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Abstract001

As Large Language Models (LLMs) continue002
to advance, ensuring their robustness and secu-003
rity remains a critical challenge. Jailbreak at-004
tacks pose a significant risk by coercing LLMs005
into generating harmful or ethically inappro-006
priate content, even when such models are007
trained to follow strict guidelines. Further-008
more, defining universal filtering policies is009
inherently context-dependent and difficult to010
generalize. To address these challenges without011
relying on additional rule-based filters or pre-012
defined thresholds, this paper presents a novel013
detection framework for assessing whether an014
LLM-generated response aligns with expected015
safe behavior. The proposed approach eval-016
uates response consistency from two comple-017
mentary perspectives: intra-consistency, which018
analyzes how reference responses in prede-019
fined Refusal Semantic Domain (RSD) vary in020
the latent space; and inter-consistency, which021
measures the semantic alignment between the022
LLM response and this RSD, followed by semi-023
supervised classification using Isolation Forest.024
This methodology enables effective jailbreak025
detection without the need for empirically de-026
fined thresholds, offering a more scalable and027
adaptable solution for real-world applications1.028

1 Introduction029

Large Language Models (LLMs) are powerful neu-030

ral networks with large parameter sizes and strong031

in-context learning capabilities, widely used for032

tasks like summarization, text completion, and033

question answering (Hadi et al., 2023; OpenAI,034

2023; Kasneci et al., 2023; Zhao et al., 2023). Pop-035

ular models include GPT-3 (Mann et al., 2020),036

GPT-4 (Achiam et al., 2023), and LLAMA (Tou-037

vron et al., 2023), typically accessed via APIs or038

web interfaces. However, this accessibility exposes039

them to cyber threats, such as prompt-based at-040

tacks, which can manipulate model behavior and041
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compromise system security (Perez and Ribeiro, 042

2022). Two major attacks on LLMs are prompt 043

injection and jailbreak attacks, both aiming to by- 044

pass safety mechanisms and generate harmful or 045

illegal content (Chao et al., 2023; Zou et al., 2023). 046

Prompt injection involves appending malicious in- 047

put to a prompt and has been identified by OWASP 048

as a top LLM-related threat (OWASP, 2025; Ku- 049

mar et al., 2024). In contrast, jailbreak attacks 050

bypass safety filters without prompt concatena- 051

tion (Yi et al., 2024), posing a significant chal- 052

lenge due to their stealthy nature (Wang et al., 053

2023), especially in sensitive applications like busi- 054

ness (Wu et al., 2023), education (Blodgett and 055

Madaio, 2021), and healthcare (Sallam, 2023). In 056

this paper, we mainly focuses on jailbreak attacks. 057

Existing methods, including SmoothLLM, struggle 058

to reliably detect jailbreak attacks. Reproducing 059

prior approaches like JailGuard is also challeng- 060

ing, often leading to inconsistent results—even on 061

the same datasets—due to implementation difficul- 062

ties and unclear threshold settings. These issues 063

reflect broader reproducibility and comparability 064

problems in the field. 065

This work therefore explores two key questions: 066

RQ1: Can jailbreak attacks be detected without 067

relying on additional filters, fine-tuning, or thresh- 068

old tuning? RQ2: Can we build an efficient de- 069

tection method that generalizes well across differ- 070

ent datasets, models, and applications? To answer 071

these questions, we conducted extensive experi- 072

ments to study these dependencies by testing jail- 073

break attacks on two LLMs—the LLama-7-2B and 074

the Gemma-2-9B—and proposed a novel frame- 075

work, NegBLEURT Forest. In this work, Section 2 076

provides an overview of the existing jailbreak at- 077

tacks and defense mechanisms. Section 3 intro- 078

duces the first study for the intra-consistency be- 079

tween the responses in perturbed prompts. In Sec- 080

tion 4, the second semi-unsupervised approach is 081

presented which leverages K-means clustering and 082
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the Isolation Forest machine learning algorithm.083

