? RQ2: Can we build an efficient de-
tection method that generalizes well across differ-
ent datasets, models, and applications? To answer
these questions, we conducted extensive experi-
ments to study these dependencies by testing jail-
break attacks on two LLMs—the LLama-7-2B and
the Gemma-2-9B—and proposed a novel frame-
work, NegBLEURT Forest. In this work, Section 2
provides an overview of the existing jailbreak at-
tacks and defense mechanisms. Section 3 intro-
duces the first study for the intra-consistency be-
tween the responses in perturbed prompts. In Sec-
tion 4, the second semi-unsupervised approach is
presented which leverages K-means clustering and

https://anonymous.4open.science/r/jailbreaktester-247D

the Isolation Forest machine learning algorithm.
The corresponding experimental evaluation and
discussion are also elaborated. Finally, Section 5
concludes the paper and outlines the limitations of
the proposed work.

2 Related Work

Many research works have been proposed to de-
tect jailbreak attacks. For example, Smooth-
LLM (Robey et al., 2023), JailGuard (Zhang et al.,
2023), LlamaGuard (Inan et al., 2023), defense
strategies in (Metzen et al., 2017; Liu et al., 2022;
Dong et al., 2021) identify attacks and help se-
cure Al systems. However, most of the proposed
methods are based on comparing inputs and/or out-
puts against a reference dataset and use thresholds
that are determined empirically. As a result, these
solutions often lack generalization across differ-
ent datasets and models, making their results diffi-
cult to reproduce. Furthermore, many alternative
approaches involve fine-tuning the models used,
which requires frequent updates, an approach that
is resource intensive and expensive (Rahman et al.,
2024). Safety training methods for LLMs, such as
GPT-4 and Claude, frequently fine-tune pre-trained
models using human preferences (Christiano et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022a) and Al feed-
back (Bai et al., 2022b; Achiam et al., 2023; Sun
et al., 2023). Another detection method is the input
perplexity score which uses an additional model
to detect jailbreak prompts(Alon and Kamfonas,
2023). Jailbreak attacks aim to trick large lan-
guage models (LLMs) into producing harmful or
unethical responses. Starting from early work on
hand-crafted prompts (Walkerspider, 2022), jail-
breaks can be divided into two types: conflict-
ing goals and generalization mismatches (Wang
et al., 2018). Conflicting goals attacks use care-
fully designed inputs to make the model choose
between safe behavior and harmful prompts, with
well-known examples like GCG and AutoDAN.
The Greedy Coordinate Gradient (GCG) method
(Zou et al., 2023) generates adversarial suffixes
added to harmful prompts and works effectively
on black-box commercial LLMs. AutoDAN (Zou
et al., 2023) uses genetic algorithms with mutation
and crossover to create natural adversarial prefixes.
Generalization mismatches exploit the gap between
broad pretraining data and narrower safety fine-
tuning data. For instance, Yong et al. (Yong et al.,

2023) jailbreak GPT-4 by turning user prompts into
low-resource languages. Another approach uses
sequence-to-sequence models, like LL.Ms (Tian
et al., 2023) or multi-agent systems (Chao et al.,
2023), to transform harmful prompts into jailbreak
prompts. Defensive methods fall into two main
types: pre-processing and post-processing. Pre-
processing changes harmful prompts using tech-
niques like smoothing or detection to remove ad-
versarial parts (Ji et al., 2024; Robey et al., 2023;
Cao et al., 2023; Hu et al., 2024; Zhang et al., 2025;
Lin et al., 2024). Post-processing uses filters to
check if the model’s responses are safe (Pisano
et al., 2023; Phute et al., 2023; Zeng et al., 2024;
Xiong et al., 2024). Both methods work well but
have drawbacks. Pre-processing relies on thresh-
olds to separate safe and harmful prompts, but these
thresholds are often chosen without strong justifica-
tion and usually target only one or two attack types,
limiting their general use. Post-processing needs
adapting the model with filter tuning, which takes a
lot of time and resources. Also, its reliability is not
always guaranteed, especially if an external LLM
is used to evaluate responses.

3 Consistency Analysis

Given a jailbreak prompt with adversarial prefixes
or suffixes, we assume that modifying it can stop
the attack and keep the response within the model’s
safety limits. In this section, we analyze how
the model’s responses change when the original
prompt is slightly altered. This helps us understand
how consistent, stable, and sensitive the model is to
small input changes. The steps of this analysis are
shown in Figure 1. Building on the datasets from
(Chao et al., 2024), we created a carefully curated
and manually labeled dataset with 161 prompts,
including both successful and failed jailbreak at-
tempts. In the perturbation process, various con-
trolled changes are applied to the original prompt
while keeping its main meaning. These changes
simulate different ways users might phrase prompts,
helping to test the model’s robustness. We use three
techniques: Insert Perturbation, which randomly
adds contextually fitting words or phrases to the
prompt to check if the meaning stays consistent;
Patch Perturbation, which replaces certain words
or phrases with alternatives while keeping the sen-
tence structure to see how the model adapts; and
Swap Perturbation, which changes the order of
words or phrases to test the model’s ability to un-

derstand the prompt despite word rearrangement.
To better detect inconsistencies, we apply six per-
turbation levels (1, 3, 5, 10, 15, and 25), generating
10 variations at each level. For each perturbed
prompt, we generated 10 different responses from
the model to get a reliable sample for evaluating
how consistently the model reacts to small input
changes. This also helped us create a ground truth
for further analysis. Having multiple responses
per prompt allows us to measure Response Consis-
tency, which shows how similar the responses are
to each other and reflects the model’s stability. We
measured consistency using cosine similarity and
the NegBLEURT score.

