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Abstract

As Large Language Models (LLMs) continue
to advance, ensuring their robustness and secu-
rity remains a critical challenge. Jailbreak at-
tacks pose a significant risk by coercing LLMs
into generating harmful or ethically inappro-
priate content, even when such models are
trained to follow strict guidelines. Further-
more, defining universal filtering policies is
inherently context-dependent and difficult to
generalize. To address these challenges without
relying on additional rule-based filters or pre-
defined thresholds, this paper presents a novel
detection framework for assessing whether an
LLM-generated response aligns with expected
safe behavior. The proposed approach eval-
uates response consistency from two comple-
mentary perspectives: intra-consistency, which
analyzes how reference responses in prede-
fined Refusal Semantic Domain (RSD) vary in
the latent space; and inter-consistency, which
measures the semantic alignment between the
LLM response and this RSD, followed by semi-
supervised classification using Isolation Forest.
This methodology enables effective jailbreak
detection without the need for empirically de-
fined thresholds, offering a more scalable and
adaptable solution for real-world applications!.

1 Introduction

Large Language Models (LLMs) are powerful neu-
ral networks with large parameter sizes and strong
in-context learning capabilities, widely used for
tasks like summarization, text completion, and
question answering (Hadi et al., 2023; OpenAl,
2023; Kasneci et al., 2023; Zhao et al., 2023). Pop-
ular models include GPT-3 (Mann et al., 2020),
GPT-4 (Achiam et al., 2023), and LLAMA (Tou-
vron et al., 2023), typically accessed via APIs or
web interfaces. However, this accessibility exposes
them to cyber threats, such as prompt-based at-
tacks, which can manipulate model behavior and
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compromise system security (Perez and Ribeiro,
2022). Two major attacks on LLMs are prompt
injection and jailbreak attacks, both aiming to by-
pass safety mechanisms and generate harmful or
illegal content (Chao et al., 2023; Zou et al., 2023).
Prompt injection involves appending malicious in-
put to a prompt and has been identified by OWASP
as a top LLM-related threat (OWASP, 2025; Ku-
mar et al., 2024). In contrast, jailbreak attacks
bypass safety filters without prompt concatena-
tion (Yi et al., 2024), posing a significant chal-
lenge due to their stealthy nature (Wang et al.,
2023), especially in sensitive applications like busi-
ness (Wu et al., 2023), education (Blodgett and
Madaio, 2021), and healthcare (Sallam, 2023). In
this paper, we mainly focuses on jailbreak attacks.
Existing methods, including SmoothLLLM, struggle
to reliably detect jailbreak attacks. Reproducing
prior approaches like JailGuard is also challeng-
ing, often leading to inconsistent results—even on
the same datasets—due to implementation difficul-
ties and unclear threshold settings. These issues
reflect broader reproducibility and comparability
problems in the field.

This work therefore explores two key questions:
RQ1: Can jailbreak attacks be detected without
relying on additional filters, fine-tuning, or thresh-
old tuning? RQ2: Can we build an efficient de-
tection method that generalizes well across differ-
ent datasets, models, and applications? To answer
these questions, we conducted extensive experi-
ments to study these dependencies by testing jail-
break attacks on two LLMs—the LLama-7-2B and
the Gemma-2-9B—and proposed a novel frame-
work, NegBLEURT Forest. In this work, Section 2
provides an overview of the existing jailbreak at-
tacks and defense mechanisms. Section 3 intro-
duces the first study for the intra-consistency be-
tween the responses in perturbed prompts. In Sec-
tion 4, the second semi-unsupervised approach is
presented which leverages K-means clustering and
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the Isolation Forest machine learning algorithm.
The corresponding experimental evaluation and
discussion are also elaborated. Finally, Section 5
concludes the paper and outlines the limitations of
the proposed work.