The corresponding experimental evaluation and084

discussion are also elaborated. Finally, Section 5085

concludes the paper and outlines the limitations of086

the proposed work.087

2 Related Work088

Many research works have been proposed to de-089

tect jailbreak attacks. For example, Smooth-090

LLM (Robey et al., 2023), JailGuard (Zhang et al.,091

2023), LlamaGuard (Inan et al., 2023), defense092

strategies in (Metzen et al., 2017; Liu et al., 2022;093

Dong et al., 2021) identify attacks and help se-094

cure AI systems. However, most of the proposed095

methods are based on comparing inputs and/or out-096

puts against a reference dataset and use thresholds097

that are determined empirically. As a result, these098

solutions often lack generalization across differ-099

ent datasets and models, making their results diffi-100

cult to reproduce. Furthermore, many alternative101

approaches involve fine-tuning the models used,102

which requires frequent updates, an approach that103

is resource intensive and expensive (Rahman et al.,104

2024). Safety training methods for LLMs, such as105

GPT-4 and Claude, frequently fine-tune pre-trained106

models using human preferences (Christiano et al.,107

2017; Ziegler et al., 2019; Stiennon et al., 2020;108

Ouyang et al., 2022; Bai et al., 2022a) and AI feed-109

back (Bai et al., 2022b; Achiam et al., 2023; Sun110

et al., 2023). Another detection method is the input111

perplexity score which uses an additional model112

to detect jailbreak prompts(Alon and Kamfonas,113

2023). Jailbreak attacks aim to trick large lan-114

guage models (LLMs) into producing harmful or115

unethical responses. Starting from early work on116

hand-crafted prompts (Walkerspider, 2022), jail-117

breaks can be divided into two types: conflict-118

ing goals and generalization mismatches (Wang119

et al., 2018). Conflicting goals attacks use care-120

fully designed inputs to make the model choose121

between safe behavior and harmful prompts, with122

well-known examples like GCG and AutoDAN.123

The Greedy Coordinate Gradient (GCG) method124

(Zou et al., 2023) generates adversarial suffixes125

added to harmful prompts and works effectively126

on black-box commercial LLMs. AutoDAN (Zou127

et al., 2023) uses genetic algorithms with mutation128

and crossover to create natural adversarial prefixes.129

Generalization mismatches exploit the gap between130

broad pretraining data and narrower safety fine-131

tuning data. For instance, Yong et al. (Yong et al.,132

2023) jailbreak GPT-4 by turning user prompts into 133

low-resource languages. Another approach uses 134

sequence-to-sequence models, like LLMs (Tian 135

et al., 2023) or multi-agent systems (Chao et al., 136

2023), to transform harmful prompts into jailbreak 137

prompts. Defensive methods fall into two main 138

types: pre-processing and post-processing. Pre- 139

processing changes harmful prompts using tech- 140

niques like smoothing or detection to remove ad- 141

versarial parts (Ji et al., 2024; Robey et al., 2023; 142

Cao et al., 2023; Hu et al., 2024; Zhang et al., 2025; 143

Lin et al., 2024). Post-processing uses filters to 144

check if the model’s responses are safe (Pisano 145

et al., 2023; Phute et al., 2023; Zeng et al., 2024; 146

Xiong et al., 2024). Both methods work well but 147

have drawbacks. Pre-processing relies on thresh- 148

olds to separate safe and harmful prompts, but these 149

thresholds are often chosen without strong justifica- 150

tion and usually target only one or two attack types, 151

limiting their general use. Post-processing needs 152

adapting the model with filter tuning, which takes a 153

lot of time and resources. Also, its reliability is not 154

always guaranteed, especially if an external LLM 155

is used to evaluate responses. 156

3 Consistency Analysis 157

Given a jailbreak prompt with adversarial prefixes 158

or suffixes, we assume that modifying it can stop 159

the attack and keep the response within the model’s 160

safety limits. In this section, we analyze how 161

the model’s responses change when the original 162

prompt is slightly altered. This helps us understand 163

how consistent, stable, and sensitive the model is to 164

small input changes. The steps of this analysis are 165

shown in Figure 1. Building on the datasets from 166

(Chao et al., 2024), we created a carefully curated 167

and manually labeled dataset with 161 prompts, 168

including both successful and failed jailbreak at- 169

tempts. In the perturbation process, various con- 170

trolled changes are applied to the original prompt 171

while keeping its main meaning. These changes 172

simulate different ways users might phrase prompts, 173

helping to test the model’s robustness. We use three 174

techniques: Insert Perturbation, which randomly 175

adds contextually fitting words or phrases to the 176

prompt to check if the meaning stays consistent; 177

Patch Perturbation, which replaces certain words 178

or phrases with alternatives while keeping the sen- 179

tence structure to see how the model adapts; and 180

Swap Perturbation, which changes the order of 181

words or phrases to test the model’s ability to un- 182
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derstand the prompt despite word rearrangement.183