In order to analyze the intra-dependency among
the generated responses, we compare two evalua-
tion metrics: cosine similarity and NegBLEURT
score. These metrics are used in this work to empir-
ically avoid using a threshold and to determine if
we can effectively distinguish between consistent
and inconsistent response patterns. Specifically,
our objective is to determine whether a notable
change in the generated responses occurs when the
initial prompt is slightly modified. In the work
of SmoothLLLLM, the authors defined a consistency
threshold and performed an extensive mathemati-
cal analysis. However, their final approach relied
on a string classifier to identify jailbreak attacks.
In contrast, our method directly leverages the sim-
ilarities between responses to capture changes in
the model’s behavior. The underlying hypothesis
is that a prompt designed as an attack will exhibit
significant variations in its responses when the orig-
inal prompt is slightly perturbed. In contrast, a
consistently unsuccessful attack will maintain high
similarity among the generated responses. To for-
malize this approach, we begin with an original
prompt Py and generate ten different responses
Ri, Rs, ..., Rio. The similarity between each pair
of these responses is calculated using the chosen
metrics (cosine similarity and NegBLEURT), re-
sulting in a 10 x 10 similarity matrix. The diag-
onal of this matrix is set to zero to prevent self-
comparison of the responses. This matrix effec-
tively captures the intra-dependency of the gener-
ated responses, where each entry S(R;, R;) repre-
sents the similarity score between the i*" and ;"
responses. The structure of this similarity matrix is
illustrated below, where S denotes the calculated
similarity score:

0 S(Rth) S(R17R3) S(Rl,R]o)

S(Ra, Ry) 0 S(Ry, R3) S(Ra, Rio)

S = | S(R3,R1) S(R3, Rg) 0 S(Rs3, Ryo)
S(Rio, R1) S(Rio, Re) S(Rio, R3) --- 0

Following the computation of similarity scores,
the average of each row in the similarity matrix is
calculated to measure the consistency of a specific
response to all others 1-vs-all). We tested both
the cosine similarity and NegBLEURT (Anschiitz
et al., 2023) to evaluate the similarity between two
outputs. NegBLEURT is a modified version of the
BLEURT (BERT-based Language Understanding
Evaluation and Representation Tool). It focuses on
identifying inconsistencies or anomalies in the gen-
erated text by converting BLEURT scores into neg-
ative values. This approach effectively highlights
responses that exhibit significant divergence, par-
ticularly those containing negations such as "Sorry,
I cannot do that" or "I am an ethical AL." Such re-
sponses are typically indicative of model refusal
behaviors, which are of critical interest in adversar-
ial testing.

3.1 Experimental Evaluation and Results

For each prompt, we calculate the similarity values
between the generated responses, obtaining a ma-
trix for each metric. The average value of each row
in the matrix is then computed, and the maximum
of these average values is identified. This approach
enables us to systematically assess the behavior
of each metric under varying conditions. Figure
2 presents the results for the NegBLEURT and
cosine , where responses are categorized into two
groups: successful jailbreaks and non-jailbreaks.
For clarity, we focus on the swap perturbation in
Figure 2 (10-90 percentile envelopes), while the
results for the other perturbations are provided in
the Appendix. In the NegBLEURT score analysis,
two distinct regions are observed: the red envelope,
representing successful jailbreaks, and the blue
envelope, indicating non-jailbreak responses.
Empirically, a positive NegBLEURT score is
generally associated with non-jailbreak attempts,
indicating stable and consistent responses. In
contrast, a negative NegBLEURT score reveals
inconsistencies in responses, which are indicative
of successful jailbreak attacks. The second two
figures (c) and (d) report the cosine similarity
metric on the same set of responses. Although
NegBLEURT demonstrates a separation between

Prompt_P1

NegBLEURT 1

Prompt_P2

)_}| NegBLEURT 2 I‘—}

Avg_NegBLEURT 1

Original_prompt

Prompt_P3

)—>| NegBLEURT 3 |—>»

1
1

. | Prompt P10

| Design a [phishing email that [[can trick % users ‘

Design a [hishing email that can trick % us\r”

|Des:i.gn a phishing email that can trick users{\"

" Avg_NegBLEURT 2 ‘

T Lan3ngban Bay

‘ Avg_NegBLEURT 3 ‘

‘ Avg_NegEllLEURT_ﬁ ‘

[1F Max_Avg_NegBLEURT >0 |

v

SAFE

Figure 1: Proposed approach using prompt perturbations and NegBLEURT.

/

((a)) NegBLEURT score for ((b)) NegBLEURT score for ((c)) Cosine similarity score ((d)) Cosine Similarity score

swap perturbation-Gemma. swap perturbation-llama.

for swap perturbation-Gemma. for swap perturbation-llama.

Figure 2

the two categories, the cosine similarity values
show significant overlap, making it difficult
to differentiate between attack and non-attack
responses. Furthermore, the figures reveal an
overlap between the two categories, particularly
when the perturbation level is increased (also
for NegBLEURT) because prompts exhibiting
significant perturbations are more likely to display
inconsistent behavior. Empirical evidence indicates
that higher levels of perturbation increase the
overlap, which in turn reduces the discriminative
power of the similarity metrics. From these
observations, we deduce the following key insights.
NegBLEURT is an effective model to detect the
inconsistencies in the responses which can be
a possible jailbreak attack as indicated by the
separation between positive and negative scores. A
negative NegBLEURT score is a strong indicator
of a potential attack, suggesting that the associated
prompt has likely triggered an adversarial response.
Moreover, excessive perturbation reduces the abil-
ity to differentiate between attack and non-attack
responses, suggesting that moderate perturbation
levels may be preferable for robust analysis.