2 Related Work

Many research works have been proposed to de-
tect jailbreak attacks. For example, Smooth-
LLM (Robey et al., 2023), JailGuard (Zhang et al.,
2023), LlamaGuard (Inan et al., 2023), defense
strategies in (Metzen et al., 2017; Liu et al., 2022;
Dong et al., 2021) identify attacks and help se-
cure Al systems. However, most of the proposed
methods are based on comparing inputs and/or out-
puts against a reference dataset and use thresholds
that are determined empirically. As a result, these
solutions often lack generalization across differ-
ent datasets and models, making their results diffi-
cult to reproduce. Furthermore, many alternative
approaches involve fine-tuning the models used,
which requires frequent updates, an approach that
is resource intensive and expensive (Rahman et al.,
2024). Safety training methods for LLMs, such as
GPT-4 and Claude, frequently fine-tune pre-trained
models using human preferences (Christiano et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022a) and Al feed-
back (Bai et al., 2022b; Achiam et al., 2023; Sun
et al., 2023). Another detection method is the input
perplexity score which uses an additional model
to detect jailbreak prompts(Alon and Kamfonas,
2023). Jailbreak attacks aim to trick large lan-
guage models (LLMs) into producing harmful or
unethical responses. Starting from early work on
hand-crafted prompts (Walkerspider, 2022), jail-
breaks can be divided into two types: conflict-
ing goals and generalization mismatches (Wang
et al., 2018). Conflicting goals attacks use care-
fully designed inputs to make the model choose
between safe behavior and harmful prompts, with
well-known examples like GCG and AutoDAN.
The Greedy Coordinate Gradient (GCG) method
(Zou et al., 2023) generates adversarial suffixes
added to harmful prompts and works effectively
on black-box commercial LLMs. AutoDAN (Zou
et al., 2023) uses genetic algorithms with mutation
and crossover to create natural adversarial prefixes.
Generalization mismatches exploit the gap between
broad pretraining data and narrower safety fine-
tuning data. For instance, Yong et al. (Yong et al.,

2023) jailbreak GPT-4 by turning user prompts into
low-resource languages. Another approach uses
sequence-to-sequence models, like LL.Ms (Tian
et al., 2023) or multi-agent systems (Chao et al.,
2023), to transform harmful prompts into jailbreak
prompts. Defensive methods fall into two main
types: pre-processing and post-processing. Pre-
processing changes harmful prompts using tech-
niques like smoothing or detection to remove ad-
versarial parts (Ji et al., 2024; Robey et al., 2023;
Cao et al., 2023; Hu et al., 2024; Zhang et al., 2025;
Lin et al., 2024). Post-processing uses filters to
check if the model’s responses are safe (Pisano
et al., 2023; Phute et al., 2023; Zeng et al., 2024;
Xiong et al., 2024). Both methods work well but
have drawbacks. Pre-processing relies on thresh-
olds to separate safe and harmful prompts, but these
thresholds are often chosen without strong justifica-
tion and usually target only one or two attack types,
limiting their general use. Post-processing needs
adapting the model with filter tuning, which takes a
lot of time and resources. Also, its reliability is not
always guaranteed, especially if an external LLM
is used to evaluate responses.

3 Consistency Analysis

Given a jailbreak prompt with adversarial prefixes
or suffixes, we assume that modifying it can stop
the attack and keep the response within the model’s
safety limits. In this section, we analyze how
the model’s responses change when the original
prompt is slightly altered. This helps us understand
how consistent, stable, and sensitive the model is to
small input changes. The steps of this analysis are
shown in Figure 1. Building on the datasets from
(Chao et al., 2024), we created a carefully curated
and manually labeled dataset with 161 prompts,
including both successful and failed jailbreak at-
tempts. In the perturbation process, various con-
trolled changes are applied to the original prompt
while keeping its main meaning. These changes
simulate different ways users might phrase prompts,
helping to test the model’s robustness. We use three
techniques: Insert Perturbation, which randomly
adds contextually fitting words or phrases to the
prompt to check if the meaning stays consistent;
Patch Perturbation, which replaces certain words
or phrases with alternatives while keeping the sen-
tence structure to see how the model adapts; and
Swap Perturbation, which changes the order of
words or phrases to test the model’s ability to un-



derstand the prompt despite word rearrangement.
To better detect inconsistencies, we apply six per-
turbation levels (1, 3, 5, 10, 15, and 25), generating
10 variations at each level. For each perturbed
prompt, we generated 10 different responses from
the model to get a reliable sample for evaluating
how consistently the model reacts to small input
changes. This also helped us create a ground truth
for further analysis. Having multiple responses
per prompt allows us to measure Response Consis-
tency, which shows how similar the responses are
to each other and reflects the model’s stability. We
measured consistency using cosine similarity and
the NegBLEURT score.