To better detect inconsistencies, we apply six per-184

turbation levels (1, 3, 5, 10, 15, and 25), generating185

10 variations at each level. For each perturbed186

prompt, we generated 10 different responses from187

the model to get a reliable sample for evaluating188

how consistently the model reacts to small input189

changes. This also helped us create a ground truth190

for further analysis. Having multiple responses191

per prompt allows us to measure Response Consis-192

tency, which shows how similar the responses are193

to each other and reflects the model’s stability. We194

measured consistency using cosine similarity and195

the NegBLEURT score.196

In order to analyze the intra-dependency among197

the generated responses, we compare two evalua-198

tion metrics: cosine similarity and NegBLEURT199

score. These metrics are used in this work to empir-200

ically avoid using a threshold and to determine if201

we can effectively distinguish between consistent202

and inconsistent response patterns. Specifically,203

our objective is to determine whether a notable204

change in the generated responses occurs when the205

initial prompt is slightly modified. In the work206

of SmoothLLM, the authors defined a consistency207

threshold and performed an extensive mathemati-208

cal analysis. However, their final approach relied209

on a string classifier to identify jailbreak attacks.210

In contrast, our method directly leverages the sim-211

ilarities between responses to capture changes in212

the model’s behavior. The underlying hypothesis213

is that a prompt designed as an attack will exhibit214

significant variations in its responses when the orig-215

inal prompt is slightly perturbed. In contrast, a216

consistently unsuccessful attack will maintain high217

similarity among the generated responses. To for-218

malize this approach, we begin with an original219

prompt P0 and generate ten different responses220

R1, R2, . . . , R10. The similarity between each pair221

of these responses is calculated using the chosen222

metrics (cosine similarity and NegBLEURT), re-223

sulting in a 10 × 10 similarity matrix. The diag-224

onal of this matrix is set to zero to prevent self-225

comparison of the responses. This matrix effec-226

tively captures the intra-dependency of the gener-227

ated responses, where each entry S(Ri, Rj) repre-228

sents the similarity score between the ith and jth229

responses. The structure of this similarity matrix is230

illustrated below, where S denotes the calculated231

similarity score:232

S =


0 S(R1, R2) S(R1, R3) · · · S(R1, R10)

S(R2, R1) 0 S(R2, R3) · · · S(R2, R10)
S(R3, R1) S(R3, R2) 0 · · · S(R3, R10)

...
...

...
. . .

...
S(R10, R1) S(R10, R2) S(R10, R3) · · · 0

 233

Following the computation of similarity scores, 234

the average of each row in the similarity matrix is 235

calculated to measure the consistency of a specific 236

response to all others 1-vs-all). We tested both 237

the cosine similarity and NegBLEURT (Anschütz 238

et al., 2023) to evaluate the similarity between two 239

outputs. NegBLEURT is a modified version of the 240

BLEURT (BERT-based Language Understanding 241

Evaluation and Representation Tool). It focuses on 242

identifying inconsistencies or anomalies in the gen- 243

erated text by converting BLEURT scores into neg- 244

ative values. This approach effectively highlights 245

responses that exhibit significant divergence, par- 246

ticularly those containing negations such as "Sorry, 247

I cannot do that" or "I am an ethical AI." Such re- 248

sponses are typically indicative of model refusal 249

behaviors, which are of critical interest in adversar- 250

ial testing. 251

3.1 Experimental Evaluation and Results 252

For each prompt, we calculate the similarity values 253

between the generated responses, obtaining a ma- 254

trix for each metric. The average value of each row 255

in the matrix is then computed, and the maximum 256

of these average values is identified. This approach 257

enables us to systematically assess the behavior 258

of each metric under varying conditions. Figure 259

2 presents the results for the NegBLEURT and 260

cosine , where responses are categorized into two 261

groups: successful jailbreaks and non-jailbreaks. 262

For clarity, we focus on the swap perturbation in 263

Figure 2 (10-90 percentile envelopes), while the 264

results for the other perturbations are provided in 265

the Appendix. In the NegBLEURT score analysis, 266

two distinct regions are observed: the red envelope, 267

representing successful jailbreaks, and the blue 268

envelope, indicating non-jailbreak responses. 269

Empirically, a positive NegBLEURT score is 270

generally associated with non-jailbreak attempts, 271

indicating stable and consistent responses. In 272

contrast, a negative NegBLEURT score reveals 273

inconsistencies in responses, which are indicative 274

of successful jailbreak attacks. The second two 275

figures (c) and (d) report the cosine similarity 276

metric on the same set of responses. Although 277

NegBLEURT demonstrates a separation between 278
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Figure 1: Proposed approach using prompt perturbations and NegBLEURT.

((a)) NegBLEURT score for
swap perturbation-Gemma.

((b)) NegBLEURT score for
swap perturbation-llama.

((c)) Cosine similarity score
for swap perturbation-Gemma.

((d)) Cosine Similarity score
for swap perturbation-llama.