Why NegBLEURT Forest? Although NegBLEURT
offers valuable insights into model responses,
its interpretation still relies on threshold-based
distinctions between positive and negative scores.

Additionally, it is considered resource-intensive,
making it less practical for efficient implemen-
tation and deployment. To overcome these
limitations and move toward a more realistic and
scalable solution, we build on the findings from
NegBLEURT to introduce an alternative approach.
This proposed classifier avoids the use of prompt
perturbations and eliminates the dependency on
predefined thresholds, offering a more robust and
adaptable method for jailbreak detection.

4 Method Derived

4.1 Proposed Framework

We present a Jailbreak detection framework, as
shown in Figure 3 designed to systematically eval-
uate whether LLLMs can robustly refuse prompts
that contain hazardous requests, illegal content, or
violate developer safety protocols. Our proposed
framework robustly detects whether the model’s
response falls within a semantic region associated
with negations or legal disclaimers. By jointly an-
alyzing intra-consistency and inter-consistency of
model output, our method enables highly efficient
jailbreak detection without the need to define task-
specific prefixes.

N
\
©o o \ Feature = | R
[2 Distance e
Attack — Refusal] Embedding NegBleurt [} ! X X
Prompts —=m Statements —— Model [| |
— | - o XK Success
—_— : ° Attack
J — T = ! Isolation ° .
arget = | i IS °
i i Sentence = I—) Forest > 0 0 % &
(= Embeddings WBoo ©
00 F Responses \ % mm| | °o 0 g
1 % %
Here are the steps Q . °
LLM NegBleurt [| . % ®
¢ k bomb .
Models © make @ o Model ° Feature =l | . A
Sorry, I ca Distance =] .
fulfill your request Cosine [
J _ /

| Model Inference | |

Texts Collection

Embedding & Measure

Outlier Detection

Intra- & Inter- Consistency | Successful attacks are far from RSD

Figure 3: NegBLEURT Forest: The proposed framework for detecting successful harmful prompt attacks using

RSD and Isolation Forest.

4.1.1 Refusal Semantic Domain (RSD)

Table 1: Typical model responses to harmful queries,
categorized by refusal type.

Refusal Type Example

Direct Refusal
Refusal + Apology

I cannot fulfill your request.

T apologize, but I'm a large
language model, I cannot provide
you with that information.

Based on a large collection of both success-
ful and failed jailbreak attempts, we observe that
when the model rejects harmful user queries, its
responses generally fall into one of two categories:
(1) direct refusal, (2) refusal accompanied by an
apology. These response patterns are exemplified
in Table 1.

Let Dyj denote a subset of rejection-related ut-
terances (rejection corpus) collected for analysis.
We define RSD C S, where S is the space of all
possible sentences in natural language such that:

RSD = {s € Dyj | 15 < len(s) <20} (1)

Here, len(s) denotes the number of words in
sentence s. The region R is characterized seman-
tically by alignment with the rejection intent and
structurally by sentence length constraints (typi-
cally between 15 and 20 words). We know that
RSD contains an infinite number of text combi-
nations; however, different text combinations have
similar semantics with relatively low semantic dis-
tances between them. Therefore, we can directly
locate the RSD in abstract semantics using a fi-
nite set of semantically relevant sentences from the
collected Dyej. Furthermore, we assume that the
correct response of the model should be to reject
all unsafe or unhealthy requests. Therefore, when
the model’s response semantically aligns with the

RSD, the model can be considered to have been
successfully attacked.

4.1.2 Intra-Consistency and Inter-Consistency

According to the previous section, we find that
NegBLEURT can effectively reflect the inconsis-
tency between responses, whereas cosine similarity
fails to do so. Based on this insight, we propose
a method for measuring both Intra-Consistency
and Inter-Consistency, which can be used to detect
whether an attack has succeeded.

We treat RSD as the set of reference re-
sponses, and the input responses as the target re-
sponse. These responses are transformed into
high-dimensional vectors (embeddings) using a
sentence-transformer. We define another type of
distance, referred to as the NegBLEURT Distance,
which is designed to compare semantic similar-
ity between two texts. A higher score indicates
stronger similarity—scores can potentially exceed
1 and are generally below 2. In contrast, dissimilar
or contradictory pairs tend to yield scores below 0.
Therefore, for each reference response in Dyej, we
compute a NegBLEURT score with respect to the
target response. If RSD contains elements /V, this
process results in a vector of dimensions N, which
serves as a key indicator to evaluate the distance
based on NegBLEURT.

DNeg(etgta RSD) = [MNeg(etgta ez)] 5\;1 (2)

where e denotes the target response, and RSD =
{e1,ea,...,en} represents refusal domain. Myeg
denotes the NegBLEURT model as a function.
We assume that the target response embedding
is ey € RP*1, and the NegBLEURT Score Dis-
tance vector is DNeg(etgt, Drej) € RY¥*! To ensure
that these components contribute equally in the rep-
resentation of the joint characteristics, we extend
both Dyeg to £/ x 1 vectors through replication,

denoted D{\Ieg , respectively. The complete feature
representation for each item is then defined as:

F(eig, RSD) = [erg | Dieg | 3)

where F (e, RSD) € R2E*L In this case, our
features not only encode semantic information, but
also incorporate the negation distance within the
RSD (intra-consistency) and between the target
response and RSD elements (inter-consistency).