In order to analyze the intra-dependency among
the generated responses, we compare two evalua-
tion metrics: cosine similarity and NegBLEURT
score. These metrics are used in this work to empir-
ically avoid using a threshold and to determine if
we can effectively distinguish between consistent
and inconsistent response patterns. Specifically,
our objective is to determine whether a notable
change in the generated responses occurs when the
initial prompt is slightly modified. In the work
of SmoothLLLLM, the authors defined a consistency
threshold and performed an extensive mathemati-
cal analysis. However, their final approach relied
on a string classifier to identify jailbreak attacks.
In contrast, our method directly leverages the sim-
ilarities between responses to capture changes in
the model’s behavior. The underlying hypothesis
is that a prompt designed as an attack will exhibit
significant variations in its responses when the orig-
inal prompt is slightly perturbed. In contrast, a
consistently unsuccessful attack will maintain high
similarity among the generated responses. To for-
malize this approach, we begin with an original
prompt Py and generate ten different responses
Ri, Rs, ..., Rio. The similarity between each pair
of these responses is calculated using the chosen
metrics (cosine similarity and NegBLEURT), re-
sulting in a 10 x 10 similarity matrix. The diag-
onal of this matrix is set to zero to prevent self-
comparison of the responses. This matrix effec-
tively captures the intra-dependency of the gener-
ated responses, where each entry S(R;, R;) repre-
sents the similarity score between the i*" and ;"
responses. The structure of this similarity matrix is
illustrated below, where S denotes the calculated
similarity score:

0 S(Rth) S(R17R3) S(Rl,R]o)

S(Ra, Ry) 0 S(Ry, R3) S(Ra, Rio)

S = | S(R3,R1) S(R3, Rg) 0 S(Rs3, Ryo)
S(Rio, R1) S(Rio, Re) S(Rio, R3) --- 0

Following the computation of similarity scores,
the average of each row in the similarity matrix is
calculated to measure the consistency of a specific
response to all others 1-vs-all). We tested both
the cosine similarity and NegBLEURT (Anschiitz
et al., 2023) to evaluate the similarity between two
outputs. NegBLEURT is a modified version of the
BLEURT (BERT-based Language Understanding
Evaluation and Representation Tool). It focuses on
identifying inconsistencies or anomalies in the gen-
erated text by converting BLEURT scores into neg-
ative values. This approach effectively highlights
responses that exhibit significant divergence, par-
ticularly those containing negations such as "Sorry,
I cannot do that" or "I am an ethical AL." Such re-
sponses are typically indicative of model refusal
behaviors, which are of critical interest in adversar-
ial testing.