Figure 2

the two categories, the cosine similarity values279

show significant overlap, making it difficult280

to differentiate between attack and non-attack281

responses. Furthermore, the figures reveal an282

overlap between the two categories, particularly283

when the perturbation level is increased (also284

for NegBLEURT) because prompts exhibiting285

significant perturbations are more likely to display286

inconsistent behavior. Empirical evidence indicates287

that higher levels of perturbation increase the288

overlap, which in turn reduces the discriminative289

power of the similarity metrics. From these290

observations, we deduce the following key insights.291

NegBLEURT is an effective model to detect the292

inconsistencies in the responses which can be293

a possible jailbreak attack as indicated by the294

separation between positive and negative scores. A295

negative NegBLEURT score is a strong indicator296

of a potential attack, suggesting that the associated297

prompt has likely triggered an adversarial response.298

Moreover, excessive perturbation reduces the abil-299

ity to differentiate between attack and non-attack300

responses, suggesting that moderate perturbation301

levels may be preferable for robust analysis.302

Why NegBLEURT Forest? Although NegBLEURT303

offers valuable insights into model responses,304

its interpretation still relies on threshold-based305

distinctions between positive and negative scores.306

Additionally, it is considered resource-intensive, 307

making it less practical for efficient implemen- 308

tation and deployment. To overcome these 309

limitations and move toward a more realistic and 310

scalable solution, we build on the findings from 311

NegBLEURT to introduce an alternative approach. 312

This proposed classifier avoids the use of prompt 313

perturbations and eliminates the dependency on 314

predefined thresholds, offering a more robust and 315

adaptable method for jailbreak detection. 316

317

4 Method Derived 318

4.1 Proposed Framework 319

We present a Jailbreak detection framework, as 320

shown in Figure 3 designed to systematically eval- 321

uate whether LLMs can robustly refuse prompts 322

that contain hazardous requests, illegal content, or 323

violate developer safety protocols. Our proposed 324

framework robustly detects whether the model’s 325

response falls within a semantic region associated 326

with negations or legal disclaimers. By jointly an- 327

alyzing intra-consistency and inter-consistency of 328

model output, our method enables highly efficient 329

jailbreak detection without the need to define task- 330

specific prefixes. 331
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Figure 3: NegBLEURT Forest: The proposed framework for detecting successful harmful prompt attacks using
RSD and Isolation Forest.

4.1.1 Refusal Semantic Domain (RSD)332

Table 1: Typical model responses to harmful queries,
categorized by refusal type.

Refusal Type Example

Direct Refusal I cannot fulfill your request.
Refusal + Apology I apologize, but I’m a large

language model, I cannot provide
you with that information.

Based on a large collection of both success-333

ful and failed jailbreak attempts, we observe that334

when the model rejects harmful user queries, its335

responses generally fall into one of two categories:336

(1) direct refusal, (2) refusal accompanied by an337

apology. These response patterns are exemplified338

in Table 1.339

Let Drej denote a subset of rejection-related ut-340

terances (rejection corpus) collected for analysis.341

We define RSD ⊂ S, where S is the space of all342

possible sentences in natural language such that:343

RSD =
{
s ∈ Drej

∣∣ 15 ≤ len(s) ≤ 20
}

(1)344

Here, len(s) denotes the number of words in345

sentence s. The region R is characterized seman-346

tically by alignment with the rejection intent and347

structurally by sentence length constraints (typi-348

cally between 15 and 20 words). We know that349

RSD contains an infinite number of text combi-350

nations; however, different text combinations have351

similar semantics with relatively low semantic dis-352

tances between them. Therefore, we can directly353

locate the RSD in abstract semantics using a fi-354

nite set of semantically relevant sentences from the355

collected Drej. Furthermore, we assume that the356

correct response of the model should be to reject357

all unsafe or unhealthy requests. Therefore, when358

the model’s response semantically aligns with the359

RSD, the model can be considered to have been 360

successfully attacked. 361

4.1.2 Intra-Consistency and Inter-Consistency 362

According to the previous section, we find that 363

NegBLEURT can effectively reflect the inconsis- 364

tency between responses, whereas cosine similarity 365

fails to do so. Based on this insight, we propose 366

a method for measuring both Intra-Consistency 367

and Inter-Consistency, which can be used to detect 368

whether an attack has succeeded. 369

We treat RSD as the set of reference re- 370

sponses, and the input responses as the target re- 371

sponse. These responses are transformed into 372

high-dimensional vectors (embeddings) using a 373

sentence-transformer. We define another type of 374

distance, referred to as the NegBLEURT Distance, 375

which is designed to compare semantic similar- 376

ity between two texts. A higher score indicates 377

stronger similarity—scores can potentially exceed 378

1 and are generally below 2. In contrast, dissimilar 379

or contradictory pairs tend to yield scores below 0. 380

Therefore, for each reference response in Drej, we 381

compute a NegBLEURT score with respect to the 382

target response. IfRSD contains elements N , this 383

process results in a vector of dimensions N , which 384

serves as a key indicator to evaluate the distance 385

based on NegBLEURT. 386

DNeg(etgt,RSD) =
[
MNeg(etgt, ei)