4.1.3 Outlier Detection(Iso-Forest)

Initially, from the principle of Isolation Forest, the
anomaly score for each sample x is computed by:

E[h(x)]

s(@,n) =27 <))

where:

* E[h(z)] denotes the expected path length of
sample x across all isolation trees, h (x) is the
path length, for example, x.

* ¢(n) is a normalization constant which is a
function of the sample size n.

Here, n refers to the number of samples used to
build each isolation tree. In practice, this is typi-
cally a subsample of the entire dataset chosen to
improve computational efficiency and the effective-
ness of anomaly detection. If the entire data set is
used for each tree, then n = N, where N is the
total number of samples available. Subsequently,
the set of anomalies is determined by selecting the
samples with the highest anomaly scores, in accor-
dance with the contamination rate:

Anomaly Set = {z; | s(z;,n) > 10} (5)

where 7, represents the threshold corresponding
to the top « proportion of anomaly scores, i.e., the
(1 — a)-quantile. In our paper, since we examine
the responses one by one, we fix o = ﬁ so that
only one response is estimated to be an anomaly,
while all other samples are considered normal.

4.1.4 Extraction Framework

The model output exhibits a certain degree of ran-
domness and, depending on the input, may occa-
sionally express apologies or refusals. In particular,
the responses vary according to the specific require-
ments of the input. Although the overall semantics
may be similar to RSD, the embeddings extracted
by the model capture a wider spectrum of semantic

information. Consequently, while the output may
contain elements of refusal, it also encompasses
other semantic meanings, which can result in the
output being identified as an outlier by the isolation
forest algorithm. To address this issue, we employ
an extraction framework to extract the core attitu-
dinal information as shown in 1. In this study, the
zero-shot classifier is implemented using the pre-
trained model facebook/bart-large-mnli in an
unsupervised manner. Specifically, only a set of
candidate labels £ is defined, and the model sub-
sequently computes a classification score for each
label based on the given input.

Algorithm 1 Extraction of Salient Sentence

Require: Text T', Zero-shot classifier C', Labels
L = {refusal, apology, informative }
Ensure: Salient sentence S*

1: Split 7" into N sentences: {s1,S2,...,SN}
2: for each s; do
3: Compute scores: C'(s;, L) — score vector

| 8
4: Let ¢; < arg maxycr p;[/]
5: end for
6: Define Lo < {refusal, apology}
7: Identify subset: Semo <— {Si | 4i € Lemo}
8: if Semo # () then
9: S* < sentence in Semo With highest score
10: else
11: S* 51
12: end if
13: if Length of S* is too long then
14: Trim S* by semantic splitting and keep

segment with highest emotional score

15: end if
16: return S*

> Fallback to the first sentence

4.1.5 Methodology Overview

In summary, as illustrated in Figure 3, for a given
harmful prompt, we first allow the model to per-
form inference to generate a response. The result-
ing response is then processed through the Extrac-
tion Framework to identify the most critical sen-
tences. Based on these, we compute a feature vec-
tor that captures both intra-consistency and inter-
consistency. Finally, we apply Isolation Forest to
perform outlier detection.

J=I(F(E(M(z)),RSD)) (6)

where J denotes the JailBreak result, M the LLM
model, E the extraction function, F' the feature

computation shown in Equation 3, I the Iso-Forest
outlier detection and x the input harmful prompt.

4.2 Experiments

Our NegBLEURT Forest framework effectively ad-
dresses the issue of inconsistent output caused by
the random nature of model responses. Instead of
relying on explicitly defined refusal strings, our
method introduces an RSD-based outlier detection
mechanism, eliminating the need to manually spec-
ify classification thresholds. Since determining the
success of a Jailbreak Attack constitutes a typical
binary classification task, we adopt standard evalu-
ation metrics including accuracy, precision, recall,
and F1 score to assess performance.

Regarding the dataset, based on the original
dataset, we apply 25% Patch Perturbation, Insert
Perturbation, and Swap Perturbation to the input
prompts to enhance our data set. We then evaluated
two different models using this expanded dataset.
Furthermore, through manual inspection of the re-
sponses corresponding to each prompt, we obtain
the respective Jailbreak ground-truth labels.

To validate that our model outperforms other
state-of-the-art (SOTA) methods, we evaluated
String-based Text Classification, Perplexity-guided
Classification, Smoothed Language Model Classi-
fication, and the JailGuard method in the same test
set, obtaining the results shown in Table 2.

Furthermore, a comprehensive evaluation of the
proposed framework was performed, encompass-
ing not only its overall performance but also a
series of ablation studies designed to systemati-
cally quantify the individual contributions of its
constituent components to the model’s detection
efficacy. Specifically, the investigation involved the
exclusion of the Extraction Framework (denoted as
Model w/o Extraction) and the isolated removal of
critical elements within the NegBleurt distance cal-
culation (Model w/o NegBleurt Distance) and the
Embeddings (Model w/o Embeddings). Addition-
ally, the study examined the effect of employing al-
ternative embedding models—specifically, the “No-
vaSearch/stella_en_1.5B_v5” model (Model with
Another Model)—on detection performance. Fi-
nally, the robustness of the framework was assessed
by evaluating a variant in which the representa-
tional dimensionality of the Reference Semantic
Distance (RSD) was reduced by half (Model with
Half Reference).