3.1 Experimental Evaluation and Results

For each prompt, we calculate the similarity values
between the generated responses, obtaining a ma-
trix for each metric. The average value of each row
in the matrix is then computed, and the maximum
of these average values is identified. This approach
enables us to systematically assess the behavior
of each metric under varying conditions. Figure
2 presents the results for the NegBLEURT and
cosine , where responses are categorized into two
groups: successful jailbreaks and non-jailbreaks.
For clarity, we focus on the swap perturbation in
Figure 2 (10-90 percentile envelopes), while the
results for the other perturbations are provided in
the Appendix. In the NegBLEURT score analysis,
two distinct regions are observed: the red envelope,
representing successful jailbreaks, and the blue
envelope, indicating non-jailbreak responses.
Empirically, a positive NegBLEURT score is
generally associated with non-jailbreak attempts,
indicating stable and consistent responses. In
contrast, a negative NegBLEURT score reveals
inconsistencies in responses, which are indicative
of successful jailbreak attacks. The second two
figures (c) and (d) report the cosine similarity
metric on the same set of responses. Although
NegBLEURT demonstrates a separation between
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Figure 1: Proposed approach using prompt perturbations and NegBLEURT.
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the two categories, the cosine similarity values
show significant overlap, making it difficult
to differentiate between attack and non-attack
responses. Furthermore, the figures reveal an
overlap between the two categories, particularly
when the perturbation level is increased (also
for NegBLEURT) because prompts exhibiting
significant perturbations are more likely to display
inconsistent behavior. Empirical evidence indicates
that higher levels of perturbation increase the
overlap, which in turn reduces the discriminative
power of the similarity metrics. From these
observations, we deduce the following key insights.
NegBLEURT is an effective model to detect the
inconsistencies in the responses which can be
a possible jailbreak attack as indicated by the
separation between positive and negative scores. A
negative NegBLEURT score is a strong indicator
of a potential attack, suggesting that the associated
prompt has likely triggered an adversarial response.
Moreover, excessive perturbation reduces the abil-
ity to differentiate between attack and non-attack
responses, suggesting that moderate perturbation
levels may be preferable for robust analysis.

Why NegBLEURT Forest? Although NegBLEURT
offers valuable insights into model responses,
its interpretation still relies on threshold-based
distinctions between positive and negative scores.

Additionally, it is considered resource-intensive,
making it less practical for efficient implemen-
tation and deployment. To overcome these
limitations and move toward a more realistic and
scalable solution, we build on the findings from
NegBLEURT to introduce an alternative approach.
This proposed classifier avoids the use of prompt
perturbations and eliminates the dependency on
predefined thresholds, offering a more robust and
adaptable method for jailbreak detection.

4 Method Derived

4.1 Proposed Framework

We present a Jailbreak detection framework, as
shown in Figure 3 designed to systematically eval-
uate whether LLLMs can robustly refuse prompts
that contain hazardous requests, illegal content, or
violate developer safety protocols. Our proposed
framework robustly detects whether the model’s
response falls within a semantic region associated
with negations or legal disclaimers. By jointly an-
alyzing intra-consistency and inter-consistency of
model output, our method enables highly efficient
jailbreak detection without the need to define task-
specific prefixes.
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Figure 3: NegBLEURT Forest: The proposed framework for detecting successful harmful prompt attacks using

RSD and Isolation Forest.

4.1.1 Refusal Semantic Domain (RSD)

Table 1: Typical model responses to harmful queries,
categorized by refusal type.

Refusal Type Example

Direct Refusal
Refusal + Apology

I cannot fulfill your request.

T apologize, but I'm a large
language model, I cannot provide
you with that information.

Based on a large collection of both success-
ful and failed jailbreak attempts, we observe that
when the model rejects harmful user queries, its
responses generally fall into one of two categories:
(1) direct refusal, (2) refusal accompanied by an
apology. These response patterns are exemplified
in Table 1.

Let Dyj denote a subset of rejection-related ut-
terances (rejection corpus) collected for analysis.
We define RSD C S, where S is the space of all
possible sentences in natural language such that:

RSD = {s € Dyj | 15 < len(s) <20} (1)

Here, len(s) denotes the number of words in
sentence s. The region R is characterized seman-
tically by alignment with the rejection intent and
structurally by sentence length constraints (typi-
cally between 15 and 20 words). We know that
RSD contains an infinite number of text combi-
nations; however, different text combinations have
similar semantics with relatively low semantic dis-
tances between them. Therefore, we can directly
locate the RSD in abstract semantics using a fi-
nite set of semantically relevant sentences from the
collected Dyej. Furthermore, we assume that the
correct response of the model should be to reject
all unsafe or unhealthy requests. Therefore, when
the model’s response semantically aligns with the

RSD, the model can be considered to have been
successfully attacked.

4.1.2 Intra-Consistency and Inter-Consistency

According to the previous section, we find that
NegBLEURT can effectively reflect the inconsis-
tency between responses, whereas cosine similarity
fails to do so. Based on this insight, we propose
a method for measuring both Intra-Consistency
and Inter-Consistency, which can be used to detect
whether an attack has succeeded.