]N
i=1

(2) 387

where etgt denotes the target response, andRSD = 388

{e1, e2, . . . , eN} represents refusal domain. MNeg 389

denotes the NegBLEURT model as a function. 390

We assume that the target response embedding 391

is etgt ∈ RE×1, and the NegBLEURT Score Dis- 392

tance vector is DNeg(etgt,Drej) ∈ RN×1. To ensure 393

that these components contribute equally in the rep- 394

resentation of the joint characteristics, we extend 395

both DNeg to E × 1 vectors through replication, 396
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denoted D′
Neg , respectively. The complete feature397

representation for each item is then defined as:398

F (etgt,RSD) =
[
etgt

∣∣ D′
Neg

]
(3)399

where F (etgt,RSD) ∈ R2E×1. In this case, our400

features not only encode semantic information, but401

also incorporate the negation distance within the402

RSD (intra-consistency) and between the target403

response and RSD elements (inter-consistency).404

4.1.3 Outlier Detection(Iso-Forest)405

Initially, from the principle of Isolation Forest, the406

anomaly score for each sample x is computed by:407

s(x, n) = 2
−E[h(x)]

c(n) (4)408

where:409

• E[h(x)] denotes the expected path length of410

sample x across all isolation trees, h (x) is the411

path length, for example, x.412

• c(n) is a normalization constant which is a413

function of the sample size n.414

Here, n refers to the number of samples used to415

build each isolation tree. In practice, this is typi-416

cally a subsample of the entire dataset chosen to417

improve computational efficiency and the effective-418

ness of anomaly detection. If the entire data set is419

used for each tree, then n = N , where N is the420

total number of samples available. Subsequently,421

the set of anomalies is determined by selecting the422

samples with the highest anomaly scores, in accor-423

dance with the contamination rate:424

Anomaly Set = {xi | s(xi, n) ≥ τα} (5)425

where τα represents the threshold corresponding426

to the top α proportion of anomaly scores, i.e., the427

(1− α)-quantile. In our paper, since we examine428

the responses one by one, we fix α = 1
N+1 , so that429

only one response is estimated to be an anomaly,430

while all other samples are considered normal.431

4.1.4 Extraction Framework432

The model output exhibits a certain degree of ran-433

domness and, depending on the input, may occa-434

sionally express apologies or refusals. In particular,435

the responses vary according to the specific require-436

ments of the input. Although the overall semantics437

may be similar to RSD, the embeddings extracted438

by the model capture a wider spectrum of semantic439

information. Consequently, while the output may 440

contain elements of refusal, it also encompasses 441

other semantic meanings, which can result in the 442

output being identified as an outlier by the isolation 443

forest algorithm. To address this issue, we employ 444

an extraction framework to extract the core attitu- 445

dinal information as shown in 1. In this study, the 446

zero-shot classifier is implemented using the pre- 447

trained model facebook/bart-large-mnli in an 448

unsupervised manner. Specifically, only a set of 449

candidate labels L is defined, and the model sub- 450

sequently computes a classification score for each 451

label based on the given input. 452

Algorithm 1 Extraction of Salient Sentence
Require: Text T , Zero-shot classifier C, Labels
L = {refusal, apology, informative}

Ensure: Salient sentence S∗

1: Split T into N sentences: {s1, s2, . . . , sN}
2: for each si do
3: Compute scores: C(si,L)→ score vector

pi

4: Let ℓi ← argmaxℓ∈L pi[ℓ]
5: end for
6: Define Lemo ← {refusal, apology}
7: Identify subset: Semo ← {si | ℓi ∈ Lemo}
8: if Semo ̸= ∅ then
9: S∗ ← sentence in Semo with highest score

10: else
11: S∗ ← s1 ▷ Fallback to the first sentence
12: end if
13: if Length of S∗ is too long then
14: Trim S∗ by semantic splitting and keep

segment with highest emotional score
15: end if
16: return S∗

4.1.5 Methodology Overview 453

In summary, as illustrated in Figure 3, for a given 454

harmful prompt, we first allow the model to per- 455

form inference to generate a response. The result- 456

ing response is then processed through the Extrac- 457

tion Framework to identify the most critical sen- 458

tences. Based on these, we compute a feature vec- 459

tor that captures both intra-consistency and inter- 460

consistency. Finally, we apply Isolation Forest to 461

perform outlier detection. 462

J = I
(
F (E(M(x)), RSD)