4.3 Results and Discussion
4.3.1 Detection Results

As shown in Table 2, we observe that the model
achieves the highest F1 scores in most cases, al-
though SMLM-CLS performs relatively better on
the Gemma model. It is worth emphasizing that
our method consistently attains very high perfor-
mance across all four test sets. However, despite
SMLM-CLS achieving strong results on the OD
dataset, its performance on OD SWAP is notably
poor—significantly lower than NegBLEURT For-
est’s 0.881. This further validates that our ap-
proach demonstrates greater generalizability, main-
taining comparable high performance across differ-
ent datasets, especially on responses generated by
different models. It is also important to note that
the performance of PPL-CLS is highly sensitive to
the choice of the perplexity threshold. In this study,
the threshold was selected to yield relatively high
accuracy; nevertheless, its performance across the
four datasets remains suboptimal, particularly in
terms of F1 score.

4.3.2 Ablation Results

It can be seen that our framework achieves high
performance in both models in tests, particularly
in terms of the F1 score, as shown in Table 3. In
addition, it was found that each component of the
framework contributes positively to the overall per-
formance of the model. For example, in the eval-
uation using Llama-2-7b-chat-hf, reducing the di-
mensionality of the RSD by half led to a notable
performance degradation, with the F1 score drop-
ping from 0.869 to 0.759. Furthermore, our com-
plete framework demonstrates consistently strong
performance across all tested models. When the Ex-
traction Framework is removed, although relatively
good results are maintained on the Gemma-2-9b
model, the performance on Llama-2-7b-chat-hf de-
teriorates significantly, with an F1 score of only
0.726, significantly lower than the 0.869 achieved
by the full model.

5 Conclusion

In this study, we first analyze the behavior of harm-
ful prompts under varying perturbation rates and
types. Clear evidence of intra-inconsistency was
observed across different conditions. To visualize
the discrepancies, we employed two distinct ap-
proaches: the first utilizes an embedding model
combined with cosine distance computation, while

Methods Models

Original Dataset (OD)

OD Patch Perturbation 25%

OD Insert Perturbation 25%

OD Swap Perturbation 25%

Accuracy Precision

Recall

F1

Accuracy Precision

Recall

F1

Accuracy Precision

Recall

F1

Accuracy Precision

Recall

F1

STR-CLS 0.435 0.257 0.122 0.165 0.863 0.541 0.800 0.645 0.857 0514 0.750 0.610 0.913 0.300 1.000 0.462
PPL-CLS 0.609 0.867 0.176 ~ 0.292 0.770 0.167 0.120 0.140 0.795 0.200 0.125 0.144 0.894 0.077 0.167 0.105
Llama-2-7b-chat-hf JailGuard 0.559 0.667 0.081 0.145 0.826 0.333 0.120 0.177 0.826 0.333 0.167 0.222 0.919 0.231 0.500 0316
SMLM-CLS 0.578 0.875 0.095 0.171 0.839 0.474 0.360 0.409 0.820 0.407 0.458 0.431 0.919 0.111 0.167 0.133
NegBleurtForest 0.894 0.817 1.000 0.899 0.870 0.692 0.878 0.774 0.870 0.673 0.897 0.769 0.913 0.625 0.750 0.682
STR-CLS 0.851 0.753 0.939 0.836 0.776 0.607 0.944 0.739 0.857 0.778 0.927 0.846 0.683 0.410 0.944 0.571
PPL-CLS 0.721 0.667 0.615 0.640 0.683 0.517 0.833 0.638 0.727 0.700 0.618 0.656 0.559 0.289 0.667 0.403
Gemma-2-9b JailGuard 0.752 0.931 0415 0.575 0.696 0.619 0241 0.347 0.671 0.703 0382 0.495 0.677 0.340 0472 0.395
SMLM-CLS 0.988 0.985 0.985 0.985 0.795 0.621 1.000 0.766 0.907 0.844 0.956 0.897 0.603 0.354 0.944 0515

NegBleurtForest

0.901

0.803

1.000

0.890

0.820

0.832

0.859

0.845

0.907

0.878

0.952

0.911

0.876

0.881

0.881

0.881

Table 2: This table presents a comparative analysis of five classification approaches: STR-CLS (String-based Text
Classification), PPL-CLS (Perplexity-guided Classification), SMLM-CLS (Smoothed Language Model Classifica-
tion), JailGuard, and the proposed method, NegBLEURTForest. The evaluation is conducted on both the original
clean dataset (OD) and a perturbed version containing 25% noise derived from the OD. The results illustrate the
robustness and effectiveness of each method under varying data conditions.