We treat RSD as the set of reference re-
sponses, and the input responses as the target re-
sponse. These responses are transformed into
high-dimensional vectors (embeddings) using a
sentence-transformer. We define another type of
distance, referred to as the NegBLEURT Distance,
which is designed to compare semantic similar-
ity between two texts. A higher score indicates
stronger similarity—scores can potentially exceed
1 and are generally below 2. In contrast, dissimilar
or contradictory pairs tend to yield scores below 0.
Therefore, for each reference response in Dyej, we
compute a NegBLEURT score with respect to the
target response. If RSD contains elements /V, this
process results in a vector of dimensions N, which
serves as a key indicator to evaluate the distance
based on NegBLEURT.

DNeg(etgta RSD) = [MNeg(etgta ez)] 5\;1 (2)

where e denotes the target response, and RSD =
{e1,ea,...,en} represents refusal domain. Myeg
denotes the NegBLEURT model as a function.
We assume that the target response embedding
is ey € RP*1, and the NegBLEURT Score Dis-
tance vector is DNeg(etgt, Drej) € RY¥*! To ensure
that these components contribute equally in the rep-
resentation of the joint characteristics, we extend
both Dyeg to £/ x 1 vectors through replication,



denoted D{\Ieg , respectively. The complete feature
representation for each item is then defined as:

F(eig, RSD) = [erg | Dieg | 3)

where F (e, RSD) € R2E*L In this case, our
features not only encode semantic information, but
also incorporate the negation distance within the
RSD (intra-consistency) and between the target
response and RSD elements (inter-consistency).

4.1.3 Outlier Detection(Iso-Forest)

Initially, from the principle of Isolation Forest, the
anomaly score for each sample x is computed by:

E[h(x)]

s(@,n) =27 <) )

where:

* E[h(z)] denotes the expected path length of
sample x across all isolation trees, h (x) is the
path length, for example, x.

* ¢(n) is a normalization constant which is a
function of the sample size n.

Here, n refers to the number of samples used to
build each isolation tree. In practice, this is typi-
cally a subsample of the entire dataset chosen to
improve computational efficiency and the effective-
ness of anomaly detection. If the entire data set is
used for each tree, then n = N, where N is the
total number of samples available. Subsequently,
the set of anomalies is determined by selecting the
samples with the highest anomaly scores, in accor-
dance with the contamination rate:

Anomaly Set = {z; | s(z;,n) > 10} (5)

where 7, represents the threshold corresponding
to the top « proportion of anomaly scores, i.e., the
(1 — a)-quantile. In our paper, since we examine
the responses one by one, we fix o = ﬁ so that
only one response is estimated to be an anomaly,
while all other samples are considered normal.

4.1.4 Extraction Framework

The model output exhibits a certain degree of ran-
domness and, depending on the input, may occa-
sionally express apologies or refusals. In particular,
the responses vary according to the specific require-
ments of the input. Although the overall semantics
may be similar to RSD, the embeddings extracted
by the model capture a wider spectrum of semantic

information. Consequently, while the output may
contain elements of refusal, it also encompasses
other semantic meanings, which can result in the
output being identified as an outlier by the isolation
forest algorithm. To address this issue, we employ
an extraction framework to extract the core attitu-
dinal information as shown in 1. In this study, the
zero-shot classifier is implemented using the pre-
trained model facebook/bart-large-mnli in an
unsupervised manner. Specifically, only a set of
candidate labels £ is defined, and the model sub-
sequently computes a classification score for each
label based on the given input.