)
(6) 463

where J denotes the JailBreak result, M the LLM 464

model, E the extraction function, F the feature 465
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computation shown in Equation 3, I the Iso-Forest466

outlier detection and x the input harmful prompt.467

4.2 Experiments468

Our NegBLEURT Forest framework effectively ad-469

dresses the issue of inconsistent output caused by470

the random nature of model responses. Instead of471

relying on explicitly defined refusal strings, our472

method introduces an RSD-based outlier detection473

mechanism, eliminating the need to manually spec-474

ify classification thresholds. Since determining the475

success of a Jailbreak Attack constitutes a typical476

binary classification task, we adopt standard evalu-477

ation metrics including accuracy, precision, recall,478

and F1 score to assess performance.479

Regarding the dataset, based on the original480

dataset, we apply 25% Patch Perturbation, Insert481

Perturbation, and Swap Perturbation to the input482

prompts to enhance our data set. We then evaluated483

two different models using this expanded dataset.484

Furthermore, through manual inspection of the re-485

sponses corresponding to each prompt, we obtain486

the respective Jailbreak ground-truth labels.487

To validate that our model outperforms other488

state-of-the-art (SOTA) methods, we evaluated489

String-based Text Classification, Perplexity-guided490

Classification, Smoothed Language Model Classi-491

fication, and the JailGuard method in the same test492

set, obtaining the results shown in Table 2.493

Furthermore, a comprehensive evaluation of the494

proposed framework was performed, encompass-495

ing not only its overall performance but also a496

series of ablation studies designed to systemati-497

cally quantify the individual contributions of its498

constituent components to the model’s detection499

efficacy. Specifically, the investigation involved the500

exclusion of the Extraction Framework (denoted as501

Model w/o Extraction) and the isolated removal of502

critical elements within the NegBleurt distance cal-503

culation (Model w/o NegBleurt Distance) and the504

Embeddings (Model w/o Embeddings). Addition-505

ally, the study examined the effect of employing al-506

ternative embedding models—specifically, the “No-507

vaSearch/stella_en_1.5B_v5” model (Model with508

Another Model)—on detection performance. Fi-509

nally, the robustness of the framework was assessed510

by evaluating a variant in which the representa-511

tional dimensionality of the Reference Semantic512

Distance (RSD) was reduced by half (Model with513

Half Reference).514

4.3 Results and Discussion 515

4.3.1 Detection Results 516

As shown in Table 2, we observe that the model 517

achieves the highest F1 scores in most cases, al- 518

though SMLM-CLS performs relatively better on 519

the Gemma model. It is worth emphasizing that 520

our method consistently attains very high perfor- 521

mance across all four test sets. However, despite 522

SMLM-CLS achieving strong results on the OD 523

dataset, its performance on OD SWAP is notably 524

poor—significantly lower than NegBLEURT For- 525

est’s 0.881. This further validates that our ap- 526

proach demonstrates greater generalizability, main- 527

taining comparable high performance across differ- 528

ent datasets, especially on responses generated by 529

different models. It is also important to note that 530

the performance of PPL-CLS is highly sensitive to 531

the choice of the perplexity threshold. In this study, 532

the threshold was selected to yield relatively high 533

accuracy; nevertheless, its performance across the 534

four datasets remains suboptimal, particularly in 535

terms of F1 score. 536

4.3.2 Ablation Results 537

It can be seen that our framework achieves high 538

performance in both models in tests, particularly 539

in terms of the F1 score, as shown in Table 3. In 540

addition, it was found that each component of the 541

framework contributes positively to the overall per- 542

formance of the model. For example, in the eval- 543

uation using Llama-2-7b-chat-hf, reducing the di- 544

mensionality of the RSD by half led to a notable 545

performance degradation, with the F1 score drop- 546

ping from 0.869 to 0.759. Furthermore, our com- 547

plete framework demonstrates consistently strong 548

performance across all tested models. When the Ex- 549

traction Framework is removed, although relatively 550

good results are maintained on the Gemma-2-9b 551

model, the performance on Llama-2-7b-chat-hf de- 552

teriorates significantly, with an F1 score of only 553

0.726, significantly lower than the 0.869 achieved 554

by the full model. 555

5 Conclusion 556

In this study, we first analyze the behavior of harm- 557

ful prompts under varying perturbation rates and 558

types. Clear evidence of intra-inconsistency was 559

observed across different conditions. To visualize 560

the discrepancies, we employed two distinct ap- 561

proaches: the first utilizes an embedding model 562

combined with cosine distance computation, while 563
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Methods Models
Original Dataset (OD) OD Patch Perturbation 25% OD Insert Perturbation 25% OD Swap Perturbation 25%