Full Dataset
Methods Model ACC Prec. Rec. F1

Base Framework 0.933 0.856 0.883 0.869

Model w/o Extraction 0.823 0.593 0.932 0.726

Model w/o NegBleurt Distance 0.888 0.821 0.710 0.762
Llama-2-Th-chat-hf 11 (/o Embeddings 0905 0756 0920 0.830
Model with Half Reference 0.849 0.635 0.944 0.759

Model with Another Model 0.904 0.798 0.827 0.812

Base Framework 0.876 0.930 0.815 0.868

Model w/o Extraction 0.877 0.849 0.920 0.883

Gemma-2-9b Model w/o NegBleurt Distance 0.800 0.926 0.653 0.767
Model w/o Embeddings 0.899 0.909 0.890 0.899

Model with Half Reference 0.873 0.842 0.920 0.879

Model with Another Model 0.800 0.945 0.639 0.762

Table 3: Performance comparison of different models
and configurations on the full dataset. We combined all
data with 25% perturbation from main experiments with
the metadata to construct a 4 x 161 dataset, which we
refer to as the Full Dataset.

the second directly applies a negation-sensitive met-
ric, the NegBleurt distance. Both visualizations
reveal substantial differences between JailBreak
and Non-JailBreak responses, with particularly pro-
nounced separation observed when using the Neg-
Bleurt distance. However, defining a definitive
and generalizable threshold to distinguish between
JailBreak and Non-JailBreak cases proves to be
challenging. As a result, the classification perfor-
mance of the model becomes highly sensitive to
the choice of threshold in such scenarios.

To tackle this, we introduce an innovative use of
the RSD as a contextual anchor for response evalu-
ation. Building upon this foundation, we employ
NegBleurt as a distance metric to capture seman-
tic shifts, while further incorporating embedding
vectors along with their corresponding cosine dis-
tances to form a comprehensive feature represen-
tation. Within this feature space, we apply the
Isolation Forest algorithm to detect anomalous re-
sponses, achieving notably high performance. A
key advantage of this method lies in its ability to
operate without the need for an explicitly defined

threshold, offering strong generalizability across
different language models. Compared to traditional
string-based classifiers, our approach demonstrates
greater stability and eliminates the need for ex-
tensive manual curation of refusal or apology pre-
fixes. By adopting an unsupervised methodology,
it enables fine-grained, prompt-level JailBreak de-
tection. The effectiveness of each component is
further validated through ablation studies, confirm-
ing their individual contributions to overall per-
formance and establishing a novel direction for
reliable JailBreak detection.

6 Limitations

In this study, we conducted our experiments using
two language models. As part of future work, we
aim to extend our evaluation to a broader range of
models and incorporate additional datasets. This
expansion will enable a more comprehensive as-
sessment of the proposed approach and support
claims regarding its generalizability across diverse
model architectures and data domains. Moreover,
NegBLEURT relies on BLEURT, which is based
on large, pre-trained BERT models and this makes
it resource-intensive, especially when applied to
large-scale evaluations or real-time systems.

Acknowledgment

We gratefully acknowledge the support of our in-
dustrial partner for providing valuable insights, ad-
vice, and GPU resources (H100) for testing. Our re-
search exclusively used publicly available datasets
and models, adhering to ethical standards and main-
taining transparency in methods and results.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Gabriel Alon and Michael Kamfonas. 2023. Detect-
ing language model attacks with perplexity. arXiv
preprint arXiv:2308.14132.

Miriam Anschiitz, Diego Miguel Lozano, and Georg
Groh. 2023. This is not correct! negation-aware
evaluation of language generation systems. arXiv
preprint arXiv:2307.13989.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and
1 others. 2022a. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, and 1 others. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Su Lin Blodgett and Michael Madaio. 2021. Risks of
ai foundation models in education. arXiv preprint
arXiv:2110.10024.

Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen.
2023. Defending against alignment-breaking at-
tacks via robustly aligned llm. arXiv preprint
arXiv:2309.14348.

Patrick Chao, Edoardo Debenedetti, Alexander Robey,
Maksym Andriushchenko, Francesco Croce, Vikash
Sehwag, Edgar Dobriban, Nicolas Flammarion,
George J Pappas, Florian Tramer, and 1 others. 2024.
Jailbreakbench: An open robustness benchmark for
jailbreaking large language models. arXiv preprint
arXiv:2404.01318.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang,
Zihao Xiao, Hang Su, and Jun Zhu. 2021. Black-box
detection of backdoor attacks with limited informa-
tion and data. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages
16482-16491.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,
Muhammad Irfan, Anas Zafar, Muhammad Bilal
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,
and 1 others. 2023. A survey on large language mod-
els: Applications, challenges, limitations, and practi-
cal usage. Authorea Preprints, 3.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2024.
Gradient cuff: Detecting jailbreak attacks on large
language models by exploring refusal loss landscapes.
arXiv preprint arXiv:2403.00867.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
and 1 others. 2023. Llama guard: Llm-based input-
output safeguard for human-ai conversations. arXiv
preprint arXiv:2312.06674.

Jiabao Ji, Bairu Hou, Alexander Robey, George J Pap-
pas, Hamed Hassani, Yang Zhang, Eric Wong, and
Shiyu Chang. 2024. Defending large language mod-
els against jailbreak attacks via semantic smoothing.
arXiv preprint arXiv:2402.16192.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke
Hiillermeier, and 1 others. 2023. Chatgpt for good?
on opportunities and challenges of large language
models for education. Learning and individual dif-
ferences, 103:102274.

Surender Suresh Kumar, Mary L Cummings, and
Alexander Stimpson. 2024. Strengthening Ilm trust
boundaries: A survey of prompt injection attacks
surender suresh kumar dr. ml cuammings dr. alexander
stimpson. In 2024 IEEE 4th International Confer-
ence on Human-Machine Systems (ICHMS), pages
1-6. IEEE.

Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto
Yamada, Hui Liu, and Jiliang Tang. 2024. To-
wards understanding jailbreak attacks in llms: A
representation space analysis. arXiv preprint
arXiv:2406.10794.