Algorithm 1 Extraction of Salient Sentence

Require: Text T', Zero-shot classifier C', Labels
L = {refusal, apology, informative }
Ensure: Salient sentence S*

1: Split 7" into N sentences: {s1,S2,...,SN}
2: for each s; do
3: Compute scores: C'(s;, L) — score vector

| 8
4: Let ¢; < arg maxycr p;[/]
5: end for
6: Define Lo < {refusal, apology}
7: Identify subset: Semo <— {Si | 4i € Lemo}
8: if Semo # () then
9: S* < sentence in Semo With highest score
10: else
11: S* 51
12: end if
13: if Length of S* is too long then
14: Trim S* by semantic splitting and keep

segment with highest emotional score

15: end if
16: return S*

> Fallback to the first sentence

4.1.5 Methodology Overview

In summary, as illustrated in Figure 3, for a given
harmful prompt, we first allow the model to per-
form inference to generate a response. The result-
ing response is then processed through the Extrac-
tion Framework to identify the most critical sen-
tences. Based on these, we compute a feature vec-
tor that captures both intra-consistency and inter-
consistency. Finally, we apply Isolation Forest to
perform outlier detection.

J=I(F(E(M(z)),RSD)) (6)

where J denotes the JailBreak result, M the LLM
model, E the extraction function, F' the feature



computation shown in Equation 3, I the Iso-Forest
outlier detection and x the input harmful prompt.

4.2 Experiments

Our NegBLEURT Forest framework effectively ad-
dresses the issue of inconsistent output caused by
the random nature of model responses. Instead of
relying on explicitly defined refusal strings, our
method introduces an RSD-based outlier detection
mechanism, eliminating the need to manually spec-
ify classification thresholds. Since determining the
success of a Jailbreak Attack constitutes a typical
binary classification task, we adopt standard evalu-
ation metrics including accuracy, precision, recall,
and F1 score to assess performance.

Regarding the dataset, based on the original
dataset, we apply 25% Patch Perturbation, Insert
Perturbation, and Swap Perturbation to the input
prompts to enhance our data set. We then evaluated
two different models using this expanded dataset.
Furthermore, through manual inspection of the re-
sponses corresponding to each prompt, we obtain
the respective Jailbreak ground-truth labels.

To validate that our model outperforms other
state-of-the-art (SOTA) methods, we evaluated
String-based Text Classification, Perplexity-guided
Classification, Smoothed Language Model Classi-
fication, and the JailGuard method in the same test
set, obtaining the results shown in Table 2.

Furthermore, a comprehensive evaluation of the
proposed framework was performed, encompass-
ing not only its overall performance but also a
series of ablation studies designed to systemati-
cally quantify the individual contributions of its
constituent components to the model’s detection
efficacy. Specifically, the investigation involved the
exclusion of the Extraction Framework (denoted as
Model w/o Extraction) and the isolated removal of
critical elements within the NegBleurt distance cal-
culation (Model w/o NegBleurt Distance) and the
Embeddings (Model w/o Embeddings). Addition-
ally, the study examined the effect of employing al-
ternative embedding models—specifically, the “No-
vaSearch/stella_en_1.5B_v5” model (Model with
Another Model)—on detection performance. Fi-
nally, the robustness of the framework was assessed
by evaluating a variant in which the representa-
tional dimensionality of the Reference Semantic
Distance (RSD) was reduced by half (Model with
Half Reference).

4.3 Results and Discussion
4.3.1 Detection Results

As shown in Table 2, we observe that the model
achieves the highest F1 scores in most cases, al-
though SMLM-CLS performs relatively better on
the Gemma model. It is worth emphasizing that
our method consistently attains very high perfor-
mance across all four test sets. However, despite
SMLM-CLS achieving strong results on the OD
dataset, its performance on OD SWAP is notably
poor—significantly lower than NegBLEURT For-
est’s 0.881. This further validates that our ap-
proach demonstrates greater generalizability, main-
taining comparable high performance across differ-
ent datasets, especially on responses generated by
different models. It is also important to note that
the performance of PPL-CLS is highly sensitive to
the choice of the perplexity threshold. In this study,
the threshold was selected to yield relatively high
accuracy; nevertheless, its performance across the
four datasets remains suboptimal, particularly in
terms of F1 score.