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

Llama-2-7b-chat-hf

STR-CLS 0.435 0.257 0.122 0.165 0.863 0.541 0.800 0.645 0.857 0.514 0.750 0.610 0.913 0.300 1.000 0.462
PPL-CLS 0.609 0.867 0.176 0.292 0.770 0.167 0.120 0.140 0.795 0.200 0.125 0.144 0.894 0.077 0.167 0.105
JailGuard 0.559 0.667 0.081 0.145 0.826 0.333 0.120 0.177 0.826 0.333 0.167 0.222 0.919 0.231 0.500 0.316
SMLM-CLS 0.578 0.875 0.095 0.171 0.839 0.474 0.360 0.409 0.820 0.407 0.458 0.431 0.919 0.111 0.167 0.133
NegBleurtForest 0.894 0.817 1.000 0.899 0.870 0.692 0.878 0.774 0.870 0.673 0.897 0.769 0.913 0.625 0.750 0.682

Gemma-2-9b

STR-CLS 0.851 0.753 0.939 0.836 0.776 0.607 0.944 0.739 0.857 0.778 0.927 0.846 0.683 0.410 0.944 0.571
PPL-CLS 0.721 0.667 0.615 0.640 0.683 0.517 0.833 0.638 0.727 0.700 0.618 0.656 0.559 0.289 0.667 0.403
JailGuard 0.752 0.931 0.415 0.575 0.696 0.619 0.241 0.347 0.671 0.703 0.382 0.495 0.677 0.340 0.472 0.395
SMLM-CLS 0.988 0.985 0.985 0.985 0.795 0.621 1.000 0.766 0.907 0.844 0.956 0.897 0.603 0.354 0.944 0.515
NegBleurtForest 0.901 0.803 1.000 0.890 0.820 0.832 0.859 0.845 0.907 0.878 0.952 0.911 0.876 0.881 0.881 0.881

Table 2: This table presents a comparative analysis of five classification approaches: STR-CLS (String-based Text
Classification), PPL-CLS (Perplexity-guided Classification), SMLM-CLS (Smoothed Language Model Classifica-
tion), JailGuard, and the proposed method, NegBLEURTForest. The evaluation is conducted on both the original
clean dataset (OD) and a perturbed version containing 25% noise derived from the OD. The results illustrate the
robustness and effectiveness of each method under varying data conditions.

Methods Model Full Dataset
ACC Prec. Rec. F1

Llama-2-7b-chat-hf

Base Framework 0.933 0.856 0.883 0.869
Model w/o Extraction 0.823 0.593 0.932 0.726
Model w/o NegBleurt Distance 0.888 0.821 0.710 0.762
Model w/o Embeddings 0.905 0.756 0.920 0.830
Model with Half Reference 0.849 0.635 0.944 0.759
Model with Another Model 0.904 0.798 0.827 0.812

Gemma-2-9b

Base Framework 0.876 0.930 0.815 0.868
Model w/o Extraction 0.877 0.849 0.920 0.883
Model w/o NegBleurt Distance 0.800 0.926 0.653 0.767
Model w/o Embeddings 0.899 0.909 0.890 0.899
Model with Half Reference 0.873 0.842 0.920 0.879
Model with Another Model 0.800 0.945 0.639 0.762

Table 3: Performance comparison of different models
and configurations on the full dataset. We combined all
data with 25% perturbation from main experiments with
the metadata to construct a 4× 161 dataset, which we
refer to as the Full Dataset.