Yingqi Liu, Guangyu Shen, Guanhong Tao, Zhenting
Wang, Shiqing Ma, and Xiangyu Zhang. 2022. Com-
plex backdoor detection by symmetric feature differ-
encing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
15003-15013.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhari-
wal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, and 1 others. 2020. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165,
1:3.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischoff. 2017. On detecting adversarial
perturbations. arXiv preprint arXiv:1702.04267.

OpenAl. 2023. GPT-4V(ision) System Card. https:
//cdn.openai.com/papers. Accessed: 2024-05-
06.

https://cdn.openai.com/papers
https://cdn.openai.com/papers
https://cdn.openai.com/papers

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

OWASP. 2025. Owasp top 10 for large language
model applications. https://genai.owasp.org/
11m-top-10/. Accessed: 2025-04-22.

Féabio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
arXiv preprint arXiv:2211.09527.

Mansi Phute, Alec Helbling, Matthew Hull, Sheng Yun
Peng, Sebastian Szyller, Cory Cornelius, and
Duen Horng Chau. 2023. Llm self defense: By self
examination, llms know they are being tricked. arXiv
preprint arXiv:2308.07308.

Matthew Pisano, Peter Ly, Abraham Sanders, Bing-
sheng Yao, Dakuo Wang, Tomek Strzalkowski, and
Mei Si. 2023. Bergeron: Combating adversarial at-
tacks through a conscience-based alignment frame-
work. arXiv preprint arXiv:2312.00029.

Md Abdur Rahman, Fan Wu, Alfredo Cuzzocrea, and
Sheikh Igbal Ahamed. 2024. Fine-tuned large lan-
guage models (Ilms): Improved prompt injection at-
tacks detection. arXiv preprint arXiv:2410.21337.

Alexander Robey, Eric Wong, Hamed Hassani, and
George J Pappas. 2023. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv
preprint arXiv:2310.03684.

Malik Sallam. 2023. Chatgpt utility in healthcare edu-
cation, research, and practice: systematic review on
the promising perspectives and valid concerns. In
Healthcare, volume 11, page 887. MDPIL.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in neural information processing systems, 33:3008—
3021.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. Advances in Neural
Information Processing Systems, 36:2511-2565.

Yu Tian, Xiao Yang, Jingyuan Zhang, Yinpeng Dong,
and Hang Su. 2023. Evil geniuses: Delving into
the safety of llm-based agents. arXiv preprint
arXiv:2311.11855.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

10

Walkerspider. 2022. DAN is my new friend.
https://0ld.reddit.com/r/ChatGPT/
comments/zlcyr9/danismynewfriend/.
cessed: 2023-09-28.

Ac-

Jiongxiao Wang, Zichen Liu, Keun Hee Park, Zhuojun
Jiang, Zhaoheng Zheng, Zhuofeng Wu, Muhao Chen,
and Chaowei Xiao. 2023. Adversarial demonstration
attacks on large language models. arXiv preprint
arXiv:2305.14950.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng
Yang, and Suman Jana. 2018. Efficient formal safety
analysis of neural networks. Advances in neural
information processing systems, 31.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Chen Xiong, Xiangyu Qi, Pin-Yu Chen, and Tsung-Yi
Ho. 2024. Defensive prompt patch: A robust and
interpretable defense of 1lms against jailbreak attacks.
arXiv preprint arXiv:2405.20099.

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei
He, Jiaxing Song, Ke Xu, and Qi Li. 2024. Jailbreak
attacks and defenses against large language models:
A survey. arXiv preprint arXiv:2407.04295.

Zheng-Xin Yong, Cristina Menghini, and Stephen H
Bach. 2023. Low-resource languages jailbreak gpt-4.
arXiv preprint arXiv:2310.02446.

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang,
and Qingyun Wu. 2024. Autodefense: Multi-agent
IIm defense against jailbreak attacks. arXiv preprint
arXiv:2403.04783.

Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang,
Xiaojun Jia, Ming Hu, Jie Zhang, Yang Liu, Shiqging
Ma, and Chao Shen. 2025. Jailguard: A universal
detection framework for prompt-based attacks on llm
systems. ACM Transactions on Software Engineer-
ing and Methodology.

Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang,
Xiaojun Jia, Xiaofei Xie, Yang Liu, and Chao Shen.
2023. A mutation-based method for multi-modal
jailbreaking attack detection. CoRR.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

https://genai.owasp.org/llm-top-10/
https://genai.owasp.org/llm-top-10/
https://genai.owasp.org/llm-top-10/
https://old.reddit.com/r/ChatGPT/comments/zlcyr9/danismynewfriend/
https://old.reddit.com/r/ChatGPT/comments/zlcyr9/danismynewfriend/
https://old.reddit.com/r/ChatGPT/comments/zlcyr9/danismynewfriend/

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

A Appendix A: Experimental Result

PCA Visualization of Response Distributions

401 é8 @ Reference Responses
® Good Responses
30 4 @9 ® Bad Responses
&5 &8
201 M g6 27 2 : a8
652 o3 |
N 104 3@ &4 ¢’ ¢ |
|5 &2 é0 ﬁG | a1
g .l & | é 21
£ ° o & CA s &
(]
s 20 % e o é | e
& -101 a7 ¢ s Fl
% o6 |
g, @3]
-201 36 | a
é8 | ®
& &7
-30 1
od &
-40 #0

20 40 60 80 100

PCA Component 1

Figure 4: PCA examples visualization showing success-
ful jailbreak attacks, detected jailbreak attacks and the
RSD previously defined.