4.3.2 Ablation Results

It can be seen that our framework achieves high
performance in both models in tests, particularly
in terms of the F1 score, as shown in Table 3. In
addition, it was found that each component of the
framework contributes positively to the overall per-
formance of the model. For example, in the eval-
uation using Llama-2-7b-chat-hf, reducing the di-
mensionality of the RSD by half led to a notable
performance degradation, with the F1 score drop-
ping from 0.869 to 0.759. Furthermore, our com-
plete framework demonstrates consistently strong
performance across all tested models. When the Ex-
traction Framework is removed, although relatively
good results are maintained on the Gemma-2-9b
model, the performance on Llama-2-7b-chat-hf de-
teriorates significantly, with an F1 score of only
0.726, significantly lower than the 0.869 achieved
by the full model.

5 Conclusion

In this study, we first analyze the behavior of harm-
ful prompts under varying perturbation rates and
types. Clear evidence of intra-inconsistency was
observed across different conditions. To visualize
the discrepancies, we employed two distinct ap-
proaches: the first utilizes an embedding model
combined with cosine distance computation, while
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SMLM-CLS 0.988 0.985 0.985 0.985 0.795 0.621 1.000 0.766 0.907 0.844 0.956  0.897 0.603 0.354 0.944 0515

NegBleurtForest

0.901

0.803

1.000

0.890

0.820

0.832

0.859

0.845

0.907

0.878

0.952

0.911

0.876

0.881

0.881

0.881

Table 2: This table presents a comparative analysis of five classification approaches: STR-CLS (String-based Text
Classification), PPL-CLS (Perplexity-guided Classification), SMLM-CLS (Smoothed Language Model Classifica-
tion), JailGuard, and the proposed method, NegBLEURTForest. The evaluation is conducted on both the original
clean dataset (OD) and a perturbed version containing 25% noise derived from the OD. The results illustrate the
robustness and effectiveness of each method under varying data conditions.

Full Dataset
Methods Model ACC Prec. Rec. F1

Base Framework 0.933 0.856 0.883 0.869

Model w/o Extraction 0.823 0.593 0.932 0.726

Model w/o NegBleurt Distance  0.888 0.821 0.710 0.762
Llama-2-Th-chat-hf 11 (/o Embeddings 0905 0756 0920 0.830
Model with Half Reference 0.849 0.635 0.944 0.759

Model with Another Model 0.904 0.798 0.827 0.812

Base Framework 0.876 0.930 0.815 0.868

Model w/o Extraction 0.877 0.849 0.920 0.883

Gemma-2-9b Model w/o NegBleurt Distance  0.800 0.926 0.653 0.767
Model w/o Embeddings 0.899 0.909 0.890 0.899

Model with Half Reference 0.873 0.842 0.920 0.879

Model with Another Model 0.800 0.945 0.639 0.762

Table 3: Performance comparison of different models
and configurations on the full dataset. We combined all
data with 25% perturbation from main experiments with
the metadata to construct a 4 x 161 dataset, which we
refer to as the Full Dataset.

the second directly applies a negation-sensitive met-
ric, the NegBleurt distance. Both visualizations
reveal substantial differences between JailBreak
and Non-JailBreak responses, with particularly pro-
nounced separation observed when using the Neg-
Bleurt distance. However, defining a definitive
and generalizable threshold to distinguish between
JailBreak and Non-JailBreak cases proves to be
challenging. As a result, the classification perfor-
mance of the model becomes highly sensitive to
the choice of threshold in such scenarios.

To tackle this, we introduce an innovative use of
the RSD as a contextual anchor for response evalu-
ation. Building upon this foundation, we employ
NegBleurt as a distance metric to capture seman-
tic shifts, while further incorporating embedding
vectors along with their corresponding cosine dis-
tances to form a comprehensive feature represen-
tation. Within this feature space, we apply the
Isolation Forest algorithm to detect anomalous re-
sponses, achieving notably high performance. A
key advantage of this method lies in its ability to
operate without the need for an explicitly defined

threshold, offering strong generalizability across
different language models. Compared to traditional
string-based classifiers, our approach demonstrates
greater stability and eliminates the need for ex-
tensive manual curation of refusal or apology pre-
fixes. By adopting an unsupervised methodology,
it enables fine-grained, prompt-level JailBreak de-
tection. The effectiveness of each component is
further validated through ablation studies, confirm-
ing their individual contributions to overall per-
formance and establishing a novel direction for
reliable JailBreak detection.