the second directly applies a negation-sensitive met-564

ric, the NegBleurt distance. Both visualizations565

reveal substantial differences between JailBreak566

and Non-JailBreak responses, with particularly pro-567

nounced separation observed when using the Neg-568

Bleurt distance. However, defining a definitive569

and generalizable threshold to distinguish between570

JailBreak and Non-JailBreak cases proves to be571

challenging. As a result, the classification perfor-572

mance of the model becomes highly sensitive to573

the choice of threshold in such scenarios.574

To tackle this, we introduce an innovative use of575

the RSD as a contextual anchor for response evalu-576

ation. Building upon this foundation, we employ577

NegBleurt as a distance metric to capture seman-578

tic shifts, while further incorporating embedding579

vectors along with their corresponding cosine dis-580

tances to form a comprehensive feature represen-581

tation. Within this feature space, we apply the582

Isolation Forest algorithm to detect anomalous re-583

sponses, achieving notably high performance. A584

key advantage of this method lies in its ability to585

operate without the need for an explicitly defined586

threshold, offering strong generalizability across 587

different language models. Compared to traditional 588

string-based classifiers, our approach demonstrates 589

greater stability and eliminates the need for ex- 590

tensive manual curation of refusal or apology pre- 591

fixes. By adopting an unsupervised methodology, 592

it enables fine-grained, prompt-level JailBreak de- 593

tection. The effectiveness of each component is 594

further validated through ablation studies, confirm- 595

ing their individual contributions to overall per- 596

formance and establishing a novel direction for 597

reliable JailBreak detection. 598

6 Limitations 599

In this study, we conducted our experiments using 600

two language models. As part of future work, we 601

aim to extend our evaluation to a broader range of 602

models and incorporate additional datasets. This 603

expansion will enable a more comprehensive as- 604

sessment of the proposed approach and support 605

claims regarding its generalizability across diverse 606

model architectures and data domains. Moreover, 607

NegBLEURT relies on BLEURT, which is based 608

on large, pre-trained BERT models and this makes 609

it resource-intensive, especially when applied to 610

large-scale evaluations or real-time systems. 611
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A Appendix A: Experimental Result842

Figure 4: PCA examples visualization showing success-
ful jailbreak attacks, detected jailbreak attacks and the
RSD previously defined.

The figure illustrates a PCA (Principal Compo-843

nent Analysis) visualization of response distribu-844

tions derived from an Isolation Forest model ap-845

plied to the response embeddings. The responses846

are categorized into three distinct groups: Red847

Points: Represent successful jailbreak attacks,848

where the model was tricked into providing unau-849

thorized or unintended outputs.850

Green Points: Indicate detected unsuccessful jail-851

break attempts, where the model responded with852

refusal messages such as "I’m sorry" or "I am an853

ethical AI," effectively recognizing and blocking854

the attack.855

Black Points: Correspond to the reference re-856

sponses within the fixed semantic domain, serving857

as a stable baseline for comparison.858

The clear separation between the red (successful at-859

tacks) and green (detected attacks) regions demon-860

strates the effectiveness of the detection method.861

Notably, this separation is achieved without relying862

on a predefined threshold or utilizing additional863

fine-tuned models. Instead, the Isolation Forest864

model leverages the embeddings of the generated865

responses to distinguish between successful and866

unsuccessful attacks. This result highlights the867

robustness of the proposed approach, where the868

detection of jailbreak attempts is achieved purely869

through the distribution of response embeddings,870

ensuring an adaptive and threshold-free detection 871

process. 872

B Appendix B: The "Pert2detect" 873

open-source Tool 874

While working on LLM jailbreaking, our team 875

found it difficult to easily compare different LLMs, 876

prompt datasets, and classifiers. Pert2detect was de- 877

veloped to address this challenge, providing users 878

with a unified interface, standardized communica- 879

tion methods, and shared result files. The user can 880

select one of the LLMs they have implemented, 881

a dataset type, and a classifier if "Auto mode" is 882

enabled. Without Auto mode enabled, the user will 883

be required to manually determine whether each 884

LLM response is successfully jailbroken. Using 885

the manual mode the "jailbreak ground-truth" key 886

in campaigns json will be set directly. 887

This application is designed to allow users to utilize 888

their own LLMs (either local or remote via API), 889

datasets, and classifiers. To add your own assets, 890

three abstract classes define the methods required 891

for the application to function properly. Figure 7 892

shows the Python classes which are designed with 893

a flexible architecture, enabling seamless modifi- 894

cation of the code to accommodate the addition 895

of new datasets, models, and the construction of 896

ground truth annotations. This extensible design 897

facilitates the efficient integration of various data 898

sources and model configurations, ensuring adapt- 899

ability for diverse research and development needs. 900

The tool supports the execution of a comprehensive 901

test campaign using a classifier-based approach. 902

Users have the flexibility to integrate their own cus- 903

tom classifier, enabling a tailored evaluation pro- 904

cess. In this configuration, the tool autonomously 905

determines the success of jailbreak attempts by 906

leveraging the classifier’s assessment, providing a 907

scalable and adaptable solution for detecting and 908

categorizing adversarial behaviors. 909
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((a)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and Gemma.

((b)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and Gemma.

((c)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and Gemma.

((d)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the insert pertur-
bation and LLama.

((e)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the patch pertur-
bation and LLama.

((f)) The average of NegBLEURT met-
ric between the original prompt and the
perturbed prompts using the swap pertur-
bation and LLama.

Figure 5

((a)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and Gemma.

((b)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and Gemma.

((c)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and Gemma.

((d)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the insert perturba-
tion and LLama.

((e)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the patch perturba-
tion and LLama.

((f)) The average of Cosine metric be-
tween the original prompt and the per-
turbed prompts using the swap perturba-
tion and LLama.

Figure 6
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Figure 7: The UML structure for the developed tool.
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