The figure illustrates a PCA (Principal Compo-
nent Analysis) visualization of response distribu-
tions derived from an Isolation Forest model ap-
plied to the response embeddings. The responses
are categorized into three distinct groups: Red
Points: Represent successful jailbreak attacks,
where the model was tricked into providing unau-
thorized or unintended outputs.

Green Points: Indicate detected unsuccessful jail-
break attempts, where the model responded with
refusal messages such as "I’'m sorry" or "I am an
ethical AL" effectively recognizing and blocking
the attack.

Black Points: Correspond to the reference re-
sponses within the fixed semantic domain, serving
as a stable baseline for comparison.

The clear separation between the red (successful at-
tacks) and green (detected attacks) regions demon-
strates the effectiveness of the detection method.
Notably, this separation is achieved without relying
on a predefined threshold or utilizing additional
fine-tuned models. Instead, the Isolation Forest
model leverages the embeddings of the generated
responses to distinguish between successful and
unsuccessful attacks. This result highlights the
robustness of the proposed approach, where the
detection of jailbreak attempts is achieved purely
through the distribution of response embeddings,

11

ensuring an adaptive and threshold-free detection
process.

B Appendix B: The '"Pert2detect"
open-source Tool

While working on LLM jailbreaking, our team
found it difficult to easily compare different LLMs,
prompt datasets, and classifiers. Pert2detect was de-
veloped to address this challenge, providing users
with a unified interface, standardized communica-
tion methods, and shared result files. The user can
select one of the LLMs they have implemented,
a dataset type, and a classifier if "Auto mode" is
enabled. Without Auto mode enabled, the user will
be required to manually determine whether each
LLM response is successfully jailbroken. Using
the manual mode the "jailbreak ground-truth" key
in campaigns json will be set directly.

This application is designed to allow users to utilize
their own LLMs (either local or remote via API),
datasets, and classifiers. To add your own assets,
three abstract classes define the methods required
for the application to function properly. Figure 7
shows the Python classes which are designed with
a flexible architecture, enabling seamless modifi-
cation of the code to accommodate the addition
of new datasets, models, and the construction of
ground truth annotations. This extensible design
facilitates the efficient integration of various data
sources and model configurations, ensuring adapt-
ability for diverse research and development needs.
The tool supports the execution of a comprehensive
test campaign using a classifier-based approach.
Users have the flexibility to integrate their own cus-
tom classifier, enabling a tailored evaluation pro-
cess. In this configuration, the tool autonomously
determines the success of jailbreak attempts by
leveraging the classifier’s assessment, providing a
scalable and adaptable solution for detecting and
categorizing adversarial behaviors.

BLEURT Score under Prompt Perturbations

BLEURT Score under Prompt Perturbations

BLEURT Score under Prompt Perturbations

BLEVRT Score

((a)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and Gemma.

BLEURT Score under Prompt Perturbations

((b)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and Gemma.

BLEURT Score under Prompt Perturbations

BLEURT Score
2% /

((c)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and Gemma.

BLEURT Score under Prompt Perturbations

uuuuuuuuu

BLEVRT Score
5

5

((d)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and LLama.

osine Score under Prompt Perturbations

((e)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and LLama.

Figure 5

Cosine Score under Prompt Perturbations

BLEURT Score
2% /

((f)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and LLama.

osine Score under Prompt Perturbations

yyyyyyyyyyyyyyyyyyyyyyy

((a)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and Gemma.

Cosine Score under Prompt Perturbatians

Perturbation Percentage

((b)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and Gemma.

Cosine Score under Prompt Perturbations

((c)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and Gemma.

Cosine Scare under Prompt Perturbations

/

/

((d)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and LLama.

turbation Percentage

((e)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and LLama.

Figure 6

12

((f)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and LLama.

UML diagram JailBreakTester

|Macletubemod'rﬁed‘ Alternative entry point

Main entry point

lib.controller

CLI mode Main engine to perform all
m=m==m====a==3 the tasks. Can be called by
the GUI or by main.

[
linker

Perform the link between
your own LLMs, Dataset
¥ types, classifiers and the

Used to launch the app GUI controller.
or CLI
view
> GUI engine.
web
—— Web engine.
v . - 4

Classes to handle classifiers. To
add your own classifiers you will
need to implement the abstract
methods defined in
ClassifierController class.

classify_responses
- 2l
]
i
]
P S
' 1
. i
|

¥

€3

Local classifier Remote

classifier API

Classes to handle datasets. To
add your own dataset types you
will need to implement the
abstract methods defined in
DataSetController class.

nextPrompt
getCurrentindex

GetNumberOfPrompts

Database

Classes to handle LLMs. To add
your own LLMs you will need to
implement the abstract methods
defined in LLMController class.

Local LLM engine

ask_prompt

= = - - =

ARl

Figure 7: The UML structure for the developed tool.

13

Remote LLM

	Introduction
	Related Work
	Consistency Analysis
	Experimental Evaluation and Results

	Method Derived
	Proposed Framework
	Refusal Semantic Domain (RSD)
	Intra-Consistency and Inter-Consistency
	Outlier Detection(Iso-Forest)
	Extraction Framework
	Methodology Overview

	Experiments
	Results and Discussion
	Detection Results
	Ablation Results

	Conclusion
	Limitations
	Appendix A: Experimental Result
	Appendix B: The "Pert2detect" open-source Tool