6 Limitations

In this study, we conducted our experiments using
two language models. As part of future work, we
aim to extend our evaluation to a broader range of
models and incorporate additional datasets. This
expansion will enable a more comprehensive as-
sessment of the proposed approach and support
claims regarding its generalizability across diverse
model architectures and data domains. Moreover,
NegBLEURT relies on BLEURT, which is based
on large, pre-trained BERT models and this makes
it resource-intensive, especially when applied to
large-scale evaluations or real-time systems.
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A Appendix A: Experimental Result

PCA Visualization of Response Distributions
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Figure 4: PCA examples visualization showing success-
ful jailbreak attacks, detected jailbreak attacks and the
RSD previously defined.

The figure illustrates a PCA (Principal Compo-
nent Analysis) visualization of response distribu-
tions derived from an Isolation Forest model ap-
plied to the response embeddings. The responses
are categorized into three distinct groups: Red
Points: Represent successful jailbreak attacks,
where the model was tricked into providing unau-
thorized or unintended outputs.

Green Points: Indicate detected unsuccessful jail-
break attempts, where the model responded with
refusal messages such as "I’'m sorry" or "I am an
ethical AL" effectively recognizing and blocking
the attack.

Black Points: Correspond to the reference re-
sponses within the fixed semantic domain, serving
as a stable baseline for comparison.

The clear separation between the red (successful at-
tacks) and green (detected attacks) regions demon-
strates the effectiveness of the detection method.
Notably, this separation is achieved without relying
on a predefined threshold or utilizing additional
fine-tuned models. Instead, the Isolation Forest
model leverages the embeddings of the generated
responses to distinguish between successful and
unsuccessful attacks. This result highlights the
robustness of the proposed approach, where the
detection of jailbreak attempts is achieved purely
through the distribution of response embeddings,
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ensuring an adaptive and threshold-free detection
process.

B Appendix B: The '"Pert2detect"
open-source Tool

While working on LLM jailbreaking, our team
found it difficult to easily compare different LLMs,
prompt datasets, and classifiers. Pert2detect was de-
veloped to address this challenge, providing users
with a unified interface, standardized communica-
tion methods, and shared result files. The user can
select one of the LLMs they have implemented,
a dataset type, and a classifier if "Auto mode" is
enabled. Without Auto mode enabled, the user will
be required to manually determine whether each
LLM response is successfully jailbroken. Using
the manual mode the "jailbreak ground-truth" key
in campaigns json will be set directly.

This application is designed to allow users to utilize
their own LLMs (either local or remote via API),
datasets, and classifiers. To add your own assets,
three abstract classes define the methods required
for the application to function properly. Figure 7
shows the Python classes which are designed with
a flexible architecture, enabling seamless modifi-
cation of the code to accommodate the addition
of new datasets, models, and the construction of
ground truth annotations. This extensible design
facilitates the efficient integration of various data
sources and model configurations, ensuring adapt-
ability for diverse research and development needs.
The tool supports the execution of a comprehensive
test campaign using a classifier-based approach.
Users have the flexibility to integrate their own cus-
tom classifier, enabling a tailored evaluation pro-
cess. In this configuration, the tool autonomously
determines the success of jailbreak attempts by
leveraging the classifier’s assessment, providing a
scalable and adaptable solution for detecting and
categorizing adversarial behaviors.
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((a)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and Gemma.

BLEURT Score under Prompt Perturbations

((b)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and Gemma.
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((c)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and Gemma.
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((d)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and LLama.

osine Score under Prompt Perturbations

((e)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and LLama.

Figure 5

Cosine Score under Prompt Perturbations

BLEURT Score
2% /

((f)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and LLama.
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((a)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and Gemma.
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((b)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and Gemma.

Cosine Score under Prompt Perturbations

((c)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and Gemma.
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((d)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and LLama.

turbation Percentage

((e)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and LLama.

Figure 6
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((f)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and LLama.



UML diagram JailBreakTester
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Figure 7: The UML structure for the developed tool.
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